| // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) |
| /* |
| * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. |
| * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 |
| * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved. |
| * |
| * This driver produces cryptographically secure pseudorandom data. It is divided |
| * into roughly six sections, each with a section header: |
| * |
| * - Initialization and readiness waiting. |
| * - Fast key erasure RNG, the "crng". |
| * - Entropy accumulation and extraction routines. |
| * - Entropy collection routines. |
| * - Userspace reader/writer interfaces. |
| * - Sysctl interface. |
| * |
| * The high level overview is that there is one input pool, into which |
| * various pieces of data are hashed. Prior to initialization, some of that |
| * data is then "credited" as having a certain number of bits of entropy. |
| * When enough bits of entropy are available, the hash is finalized and |
| * handed as a key to a stream cipher that expands it indefinitely for |
| * various consumers. This key is periodically refreshed as the various |
| * entropy collectors, described below, add data to the input pool. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/utsname.h> |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/major.h> |
| #include <linux/string.h> |
| #include <linux/fcntl.h> |
| #include <linux/slab.h> |
| #include <linux/random.h> |
| #include <linux/poll.h> |
| #include <linux/init.h> |
| #include <linux/fs.h> |
| #include <linux/genhd.h> |
| #include <linux/interrupt.h> |
| #include <linux/mm.h> |
| #include <linux/nodemask.h> |
| #include <linux/spinlock.h> |
| #include <linux/kthread.h> |
| #include <linux/percpu.h> |
| #include <linux/ptrace.h> |
| #include <linux/kmemcheck.h> |
| #include <linux/workqueue.h> |
| #include <linux/irq.h> |
| #include <linux/ratelimit.h> |
| #include <linux/syscalls.h> |
| #include <linux/completion.h> |
| #include <linux/uuid.h> |
| #include <linux/siphash.h> |
| #include <linux/uio.h> |
| #include <crypto/chacha.h> |
| #include <crypto/blake2s.h> |
| #include <asm/processor.h> |
| #include <asm/uaccess.h> |
| #include <asm/irq.h> |
| #include <asm/irq_regs.h> |
| #include <asm/io.h> |
| |
| /********************************************************************* |
| * |
| * Initialization and readiness waiting. |
| * |
| * Much of the RNG infrastructure is devoted to various dependencies |
| * being able to wait until the RNG has collected enough entropy and |
| * is ready for safe consumption. |
| * |
| *********************************************************************/ |
| |
| /* |
| * crng_init is protected by base_crng->lock, and only increases |
| * its value (from empty->early->ready). |
| */ |
| static enum { |
| CRNG_EMPTY = 0, /* Little to no entropy collected */ |
| CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */ |
| CRNG_READY = 2 /* Fully initialized with POOL_READY_BITS collected */ |
| } crng_init __read_mostly = CRNG_EMPTY; |
| #define crng_ready() (likely(crng_init >= CRNG_READY)) |
| /* Various types of waiters for crng_init->CRNG_READY transition. */ |
| static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); |
| static struct fasync_struct *fasync; |
| static DEFINE_SPINLOCK(random_ready_chain_lock); |
| static RAW_NOTIFIER_HEAD(random_ready_chain); |
| |
| /* Control how we warn userspace. */ |
| static struct ratelimit_state urandom_warning = |
| RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE); |
| static int ratelimit_disable __read_mostly = |
| IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM); |
| module_param_named(ratelimit_disable, ratelimit_disable, int, 0644); |
| MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression"); |
| |
| /* |
| * Returns whether or not the input pool has been seeded and thus guaranteed |
| * to supply cryptographically secure random numbers. This applies to: the |
| * /dev/urandom device, the get_random_bytes function, and the get_random_{u32, |
| * ,u64,int,long} family of functions. |
| * |
| * Returns: true if the input pool has been seeded. |
| * false if the input pool has not been seeded. |
| */ |
| bool rng_is_initialized(void) |
| { |
| return crng_ready(); |
| } |
| EXPORT_SYMBOL(rng_is_initialized); |
| |
| /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */ |
| static void try_to_generate_entropy(void); |
| |
| /* |
| * Wait for the input pool to be seeded and thus guaranteed to supply |
| * cryptographically secure random numbers. This applies to: the /dev/urandom |
| * device, the get_random_bytes function, and the get_random_{u32,u64,int,long} |
| * family of functions. Using any of these functions without first calling |
| * this function forfeits the guarantee of security. |
| * |
| * Returns: 0 if the input pool has been seeded. |
| * -ERESTARTSYS if the function was interrupted by a signal. |
| */ |
| int wait_for_random_bytes(void) |
| { |
| while (!crng_ready()) { |
| int ret; |
| |
| try_to_generate_entropy(); |
| ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ); |
| if (ret) |
| return ret > 0 ? 0 : ret; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(wait_for_random_bytes); |
| |
| /* |
| * Add a callback function that will be invoked when the input |
| * pool is initialised. |
| * |
| * returns: 0 if callback is successfully added |
| * -EALREADY if pool is already initialised (callback not called) |
| */ |
| int __cold register_random_ready_notifier(struct notifier_block *nb) |
| { |
| unsigned long flags; |
| int ret = -EALREADY; |
| |
| if (crng_ready()) |
| return ret; |
| |
| spin_lock_irqsave(&random_ready_chain_lock, flags); |
| if (!crng_ready()) |
| ret = raw_notifier_chain_register(&random_ready_chain, nb); |
| spin_unlock_irqrestore(&random_ready_chain_lock, flags); |
| return ret; |
| } |
| |
| /* |
| * Delete a previously registered readiness callback function. |
| */ |
| int __cold unregister_random_ready_notifier(struct notifier_block *nb) |
| { |
| unsigned long flags; |
| int ret; |
| |
| spin_lock_irqsave(&random_ready_chain_lock, flags); |
| ret = raw_notifier_chain_unregister(&random_ready_chain, nb); |
| spin_unlock_irqrestore(&random_ready_chain_lock, flags); |
