| /* |
| * OMAP4 SMP source file. It contains platform specific functions |
| * needed for the linux smp kernel. |
| * |
| * Copyright (C) 2009 Texas Instruments, Inc. |
| * |
| * Author: |
| * Santosh Shilimkar <santosh.shilimkar@ti.com> |
| * |
| * Platform file needed for the OMAP4 SMP. This file is based on arm |
| * realview smp platform. |
| * * Copyright (c) 2002 ARM Limited. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/init.h> |
| #include <linux/device.h> |
| #include <linux/smp.h> |
| #include <linux/io.h> |
| #include <linux/irqchip/arm-gic.h> |
| |
| #include <asm/smp_scu.h> |
| #include <asm/virt.h> |
| |
| #include "omap-secure.h" |
| #include "omap-wakeupgen.h" |
| #include <asm/cputype.h> |
| |
| #include "soc.h" |
| #include "iomap.h" |
| #include "common.h" |
| #include "clockdomain.h" |
| #include "pm.h" |
| |
| #define CPU_MASK 0xff0ffff0 |
| #define CPU_CORTEX_A9 0x410FC090 |
| #define CPU_CORTEX_A15 0x410FC0F0 |
| |
| #define OMAP5_CORE_COUNT 0x2 |
| |
| struct omap_smp_config { |
| unsigned long cpu1_rstctrl_pa; |
| void __iomem *cpu1_rstctrl_va; |
| void __iomem *scu_base; |
| void *startup_addr; |
| }; |
| |
| static struct omap_smp_config cfg; |
| |
| static const struct omap_smp_config omap443x_cfg __initconst = { |
| .cpu1_rstctrl_pa = 0x4824380c, |
| .startup_addr = omap4_secondary_startup, |
| }; |
| |
| static const struct omap_smp_config omap446x_cfg __initconst = { |
| .cpu1_rstctrl_pa = 0x4824380c, |
| .startup_addr = omap4460_secondary_startup, |
| }; |
| |
| static const struct omap_smp_config omap5_cfg __initconst = { |
| .cpu1_rstctrl_pa = 0x48243810, |
| .startup_addr = omap5_secondary_startup, |
| }; |
| |
| static DEFINE_SPINLOCK(boot_lock); |
| |
| void __iomem *omap4_get_scu_base(void) |
| { |
| return cfg.scu_base; |
| } |
| |
| #ifdef CONFIG_OMAP5_ERRATA_801819 |
| void omap5_erratum_workaround_801819(void) |
| { |
| u32 acr, revidr; |
| u32 acr_mask; |
| |
| /* REVIDR[3] indicates erratum fix available on silicon */ |
| asm volatile ("mrc p15, 0, %0, c0, c0, 6" : "=r" (revidr)); |
| if (revidr & (0x1 << 3)) |
| return; |
| |
| asm volatile ("mrc p15, 0, %0, c1, c0, 1" : "=r" (acr)); |
| /* |
| * BIT(27) - Disables streaming. All write-allocate lines allocate in |
| * the L1 or L2 cache. |
| * BIT(25) - Disables streaming. All write-allocate lines allocate in |
| * the L1 cache. |
| */ |
| acr_mask = (0x3 << 25) | (0x3 << 27); |
| /* do we already have it done.. if yes, skip expensive smc */ |
| if ((acr & acr_mask) == acr_mask) |
| return; |
| |
| acr |= acr_mask; |
| omap_smc1(OMAP5_DRA7_MON_SET_ACR_INDEX, acr); |
| |
| pr_debug("%s: ARM erratum workaround 801819 applied on CPU%d\n", |
| __func__, smp_processor_id()); |
| } |
| #else |
| static inline void omap5_erratum_workaround_801819(void) { } |
| #endif |
| |
| #ifdef CONFIG_HARDEN_BRANCH_PREDICTOR |
| /* |
| * Configure ACR and enable ACTLR[0] (Enable invalidates of BTB with |
| * ICIALLU) to activate the workaround for secondary Core. |
| * NOTE: it is assumed that the primary core's configuration is done |
| * by the boot loader (kernel will detect a misconfiguration and complain |
| * if this is not done). |
| * |
| * In General Purpose(GP) devices, ACR bit settings can only be done |
| * by ROM code in "secure world" using the smc call and there is no |
| * option to update the "firmware" on such devices. This also works for |
| * High security(HS) devices, as a backup option in case the |
| * "update" is not done in the "security firmware". |
| */ |
| static void omap5_secondary_harden_predictor(void) |
| { |
| u32 acr, acr_mask; |
| |
| asm volatile ("mrc p15, 0, %0, c1, c0, 1" : "=r" (acr)); |
| |
| /* |
| * ACTLR[0] (Enable invalidates of BTB with ICIALLU) |
| */ |
| acr_mask = BIT(0); |
| |
