blob: d326b8088c3293e95bfbd500ef793b0a0811cba1 [file] [log] [blame]
/*
* Copyright (c) 2013-2017, Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/time.h>
#include <linux/of.h>
#include <linux/iopoll.h>
#include <linux/platform_device.h>
#ifdef CONFIG_QCOM_BUS_SCALING
#include <linux/msm-bus.h>
#endif
#include <linux/phy/phy.h>
#include <linux/phy/phy-qcom-ufs.h>
#include "ufshcd.h"
#include "ufshcd-pltfrm.h"
#include "unipro.h"
#include "ufs-qcom.h"
#include "ufshci.h"
#include "ufs_quirks.h"
#include "ufs-qcom-ice.h"
#include "ufs-qcom-debugfs.h"
#define MAX_PROP_SIZE 32
#define VDDP_REF_CLK_MIN_UV 1200000
#define VDDP_REF_CLK_MAX_UV 1200000
/* TODO: further tuning for this parameter may be required */
#define UFS_QCOM_PM_QOS_UNVOTE_TIMEOUT_US (10000) /* microseconds */
#define UFS_QCOM_DEFAULT_DBG_PRINT_EN \
(UFS_QCOM_DBG_PRINT_REGS_EN | UFS_QCOM_DBG_PRINT_TEST_BUS_EN)
enum {
TSTBUS_UAWM,
TSTBUS_UARM,
TSTBUS_TXUC,
TSTBUS_RXUC,
TSTBUS_DFC,
TSTBUS_TRLUT,
TSTBUS_TMRLUT,
TSTBUS_OCSC,
TSTBUS_UTP_HCI,
TSTBUS_COMBINED,
TSTBUS_WRAPPER,
TSTBUS_UNIPRO,
TSTBUS_MAX,
};
static struct ufs_qcom_host *ufs_qcom_hosts[MAX_UFS_QCOM_HOSTS];
static int ufs_qcom_update_sec_cfg(struct ufs_hba *hba, bool restore_sec_cfg);
static void ufs_qcom_get_default_testbus_cfg(struct ufs_qcom_host *host);
static int ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(struct ufs_hba *hba,
u32 clk_cycles);
static void ufs_qcom_pm_qos_suspend(struct ufs_qcom_host *host);
static void ufs_qcom_dump_regs(struct ufs_hba *hba, int offset, int len,
char *prefix)
{
print_hex_dump(KERN_ERR, prefix,
len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,
16, 4, hba->mmio_base + offset, len * 4, false);
}
static void ufs_qcom_dump_regs_wrapper(struct ufs_hba *hba, int offset, int len,
char *prefix, void *priv)
{
ufs_qcom_dump_regs(hba, offset, len, prefix);
}
static int ufs_qcom_get_connected_tx_lanes(struct ufs_hba *hba, u32 *tx_lanes)
{
int err = 0;
err = ufshcd_dme_get(hba,
UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), tx_lanes);
if (err)
dev_err(hba->dev, "%s: couldn't read PA_CONNECTEDTXDATALANES %d\n",
__func__, err);
return err;
}
static int ufs_qcom_host_clk_get(struct device *dev,
const char *name, struct clk **clk_out)
{
struct clk *clk;
int err = 0;
clk = devm_clk_get(dev, name);
if (IS_ERR(clk))
err = PTR_ERR(clk);
else
*clk_out = clk;
return err;
}
static int ufs_qcom_host_clk_enable(struct device *dev,
const char *name, struct clk *clk)
{
int err = 0;
err = clk_prepare_enable(clk);
if (err)
dev_err(dev, "%s: %s enable failed %d\n", __func__, name, err);
return err;
}
static void ufs_qcom_disable_lane_clks(struct ufs_qcom_host *host)
{
if (!host->is_lane_clks_enabled)
return;
if (host->tx_l1_sync_clk)
clk_disable_unprepare(host->tx_l1_sync_clk);
clk_disable_unprepare(host->tx_l0_sync_clk);
if (host->rx_l1_sync_clk)
clk_disable_unprepare(host->rx_l1_sync_clk);
clk_disable_unprepare(host->rx_l0_sync_clk);
host->is_lane_clks_enabled = false;
}
static int ufs_qcom_enable_lane_clks(struct ufs_qcom_host *host)
{
int err = 0;
struct device *dev = host->hba->dev;
if (host->is_lane_clks_enabled)
return 0;
err = ufs_qcom_host_clk_enable(dev, "rx_lane0_sync_clk",
host->rx_l0_sync_clk);
if (err)
goto out;
err = ufs_qcom_host_clk_enable(dev, "tx_lane0_sync_clk",
host->tx_l0_sync_clk);
if (err)
goto disable_rx_l0;
if (host->hba->lanes_per_direction > 1) {
err = ufs_qcom_host_clk_enable(dev, "rx_lane1_sync_clk",
host->rx_l1_sync_clk);
if (err)
goto disable_tx_l0;
/* The tx lane1 clk could be muxed, hence keep this optional */
if (host->tx_l1_sync_clk)
ufs_qcom_host_clk_enable(dev, "tx_lane1_sync_clk",
host->tx_l1_sync_clk);
}
host->is_lane_clks_enabled = true;
goto out;
disable_tx_l0:
clk_disable_unprepare(host->tx_l0_sync_clk);
disable_rx_l0:
clk_disable_unprepare(host->rx_l0_sync_clk);
out:
return err;
}
static int ufs_qcom_init_lane_clks(struct ufs_qcom_host *host)
{
int err = 0;
struct device *dev = host->hba->dev;
err = ufs_qcom_host_clk_get(dev,
"rx_lane0_sync_clk", &host->rx_l0_sync_clk);
if (err) {
dev_err(dev, "%s: failed to get rx_lane0_sync_clk, err %d",
__func__, err);
goto out;
}
err = ufs_qcom_host_clk_get(dev,
"tx_lane0_sync_clk", &host->tx_l0_sync_clk);
if (err) {
dev_err(dev, "%s: failed to get tx_lane0_sync_clk, err %d",
__func__, err);
goto out;
}
/* In case of single lane per direction, don't read lane1 clocks */
if (host->hba->lanes_per_direction > 1) {
err = ufs_qcom_host_clk_get(dev, "rx_lane1_sync_clk",
&host->rx_l1_sync_clk);
if (err) {
dev_err(dev, "%s: failed to get rx_lane1_sync_clk, err %d",
__func__, err);
goto out;
}
/* The tx lane1 clk could be muxed, hence keep this optional */
ufs_qcom_host_clk_get(dev, "tx_lane1_sync_clk",
&host->tx_l1_sync_clk);
}
out:
return err;
}
static int ufs_qcom_check_hibern8(struct ufs_hba *hba)
{
int err;
u32 tx_fsm_val = 0;
unsigned long timeout = jiffies + msecs_to_jiffies(HBRN8_POLL_TOUT_MS);
do {
err = ufshcd_dme_get(hba,
UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE,
UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
&tx_fsm_val);
if (err || tx_fsm_val == TX_FSM_HIBERN8)
break;
/* sleep for max. 200us */
usleep_range(100, 200);
} while (time_before(jiffies, timeout));
/*
* we might have scheduled out for long during polling so
* check the state again.
*/
if (time_after(jiffies, timeout))
err = ufshcd_dme_get(hba,
UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE,
UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
&tx_fsm_val);
if (err) {
dev_err(hba->dev, "%s: unable to get TX_FSM_STATE, err %d\n",
__func__, err);
} else if (tx_fsm_val != TX_FSM_HIBERN8) {
err = tx_fsm_val;
dev_err(hba->dev, "%s: invalid TX_FSM_STATE = %d\n",
__func__, err);
}
return err;
}
static void ufs_qcom_select_unipro_mode(struct ufs_qcom_host *host)
{
ufshcd_rmwl(host->hba, QUNIPRO_SEL,
ufs_qcom_cap_qunipro(host) ? QUNIPRO_SEL : 0,
REG_UFS_CFG1);
/* make sure above configuration is applied before we return */
mb();
}
static int ufs_qcom_power_up_sequence(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct phy *phy = host->generic_phy;
int ret = 0;
bool is_rate_B = (UFS_QCOM_LIMIT_HS_RATE == PA_HS_MODE_B)
? true : false;
/* Assert PHY reset and apply PHY calibration values */
ufs_qcom_assert_reset(hba);
/* provide 1ms delay to let the reset pulse propagate */
usleep_range(1000, 1100);
ret = ufs_qcom_phy_calibrate_phy(phy, is_rate_B);
if (ret) {
dev_err(hba->dev, "%s: ufs_qcom_phy_calibrate_phy() failed, ret = %d\n",
__func__, ret);
goto out;
}
/* De-assert PHY reset and start serdes */
ufs_qcom_deassert_reset(hba);
/*
* after reset deassertion, phy will need all ref clocks,
* voltage, current to settle down before starting serdes.
*/
usleep_range(1000, 1100);
ret = ufs_qcom_phy_start_serdes(phy);
if (ret) {
dev_err(hba->dev, "%s: ufs_qcom_phy_start_serdes() failed, ret = %d\n",
__func__, ret);
goto out;
}
ret = ufs_qcom_phy_is_pcs_ready(phy);
if (ret)
dev_err(hba->dev, "%s: is_physical_coding_sublayer_ready() failed, ret = %d\n",
__func__, ret);
ufs_qcom_select_unipro_mode(host);
out:
return ret;
}
/*
* The UTP controller has a number of internal clock gating cells (CGCs).
* Internal hardware sub-modules within the UTP controller control the CGCs.
* Hardware CGCs disable the clock to inactivate UTP sub-modules not involved
* in a specific operation, UTP controller CGCs are by default disabled and
* this function enables them (after every UFS link startup) to save some power
* leakage.
*
* UFS host controller v3.0.0 onwards has internal clock gating mechanism
* in Qunipro, enable them to save additional power.