| return ret; |
| } |
| |
| static void __cold process_random_ready_list(void) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&random_ready_chain_lock, flags); |
| raw_notifier_call_chain(&random_ready_chain, 0, NULL); |
| spin_unlock_irqrestore(&random_ready_chain_lock, flags); |
| } |
| |
| #define warn_unseeded_randomness() \ |
| if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \ |
| printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \ |
| __func__, (void *)_RET_IP_, crng_init) |
| |
| |
| /********************************************************************* |
| * |
| * Fast key erasure RNG, the "crng". |
| * |
| * These functions expand entropy from the entropy extractor into |
| * long streams for external consumption using the "fast key erasure" |
| * RNG described at <https://blog.cr.yp.to/20170723-random.html>. |
| * |
| * There are a few exported interfaces for use by other drivers: |
| * |
| * void get_random_bytes(void *buf, size_t len) |
| * u32 get_random_u32() |
| * u64 get_random_u64() |
| * unsigned int get_random_int() |
| * unsigned long get_random_long() |
| * |
| * These interfaces will return the requested number of random bytes |
| * into the given buffer or as a return value. This is equivalent to |
| * a read from /dev/urandom. The u32, u64, int, and long family of |
| * functions may be higher performance for one-off random integers, |
| * because they do a bit of buffering and do not invoke reseeding |
| * until the buffer is emptied. |
| * |
| *********************************************************************/ |
| |
| enum { |
| CRNG_RESEED_START_INTERVAL = HZ, |
| CRNG_RESEED_INTERVAL = 60 * HZ |
| }; |
| |
| static struct { |
| u8 key[CHACHA20_KEY_SIZE] __aligned(__alignof__(long)); |
| unsigned long birth; |
| unsigned long generation; |
| spinlock_t lock; |
| } base_crng = { |
| .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock) |
| }; |
| |
| struct crng { |
| u8 key[CHACHA20_KEY_SIZE]; |
| unsigned long generation; |
| }; |
| |
| static DEFINE_PER_CPU(struct crng, crngs) = { |
| .generation = ULONG_MAX |
| }; |
| |
| /* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */ |
| static void extract_entropy(void *buf, size_t len); |
| |
| /* This extracts a new crng key from the input pool. */ |
| static void crng_reseed(void) |
| { |
| unsigned long flags; |
| unsigned long next_gen; |
| u8 key[CHACHA20_KEY_SIZE]; |
| |
| extract_entropy(key, sizeof(key)); |
| |
| /* |
| * We copy the new key into the base_crng, overwriting the old one, |
| * and update the generation counter. We avoid hitting ULONG_MAX, |
| * because the per-cpu crngs are initialized to ULONG_MAX, so this |
| * forces new CPUs that come online to always initialize. |
| */ |
| spin_lock_irqsave(&base_crng.lock, flags); |
| memcpy(base_crng.key, key, sizeof(base_crng.key)); |
| next_gen = base_crng.generation + 1; |
| if (next_gen == ULONG_MAX) |
| ++next_gen; |
| WRITE_ONCE(base_crng.generation, next_gen); |
| WRITE_ONCE(base_crng.birth, jiffies); |
| if (!crng_ready()) |
| crng_init = CRNG_READY; |
| spin_unlock_irqrestore(&base_crng.lock, flags); |
| memzero_explicit(key, sizeof(key)); |
| } |
| |
| /* |
| * This generates a ChaCha block using the provided key, and then |
| * immediately overwites that key with half the block. It returns |
| * the resultant ChaCha state to the user, along with the second |
| * half of the block containing 32 bytes of random data that may |
| * be used; random_data_len may not be greater than 32. |
| * |
| * The returned ChaCha state contains within it a copy of the old |
| * key value, at index 4, so the state should always be zeroed out |
| * immediately after using in order to maintain forward secrecy. |
| * If the state cannot be erased in a timely manner, then it is |
| * safer to set the random_data parameter to &chacha_state[4] so |
| * that this function overwrites it before returning. |
| */ |
| static void crng_fast_key_erasure(u8 key[CHACHA20_KEY_SIZE], |
| u32 chacha_state[CHACHA20_BLOCK_SIZE / sizeof(u32)], |
| u8 *random_data, size_t random_data_len) |
| { |
| u8 first_block[CHACHA20_BLOCK_SIZE]; |
| |
| BUG_ON(random_data_len > 32); |
| |
| chacha_init_consts(chacha_state); |
| memcpy(&chacha_state[4], key, CHACHA20_KEY_SIZE); |
| memset(&chacha_state[12], 0, sizeof(u32) * 4); |
| chacha20_block(chacha_state, first_block); |
| |
| memcpy(key, first_block, CHACHA20_KEY_SIZE); |
| memcpy(random_data, first_block + CHACHA20_KEY_SIZE, random_data_len); |
| memzero_explicit(first_block, sizeof(first_block)); |
| } |
| |
| /* |
| * Return whether the crng seed is considered to be sufficiently old |
| * that a reseeding is needed. This happens if the last reseeding |
| * was CRNG_RESEED_INTERVAL ago, or during early boot, at an interval |
| * proportional to the uptime. |
| */ |
| static bool crng_has_old_seed(void) |
| { |
| static bool early_boot = true; |
| unsigned long interval = CRNG_RESEED_INTERVAL; |
| |
| if (unlikely(READ_ONCE(early_boot))) { |
| time64_t uptime = ktime_get_seconds(); |
| if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2) |
| WRITE_ONCE(early_boot, false); |
| else |
| interval = max_t(unsigned int, CRNG_RESEED_START_INTERVAL, |
| (unsigned int)uptime / 2 * HZ); |
| } |
| return time_is_before_jiffies(READ_ONCE(base_crng.birth) + interval); |
| } |
| |
| /* |
| * This function returns a ChaCha state that you may use for generating |
| * random data. It also returns up to 32 bytes on its own of random data |
| * that may be used; random_data_len may not be greater than 32. |
| */ |
| static void crng_make_state(u32 chacha_state[CHACHA20_BLOCK_SIZE / sizeof(u32)], |
| u8 *random_data, size_t random_data_len) |
| { |
| unsigned long flags; |
| struct crng *crng; |
| |
| BUG_ON(random_data_len > 32); |
| |
| /* |
| * For the fast path, we check whether we're ready, unlocked first, and |
| * then re-check once locked later. In the case where we're really not |
| * ready, we do fast key erasure with the base_crng directly, extracting |
| * when crng_init is CRNG_EMPTY. |
| */ |
| if (!crng_ready()) { |
| bool ready; |
| |
| spin_lock_irqsave(&base_crng.lock, flags); |
| ready = crng_ready(); |