| /* Do we already have it done.. if yes, skip expensive smc */ |
| if ((acr & acr_mask) == acr_mask) |
| return; |
| |
| acr |= acr_mask; |
| omap_smc1(OMAP5_DRA7_MON_SET_ACR_INDEX, acr); |
| |
| pr_debug("%s: ARM ACR setup for CVE_2017_5715 applied on CPU%d\n", |
| __func__, smp_processor_id()); |
| } |
| #else |
| static inline void omap5_secondary_harden_predictor(void) { } |
| #endif |
| |
| static void omap4_secondary_init(unsigned int cpu) |
| { |
| /* |
| * Configure ACTRL and enable NS SMP bit access on CPU1 on HS device. |
| * OMAP44XX EMU/HS devices - CPU0 SMP bit access is enabled in PPA |
| * init and for CPU1, a secure PPA API provided. CPU0 must be ON |
| * while executing NS_SMP API on CPU1 and PPA version must be 1.4.0+. |
| * OMAP443X GP devices- SMP bit isn't accessible. |
| * OMAP446X GP devices - SMP bit access is enabled on both CPUs. |
| */ |
| if (soc_is_omap443x() && (omap_type() != OMAP2_DEVICE_TYPE_GP)) |
| omap_secure_dispatcher(OMAP4_PPA_CPU_ACTRL_SMP_INDEX, |
| 4, 0, 0, 0, 0, 0); |
| |
| if (soc_is_omap54xx() || soc_is_dra7xx()) { |
| /* |
| * Configure the CNTFRQ register for the secondary cpu's which |
| * indicates the frequency of the cpu local timers. |
| */ |
| set_cntfreq(); |
| /* Configure ACR to disable streaming WA for 801819 */ |
| omap5_erratum_workaround_801819(); |
| /* Enable ACR to allow for ICUALLU workaround */ |
| omap5_secondary_harden_predictor(); |
| } |
| |
| /* |
| * Synchronise with the boot thread. |
| */ |
| spin_lock(&boot_lock); |
| spin_unlock(&boot_lock); |
| } |
| |
| static int omap4_boot_secondary(unsigned int cpu, struct task_struct *idle) |
| { |
| static struct clockdomain *cpu1_clkdm; |
| static bool booted; |
| static struct powerdomain *cpu1_pwrdm; |
| void __iomem *base = omap_get_wakeupgen_base(); |
| |
| /* |
| * Set synchronisation state between this boot processor |
| * and the secondary one |
| */ |
| spin_lock(&boot_lock); |
| |
| /* |
| * Update the AuxCoreBoot0 with boot state for secondary core. |
| * omap4_secondary_startup() routine will hold the secondary core till |
| * the AuxCoreBoot1 register is updated with cpu state |
| * A barrier is added to ensure that write buffer is drained |
| */ |
| if (omap_secure_apis_support()) |
| omap_modify_auxcoreboot0(0x200, 0xfffffdff); |
| else |
| writel_relaxed(0x20, base + OMAP_AUX_CORE_BOOT_0); |
| |
| if (!cpu1_clkdm && !cpu1_pwrdm) { |
| cpu1_clkdm = clkdm_lookup("mpu1_clkdm"); |
| cpu1_pwrdm = pwrdm_lookup("cpu1_pwrdm"); |
| } |
| |
| /* |
| * The SGI(Software Generated Interrupts) are not wakeup capable |
| * from low power states. This is known limitation on OMAP4 and |
| * needs to be worked around by using software forced clockdomain |
| * wake-up. To wakeup CPU1, CPU0 forces the CPU1 clockdomain to |
| * software force wakeup. The clockdomain is then put back to |
| * hardware supervised mode. |
| * More details can be found in OMAP4430 TRM - Version J |
| * Section : |
| * 4.3.4.2 Power States of CPU0 and CPU1 |
| */ |
| if (booted && cpu1_pwrdm && cpu1_clkdm) { |
| /* |
| * GIC distributor control register has changed between |
| * CortexA9 r1pX and r2pX. The Control Register secure |
| * banked version is now composed of 2 bits: |
| * bit 0 == Secure Enable |
| * bit 1 == Non-Secure Enable |
| * The Non-Secure banked register has not changed |
| * Because the ROM Code is based on the r1pX GIC, the CPU1 |
| * GIC restoration will cause a problem to CPU0 Non-Secure SW. |
| * The workaround must be: |
| * 1) Before doing the CPU1 wakeup, CPU0 must disable |
| * the GIC distributor |
| * 2) CPU1 must re-enable the GIC distributor on |
| * it's wakeup path. |
| */ |
| if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD)) { |
| local_irq_disable(); |
| gic_dist_disable(); |
| } |
| |
| /* |
| * Ensure that CPU power state is set to ON to avoid CPU |