*/
static int ufs_qcom_enable_hw_clk_gating(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
int err = 0;
/* Enable UTP internal clock gating */
ufshcd_writel(hba,
ufshcd_readl(hba, REG_UFS_CFG2) | REG_UFS_CFG2_CGC_EN_ALL,
REG_UFS_CFG2);
/* Ensure that HW clock gating is enabled before next operations */
mb();
/* Enable Qunipro internal clock gating if supported */
if (!ufs_qcom_cap_qunipro_clk_gating(host))
goto out;
/* Enable all the mask bits */
err = ufshcd_dme_rmw(hba, DL_VS_CLK_CFG_MASK,
DL_VS_CLK_CFG_MASK, DL_VS_CLK_CFG);
if (err)
goto out;
err = ufshcd_dme_rmw(hba, PA_VS_CLK_CFG_REG_MASK,
PA_VS_CLK_CFG_REG_MASK, PA_VS_CLK_CFG_REG);
if (err)
goto out;
err = ufshcd_dme_rmw(hba, DME_VS_CORE_CLK_CTRL_DME_HW_CGC_EN,
DME_VS_CORE_CLK_CTRL_DME_HW_CGC_EN,
DME_VS_CORE_CLK_CTRL);
out:
return err;
}
static int ufs_qcom_hce_enable_notify(struct ufs_hba *hba,
enum ufs_notify_change_status status)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
int err = 0;
switch (status) {
case PRE_CHANGE:
ufs_qcom_power_up_sequence(hba);
/*
* The PHY PLL output is the source of tx/rx lane symbol
* clocks, hence, enable the lane clocks only after PHY
* is initialized.
*/
err = ufs_qcom_enable_lane_clks(host);
if (!err && host->ice.pdev) {
err = ufs_qcom_ice_init(host);
if (err) {
dev_err(hba->dev, "%s: ICE init failed (%d)\n",
__func__, err);
err = -EINVAL;
}
}
break;
case POST_CHANGE:
/* check if UFS PHY moved from DISABLED to HIBERN8 */
err = ufs_qcom_check_hibern8(hba);
break;
default:
dev_err(hba->dev, "%s: invalid status %d\n", __func__, status);
err = -EINVAL;
break;
}
return err;
}
/**
* Returns zero for success and non-zero in case of a failure
*/
static int __ufs_qcom_cfg_timers(struct ufs_hba *hba, u32 gear,
u32 hs, u32 rate, bool update_link_startup_timer,
bool is_pre_scale_up)
{
int ret = 0;
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct ufs_clk_info *clki;
u32 core_clk_period_in_ns;
u32 tx_clk_cycles_per_us = 0;
unsigned long core_clk_rate = 0;
u32 core_clk_cycles_per_us = 0;
static u32 pwm_fr_table[][2] = {
{UFS_PWM_G1, 0x1},
{UFS_PWM_G2, 0x1},
{UFS_PWM_G3, 0x1},
{UFS_PWM_G4, 0x1},
};
static u32 hs_fr_table_rA[][2] = {
{UFS_HS_G1, 0x1F},
{UFS_HS_G2, 0x3e},
{UFS_HS_G3, 0x7D},
};
static u32 hs_fr_table_rB[][2] = {
{UFS_HS_G1, 0x24},
{UFS_HS_G2, 0x49},
{UFS_HS_G3, 0x92},
};
/*
* The Qunipro controller does not use following registers:
* SYS1CLK_1US_REG, TX_SYMBOL_CLK_1US_REG, CLK_NS_REG &
* UFS_REG_PA_LINK_STARTUP_TIMER
* But UTP controller uses SYS1CLK_1US_REG register for Interrupt
* Aggregation / Auto hibern8 logic.
*/
if (ufs_qcom_cap_qunipro(host) &&
(!(ufshcd_is_intr_aggr_allowed(hba) ||
ufshcd_is_auto_hibern8_supported(hba))))
goto out;
if (gear == 0) {
dev_err(hba->dev, "%s: invalid gear = %d\n", __func__, gear);
goto out_error;
}
list_for_each_entry(clki, &hba->clk_list_head, list) {
if (!strcmp(clki->name, "core_clk")) {
if (is_pre_scale_up)
core_clk_rate = clki->max_freq;
else
core_clk_rate = clk_get_rate(clki->clk);
}
}
/* If frequency is smaller than 1MHz, set to 1MHz */
if (core_clk_rate < DEFAULT_CLK_RATE_HZ)
core_clk_rate = DEFAULT_CLK_RATE_HZ;
core_clk_cycles_per_us = core_clk_rate / USEC_PER_SEC;
if (ufshcd_readl(hba, REG_UFS_SYS1CLK_1US) != core_clk_cycles_per_us) {
ufshcd_writel(hba, core_clk_cycles_per_us, REG_UFS_SYS1CLK_1US);
/*
* make sure above write gets applied before we return from
* this function.
*/
mb();
}
if (ufs_qcom_cap_qunipro(host))
goto out;
core_clk_period_in_ns = NSEC_PER_SEC / core_clk_rate;
core_clk_period_in_ns <<= OFFSET_CLK_NS_REG;
core_clk_period_in_ns &= MASK_CLK_NS_REG;
switch (hs) {
case FASTAUTO_MODE:
case FAST_MODE:
if (rate == PA_HS_MODE_A) {
if (gear > ARRAY_SIZE(hs_fr_table_rA)) {
dev_err(hba->dev,
"%s: index %d exceeds table size %zu\n",
__func__, gear,
ARRAY_SIZE(hs_fr_table_rA));
goto out_error;
}
tx_clk_cycles_per_us = hs_fr_table_rA[gear-1][1];
} else if (rate == PA_HS_MODE_B) {
if (gear > ARRAY_SIZE(hs_fr_table_rB)) {
dev_err(hba->dev,
"%s: index %d exceeds table size %zu\n",
__func__, gear,
ARRAY_SIZE(hs_fr_table_rB));
goto out_error;
}
tx_clk_cycles_per_us = hs_fr_table_rB[gear-1][1];
} else {
dev_err(hba->dev, "%s: invalid rate = %d\n",
__func__, rate);
goto out_error;
}
break;
case SLOWAUTO_MODE:
case SLOW_MODE:
if (gear > ARRAY_SIZE(pwm_fr_table)) {
dev_err(hba->dev,
"%s: index %d exceeds table size %zu\n",
__func__, gear,
ARRAY_SIZE(pwm_fr_table));
goto out_error;
}
tx_clk_cycles_per_us = pwm_fr_table[gear-1][1];
break;
case UNCHANGED:
default:
dev_err(hba->dev, "%s: invalid mode = %d\n", __func__, hs);
goto out_error;
}
if (ufshcd_readl(hba, REG_UFS_TX_SYMBOL_CLK_NS_US) !=
(core_clk_period_in_ns | tx_clk_cycles_per_us)) {
/* this register 2 fields shall be written at once */
ufshcd_writel(hba, core_clk_period_in_ns | tx_clk_cycles_per_us,
REG_UFS_TX_SYMBOL_CLK_NS_US);
/*
* make sure above write gets applied before we return from
* this function.
*/
mb();
}
if (update_link_startup_timer) {
ufshcd_writel(hba, ((core_clk_rate / MSEC_PER_SEC) * 100),
REG_UFS_PA_LINK_STARTUP_TIMER);
/*
* make sure that this configuration is applied before
* we return
*/
mb();
}
goto out;
out_error:
ret = -EINVAL;
out:
return ret;
}
static int ufs_qcom_cfg_timers(struct ufs_hba *hba, u32 gear,
u32 hs, u32 rate, bool update_link_startup_timer)
{
return __ufs_qcom_cfg_timers(hba, gear, hs, rate,
update_link_startup_timer, false);
}
static int ufs_qcom_link_startup_pre_change(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct phy *phy = host->generic_phy;
u32 unipro_ver;
int err = 0;
if (ufs_qcom_cfg_timers(hba, UFS_PWM_G1, SLOWAUTO_MODE, 0, true)) {
dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n",
__func__);
err = -EINVAL;
goto out;
}
/* make sure RX LineCfg is enabled before link startup */
err = ufs_qcom_phy_ctrl_rx_linecfg(phy, true);
if (err)
goto out;
if (ufs_qcom_cap_qunipro(host)) {
/*
* set unipro core clock cycles to 150 & clear clock divider
*/
err = ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(hba, 150);
if (err)
goto out;
}
err = ufs_qcom_enable_hw_clk_gating(hba);
if (err)
goto out;
/*
* Some UFS devices (and may be host) have issues if LCC is
* enabled. So we are setting PA_Local_TX_LCC_Enable to 0
* before link startup which will make sure that both host
* and device TX LCC are disabled once link startup is
* completed.
*/
unipro_ver = ufshcd_get_local_unipro_ver(hba);
if (unipro_ver != UFS_UNIPRO_VER_1_41)
err = ufshcd_dme_set(hba,
UIC_ARG_MIB(PA_LOCAL_TX_LCC_ENABLE),
0);
if (err)
goto out;
if (!ufs_qcom_cap_qunipro_clk_gating(host))
goto out;
/* Enable all the mask bits */
err = ufshcd_dme_rmw(hba, SAVECONFIGTIME_MODE_MASK,
SAVECONFIGTIME_MODE_MASK,
PA_VS_CONFIG_REG1);
out:
return err;
}
static int ufs_qcom_link_startup_post_change(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct phy *phy = host->generic_phy;
u32 tx_lanes;
int err = 0;
err = ufs_qcom_get_connected_tx_lanes(hba, &tx_lanes);
if (err)
goto out;
err = ufs_qcom_phy_set_tx_lane_enable(phy, tx_lanes);
if (err) {
dev_err(hba->dev, "%s: ufs_qcom_phy_set_tx_lane_enable failed\n",
__func__);
goto out;
}
/*
* Some UFS devices send incorrect LineCfg data as part of power mode
* change sequence which may cause host PHY to go into bad state.
* Disabling Rx LineCfg of host PHY should help avoid this.
*/
if (ufshcd_get_local_unipro_ver(hba) == UFS_UNIPRO_VER_1_41)
err = ufs_qcom_phy_ctrl_rx_linecfg(phy, false);
if (err) {
dev_err(hba->dev, "%s: ufs_qcom_phy_ctrl_rx_linecfg failed\n",
__func__);
goto out;
}
/*
* UFS controller has *clk_req output to GCC, for each one if the clocks
* entering it. When *clk_req for a specific clock is de-asserted,
* a corresponding clock from GCC is stopped. UFS controller de-asserts
* *clk_req outputs when it is in Auto Hibernate state only if the
* Clock request feature is enabled.
* Enable the Clock request feature:
* - Enable HW clock control for UFS clocks in GCC (handled by the
* clock driver as part of clk_prepare_enable).