| if (!ready) { |
| if (crng_init == CRNG_EMPTY) |
| extract_entropy(base_crng.key, sizeof(base_crng.key)); |
| crng_fast_key_erasure(base_crng.key, chacha_state, |
| random_data, random_data_len); |
| } |
| spin_unlock_irqrestore(&base_crng.lock, flags); |
| if (!ready) |
| return; |
| } |
| |
| /* |
| * If the base_crng is old enough, we reseed, which in turn bumps the |
| * generation counter that we check below. |
| */ |
| if (unlikely(crng_has_old_seed())) |
| crng_reseed(); |
| |
| local_irq_save(flags); |
| crng = raw_cpu_ptr(&crngs); |
| |
| /* |
| * If our per-cpu crng is older than the base_crng, then it means |
| * somebody reseeded the base_crng. In that case, we do fast key |
| * erasure on the base_crng, and use its output as the new key |
| * for our per-cpu crng. This brings us up to date with base_crng. |
| */ |
| if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) { |
| spin_lock(&base_crng.lock); |
| crng_fast_key_erasure(base_crng.key, chacha_state, |
| crng->key, sizeof(crng->key)); |
| crng->generation = base_crng.generation; |
| spin_unlock(&base_crng.lock); |
| } |
| |
| /* |
| * Finally, when we've made it this far, our per-cpu crng has an up |
| * to date key, and we can do fast key erasure with it to produce |
| * some random data and a ChaCha state for the caller. All other |
| * branches of this function are "unlikely", so most of the time we |
| * should wind up here immediately. |
| */ |
| crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len); |
| local_irq_restore(flags); |
| } |
| |
| static void _get_random_bytes(void *buf, size_t len) |
| { |
| u32 chacha_state[CHACHA20_BLOCK_SIZE / sizeof(u32)]; |
| u8 tmp[CHACHA20_BLOCK_SIZE]; |
| size_t first_block_len; |
| |
| if (!len) |
| return; |
| |
| first_block_len = min_t(size_t, 32, len); |
| crng_make_state(chacha_state, buf, first_block_len); |
| len -= first_block_len; |
| buf += first_block_len; |
| |
| while (len) { |
| if (len < CHACHA20_BLOCK_SIZE) { |
| chacha20_block(chacha_state, tmp); |
| memcpy(buf, tmp, len); |
| memzero_explicit(tmp, sizeof(tmp)); |
| break; |
| } |
| |
| chacha20_block(chacha_state, buf); |
| if (unlikely(chacha_state[12] == 0)) |
| ++chacha_state[13]; |
| len -= CHACHA20_BLOCK_SIZE; |
| buf += CHACHA20_BLOCK_SIZE; |
| } |
| |
| memzero_explicit(chacha_state, sizeof(chacha_state)); |
| } |
| |
| /* |
| * This function is the exported kernel interface. It returns some |
| * number of good random numbers, suitable for key generation, seeding |
| * TCP sequence numbers, etc. It does not rely on the hardware random |
| * number generator. For random bytes direct from the hardware RNG |
| * (when available), use get_random_bytes_arch(). In order to ensure |
| * that the randomness provided by this function is okay, the function |
| * wait_for_random_bytes() should be called and return 0 at least once |
| * at any point prior. |
| */ |
| void get_random_bytes(void *buf, size_t len) |
| { |
| warn_unseeded_randomness(); |
| _get_random_bytes(buf, len); |
| } |
| EXPORT_SYMBOL(get_random_bytes); |
| |
| static ssize_t get_random_bytes_user(struct iov_iter *iter) |
| { |
| u32 chacha_state[CHACHA20_BLOCK_SIZE / sizeof(u32)]; |
| u8 block[CHACHA20_BLOCK_SIZE]; |
| size_t ret = 0, copied; |
| |
| if (unlikely(!iov_iter_count(iter))) |
| return 0; |
| |
| /* |
| * Immediately overwrite the ChaCha key at index 4 with random |
| * bytes, in case userspace causes copy_to_user() below to sleep |
| * forever, so that we still retain forward secrecy in that case. |
| */ |
| crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA20_KEY_SIZE); |
| /* |
| * However, if we're doing a read of len <= 32, we don't need to |
| * use chacha_state after, so we can simply return those bytes to |
| * the user directly. |
| */ |
| if (iov_iter_count(iter) <= CHACHA20_KEY_SIZE) { |
| ret = copy_to_iter(&chacha_state[4], CHACHA20_KEY_SIZE, iter); |
| goto out_zero_chacha; |
| } |
| |
| for (;;) { |
| chacha20_block(chacha_state, block); |
| if (unlikely(chacha_state[12] == 0)) |
| ++chacha_state[13]; |
| |
| copied = copy_to_iter(block, sizeof(block), iter); |
| ret += copied; |
| if (!iov_iter_count(iter) || copied != sizeof(block)) |
| break; |
| |
| BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0); |
| if (ret % PAGE_SIZE == 0) { |
| if (signal_pending(current)) |
| break; |
| cond_resched(); |
| } |
| } |
| |
| memzero_explicit(block, sizeof(block)); |
| out_zero_chacha: |
| memzero_explicit(chacha_state, sizeof(chacha_state)); |
| return ret ? ret : -EFAULT; |
| } |
| |
| /* |
| * Batched entropy returns random integers. The quality of the random |
| * number is good as /dev/urandom. In order to ensure that the randomness |
| * provided by this function is okay, the function wait_for_random_bytes() |
| * should be called and return 0 at least once at any point prior. |
| */ |
| |
| #define DEFINE_BATCHED_ENTROPY(type) \ |
| struct batch_ ##type { \ |
| /* \ |
| * We make this 1.5x a ChaCha block, so that we get the \ |
| * remaining 32 bytes from fast key erasure, plus one full \ |
| * block from the detached ChaCha state. We can increase \ |
| * the size of this later if needed so long as we keep the \ |
| * formula of (integer_blocks + 0.5) * CHACHA20_BLOCK_SIZE. \ |
| */ \ |
| type entropy[CHACHA20_BLOCK_SIZE * 3 / (2 * sizeof(type))]; \ |
| unsigned long generation; \ |
| unsigned int position; \ |
| }; \ |
| \ |
| static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = { \ |
| .position = UINT_MAX \ |
| }; \ |
| \ |
| type get_random_ ##type(void) \ |
| { \ |
| type ret; \ |
| unsigned long flags; \ |
| struct batch_ ##type *batch; \ |
| unsigned long next_gen; \ |
| \ |
| warn_unseeded_randomness(); \ |
| \ |
| if (!crng_ready()) { \ |
| _get_random_bytes(&ret, sizeof(ret)); \ |
| return ret; \ |
| } \ |
| \ |
| local_irq_save(flags); \ |
| batch = raw_cpu_ptr(&batched_entropy_##type); \ |
| \ |
| next_gen = READ_ONCE(base_crng.generation); \ |
| if (batch->position >= ARRAY_SIZE(batch->entropy) || \ |
| next_gen != batch->generation) { \ |
| _get_random_bytes(batch->entropy, sizeof(batch->entropy)); \ |
| batch->position = 0; \ |
| batch->generation = next_gen; \ |
| } \ |
| \ |