| * powerdomain transition on wfi |
| */ |
| clkdm_deny_idle_nolock(cpu1_clkdm); |
| pwrdm_set_next_pwrst(cpu1_pwrdm, PWRDM_POWER_ON); |
| clkdm_allow_idle_nolock(cpu1_clkdm); |
| |
| if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD)) { |
| while (gic_dist_disabled()) { |
| udelay(1); |
| cpu_relax(); |
| } |
| gic_timer_retrigger(); |
| local_irq_enable(); |
| } |
| } else { |
| dsb_sev(); |
| booted = true; |
| } |
| |
| arch_send_wakeup_ipi_mask(cpumask_of(cpu)); |
| |
| /* |
| * Now the secondary core is starting up let it run its |
| * calibrations, then wait for it to finish |
| */ |
| spin_unlock(&boot_lock); |
| |
| return 0; |
| } |
| |
| /* |
| * Initialise the CPU possible map early - this describes the CPUs |
| * which may be present or become present in the system. |
| */ |
| static void __init omap4_smp_init_cpus(void) |
| { |
| unsigned int i = 0, ncores = 1, cpu_id; |
| |
| /* Use ARM cpuid check here, as SoC detection will not work so early */ |
| cpu_id = read_cpuid_id() & CPU_MASK; |
| if (cpu_id == CPU_CORTEX_A9) { |
| /* |
| * Currently we can't call ioremap here because |
| * SoC detection won't work until after init_early. |
| */ |
| cfg.scu_base = OMAP2_L4_IO_ADDRESS(scu_a9_get_base()); |
| BUG_ON(!cfg.scu_base); |
| ncores = scu_get_core_count(cfg.scu_base); |
| } else if (cpu_id == CPU_CORTEX_A15) { |
| ncores = OMAP5_CORE_COUNT; |
| } |
| |
| /* sanity check */ |
| if (ncores > nr_cpu_ids) { |
| pr_warn("SMP: %u cores greater than maximum (%u), clipping\n", |
| ncores, nr_cpu_ids); |
| ncores = nr_cpu_ids; |
| } |
| |
| for (i = 0; i < ncores; i++) |
| set_cpu_possible(i, true); |
| } |
| |
| static void __init omap4_smp_prepare_cpus(unsigned int max_cpus) |
| { |
| void __iomem *base = omap_get_wakeupgen_base(); |
| const struct omap_smp_config *c = NULL; |
| |
| if (soc_is_omap443x()) |
| c = &omap443x_cfg; |
| else if (soc_is_omap446x()) |
| c = &omap446x_cfg; |
| else if (soc_is_dra74x() || soc_is_omap54xx()) |
| c = &omap5_cfg; |
| |
| if (!c) { |
| pr_err("%s Unknown SMP SoC?\n", __func__); |
| return; |
| } |
| |
| /* Must preserve cfg.scu_base set earlier */ |
| cfg.cpu1_rstctrl_pa = c->cpu1_rstctrl_pa; |
| cfg.startup_addr = c->startup_addr; |
| |
| if (soc_is_dra74x() || soc_is_omap54xx()) { |
| if ((__boot_cpu_mode & MODE_MASK) == HYP_MODE) |
| cfg.startup_addr = omap5_secondary_hyp_startup; |
| omap5_erratum_workaround_801819(); |
| } |
| |
| cfg.cpu1_rstctrl_va = ioremap(cfg.cpu1_rstctrl_pa, 4); |
| if (!cfg.cpu1_rstctrl_va) |
| return; |
| |
| /* |
| * Initialise the SCU and wake up the secondary core using |
| * wakeup_secondary(). |
| */ |
| if (cfg.scu_base) |
| scu_enable(cfg.scu_base); |
| |
| /* |
| * Reset CPU1 before configuring, otherwise kexec will |
| * end up trying to use old kernel startup address. |
| */ |
| if (cfg.cpu1_rstctrl_va) { |
| writel_relaxed(1, cfg.cpu1_rstctrl_va); |
| readl_relaxed(cfg.cpu1_rstctrl_va); |
| writel_relaxed(0, cfg.cpu1_rstctrl_va); |
| } |
| |
| /* |
| * Write the address of secondary startup routine into the |
| * AuxCoreBoot1 where ROM code will jump and start executing |
| * on secondary core once out of WFE |
| * A barrier is added to ensure that write buffer is drained |
| */ |
| if (omap_secure_apis_support()) |
| omap_auxcoreboot_addr(virt_to_phys(cfg.startup_addr)); |
| else |
| writel_relaxed(virt_to_phys(cfg.startup_addr), |
| base + OMAP_AUX_CORE_BOOT_1); |
| } |
| |
| const struct smp_operations omap4_smp_ops __initconst = { |
| .smp_init_cpus = omap4_smp_init_cpus, |
| .smp_prepare_cpus = omap4_smp_prepare_cpus, |
| .smp_secondary_init = omap4_secondary_init, |
| .smp_boot_secondary = omap4_boot_secondary, |
| #ifdef CONFIG_HOTPLUG_CPU |
| .cpu_die = omap4_cpu_die, |
| .cpu_kill = omap4_cpu_kill, |
| #endif |
| }; |