* - Set the AH8_CFG.*CLK_REQ register bits to 1.
*/
if (ufshcd_is_auto_hibern8_supported(hba))
ufshcd_writel(hba, ufshcd_readl(hba, UFS_AH8_CFG) |
UFS_HW_CLK_CTRL_EN,
UFS_AH8_CFG);
/*
* Make sure clock request feature gets enabled for HW clk gating
* before further operations.
*/
mb();
out:
return err;
}
static int ufs_qcom_link_startup_notify(struct ufs_hba *hba,
enum ufs_notify_change_status status)
{
int err = 0;
switch (status) {
case PRE_CHANGE:
err = ufs_qcom_link_startup_pre_change(hba);
break;
case POST_CHANGE:
err = ufs_qcom_link_startup_post_change(hba);
break;
default:
break;
}
return err;
}
static int ufs_qcom_config_vreg(struct device *dev,
struct ufs_vreg *vreg, bool on)
{
int ret = 0;
struct regulator *reg;
int min_uV, uA_load;
if (!vreg) {
WARN_ON(1);
ret = -EINVAL;
goto out;
}
reg = vreg->reg;
if (regulator_count_voltages(reg) > 0) {
min_uV = on ? vreg->min_uV : 0;
ret = regulator_set_voltage(reg, min_uV, vreg->max_uV);
if (ret) {
dev_err(dev, "%s: %s set voltage failed, err=%d\n",
__func__, vreg->name, ret);
goto out;
}
uA_load = on ? vreg->max_uA : 0;
ret = regulator_set_load(vreg->reg, uA_load);
if (ret)
goto out;
}
out:
return ret;
}
static int ufs_qcom_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
{
int ret = 0;
if (vreg->enabled)
return ret;
ret = ufs_qcom_config_vreg(dev, vreg, true);
if (ret)
goto out;
ret = regulator_enable(vreg->reg);
if (ret)
goto out;
vreg->enabled = true;
out:
return ret;
}
static int ufs_qcom_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
{
int ret = 0;
if (!vreg->enabled)
return ret;
ret = regulator_disable(vreg->reg);
if (ret)
goto out;
ret = ufs_qcom_config_vreg(dev, vreg, false);
if (ret)
goto out;
vreg->enabled = false;
out:
return ret;
}
static int ufs_qcom_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct phy *phy = host->generic_phy;
int ret = 0;
/*
* If UniPro link is not active or OFF, PHY ref_clk, main PHY analog
* power rail and low noise analog power rail for PLL can be
* switched off.
*/
if (!ufs_qcom_is_link_active(hba)) {
ufs_qcom_disable_lane_clks(host);
phy_power_off(phy);
if (host->vddp_ref_clk && ufs_qcom_is_link_off(hba))
ret = ufs_qcom_disable_vreg(hba->dev,
host->vddp_ref_clk);
ufs_qcom_ice_suspend(host);
if (ufs_qcom_is_link_off(hba)) {
/* Assert PHY soft reset */
ufs_qcom_assert_reset(hba);
goto out;
}
}
/* Unvote PM QoS */
ufs_qcom_pm_qos_suspend(host);
out:
return ret;
}
static int ufs_qcom_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct phy *phy = host->generic_phy;
int err;
err = phy_power_on(phy);
if (err) {
dev_err(hba->dev, "%s: failed enabling regs, err = %d\n",
__func__, err);
goto out;
}
if (host->vddp_ref_clk && (hba->rpm_lvl > UFS_PM_LVL_3 ||
hba->spm_lvl > UFS_PM_LVL_3))
ufs_qcom_enable_vreg(hba->dev,
host->vddp_ref_clk);
err = ufs_qcom_enable_lane_clks(host);
if (err)
goto out;
err = ufs_qcom_ice_resume(host);
if (err) {
dev_err(hba->dev, "%s: ufs_qcom_ice_resume failed, err = %d\n",
__func__, err);
goto out;
}
hba->is_sys_suspended = false;
out:
return err;
}
static int ufs_qcom_full_reset(struct ufs_hba *hba)
{
int ret = -ENOTSUPP;
if (!hba->core_reset) {
dev_err(hba->dev, "%s: failed, err = %d\n", __func__,
ret);
goto out;
}
ret = reset_control_assert(hba->core_reset);
if (ret) {
dev_err(hba->dev, "%s: core_reset assert failed, err = %d\n",
__func__, ret);
goto out;
}
/*
* The hardware requirement for delay between assert/deassert
* is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
* ~125us (4/32768). To be on the safe side add 200us delay.
*/
usleep_range(200, 210);
ret = reset_control_deassert(hba->core_reset);
if (ret)
dev_err(hba->dev, "%s: core_reset deassert failed, err = %d\n",
__func__, ret);
out:
return ret;
}
#ifdef CONFIG_SCSI_UFS_QCOM_ICE
static int ufs_qcom_crypto_req_setup(struct ufs_hba *hba,
struct ufshcd_lrb *lrbp, u8 *cc_index, bool *enable, u64 *dun)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct request *req;
int ret;
if (lrbp->cmd && lrbp->cmd->request)
req = lrbp->cmd->request;
else
return 0;
/* Use request LBA as the DUN value */
if (req->bio)
*dun = (req->bio->bi_iter.bi_sector) >>
UFS_QCOM_ICE_TR_DATA_UNIT_4_KB;
ret = ufs_qcom_ice_req_setup(host, lrbp->cmd, cc_index, enable);
return ret;
}
static
int ufs_qcom_crytpo_engine_cfg_start(struct ufs_hba *hba, unsigned int task_tag)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
int err = 0;
if (!host->ice.pdev ||
!lrbp->cmd || lrbp->command_type != UTP_CMD_TYPE_SCSI)
goto out;
err = ufs_qcom_ice_cfg_start(host, lrbp->cmd);
out:
return err;
}
static
int ufs_qcom_crytpo_engine_cfg_end(struct ufs_hba *hba,
struct ufshcd_lrb *lrbp, struct request *req)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
int err = 0;
if (!host->ice.pdev || lrbp->command_type != UTP_CMD_TYPE_SCSI)
goto out;
err = ufs_qcom_ice_cfg_end(host, req);
out:
return err;
}
static
int ufs_qcom_crytpo_engine_reset(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
int err = 0;
if (!host->ice.pdev)
goto out;
err = ufs_qcom_ice_reset(host);
out:
return err;
}
static int ufs_qcom_crypto_engine_get_status(struct ufs_hba *hba, u32 *status)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
if (!status)
return -EINVAL;
return ufs_qcom_ice_get_status(host, status);
}
#else /* !CONFIG_SCSI_UFS_QCOM_ICE */
#define ufs_qcom_crypto_req_setup NULL
#define ufs_qcom_crytpo_engine_cfg_start NULL
#define ufs_qcom_crytpo_engine_cfg_end NULL
#define ufs_qcom_crytpo_engine_reset NULL
#define ufs_qcom_crypto_engine_get_status NULL
#endif /* CONFIG_SCSI_UFS_QCOM_ICE */
struct ufs_qcom_dev_params {
u32 pwm_rx_gear; /* pwm rx gear to work in */
u32 pwm_tx_gear; /* pwm tx gear to work in */
u32 hs_rx_gear; /* hs rx gear to work in */
u32 hs_tx_gear; /* hs tx gear to work in */
u32 rx_lanes; /* number of rx lanes */
u32 tx_lanes; /* number of tx lanes */
u32 rx_pwr_pwm; /* rx pwm working pwr */
u32 tx_pwr_pwm; /* tx pwm working pwr */
u32 rx_pwr_hs; /* rx hs working pwr */
u32 tx_pwr_hs; /* tx hs working pwr */
u32 hs_rate; /* rate A/B to work in HS */
u32 desired_working_mode;
};
static int ufs_qcom_get_pwr_dev_param(struct ufs_qcom_dev_params *qcom_param,
struct ufs_pa_layer_attr *dev_max,
struct ufs_pa_layer_attr *agreed_pwr)
{
int min_qcom_gear;
int min_dev_gear;
bool is_dev_sup_hs = false;
bool is_qcom_max_hs = false;
if (dev_max->pwr_rx == FAST_MODE)
is_dev_sup_hs = true;
if (qcom_param->desired_working_mode == FAST) {
is_qcom_max_hs = true;
min_qcom_gear = min_t(u32, qcom_param->hs_rx_gear,
qcom_param->hs_tx_gear);
} else {
min_qcom_gear = min_t(u32, qcom_param->pwm_rx_gear,
qcom_param->pwm_tx_gear);
}
/*
* device doesn't support HS but qcom_param->desired_working_mode is
* HS, thus device and qcom_param don't agree
*/
if (!is_dev_sup_hs && is_qcom_max_hs) {
pr_err("%s: failed to agree on power mode (device doesn't support HS but requested power is HS)\n",
__func__);
return -ENOTSUPP;
} else if (is_dev_sup_hs && is_qcom_max_hs) {
/*
* since device supports HS, it supports FAST_MODE.
* since qcom_param->desired_working_mode is also HS
* then final decision (FAST/FASTAUTO) is done according
* to qcom_params as it is the restricting factor
*/
agreed_pwr->pwr_rx = agreed_pwr->pwr_tx =
qcom_param->rx_pwr_hs;
} else {
/*
* here qcom_param->desired_working_mode is PWM.
* it doesn't matter whether device supports HS or PWM,
* in both cases qcom_param->desired_working_mode will
* determine the mode
*/
agreed_pwr->pwr_rx = agreed_pwr->pwr_tx =
qcom_param->rx_pwr_pwm;
}
/*
* we would like tx to work in the minimum number of lanes
* between device capability and vendor preferences.
* the same decision will be made for rx
*/
agreed_pwr->lane_tx = min_t(u32, dev_max->lane_tx,
qcom_param->tx_lanes);
agreed_pwr->lane_rx = min_t(u32, dev_max->lane_rx,
qcom_param->rx_lanes);
/* device maximum gear is the minimum between device rx and tx gears */
min_dev_gear = min_t(u32, dev_max->gear_rx, dev_max->gear_tx);
/*
* if both device capabilities and vendor pre-defined preferences are
* both HS or both PWM then set the minimum gear to be the chosen
* working gear.