| ret = batch->entropy[batch->position]; \ |
| batch->entropy[batch->position] = 0; \ |
| ++batch->position; \ |
| local_irq_restore(flags); \ |
| return ret; \ |
| } \ |
| EXPORT_SYMBOL(get_random_ ##type); |
| |
| DEFINE_BATCHED_ENTROPY(u64) |
| DEFINE_BATCHED_ENTROPY(u32) |
| |
| #ifdef CONFIG_SMP |
| /* |
| * This function is called when the CPU is coming up, with entry |
| * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP. |
| */ |
| int __cold random_prepare_cpu(unsigned int cpu) |
| { |
| /* |
| * When the cpu comes back online, immediately invalidate both |
| * the per-cpu crng and all batches, so that we serve fresh |
| * randomness. |
| */ |
| per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX; |
| per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX; |
| per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX; |
| return 0; |
| } |
| #endif |
| |
| /* |
| * This function will use the architecture-specific hardware random |
| * number generator if it is available. It is not recommended for |
| * use. Use get_random_bytes() instead. It returns the number of |
| * bytes filled in. |
| */ |
| size_t __must_check get_random_bytes_arch(void *buf, size_t len) |
| { |
| size_t left = len; |
| u8 *p = buf; |
| |
| while (left) { |
| unsigned long v; |
| size_t block_len = min_t(size_t, left, sizeof(unsigned long)); |
| |
| if (!arch_get_random_long(&v)) |
| break; |
| |
| memcpy(p, &v, block_len); |
| p += block_len; |
| left -= block_len; |
| } |
| |
| return len - left; |
| } |
| EXPORT_SYMBOL(get_random_bytes_arch); |
| |
| |
| /********************************************************************** |
| * |
| * Entropy accumulation and extraction routines. |
| * |
| * Callers may add entropy via: |
| * |
| * static void mix_pool_bytes(const void *buf, size_t len) |
| * |
| * After which, if added entropy should be credited: |
| * |
| * static void credit_init_bits(size_t bits) |
| * |
| * Finally, extract entropy via: |
| * |
| * static void extract_entropy(void *buf, size_t len) |
| * |
| **********************************************************************/ |
| |
| enum { |
| POOL_BITS = BLAKE2S_HASH_SIZE * 8, |
| POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */ |
| POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */ |
| }; |
| |
| static struct { |
| struct blake2s_state hash; |
| spinlock_t lock; |
| unsigned int init_bits; |
| } input_pool = { |
| .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE), |
| BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4, |
| BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 }, |
| .hash.outlen = BLAKE2S_HASH_SIZE, |
| .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), |
| }; |
| |
| static void _mix_pool_bytes(const void *buf, size_t len) |
| { |
| blake2s_update(&input_pool.hash, buf, len); |
| } |
| |
| /* |
| * This function adds bytes into the input pool. It does not |
| * update the initialization bit counter; the caller should call |
| * credit_init_bits if this is appropriate. |
| */ |
| static void mix_pool_bytes(const void *buf, size_t len) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&input_pool.lock, flags); |
| _mix_pool_bytes(buf, len); |
| spin_unlock_irqrestore(&input_pool.lock, flags); |
| } |
| |
| /* |
| * This is an HKDF-like construction for using the hashed collected entropy |
| * as a PRF key, that's then expanded block-by-block. |
| */ |
| static void extract_entropy(void *buf, size_t len) |
| { |
| unsigned long flags; |
| u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE]; |
| struct { |
| unsigned long rdseed[32 / sizeof(long)]; |
| size_t counter; |
| } block; |
| size_t i; |
| |
| for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) { |
| if (!arch_get_random_seed_long(&block.rdseed[i]) && |
| !arch_get_random_long(&block.rdseed[i])) |
| block.rdseed[i] = random_get_entropy(); |
| } |
| |
| spin_lock_irqsave(&input_pool.lock, flags); |
| |
| /* seed = HASHPRF(last_key, entropy_input) */ |
| blake2s_final(&input_pool.hash, seed); |
| |
| /* next_key = HASHPRF(seed, RDSEED || 0) */ |
| block.counter = 0; |
| blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed)); |
| blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key)); |
| |
| spin_unlock_irqrestore(&input_pool.lock, flags); |
| memzero_explicit(next_key, sizeof(next_key)); |
| |
| while (len) { |
| i = min_t(size_t, len, BLAKE2S_HASH_SIZE); |
| /* output = HASHPRF(seed, RDSEED || ++counter) */ |
| ++block.counter; |
| blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed)); |
| len -= i; |
| buf += i; |
| } |
| |
| memzero_explicit(seed, sizeof(seed)); |
| memzero_explicit(&block, sizeof(block)); |
| } |
| |
| #define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits) |
| |
| static void __cold _credit_init_bits(size_t bits) |
| { |
| unsigned int new, orig, add; |
| unsigned long flags; |
| |
| if (!bits) |
| return; |
| |
| add = min_t(size_t, bits, POOL_BITS); |
| |
| do { |
| orig = READ_ONCE(input_pool.init_bits); |
| new = min_t(unsigned int, POOL_BITS, orig + add); |
| } while (cmpxchg(&input_pool.init_bits, orig, new) != orig); |
| |
| if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) { |
| crng_reseed(); /* Sets crng_init to CRNG_READY under base_crng.lock. */ |
| process_random_ready_list(); |
| wake_up_interruptible(&crng_init_wait); |
| kill_fasync(&fasync, SIGIO, POLL_IN); |
| pr_notice("crng init done\n"); |
| if (urandom_warning.missed) |
| pr_notice("%d urandom warning(s) missed due to ratelimiting\n", |
| urandom_warning.missed); |
| } else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) { |
| spin_lock_irqsave(&base_crng.lock, flags); |
| /* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */ |
| if (crng_init == CRNG_EMPTY) { |
| extract_entropy(base_crng.key, sizeof(base_crng.key)); |
| crng_init = CRNG_EARLY; |
| } |
| spin_unlock_irqrestore(&base_crng.lock, flags); |
| } |
| } |
| |
| |
| /********************************************************************** |
| * |
| * Entropy collection routines. |
| * |
| * The following exported functions are used for pushing entropy into |
| * the above entropy accumulation routines: |
| * |
| * void add_device_randomness(const void *buf, size_t len); |
| * void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy); |
| * void add_bootloader_randomness(const void *buf, size_t len); |
| * void add_interrupt_randomness(int irq); |
| * void add_input_randomness(unsigned int type, unsigned int code, unsigned int value); |
| * void add_disk_randomness(struct gendisk *disk); |
| * |
| * add_device_randomness() adds data to the input pool that |
| * is likely to differ between two devices (or possibly even per boot). |
| * This would be things like MAC addresses or serial numbers, or the |
| * read-out of the RTC. This does *not* credit any actual entropy to |
| * the pool, but it initializes the pool to different values for devices |
| * that might otherwise be identical and have very little entropy |
| * available to them (particularly common in the embedded world). |
| * |
| * add_hwgenerator_randomness() is for true hardware RNGs, and will credit |
| * entropy as specified by the caller. If the entropy pool is full it will |
| * block until more entropy is needed. |
| * |
| * add_bootloader_randomness() is called by bootloader drivers, such as EFI |
| * and device tree, and credits its input depending on whether or not the |
| * configuration option CONFIG_RANDOM_TRUST_BOOTLOADER is set. |
| * |
| * add_interrupt_randomness() uses the interrupt timing as random |
| * inputs to the entropy pool. Using the cycle counters and the irq source |
| * as inputs, it feeds the input pool roughly once a second or after 64 |
| * interrupts, crediting 1 bit of entropy for whichever comes first. |
| * |
| * add_input_randomness() uses the input layer interrupt timing, as well |
| * as the event type information from the hardware. |
| * |
| * add_disk_randomness() uses what amounts to the seek time of block |
| * layer request events, on a per-disk_devt basis, as input to the |
| * entropy pool. Note that high-speed solid state drives with very low |
| * seek times do not make for good sources of entropy, as their seek |
| * times are usually fairly consistent. |
| * |
| * The last two routines try to estimate how many bits of entropy |
| * to credit. They do this by keeping track of the first and second |
| * order deltas of the event timings. |
| * |
| **********************************************************************/ |
| |
| static bool trust_cpu __initdata = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU); |
| static bool trust_bootloader __initdata = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER); |
| static int __init parse_trust_cpu(char *arg) |
| { |
| return kstrtobool(arg, &trust_cpu); |
| } |
| static int __init parse_trust_bootloader(char *arg) |
| { |
| return kstrtobool(arg, &trust_bootloader); |
| } |
| early_param("random.trust_cpu", parse_trust_cpu); |
| early_param("random.trust_bootloader", parse_trust_bootloader); |
| |
| /* |
| * The first collection of entropy occurs at system boot while interrupts |
| * are still turned off. Here we push in latent entropy, RDSEED, a timestamp, |
| * utsname(), and the command line. Depending on the above configuration knob, |
| * RDSEED may be considered sufficient for initialization. Note that much |
| * earlier setup may already have pushed entropy into the input pool by the |
| * time we get here. |
| */ |
| int __init random_init(const char *command_line) |
| { |
| ktime_t now = ktime_get_real(); |
| unsigned int i, arch_bits; |
| unsigned long entropy; |
| |
| #if defined(LATENT_ENTROPY_PLUGIN) |
| static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy; |
| _mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed)); |
| #endif |
| |
| for (i = 0, arch_bits = BLAKE2S_BLOCK_SIZE * 8; |
| i < BLAKE2S_BLOCK_SIZE; i += sizeof(entropy)) { |
| if (!arch_get_random_seed_long_early(&entropy) && |
| !arch_get_random_long_early(&entropy)) { |
| entropy = random_get_entropy(); |
| arch_bits -= sizeof(entropy) * 8; |
| } |
| _mix_pool_bytes(&entropy, sizeof(entropy)); |
| } |
| _mix_pool_bytes(&now, sizeof(now)); |
| _mix_pool_bytes(utsname(), sizeof(*(utsname()))); |
| _mix_pool_bytes(command_line, strlen(command_line)); |
| add_latent_entropy(); |
| |
| if (crng_ready()) |
| crng_reseed(); |
| else if (trust_cpu) |
| _credit_init_bits(arch_bits); |
| |
| return 0; |
| } |
| |
| /* |
| * Add device- or boot-specific data to the input pool to help |
| * initialize it. |
| * |
| * None of this adds any entropy; it is meant to avoid the problem of |
| * the entropy pool having similar initial state across largely |
| * identical devices. |
| */ |
| void add_device_randomness(const void *buf, size_t len) |
| { |
| unsigned long entropy = random_get_entropy(); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&input_pool.lock, flags); |
| _mix_pool_bytes(&entropy, sizeof(entropy)); |
| _mix_pool_bytes(buf, len); |
| spin_unlock_irqrestore(&input_pool.lock, flags); |
| } |
| EXPORT_SYMBOL(add_device_randomness); |
| |
| /* |
| * Interface for in-kernel drivers of true hardware RNGs. |
| * Those devices may produce endless random bits and will be throttled |
| * when our pool is full. |
| */ |
| void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy) |
| { |
| mix_pool_bytes(buf, len); |
| credit_init_bits(entropy); |
| |
| /* |
| * Throttle writing to once every CRNG_RESEED_INTERVAL, unless |
| * we're not yet initialized. |
| */ |
| if (!kthread_should_stop() && crng_ready()) |
| schedule_timeout_interruptible(CRNG_RESEED_INTERVAL); |
| } |
| EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); |
| |
| /* |
| * Handle random seed passed by bootloader, and credit it if |
| * CONFIG_RANDOM_TRUST_BOOTLOADER is set. |
| */ |
| void __init add_bootloader_randomness(const void *buf, size_t len) |
| { |
| mix_pool_bytes(buf, len); |
| if (trust_bootloader) |
| credit_init_bits(len * 8); |
| } |
| |
| struct fast_pool { |
| unsigned long pool[4]; |
| unsigned long last; |
| unsigned int count; |
| struct timer_list mix; |
| }; |
| |
| static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = { |
| #ifdef CONFIG_64BIT |
| #define FASTMIX_PERM SIPHASH_PERMUTATION |
| .pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 } |
| #else |
| #define FASTMIX_PERM HSIPHASH_PERMUTATION |