* if one is PWM and one is HS then the one that is PWM get to decide
* what is the gear, as it is the one that also decided previously what
* pwr the device will be configured to.
*/
if ((is_dev_sup_hs && is_qcom_max_hs) ||
(!is_dev_sup_hs && !is_qcom_max_hs))
agreed_pwr->gear_rx = agreed_pwr->gear_tx =
min_t(u32, min_dev_gear, min_qcom_gear);
else if (!is_dev_sup_hs)
agreed_pwr->gear_rx = agreed_pwr->gear_tx = min_dev_gear;
else
agreed_pwr->gear_rx = agreed_pwr->gear_tx = min_qcom_gear;
agreed_pwr->hs_rate = qcom_param->hs_rate;
return 0;
}
#ifdef CONFIG_QCOM_BUS_SCALING
static int ufs_qcom_get_bus_vote(struct ufs_qcom_host *host,
const char *speed_mode)
{
struct device *dev = host->hba->dev;
struct device_node *np = dev->of_node;
int err;
const char *key = "qcom,bus-vector-names";
if (!speed_mode) {
err = -EINVAL;
goto out;
}
if (host->bus_vote.is_max_bw_needed && !!strcmp(speed_mode, "MIN"))
err = of_property_match_string(np, key, "MAX");
else
err = of_property_match_string(np, key, speed_mode);
out:
if (err < 0)
dev_err(dev, "%s: Invalid %s mode %d\n",
__func__, speed_mode, err);
return err;
}
static void ufs_qcom_get_speed_mode(struct ufs_pa_layer_attr *p, char *result)
{
int gear = max_t(u32, p->gear_rx, p->gear_tx);
int lanes = max_t(u32, p->lane_rx, p->lane_tx);
int pwr;
/* default to PWM Gear 1, Lane 1 if power mode is not initialized */
if (!gear)
gear = 1;
if (!lanes)
lanes = 1;
if (!p->pwr_rx && !p->pwr_tx) {
pwr = SLOWAUTO_MODE;
snprintf(result, BUS_VECTOR_NAME_LEN, "MIN");
} else if (p->pwr_rx == FAST_MODE || p->pwr_rx == FASTAUTO_MODE ||
p->pwr_tx == FAST_MODE || p->pwr_tx == FASTAUTO_MODE) {
pwr = FAST_MODE;
snprintf(result, BUS_VECTOR_NAME_LEN, "%s_R%s_G%d_L%d", "HS",
p->hs_rate == PA_HS_MODE_B ? "B" : "A", gear, lanes);
} else {
pwr = SLOW_MODE;
snprintf(result, BUS_VECTOR_NAME_LEN, "%s_G%d_L%d",
"PWM", gear, lanes);
}
}
static int __ufs_qcom_set_bus_vote(struct ufs_qcom_host *host, int vote)
{
int err = 0;
if (vote != host->bus_vote.curr_vote) {
err = msm_bus_scale_client_update_request(
host->bus_vote.client_handle, vote);
if (err) {
dev_err(host->hba->dev,
"%s: msm_bus_scale_client_update_request() failed: bus_client_handle=0x%x, vote=%d, err=%d\n",
__func__, host->bus_vote.client_handle,
vote, err);
goto out;
}
host->bus_vote.curr_vote = vote;
}
out:
return err;
}
static int ufs_qcom_update_bus_bw_vote(struct ufs_qcom_host *host)
{
int vote;
int err = 0;
char mode[BUS_VECTOR_NAME_LEN];
ufs_qcom_get_speed_mode(&host->dev_req_params, mode);
vote = ufs_qcom_get_bus_vote(host, mode);
if (vote >= 0)
err = __ufs_qcom_set_bus_vote(host, vote);
else
err = vote;
if (err)
dev_err(host->hba->dev, "%s: failed %d\n", __func__, err);
else
host->bus_vote.saved_vote = vote;
return err;
}
static int ufs_qcom_set_bus_vote(struct ufs_hba *hba, bool on)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
int vote, err;
/*
* In case ufs_qcom_init() is not yet done, simply ignore.
* This ufs_qcom_set_bus_vote() shall be called from
* ufs_qcom_init() after init is done.
*/
if (!host)
return 0;
if (on) {
vote = host->bus_vote.saved_vote;
if (vote == host->bus_vote.min_bw_vote)
ufs_qcom_update_bus_bw_vote(host);
} else {
vote = host->bus_vote.min_bw_vote;
}
err = __ufs_qcom_set_bus_vote(host, vote);
if (err)
dev_err(hba->dev, "%s: set bus vote failed %d\n",
__func__, err);
return err;
}
static ssize_t
show_ufs_to_mem_max_bus_bw(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
return snprintf(buf, PAGE_SIZE, "%u\n",
host->bus_vote.is_max_bw_needed);
}
static ssize_t
store_ufs_to_mem_max_bus_bw(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
uint32_t value;
if (!kstrtou32(buf, 0, &value)) {
host->bus_vote.is_max_bw_needed = !!value;
ufs_qcom_update_bus_bw_vote(host);
}
return count;
}
static int ufs_qcom_bus_register(struct ufs_qcom_host *host)
{
int err;
struct msm_bus_scale_pdata *bus_pdata;
struct device *dev = host->hba->dev;
struct platform_device *pdev = to_platform_device(dev);
struct device_node *np = dev->of_node;
bus_pdata = msm_bus_cl_get_pdata(pdev);
if (!bus_pdata) {
dev_err(dev, "%s: failed to get bus vectors\n", __func__);
err = -ENODATA;
goto out;
}
err = of_property_count_strings(np, "qcom,bus-vector-names");
if (err < 0 || err != bus_pdata->num_usecases) {
dev_err(dev, "%s: qcom,bus-vector-names not specified correctly %d\n",
__func__, err);
goto out;
}
host->bus_vote.client_handle = msm_bus_scale_register_client(bus_pdata);
if (!host->bus_vote.client_handle) {
dev_err(dev, "%s: msm_bus_scale_register_client failed\n",
__func__);
err = -EFAULT;
goto out;
}
/* cache the vote index for minimum and maximum bandwidth */
host->bus_vote.min_bw_vote = ufs_qcom_get_bus_vote(host, "MIN");
host->bus_vote.max_bw_vote = ufs_qcom_get_bus_vote(host, "MAX");
host->bus_vote.max_bus_bw.show = show_ufs_to_mem_max_bus_bw;
host->bus_vote.max_bus_bw.store = store_ufs_to_mem_max_bus_bw;
sysfs_attr_init(&host->bus_vote.max_bus_bw.attr);
host->bus_vote.max_bus_bw.attr.name = "max_bus_bw";
host->bus_vote.max_bus_bw.attr.mode = S_IRUGO | S_IWUSR;
err = device_create_file(dev, &host->bus_vote.max_bus_bw);
out:
return err;
}
#else /* CONFIG_QCOM_BUS_SCALING */
static int ufs_qcom_update_bus_bw_vote(struct ufs_qcom_host *host)
{
return 0;
}
static int ufs_qcom_set_bus_vote(struct ufs_hba *hba, bool on)
{
return 0;
}
static int ufs_qcom_bus_register(struct ufs_qcom_host *host)
{
return 0;
}
static inline void msm_bus_scale_unregister_client(uint32_t cl)
{
}
#endif /* CONFIG_QCOM_BUS_SCALING */
static void ufs_qcom_dev_ref_clk_ctrl(struct ufs_qcom_host *host, bool enable)
{
if (host->dev_ref_clk_ctrl_mmio &&
(enable ^ host->is_dev_ref_clk_enabled)) {
u32 temp = readl_relaxed(host->dev_ref_clk_ctrl_mmio);
if (enable)
temp |= host->dev_ref_clk_en_mask;
else
temp &= ~host->dev_ref_clk_en_mask;
/*
* If we are here to disable this clock it might be immediately
* after entering into hibern8 in which case we need to make
* sure that device ref_clk is active at least 1us after the
* hibern8 enter.
*/
if (!enable)
udelay(1);
writel_relaxed(temp, host->dev_ref_clk_ctrl_mmio);
/* ensure that ref_clk is enabled/disabled before we return */
wmb();
/*
* If we call hibern8 exit after this, we need to make sure that
* device ref_clk is stable for at least 1us before the hibern8
* exit command.
*/
if (enable)
udelay(1);
host->is_dev_ref_clk_enabled = enable;
}
}
static int ufs_qcom_pwr_change_notify(struct ufs_hba *hba,
enum ufs_notify_change_status status,
struct ufs_pa_layer_attr *dev_max_params,
struct ufs_pa_layer_attr *dev_req_params)
{
u32 val;
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct phy *phy = host->generic_phy;
struct ufs_qcom_dev_params ufs_qcom_cap;
int ret = 0;
int res = 0;
if (!dev_req_params) {
pr_err("%s: incoming dev_req_params is NULL\n", __func__);
ret = -EINVAL;
goto out;
}
switch (status) {
case PRE_CHANGE:
ufs_qcom_cap.tx_lanes = UFS_QCOM_LIMIT_NUM_LANES_TX;
ufs_qcom_cap.rx_lanes = UFS_QCOM_LIMIT_NUM_LANES_RX;
ufs_qcom_cap.hs_rx_gear = UFS_QCOM_LIMIT_HSGEAR_RX;
ufs_qcom_cap.hs_tx_gear = UFS_QCOM_LIMIT_HSGEAR_TX;
ufs_qcom_cap.pwm_rx_gear = UFS_QCOM_LIMIT_PWMGEAR_RX;
ufs_qcom_cap.pwm_tx_gear = UFS_QCOM_LIMIT_PWMGEAR_TX;
ufs_qcom_cap.rx_pwr_pwm = UFS_QCOM_LIMIT_RX_PWR_PWM;
ufs_qcom_cap.tx_pwr_pwm = UFS_QCOM_LIMIT_TX_PWR_PWM;
ufs_qcom_cap.rx_pwr_hs = UFS_QCOM_LIMIT_RX_PWR_HS;
ufs_qcom_cap.tx_pwr_hs = UFS_QCOM_LIMIT_TX_PWR_HS;
ufs_qcom_cap.hs_rate = UFS_QCOM_LIMIT_HS_RATE;
ufs_qcom_cap.desired_working_mode =
UFS_QCOM_LIMIT_DESIRED_MODE;
if (host->hw_ver.major == 0x1) {
/*
* HS-G3 operations may not reliably work on legacy QCOM
* UFS host controller hardware even though capability
* exchange during link startup phase may end up
* negotiating maximum supported gear as G3.
* Hence downgrade the maximum supported gear to HS-G2.
*/
if (ufs_qcom_cap.hs_tx_gear > UFS_HS_G2)
ufs_qcom_cap.hs_tx_gear = UFS_HS_G2;
if (ufs_qcom_cap.hs_rx_gear > UFS_HS_G2)
ufs_qcom_cap.hs_rx_gear = UFS_HS_G2;
}
ret = ufs_qcom_get_pwr_dev_param(&ufs_qcom_cap,
dev_max_params,
dev_req_params);
if (ret) {
pr_err("%s: failed to determine capabilities\n",
__func__);
goto out;
}
/* enable the device ref clock before changing to HS mode */
if (!ufshcd_is_hs_mode(&hba->pwr_info) &&
ufshcd_is_hs_mode(dev_req_params))
ufs_qcom_dev_ref_clk_ctrl(host, true);
break;
case POST_CHANGE:
if (ufs_qcom_cfg_timers(hba, dev_req_params->gear_rx,
dev_req_params->pwr_rx,
dev_req_params->hs_rate, false)) {
dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n",
__func__);
/*
* we return error code at the end of the routine,
* but continue to configure UFS_PHY_TX_LANE_ENABLE
* and bus voting as usual
*/
ret = -EINVAL;
}
val = ~(MAX_U32 << dev_req_params->lane_tx);
res = ufs_qcom_phy_set_tx_lane_enable(phy, val);
if (res) {
dev_err(hba->dev, "%s: ufs_qcom_phy_set_tx_lane_enable() failed res = %d\n",
__func__, res);
ret = res;
}
/* cache the power mode parameters to use internally */
memcpy(&host->dev_req_params,
dev_req_params, sizeof(*dev_req_params));
ufs_qcom_update_bus_bw_vote(host);
/* disable the device ref clock if entered PWM mode */
if (ufshcd_is_hs_mode(&hba->pwr_info) &&
!ufshcd_is_hs_mode(dev_req_params))
ufs_qcom_dev_ref_clk_ctrl(host, false);
break;
default:
ret = -EINVAL;
break;
}
out:
return ret;
}
static int ufs_qcom_quirk_host_pa_saveconfigtime(struct ufs_hba *hba)
{
int err;
u32 pa_vs_config_reg1;
err = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_VS_CONFIG_REG1),
&pa_vs_config_reg1);
if (err)
goto out;
/* Allow extension of MSB bits of PA_SaveConfigTime attribute */
err = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_VS_CONFIG_REG1),
(pa_vs_config_reg1 | (1 << 12)));
out:
return err;
}
static int ufs_qcom_apply_dev_quirks(struct ufs_hba *hba)
{
int err = 0;
if (hba->dev_info.quirks & UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME)
err = ufs_qcom_quirk_host_pa_saveconfigtime(hba);
return err;
}
static u32 ufs_qcom_get_ufs_hci_version(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
if (host->hw_ver.major == 0x1)
return UFSHCI_VERSION_11;
else
return UFSHCI_VERSION_20;
}
/**
* ufs_qcom_advertise_quirks - advertise the known QCOM UFS controller quirks
* @hba: host controller instance
*
* QCOM UFS host controller might have some non standard behaviours (quirks)
* than what is specified by UFSHCI specification. Advertise all such
* quirks to standard UFS host controller driver so standard takes them into
* account.
*/
static void ufs_qcom_advertise_quirks(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
if (host->hw_ver.major == 0x1) {
hba->quirks |= (UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS
| UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP
| UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE);
if (host->hw_ver.minor == 0x001 && host->hw_ver.step == 0x0001)
hba->quirks |= UFSHCD_QUIRK_BROKEN_INTR_AGGR;
hba->quirks |= UFSHCD_QUIRK_BROKEN_LCC;
}
if (host->hw_ver.major == 0x2) {
hba->quirks |= UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION;
if (!ufs_qcom_cap_qunipro(host))
/* Legacy UniPro mode still need following quirks */
hba->quirks |= (UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS
| UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE
| UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP);
}
if (host->disable_lpm)
hba->quirks |= UFSHCD_QUIRK_BROKEN_AUTO_HIBERN8;
}
static void ufs_qcom_set_caps(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
if (!host->disable_lpm) {
hba->caps |= UFSHCD_CAP_CLK_GATING;
hba->caps |= UFSHCD_CAP_HIBERN8_WITH_CLK_GATING;
hba->caps |= UFSHCD_CAP_CLK_SCALING;
}
hba->caps |= UFSHCD_CAP_AUTO_BKOPS_SUSPEND;
if (host->hw_ver.major >= 0x2) {
if (!host->disable_lpm)
hba->caps |= UFSHCD_CAP_POWER_COLLAPSE_DURING_HIBERN8;
host->caps = UFS_QCOM_CAP_QUNIPRO |
UFS_QCOM_CAP_RETAIN_SEC_CFG_AFTER_PWR_COLLAPSE;
}
if (host->hw_ver.major >= 0x3) {
host->caps |= UFS_QCOM_CAP_QUNIPRO_CLK_GATING;
/*
* The UFS PHY attached to v3.0.0 controller supports entering
* deeper low power state of SVS2. This lets the controller
* run at much lower clock frequencies for saving power.
* Assuming this and any future revisions of the controller
* support this capability. Need to revist this assumption if
* any future platform with this core doesn't support the
* capability, as there will be no benefit running at lower
* frequencies then.
*/
host->caps |= UFS_QCOM_CAP_SVS2;
}
}
/**
* ufs_qcom_setup_clocks - enables/disable clocks
* @hba: host controller instance
* @on: If true, enable clocks else disable them.
* @is_gating_context: If true then it means this function is called from
* aggressive clock gating context and we may only need to gate off important
* clocks. If false then make sure to gate off all clocks.
*
* Returns 0 on success, non-zero on failure.
*/
static int ufs_qcom_setup_clocks(struct ufs_hba *hba, bool on,
bool is_gating_context)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
int err;
/*
* In case ufs_qcom_init() is not yet done, simply ignore.
* This ufs_qcom_setup_clocks() shall be called from
* ufs_qcom_init() after init is done.
*/
if (!host)
return 0;
if (on) {
err = ufs_qcom_phy_enable_iface_clk(host->generic_phy);
if (err)
goto out;
err = ufs_qcom_phy_enable_ref_clk(host->generic_phy);
if (err) {
dev_err(hba->dev, "%s enable phy ref clock failed, err=%d\n",
__func__, err);
ufs_qcom_phy_disable_iface_clk(host->generic_phy);
goto out;
}
/* enable the device ref clock for HS mode*/
if (ufshcd_is_hs_mode(&hba->pwr_info))
ufs_qcom_dev_ref_clk_ctrl(host, true);
err = ufs_qcom_ice_resume(host);
if (err)
goto out;
} else {
err = ufs_qcom_ice_suspend(host);
if (err)
goto out;
/* M-PHY RMMI interface clocks can be turned off */
ufs_qcom_phy_disable_iface_clk(host->generic_phy);
/*
* If auto hibern8 is supported then the link will already
* be in hibern8 state and the ref clock can be gated.
*/
if (ufshcd_is_auto_hibern8_supported(hba) ||
!ufs_qcom_is_link_active(hba)) {
/* turn off UFS local PHY ref_clk */
ufs_qcom_phy_disable_ref_clk(host->generic_phy);
/* disable device ref_clk */
ufs_qcom_dev_ref_clk_ctrl(host, false);
}
}
out:
return err;
}
#ifdef CONFIG_SMP /* CONFIG_SMP */
static int ufs_qcom_cpu_to_group(struct ufs_qcom_host *host, int cpu)
{
int i;
if (cpu >= 0 && cpu < num_possible_cpus())
for (i = 0; i < host->pm_qos.num_groups; i++)
if (cpumask_test_cpu(cpu, &host->pm_qos.groups[i].mask))
return i;
return host->pm_qos.default_cpu;
}
static void ufs_qcom_pm_qos_req_start(struct ufs_hba *hba, struct request *req)
{
unsigned long flags;
struct ufs_qcom_host *host;
struct ufs_qcom_pm_qos_cpu_group *group;
if (!hba || !req)
return;
host = ufshcd_get_variant(hba);
if (!host->pm_qos.groups)
return;
group = &host->pm_qos.groups[ufs_qcom_cpu_to_group(host, req->cpu)];
spin_lock_irqsave(hba->host->host_lock, flags);
if (!host->pm_qos.is_enabled)
goto out;
group->active_reqs++;
if (group->state != PM_QOS_REQ_VOTE &&
group->state != PM_QOS_VOTED) {
group->state = PM_QOS_REQ_VOTE;
queue_work(host->pm_qos.workq, &group->vote_work);
}
out:
spin_unlock_irqrestore(hba->host->host_lock, flags);
}
/* hba->host->host_lock is assumed to be held by caller */
static void __ufs_qcom_pm_qos_req_end(struct ufs_qcom_host *host, int req_cpu)
{
struct ufs_qcom_pm_qos_cpu_group *group;
if (!host->pm_qos.groups || !host->pm_qos.is_enabled)
return;
group = &host->pm_qos.groups[ufs_qcom_cpu_to_group(host, req_cpu)];
if (--group->active_reqs)
return;
group->state = PM_QOS_REQ_UNVOTE;
queue_work(host->pm_qos.workq, &group->unvote_work);
}
static void ufs_qcom_pm_qos_req_end(struct ufs_hba *hba, struct request *req,
bool should_lock)
{
unsigned long flags = 0;
if (!hba || !req)
return;
if (should_lock)
spin_lock_irqsave(hba->host->host_lock, flags);
__ufs_qcom_pm_qos_req_end(ufshcd_get_variant(hba), req->cpu);
if (should_lock)
spin_unlock_irqrestore(hba->host->host_lock, flags);
}
static void ufs_qcom_pm_qos_vote_work(struct work_struct *work)
{
struct ufs_qcom_pm_qos_cpu_group *group =
container_of(work, struct ufs_qcom_pm_qos_cpu_group, vote_work);
struct ufs_qcom_host *host = group->host;
unsigned long flags;
spin_lock_irqsave(host->hba->host->host_lock, flags);
if (!host->pm_qos.is_enabled || !group->active_reqs) {
spin_unlock_irqrestore(host->hba->host->host_lock, flags);
return;
}
group->state = PM_QOS_VOTED;
spin_unlock_irqrestore(host->hba->host->host_lock, flags);
pm_qos_update_request(&group->req, group->latency_us);
}
static void ufs_qcom_pm_qos_unvote_work(struct work_struct *work)
{
struct ufs_qcom_pm_qos_cpu_group *group = container_of(work,
struct ufs_qcom_pm_qos_cpu_group, unvote_work);
struct ufs_qcom_host *host = group->host;
unsigned long flags;
/*
* Check if new requests were submitted in the meantime and do not
* unvote if so.