| .pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 } |
| #endif |
| }; |
| |
| /* |
| * This is [Half]SipHash-1-x, starting from an empty key. Because |
| * the key is fixed, it assumes that its inputs are non-malicious, |
| * and therefore this has no security on its own. s represents the |
| * four-word SipHash state, while v represents a two-word input. |
| */ |
| static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2) |
| { |
| s[3] ^= v1; |
| FASTMIX_PERM(s[0], s[1], s[2], s[3]); |
| s[0] ^= v1; |
| s[3] ^= v2; |
| FASTMIX_PERM(s[0], s[1], s[2], s[3]); |
| s[0] ^= v2; |
| } |
| |
| #ifdef CONFIG_SMP |
| /* |
| * This function is called when the CPU has just come online, with |
| * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE. |
| */ |
| int __cold random_online_cpu(unsigned int cpu) |
| { |
| /* |
| * During CPU shutdown and before CPU onlining, add_interrupt_ |
| * randomness() may schedule mix_interrupt_randomness(), and |
| * set the MIX_INFLIGHT flag. However, because the worker can |
| * be scheduled on a different CPU during this period, that |
| * flag will never be cleared. For that reason, we zero out |
| * the flag here, which runs just after workqueues are onlined |
| * for the CPU again. This also has the effect of setting the |
| * irq randomness count to zero so that new accumulated irqs |
| * are fresh. |
| */ |
| per_cpu_ptr(&irq_randomness, cpu)->count = 0; |
| return 0; |
| } |
| #endif |
| |
| static void mix_interrupt_randomness(unsigned long data) |
| { |
| struct fast_pool *fast_pool = (struct fast_pool *)data; |
| /* |
| * The size of the copied stack pool is explicitly 2 longs so that we |
| * only ever ingest half of the siphash output each time, retaining |
| * the other half as the next "key" that carries over. The entropy is |
| * supposed to be sufficiently dispersed between bits so on average |
| * we don't wind up "losing" some. |
| */ |
| unsigned long pool[2]; |
| unsigned int count; |
| |
| /* Check to see if we're running on the wrong CPU due to hotplug. */ |
| local_irq_disable(); |
| if (fast_pool != this_cpu_ptr(&irq_randomness)) { |
| local_irq_enable(); |
| return; |
| } |
| |
| /* |
| * Copy the pool to the stack so that the mixer always has a |
| * consistent view, before we reenable irqs again. |
| */ |
| memcpy(pool, fast_pool->pool, sizeof(pool)); |
| count = fast_pool->count; |
| fast_pool->count = 0; |
| fast_pool->last = jiffies; |
| local_irq_enable(); |
| |
| mix_pool_bytes(pool, sizeof(pool)); |
| credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8)); |
| |
| memzero_explicit(pool, sizeof(pool)); |
| } |
| |
| void add_interrupt_randomness(int irq) |
| { |
| enum { MIX_INFLIGHT = 1U << 31 }; |
| unsigned long entropy = random_get_entropy(); |
| struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); |
| struct pt_regs *regs = get_irq_regs(); |
| unsigned int new_count; |
| |
| fast_mix(fast_pool->pool, entropy, |
| (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq)); |
| new_count = ++fast_pool->count; |
| |
| if (new_count & MIX_INFLIGHT) |
| return; |
| |
| if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ)) |
| return; |
| |
| if (unlikely(!fast_pool->mix.data)) |
| setup_timer(&fast_pool->mix, mix_interrupt_randomness, (unsigned long)fast_pool); |
| |
| fast_pool->count |= MIX_INFLIGHT; |
| if (!timer_pending(&fast_pool->mix)) { |
| fast_pool->mix.expires = jiffies; |
| add_timer_on(&fast_pool->mix, raw_smp_processor_id()); |
| } |
| } |
| EXPORT_SYMBOL_GPL(add_interrupt_randomness); |
| |
| /* There is one of these per entropy source */ |
| struct timer_rand_state { |
| unsigned long last_time; |
| long last_delta, last_delta2; |
| }; |
| |
| /* |
| * This function adds entropy to the entropy "pool" by using timing |
| * delays. It uses the timer_rand_state structure to make an estimate |
| * of how many bits of entropy this call has added to the pool. The |
| * value "num" is also added to the pool; it should somehow describe |
| * the type of event that just happened. |
| */ |
| static void add_timer_randomness(struct timer_rand_state *state, unsigned int num) |
| { |
| unsigned long entropy = random_get_entropy(), now = jiffies, flags; |
| long delta, delta2, delta3; |
| unsigned int bits; |
| |
| /* |
| * If we're in a hard IRQ, add_interrupt_randomness() will be called |
| * sometime after, so mix into the fast pool. |
| */ |
| if (in_irq()) { |
| fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num); |
| } else { |
| spin_lock_irqsave(&input_pool.lock, flags); |
| _mix_pool_bytes(&entropy, sizeof(entropy)); |
| _mix_pool_bytes(&num, sizeof(num)); |
| spin_unlock_irqrestore(&input_pool.lock, flags); |
| } |
| |
| if (crng_ready()) |
| return; |
| |
| /* |
| * Calculate number of bits of randomness we probably added. |
| * We take into account the first, second and third-order deltas |
| * in order to make our estimate. |
| */ |
| delta = now - READ_ONCE(state->last_time); |
| WRITE_ONCE(state->last_time, now); |
| |
| delta2 = delta - READ_ONCE(state->last_delta); |
| WRITE_ONCE(state->last_delta, delta); |
| |
| delta3 = delta2 - READ_ONCE(state->last_delta2); |
| WRITE_ONCE(state->last_delta2, delta2); |
| |
| if (delta < 0) |
| delta = -delta; |
| if (delta2 < 0) |
| delta2 = -delta2; |
| if (delta3 < 0) |
| delta3 = -delta3; |
| if (delta > delta2) |
| delta = delta2; |
| if (delta > delta3) |
| delta = delta3; |
| |
| /* |
| * delta is now minimum absolute delta. Round down by 1 bit |
| * on general principles, and limit entropy estimate to 11 bits. |
| */ |
| bits = min(fls(delta >> 1), 11); |
| |
| /* |
| * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness() |
| * will run after this, which uses a different crediting scheme of 1 bit |
| * per every 64 interrupts. In order to let that function do accounting |
| * close to the one in this function, we credit a full 64/64 bit per bit, |
| * and then subtract one to account for the extra one added. |
| */ |
| if (in_irq()) |
| this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1; |
| else |
| _credit_init_bits(bits); |
| } |
| |
| void add_input_randomness(unsigned int type, unsigned int code, unsigned int value) |
| { |
| static unsigned char last_value; |
| static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES }; |
| |
| /* Ignore autorepeat and the like. */ |
| if (value == last_value) |
| return; |
| |
| last_value = value; |
| add_timer_randomness(&input_timer_state, |
| (type << 4) ^ code ^ (code >> 4) ^ value); |
| } |
| EXPORT_SYMBOL_GPL(add_input_randomness); |
| |
| #ifdef CONFIG_BLOCK |
| void add_disk_randomness(struct gendisk *disk) |
| { |
| if (!disk || !disk->random) |
| return; |
| /* First major is 1, so we get >= 0x200 here. */ |
| add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); |
| } |
| EXPORT_SYMBOL_GPL(add_disk_randomness); |
| |
| void __cold rand_initialize_disk(struct gendisk *disk) |
| { |
| struct timer_rand_state *state; |
| |
| /* |
| * If kzalloc returns null, we just won't use that entropy |
| * source. |
| */ |
| state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); |
| if (state) { |
| state->last_time = INITIAL_JIFFIES; |
| disk->random = state; |
| } |
| } |
| #endif |
| |
| /* |
| * Each time the timer fires, we expect that we got an unpredictable |
| * jump in the cycle counter. Even if the timer is running on another |
| * CPU, the timer activity will be touching the stack of the CPU that is |
| * generating entropy.. |
| * |
| * Note that we don't re-arm the timer in the timer itself - we are |
| * happy to be scheduled away, since that just makes the load more |
| * complex, but we do not want the timer to keep ticking unless the |
| * entropy loop is running. |
| * |
| * So the re-arming always happens in the entropy loop itself. |
| */ |
| static void __cold entropy_timer(unsigned long data) |
| { |
| credit_init_bits(1); |
| } |
| |
| /* |
| * If we have an actual cycle counter, see if we can |
| * generate enough entropy with timing noise |
| */ |
| static void __cold try_to_generate_entropy(void) |
| { |
| struct { |
| unsigned long entropy; |
| struct timer_list timer; |
| } stack; |
| |
| stack.entropy = random_get_entropy(); |
| |
| /* Slow counter - or none. Don't even bother */ |
| if (stack.entropy == random_get_entropy()) |
| return; |
| |
| __setup_timer_on_stack(&stack.timer, entropy_timer, 0, 0); |
| while (!crng_ready() && !signal_pending(current)) { |
| if (!timer_pending(&stack.timer)) |
| mod_timer(&stack.timer, jiffies + 1); |
| mix_pool_bytes(&stack.entropy, sizeof(stack.entropy)); |
| schedule(); |
| stack.entropy = random_get_entropy(); |
| } |
| |
| del_timer_sync(&stack.timer); |
| destroy_timer_on_stack(&stack.timer); |
| mix_pool_bytes(&stack.entropy, sizeof(stack.entropy)); |
| } |
| |
| |
| /********************************************************************** |
| * |
| * Userspace reader/writer interfaces. |
| * |
| * getrandom(2) is the primary modern interface into the RNG and should |
| * be used in preference to anything else. |
| * |
| * Reading from /dev/random has the same functionality as calling |
| * getrandom(2) with flags=0. In earlier versions, however, it had |
| * vastly different semantics and should therefore be avoided, to |
| * prevent backwards compatibility issues. |
| * |
| * Reading from /dev/urandom has the same functionality as calling |
| * getrandom(2) with flags=GRND_INSECURE. Because it does not block |
| * waiting for the RNG to be ready, it should not be used. |
| * |
| * Writing to either /dev/random or /dev/urandom adds entropy to |
| * the input pool but does not credit it. |
| * |
| * Polling on /dev/random indicates when the RNG is initialized, on |
| * the read side, and when it wants new entropy, on the write side. |
| * |
| * Both /dev/random and /dev/urandom have the same set of ioctls for |
| * adding entropy, getting the entropy count, zeroing the count, and |
| * reseeding the crng. |
| * |
| **********************************************************************/ |
| |
| SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags) |
| { |
| struct iov_iter iter; |
| struct iovec iov; |
| int ret; |
| |
| if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE)) |
| return -EINVAL; |
| |
| /* |
| * Requesting insecure and blocking randomness at the same time makes |
| * no sense. |
| */ |
| if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM)) |
| return -EINVAL; |
| |
| if (!crng_ready() && !(flags & GRND_INSECURE)) { |
| if (flags & GRND_NONBLOCK) |
| return -EAGAIN; |
| ret = wait_for_random_bytes(); |
| if (unlikely(ret)) |
| return ret; |
| } |
| |
| ret = import_single_range(READ, ubuf, len, &iov, &iter); |
| if (unlikely(ret)) |
| return ret; |
| return get_random_bytes_user(&iter); |
| } |
| |
| static unsigned int random_poll(struct file *file, poll_table *wait) |
| { |
| poll_wait(file, &crng_init_wait, wait); |
| return crng_ready() ? POLLIN | POLLRDNORM : POLLOUT | POLLWRNORM; |
| } |
| |
| static ssize_t write_pool_user(struct iov_iter *iter) |
| { |
| u8 block[BLAKE2S_BLOCK_SIZE]; |
| ssize_t ret = 0; |
| size_t copied; |
| |
| if (unlikely(!iov_iter_count(iter))) |
| return 0; |
| |
| for (;;) { |
| copied = copy_from_iter(block, sizeof(block), iter); |
| ret += copied; |
| mix_pool_bytes(block, copied); |
| if (!iov_iter_count(iter) || copied != sizeof(block)) |
| break; |
| |
| BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0); |
| if (ret % PAGE_SIZE == 0) { |
| if (signal_pending(current)) |
| break; |
| cond_resched(); |
| } |
| } |
| |
| memzero_explicit(block, sizeof(block)); |
| return ret ? ret : -EFAULT; |
| } |
| |
| static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter) |
| { |
| return write_pool_user(iter); |
| } |
| |
| static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter) |
| { |
| static int maxwarn = 10; |
| |
| if (!crng_ready()) { |
| if (!ratelimit_disable && maxwarn <= 0) |
| ++urandom_warning.missed; |
| else if (ratelimit_disable || __ratelimit(&urandom_warning)) { |
| --maxwarn; |
| pr_notice("%s: uninitialized urandom read (%zu bytes read)\n", |
| current->comm, iov_iter_count(iter)); |
| } |
| } |
| |
| return get_random_bytes_user(iter); |
| } |
| |
| static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter) |
| { |
| int ret; |
| |
| if (!crng_ready() && |
| (kiocb->ki_filp->f_flags & O_NONBLOCK)) |
| return -EAGAIN; |
| |