*/
spin_lock_irqsave(host->hba->host->host_lock, flags);
if (!host->pm_qos.is_enabled || group->active_reqs) {
spin_unlock_irqrestore(host->hba->host->host_lock, flags);
return;
}
group->state = PM_QOS_UNVOTED;
spin_unlock_irqrestore(host->hba->host->host_lock, flags);
pm_qos_update_request_timeout(&group->req,
group->latency_us, UFS_QCOM_PM_QOS_UNVOTE_TIMEOUT_US);
}
static ssize_t ufs_qcom_pm_qos_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev->parent);
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
return snprintf(buf, PAGE_SIZE, "%d\n", host->pm_qos.is_enabled);
}
static ssize_t ufs_qcom_pm_qos_enable_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct ufs_hba *hba = dev_get_drvdata(dev->parent);
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
unsigned long value;
unsigned long flags;
bool enable;
int i;
if (kstrtoul(buf, 0, &value))
return -EINVAL;
enable = !!value;
/*
* Must take the spinlock and save irqs before changing the enabled
* flag in order to keep correctness of PM QoS release.
*/
spin_lock_irqsave(hba->host->host_lock, flags);
if (enable == host->pm_qos.is_enabled) {
spin_unlock_irqrestore(hba->host->host_lock, flags);
return count;
}
host->pm_qos.is_enabled = enable;
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (!enable)
for (i = 0; i < host->pm_qos.num_groups; i++) {
cancel_work_sync(&host->pm_qos.groups[i].vote_work);
cancel_work_sync(&host->pm_qos.groups[i].unvote_work);
spin_lock_irqsave(hba->host->host_lock, flags);
host->pm_qos.groups[i].state = PM_QOS_UNVOTED;
host->pm_qos.groups[i].active_reqs = 0;
spin_unlock_irqrestore(hba->host->host_lock, flags);
pm_qos_update_request(&host->pm_qos.groups[i].req,
PM_QOS_DEFAULT_VALUE);
}
return count;
}
static ssize_t ufs_qcom_pm_qos_latency_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev->parent);
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
int ret;
int i;
int offset = 0;
for (i = 0; i < host->pm_qos.num_groups; i++) {
ret = snprintf(&buf[offset], PAGE_SIZE,
"cpu group #%d(mask=0x%lx): %d\n", i,
host->pm_qos.groups[i].mask.bits[0],
host->pm_qos.groups[i].latency_us);
if (ret > 0)
offset += ret;
else
break;
}
return offset;
}
static ssize_t ufs_qcom_pm_qos_latency_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct ufs_hba *hba = dev_get_drvdata(dev->parent);
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
unsigned long value;
unsigned long flags;
char *strbuf;
char *strbuf_copy;
char *token;
int i;
int ret;
/* reserve one byte for null termination */
strbuf = kmalloc(count + 1, GFP_KERNEL);
if (!strbuf)
return -ENOMEM;
strbuf_copy = strbuf;
strlcpy(strbuf, buf, count + 1);
for (i = 0; i < host->pm_qos.num_groups; i++) {
token = strsep(&strbuf, ",");
if (!token)
break;
ret = kstrtoul(token, 0, &value);
if (ret)
break;
spin_lock_irqsave(hba->host->host_lock, flags);
host->pm_qos.groups[i].latency_us = value;
spin_unlock_irqrestore(hba->host->host_lock, flags);
}
kfree(strbuf_copy);
return count;
}
static int ufs_qcom_pm_qos_init(struct ufs_qcom_host *host)
{
struct device_node *node = host->hba->dev->of_node;
struct device_attribute *attr;
int ret = 0;
int num_groups;
int num_values;
char wq_name[sizeof("ufs_pm_qos_00")];
int i;
num_groups = of_property_count_u32_elems(node,
"qcom,pm-qos-cpu-groups");
if (num_groups <= 0)
goto no_pm_qos;
num_values = of_property_count_u32_elems(node,
"qcom,pm-qos-cpu-group-latency-us");
if (num_values <= 0)
goto no_pm_qos;
if (num_values != num_groups || num_groups > num_possible_cpus()) {
dev_err(host->hba->dev, "%s: invalid count: num_groups=%d, num_values=%d, num_possible_cpus=%d\n",
__func__, num_groups, num_values, num_possible_cpus());
goto no_pm_qos;
}
host->pm_qos.num_groups = num_groups;
host->pm_qos.groups = kcalloc(host->pm_qos.num_groups,
sizeof(struct ufs_qcom_pm_qos_cpu_group), GFP_KERNEL);
if (!host->pm_qos.groups)
return -ENOMEM;
for (i = 0; i < host->pm_qos.num_groups; i++) {
u32 mask;
ret = of_property_read_u32_index(node, "qcom,pm-qos-cpu-groups",
i, &mask);
if (ret)
goto free_groups;
host->pm_qos.groups[i].mask.bits[0] = mask;
if (!cpumask_subset(&host->pm_qos.groups[i].mask,
cpu_possible_mask)) {
dev_err(host->hba->dev, "%s: invalid mask 0x%x for cpu group\n",
__func__, mask);
goto free_groups;
}
ret = of_property_read_u32_index(node,
"qcom,pm-qos-cpu-group-latency-us", i,
&host->pm_qos.groups[i].latency_us);
if (ret)
goto free_groups;
host->pm_qos.groups[i].req.type = PM_QOS_REQ_AFFINE_CORES;
host->pm_qos.groups[i].req.cpus_affine =
host->pm_qos.groups[i].mask;
host->pm_qos.groups[i].state = PM_QOS_UNVOTED;
host->pm_qos.groups[i].active_reqs = 0;
host->pm_qos.groups[i].host = host;
INIT_WORK(&host->pm_qos.groups[i].vote_work,
ufs_qcom_pm_qos_vote_work);
INIT_WORK(&host->pm_qos.groups[i].unvote_work,
ufs_qcom_pm_qos_unvote_work);
}
ret = of_property_read_u32(node, "qcom,pm-qos-default-cpu",
&host->pm_qos.default_cpu);
if (ret || host->pm_qos.default_cpu > num_possible_cpus())
host->pm_qos.default_cpu = 0;
/*
* Use a single-threaded workqueue to assure work submitted to the queue
* is performed in order. Consider the following 2 possible cases:
*
* 1. A new request arrives and voting work is scheduled for it. Before
* the voting work is performed the request is finished and unvote
* work is also scheduled.
* 2. A request is finished and unvote work is scheduled. Before the
* work is performed a new request arrives and voting work is also
* scheduled.
*
* In both cases a vote work and unvote work wait to be performed.
* If ordering is not guaranteed, then the end state might be the
* opposite of the desired state.
*/
snprintf(wq_name, ARRAY_SIZE(wq_name), "%s_%d", "ufs_pm_qos",
host->hba->host->host_no);
host->pm_qos.workq = create_singlethread_workqueue(wq_name);
if (!host->pm_qos.workq) {
dev_err(host->hba->dev, "%s: failed to create the workqueue\n",
__func__);
ret = -ENOMEM;
goto free_groups;
}
/* Initialization was ok, add all PM QoS requests */
for (i = 0; i < host->pm_qos.num_groups; i++)
pm_qos_add_request(&host->pm_qos.groups[i].req,
PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
/* PM QoS latency sys-fs attribute */
attr = &host->pm_qos.latency_attr;
attr->show = ufs_qcom_pm_qos_latency_show;
attr->store = ufs_qcom_pm_qos_latency_store;
sysfs_attr_init(&attr->attr);
attr->attr.name = "pm_qos_latency_us";
attr->attr.mode = S_IRUGO | S_IWUSR;
if (device_create_file(host->hba->var->dev, attr))
dev_dbg(host->hba->dev, "Failed to create sysfs for pm_qos_latency_us\n");
/* PM QoS enable sys-fs attribute */
attr = &host->pm_qos.enable_attr;
attr->show = ufs_qcom_pm_qos_enable_show;
attr->store = ufs_qcom_pm_qos_enable_store;
sysfs_attr_init(&attr->attr);
attr->attr.name = "pm_qos_enable";
attr->attr.mode = S_IRUGO | S_IWUSR;
if (device_create_file(host->hba->var->dev, attr))
dev_dbg(host->hba->dev, "Failed to create sysfs for pm_qos enable\n");
host->pm_qos.is_enabled = true;
return 0;
free_groups:
kfree(host->pm_qos.groups);
no_pm_qos:
host->pm_qos.groups = NULL;
return ret ? ret : -ENOTSUPP;
}
static void ufs_qcom_pm_qos_suspend(struct ufs_qcom_host *host)
{
int i;
if (!host->pm_qos.groups)
return;
for (i = 0; i < host->pm_qos.num_groups; i++)
flush_work(&host->pm_qos.groups[i].unvote_work);
}
static void ufs_qcom_pm_qos_remove(struct ufs_qcom_host *host)
{
int i;
if (!host->pm_qos.groups)
return;
for (i = 0; i < host->pm_qos.num_groups; i++)
pm_qos_remove_request(&host->pm_qos.groups[i].req);
destroy_workqueue(host->pm_qos.workq);
kfree(host->pm_qos.groups);
host->pm_qos.groups = NULL;
}
#endif /* CONFIG_SMP */
/*
* ufs_qcom_parse_lpm - read from DTS whether LPM modes should be disabled.
*/
static void ufs_qcom_parse_lpm(struct ufs_qcom_host *host)
{
struct device_node *node = host->hba->dev->of_node;
host->disable_lpm = of_property_read_bool(node, "qcom,disable-lpm");
if (host->disable_lpm)
pr_info("%s: will disable all LPM modes\n", __func__);
}
static void ufs_qcom_save_host_ptr(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
int id;
if (!hba->dev->of_node)
return;
/* Extract platform data */
id = of_alias_get_id(hba->dev->of_node, "ufshc");
if (id <= 0)
dev_err(hba->dev, "Failed to get host index %d\n", id);
else if (id <= MAX_UFS_QCOM_HOSTS)
ufs_qcom_hosts[id - 1] = host;
else
dev_err(hba->dev, "invalid host index %d\n", id);
}
static int ufs_qcom_parse_reg_info(struct ufs_qcom_host *host, char *name,
struct ufs_vreg **out_vreg)
{
int ret = 0;
char prop_name[MAX_PROP_SIZE];
struct ufs_vreg *vreg = NULL;
struct device *dev = host->hba->dev;
struct device_node *np = dev->of_node;
if (!np) {
dev_err(dev, "%s: non DT initialization\n", __func__);
goto out;
}
snprintf(prop_name, MAX_PROP_SIZE, "%s-supply", name);
if (!of_parse_phandle(np, prop_name, 0)) {
dev_info(dev, "%s: Unable to find %s regulator, assuming enabled\n",
__func__, prop_name);
ret = -ENODEV;
goto out;
}
vreg = devm_kzalloc(dev, sizeof(*vreg), GFP_KERNEL);
if (!vreg)
return -ENOMEM;
vreg->name = name;
snprintf(prop_name, MAX_PROP_SIZE, "%s-max-microamp", name);
ret = of_property_read_u32(np, prop_name, &vreg->max_uA);
if (ret) {
dev_err(dev, "%s: unable to find %s err %d\n",
__func__, prop_name, ret);
goto out;
}
vreg->reg = devm_regulator_get(dev, vreg->name);
if (IS_ERR(vreg->reg)) {
ret = PTR_ERR(vreg->reg);
dev_err(dev, "%s: %s get failed, err=%d\n",
__func__, vreg->name, ret);
}
vreg->min_uV = VDDP_REF_CLK_MIN_UV;
vreg->max_uV = VDDP_REF_CLK_MAX_UV;
out:
if (!ret)
*out_vreg = vreg;
return ret;
}
/**
* ufs_qcom_init - bind phy with controller
* @hba: host controller instance
*
* Binds PHY with controller and powers up PHY enabling clocks
* and regulators.
*
* Returns -EPROBE_DEFER if binding fails, returns negative error
* on phy power up failure and returns zero on success.
*/
static int ufs_qcom_init(struct ufs_hba *hba)
{
int err;
struct device *dev = hba->dev;
struct platform_device *pdev = to_platform_device(dev);
struct ufs_qcom_host *host;
struct resource *res;
host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
if (!host) {
err = -ENOMEM;
dev_err(dev, "%s: no memory for qcom ufs host\n", __func__);
goto out;
}
/* Make a two way bind between the qcom host and the hba */
host->hba = hba;
spin_lock_init(&host->ice_work_lock);
ufshcd_set_variant(hba, host);
err = ufs_qcom_ice_get_dev(host);
if (err == -EPROBE_DEFER) {
/*
* UFS driver might be probed before ICE driver does.
* In that case we would like to return EPROBE_DEFER code
* in order to delay its probing.
*/
dev_err(dev, "%s: required ICE device not probed yet err = %d\n",
__func__, err);
goto out_host_free;
} else if (err == -ENODEV) {
/*
* ICE device is not enabled in DTS file. No need for further
* initialization of ICE driver.
*/
dev_warn(dev, "%s: ICE device is not enabled",
__func__);
} else if (err) {
dev_err(dev, "%s: ufs_qcom_ice_get_dev failed %d\n",
__func__, err);
goto out_host_free;
}
host->generic_phy = devm_phy_get(dev, "ufsphy");
if (host->generic_phy == ERR_PTR(-EPROBE_DEFER)) {
/*
* UFS driver might be probed before the phy driver does.
* In that case we would like to return EPROBE_DEFER code.
*/
err = -EPROBE_DEFER;
dev_warn(dev, "%s: required phy device. hasn't probed yet. err = %d\n",
__func__, err);
goto out_host_free;
} else if (IS_ERR(host->generic_phy)) {
err = PTR_ERR(host->generic_phy);
dev_err(dev, "%s: PHY get failed %d\n", __func__, err);
goto out;
}
err = ufs_qcom_pm_qos_init(host);
if (err)
dev_info(dev, "%s: PM QoS will be disabled\n", __func__);
/* restore the secure configuration */
ufs_qcom_update_sec_cfg(hba, true);
err = ufs_qcom_bus_register(host);
if (err)
goto out_host_free;
ufs_qcom_get_controller_revision(hba, &host->hw_ver.major,
&host->hw_ver.minor, &host->hw_ver.step);
/*
* for newer controllers, device reference clock control bit has
* moved inside UFS controller register address space itself.
*/
if (host->hw_ver.major >= 0x02) {
host->dev_ref_clk_ctrl_mmio = hba->mmio_base + REG_UFS_CFG1;
host->dev_ref_clk_en_mask = BIT(26);
} else {
/* "dev_ref_clk_ctrl_mem" is optional resource */
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (res) {
host->dev_ref_clk_ctrl_mmio =
devm_ioremap_resource(dev, res);
if (IS_ERR(host->dev_ref_clk_ctrl_mmio)) {
dev_warn(dev,
"%s: could not map dev_ref_clk_ctrl_mmio, err %ld\n",
__func__,
PTR_ERR(host->dev_ref_clk_ctrl_mmio));
host->dev_ref_clk_ctrl_mmio = NULL;
}
host->dev_ref_clk_en_mask = BIT(5);
}
}
/* update phy revision information before calling phy_init() */
ufs_qcom_phy_save_controller_version(host->generic_phy,
host->hw_ver.major, host->hw_ver.minor, host->hw_ver.step);
err = ufs_qcom_parse_reg_info(host, "qcom,vddp-ref-clk",
&host->vddp_ref_clk);
phy_init(host->generic_phy);
err = phy_power_on(host->generic_phy);
if (err)
goto out_unregister_bus;
if (host->vddp_ref_clk) {
err = ufs_qcom_enable_vreg(dev, host->vddp_ref_clk);
if (err) {
dev_err(dev, "%s: failed enabling ref clk supply: %d\n",
__func__, err);
goto out_disable_phy;
}
}
err = ufs_qcom_init_lane_clks(host);
if (err)
goto out_disable_vddp;
ufs_qcom_parse_lpm(host);
if (host->disable_lpm)
pm_runtime_forbid(host->hba->dev);
ufs_qcom_set_caps(hba);
ufs_qcom_advertise_quirks(hba);
ufs_qcom_set_bus_vote(hba, true);
ufs_qcom_setup_clocks(hba, true, false);
host->dbg_print_en |= UFS_QCOM_DEFAULT_DBG_PRINT_EN;
ufs_qcom_get_default_testbus_cfg(host);
err = ufs_qcom_testbus_config(host);
if (err) {
dev_warn(dev, "%s: failed to configure the testbus %d\n",
__func__, err);
err = 0;
}
ufs_qcom_save_host_ptr(hba);
goto out;
out_disable_vddp:
if (host->vddp_ref_clk)
ufs_qcom_disable_vreg(dev, host->vddp_ref_clk);
out_disable_phy:
phy_power_off(host->generic_phy);
out_unregister_bus:
phy_exit(host->generic_phy);
msm_bus_scale_unregister_client(host->bus_vote.client_handle);
out_host_free:
devm_kfree(dev, host);
ufshcd_set_variant(hba, NULL);
out:
return err;
}
static void ufs_qcom_exit(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
msm_bus_scale_unregister_client(host->bus_vote.client_handle);
ufs_qcom_disable_lane_clks(host);
phy_power_off(host->generic_phy);
ufs_qcom_pm_qos_remove(host);
}
static int ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(struct ufs_hba *hba,
u32 clk_cycles)
{
int err;
u32 core_clk_ctrl_reg;
if (clk_cycles > DME_VS_CORE_CLK_CTRL_MAX_CORE_CLK_1US_CYCLES_MASK)
return -EINVAL;
err = ufshcd_dme_get(hba,
UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
&core_clk_ctrl_reg);
if (err)
goto out;
core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_MAX_CORE_CLK_1US_CYCLES_MASK;
core_clk_ctrl_reg |= clk_cycles;
/* Clear CORE_CLK_DIV_EN */
core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT;
err = ufshcd_dme_set(hba,
UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
core_clk_ctrl_reg);
out:
return err;
}
static int ufs_qcom_clk_scale_up_pre_change(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct ufs_pa_layer_attr *attr = &host->dev_req_params;
int err = 0;
if (!ufs_qcom_cap_qunipro(host))
goto out;
if (attr)
__ufs_qcom_cfg_timers(hba, attr->gear_rx, attr->pwr_rx,
attr->hs_rate, false, true);
/* set unipro core clock cycles to 150 and clear clock divider */
err = ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(hba, 150);
out:
return err;
}
static int ufs_qcom_clk_scale_down_post_change(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct ufs_pa_layer_attr *attr = &host->dev_req_params;
int err = 0;
if (!ufs_qcom_cap_qunipro(host))
return 0;
if (attr)
ufs_qcom_cfg_timers(hba, attr->gear_rx, attr->pwr_rx,
attr->hs_rate, false);
if (ufs_qcom_cap_svs2(host))
/*
* For SVS2 set unipro core clock cycles to 37 and
* clear clock divider
*/
err = ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(hba, 37);
else
/*
* For SVS set unipro core clock cycles to 75 and
* clear clock divider
*/
err = ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(hba, 75);
return err;
}
static int ufs_qcom_clk_scale_notify(struct ufs_hba *hba,
bool scale_up, enum ufs_notify_change_status status)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
int err = 0;
switch (status) {
case PRE_CHANGE:
if (scale_up)
err = ufs_qcom_clk_scale_up_pre_change(hba);
break;
case POST_CHANGE:
if (!scale_up)
err = ufs_qcom_clk_scale_down_post_change(hba);
ufs_qcom_update_bus_bw_vote(host);
break;
default:
dev_err(hba->dev, "%s: invalid status %d\n", __func__, status);
err = -EINVAL;
break;
}
return err;
}
/*
* This function should be called to restore the security configuration of UFS
* register space after coming out of UFS host core power collapse.