| ret = wait_for_random_bytes(); |
| if (ret != 0) |
| return ret; |
| return get_random_bytes_user(iter); |
| } |
| |
| static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) |
| { |
| int __user *p = (int __user *)arg; |
| int ent_count; |
| |
| switch (cmd) { |
| case RNDGETENTCNT: |
| /* Inherently racy, no point locking. */ |
| if (put_user(input_pool.init_bits, p)) |
| return -EFAULT; |
| return 0; |
| case RNDADDTOENTCNT: |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| if (get_user(ent_count, p)) |
| return -EFAULT; |
| if (ent_count < 0) |
| return -EINVAL; |
| credit_init_bits(ent_count); |
| return 0; |
| case RNDADDENTROPY: { |
| struct iov_iter iter; |
| struct iovec iov; |
| ssize_t ret; |
| int len; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| if (get_user(ent_count, p++)) |
| return -EFAULT; |
| if (ent_count < 0) |
| return -EINVAL; |
| if (get_user(len, p++)) |
| return -EFAULT; |
| ret = import_single_range(WRITE, p, len, &iov, &iter); |
| if (unlikely(ret)) |
| return ret; |
| ret = write_pool_user(&iter); |
| if (unlikely(ret < 0)) |
| return ret; |
| /* Since we're crediting, enforce that it was all written into the pool. */ |
| if (unlikely(ret != len)) |
| return -EFAULT; |
| credit_init_bits(ent_count); |
| return 0; |
| } |
| case RNDZAPENTCNT: |
| case RNDCLEARPOOL: |
| /* No longer has any effect. */ |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| return 0; |
| case RNDRESEEDCRNG: |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| if (!crng_ready()) |
| return -ENODATA; |
| crng_reseed(); |
| return 0; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int random_fasync(int fd, struct file *filp, int on) |
| { |
| return fasync_helper(fd, filp, on, &fasync); |
| } |
| |
| const struct file_operations random_fops = { |
| .read_iter = random_read_iter, |
| .write_iter = random_write_iter, |
| .poll = random_poll, |
| .unlocked_ioctl = random_ioctl, |
| .fasync = random_fasync, |
| .llseek = noop_llseek, |
| .splice_read = generic_file_splice_read, |
| .splice_write = iter_file_splice_write, |
| }; |
| |
| const struct file_operations urandom_fops = { |
| .read_iter = urandom_read_iter, |
| .write_iter = random_write_iter, |
| .unlocked_ioctl = random_ioctl, |
| .fasync = random_fasync, |
| .llseek = noop_llseek, |
| .splice_read = generic_file_splice_read, |
| .splice_write = iter_file_splice_write, |
| }; |
| |
| |
| /******************************************************************** |
| * |
| * Sysctl interface. |
| * |
| * These are partly unused legacy knobs with dummy values to not break |
| * userspace and partly still useful things. They are usually accessible |
| * in /proc/sys/kernel/random/ and are as follows: |
| * |
| * - boot_id - a UUID representing the current boot. |
| * |
| * - uuid - a random UUID, different each time the file is read. |
| * |
| * - poolsize - the number of bits of entropy that the input pool can |
| * hold, tied to the POOL_BITS constant. |
| * |
| * - entropy_avail - the number of bits of entropy currently in the |
| * input pool. Always <= poolsize. |
| * |
| * - write_wakeup_threshold - the amount of entropy in the input pool |
| * below which write polls to /dev/random will unblock, requesting |
| * more entropy, tied to the POOL_READY_BITS constant. It is writable |
| * to avoid breaking old userspaces, but writing to it does not |
| * change any behavior of the RNG. |
| * |
| * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL. |
| * It is writable to avoid breaking old userspaces, but writing |
| * to it does not change any behavior of the RNG. |
| * |
| ********************************************************************/ |
| |
| #ifdef CONFIG_SYSCTL |
| |
| #include <linux/sysctl.h> |
| |
| static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ; |
| static int sysctl_random_write_wakeup_bits = POOL_READY_BITS; |
| static int sysctl_poolsize = POOL_BITS; |
| static u8 sysctl_bootid[UUID_SIZE]; |
| |
| /* |
| * This function is used to return both the bootid UUID, and random |
| * UUID. The difference is in whether table->data is NULL; if it is, |
| * then a new UUID is generated and returned to the user. |
| */ |
| static int proc_do_uuid(struct ctl_table *table, int write, void __user *buf, |
| size_t *lenp, loff_t *ppos) |
| { |
| u8 tmp_uuid[UUID_SIZE], *uuid; |
| char uuid_string[UUID_STRING_LEN + 1]; |
| struct ctl_table fake_table = { |
| .data = uuid_string, |
| .maxlen = UUID_STRING_LEN |
| }; |
| |
| if (write) |
| return -EPERM; |
| |
| uuid = table->data; |
| if (!uuid) { |
| uuid = tmp_uuid; |
| generate_random_uuid(uuid); |
| } else { |
| static DEFINE_SPINLOCK(bootid_spinlock); |
| |
| spin_lock(&bootid_spinlock); |
| if (!uuid[8]) |
| generate_random_uuid(uuid); |
| spin_unlock(&bootid_spinlock); |
| } |
| |
| snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid); |
| return proc_dostring(&fake_table, 0, buf, lenp, ppos); |
| } |
| |
| /* The same as proc_dointvec, but writes don't change anything. */ |
| static int proc_do_rointvec(struct ctl_table *table, int write, void __user *buf, |
| size_t *lenp, loff_t *ppos) |
| { |
| return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos); |
| } |
| |
| extern struct ctl_table random_table[]; |
| struct ctl_table random_table[] = { |
| { |
| .procname = "poolsize", |
| .data = &sysctl_poolsize, |
| .maxlen = sizeof(int), |
| .mode = 0444, |
| .proc_handler = proc_dointvec, |
| }, |
| { |
| .procname = "entropy_avail", |
| .data = &input_pool.init_bits, |
| .maxlen = sizeof(int), |
| .mode = 0444, |
| .proc_handler = proc_dointvec, |
| }, |
| { |
| .procname = "write_wakeup_threshold", |
| .data = &sysctl_random_write_wakeup_bits, |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = proc_do_rointvec, |
| }, |
| { |
| .procname = "urandom_min_reseed_secs", |
| .data = &sysctl_random_min_urandom_seed, |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = proc_do_rointvec, |
| }, |
| { |
| .procname = "boot_id", |
| .data = &sysctl_bootid, |
| .mode = 0444, |
| .proc_handler = proc_do_uuid, |
| }, |
| { |
| .procname = "uuid", |
| .mode = 0444, |
| .proc_handler = proc_do_uuid, |
| }, |
| { } |
| }; |
| #endif /* CONFIG_SYSCTL */ |