*
* @hba: host controller instance
* @restore_sec_cfg: Set "true" if secure configuration needs to be restored
* and set "false" when secure configuration is lost.
*/
static int ufs_qcom_update_sec_cfg(struct ufs_hba *hba, bool restore_sec_cfg)
{
return 0;
}
static inline u32 ufs_qcom_get_scale_down_gear(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
if (ufs_qcom_cap_svs2(host))
return UFS_HS_G1;
/* Default SVS support @ HS G2 frequencies*/
return UFS_HS_G2;
}
void ufs_qcom_print_hw_debug_reg_all(struct ufs_hba *hba, void *priv,
void (*print_fn)(struct ufs_hba *hba, int offset, int num_regs,
char *str, void *priv))
{
u32 reg;
struct ufs_qcom_host *host;
if (unlikely(!hba)) {
pr_err("%s: hba is NULL\n", __func__);
return;
}
if (unlikely(!print_fn)) {
dev_err(hba->dev, "%s: print_fn is NULL\n", __func__);
return;
}
host = ufshcd_get_variant(hba);
if (!(host->dbg_print_en & UFS_QCOM_DBG_PRINT_REGS_EN))
return;
reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_REG_OCSC);
print_fn(hba, reg, 44, "UFS_UFS_DBG_RD_REG_OCSC ", priv);
reg = ufshcd_readl(hba, REG_UFS_CFG1);
reg |= UFS_BIT(17);
ufshcd_writel(hba, reg, REG_UFS_CFG1);
reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_EDTL_RAM);
print_fn(hba, reg, 32, "UFS_UFS_DBG_RD_EDTL_RAM ", priv);
reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_DESC_RAM);
print_fn(hba, reg, 128, "UFS_UFS_DBG_RD_DESC_RAM ", priv);
reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_PRDT_RAM);
print_fn(hba, reg, 64, "UFS_UFS_DBG_RD_PRDT_RAM ", priv);
/* clear bit 17 - UTP_DBG_RAMS_EN */
ufshcd_rmwl(hba, UFS_BIT(17), 0, REG_UFS_CFG1);
reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_UAWM);
print_fn(hba, reg, 4, "UFS_DBG_RD_REG_UAWM ", priv);
reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_UARM);
print_fn(hba, reg, 4, "UFS_DBG_RD_REG_UARM ", priv);
reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TXUC);
print_fn(hba, reg, 48, "UFS_DBG_RD_REG_TXUC ", priv);
reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_RXUC);
print_fn(hba, reg, 27, "UFS_DBG_RD_REG_RXUC ", priv);
reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_DFC);
print_fn(hba, reg, 19, "UFS_DBG_RD_REG_DFC ", priv);
reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TRLUT);
print_fn(hba, reg, 34, "UFS_DBG_RD_REG_TRLUT ", priv);
reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TMRLUT);
print_fn(hba, reg, 9, "UFS_DBG_RD_REG_TMRLUT ", priv);
}
static void ufs_qcom_enable_test_bus(struct ufs_qcom_host *host)
{
if (host->dbg_print_en & UFS_QCOM_DBG_PRINT_TEST_BUS_EN) {
ufshcd_rmwl(host->hba, UFS_REG_TEST_BUS_EN,
UFS_REG_TEST_BUS_EN, REG_UFS_CFG1);
ufshcd_rmwl(host->hba, TEST_BUS_EN, TEST_BUS_EN, REG_UFS_CFG1);
} else {
ufshcd_rmwl(host->hba, UFS_REG_TEST_BUS_EN, 0, REG_UFS_CFG1);
ufshcd_rmwl(host->hba, TEST_BUS_EN, 0, REG_UFS_CFG1);
}
}
static void ufs_qcom_get_default_testbus_cfg(struct ufs_qcom_host *host)
{
/* provide a legal default configuration */
host->testbus.select_major = TSTBUS_UNIPRO;
host->testbus.select_minor = 37;
}
static bool ufs_qcom_testbus_cfg_is_ok(struct ufs_qcom_host *host)
{
if (host->testbus.select_major >= TSTBUS_MAX) {
dev_err(host->hba->dev,
"%s: UFS_CFG1[TEST_BUS_SEL} may not equal 0x%05X\n",
__func__, host->testbus.select_major);
return false;
}
/*
* Not performing check for each individual select_major
* mappings of select_minor, since there is no harm in
* configuring a non-existent select_minor
*/
if (host->testbus.select_minor > 0xFF) {
dev_err(host->hba->dev,
"%s: 0x%05X is not a legal testbus option\n",
__func__, host->testbus.select_minor);
return false;
}
return true;
}
/*
* The caller of this function must make sure that the controller
* is out of runtime suspend and appropriate clocks are enabled
* before accessing.
*/
int ufs_qcom_testbus_config(struct ufs_qcom_host *host)
{
int reg;
int offset;
u32 mask = TEST_BUS_SUB_SEL_MASK;
if (!host)
return -EINVAL;
if (!ufs_qcom_testbus_cfg_is_ok(host))
return -EPERM;
switch (host->testbus.select_major) {
case TSTBUS_UAWM:
reg = UFS_TEST_BUS_CTRL_0;
offset = 24;
break;
case TSTBUS_UARM:
reg = UFS_TEST_BUS_CTRL_0;
offset = 16;
break;
case TSTBUS_TXUC:
reg = UFS_TEST_BUS_CTRL_0;
offset = 8;
break;
case TSTBUS_RXUC:
reg = UFS_TEST_BUS_CTRL_0;
offset = 0;
break;
case TSTBUS_DFC:
reg = UFS_TEST_BUS_CTRL_1;
offset = 24;
break;
case TSTBUS_TRLUT:
reg = UFS_TEST_BUS_CTRL_1;
offset = 16;
break;
case TSTBUS_TMRLUT:
reg = UFS_TEST_BUS_CTRL_1;
offset = 8;
break;
case TSTBUS_OCSC:
reg = UFS_TEST_BUS_CTRL_1;
offset = 0;
break;
case TSTBUS_WRAPPER:
reg = UFS_TEST_BUS_CTRL_2;
offset = 16;
break;
case TSTBUS_COMBINED:
reg = UFS_TEST_BUS_CTRL_2;
offset = 8;
break;
case TSTBUS_UTP_HCI:
reg = UFS_TEST_BUS_CTRL_2;
offset = 0;
break;
case TSTBUS_UNIPRO:
reg = UFS_UNIPRO_CFG;
offset = 20;
mask = 0xFFF;
break;
/*
* No need for a default case, since
* ufs_qcom_testbus_cfg_is_ok() checks that the configuration
* is legal
*/
}
mask <<= offset;
ufshcd_rmwl(host->hba, TEST_BUS_SEL,
(u32)host->testbus.select_major << 19,
REG_UFS_CFG1);
ufshcd_rmwl(host->hba, mask,
(u32)host->testbus.select_minor << offset,
reg);
ufs_qcom_enable_test_bus(host);
/*
* Make sure the test bus configuration is
* committed before returning.
*/
mb();
return 0;
}
static void ufs_qcom_testbus_read(struct ufs_hba *hba)
{
ufs_qcom_dump_regs(hba, UFS_TEST_BUS, 1, "UFS_TEST_BUS ");
}
static void ufs_qcom_print_unipro_testbus(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
u32 *testbus = NULL;
int i, nminor = 256, testbus_len = nminor * sizeof(u32);
testbus = kmalloc(testbus_len, GFP_KERNEL);
if (!testbus)
return;
host->testbus.select_major = TSTBUS_UNIPRO;
for (i = 0; i < nminor; i++) {
host->testbus.select_minor = i;
ufs_qcom_testbus_config(host);
testbus[i] = ufshcd_readl(hba, UFS_TEST_BUS);
}
print_hex_dump(KERN_ERR, "UNIPRO_TEST_BUS ", DUMP_PREFIX_OFFSET,
16, 4, testbus, testbus_len, false);
kfree(testbus);
}
static void ufs_qcom_dump_dbg_regs(struct ufs_hba *hba, bool no_sleep)
{
struct ufs_qcom_host *host = ufshcd_get_variant(hba);
struct phy *phy = host->generic_phy;
ufs_qcom_dump_regs(hba, REG_UFS_SYS1CLK_1US, 16,
"HCI Vendor Specific Registers ");
ufs_qcom_print_hw_debug_reg_all(hba, NULL, ufs_qcom_dump_regs_wrapper);
if (no_sleep)
return;
/* sleep a bit intermittently as we are dumping too much data */
usleep_range(1000, 1100);
ufs_qcom_testbus_read(hba);
usleep_range(1000, 1100);
ufs_qcom_print_unipro_testbus(hba);
usleep_range(1000, 1100);
ufs_qcom_phy_dbg_register_dump(phy);
usleep_range(1000, 1100);
ufs_qcom_ice_print_regs(host);
}
/**
* struct ufs_hba_qcom_vops - UFS QCOM specific variant operations
*
* The variant operations configure the necessary controller and PHY
* handshake during initialization.
*/
static struct ufs_hba_variant_ops ufs_hba_qcom_vops = {
.init = ufs_qcom_init,
.exit = ufs_qcom_exit,
.get_ufs_hci_version = ufs_qcom_get_ufs_hci_version,
.clk_scale_notify = ufs_qcom_clk_scale_notify,
.setup_clocks = ufs_qcom_setup_clocks,
.hce_enable_notify = ufs_qcom_hce_enable_notify,
.link_startup_notify = ufs_qcom_link_startup_notify,
.pwr_change_notify = ufs_qcom_pwr_change_notify,
.apply_dev_quirks = ufs_qcom_apply_dev_quirks,
.suspend = ufs_qcom_suspend,
.resume = ufs_qcom_resume,
.full_reset = ufs_qcom_full_reset,
.update_sec_cfg = ufs_qcom_update_sec_cfg,
.get_scale_down_gear = ufs_qcom_get_scale_down_gear,
.set_bus_vote = ufs_qcom_set_bus_vote,
.dbg_register_dump = ufs_qcom_dump_dbg_regs,
#ifdef CONFIG_DEBUG_FS
.add_debugfs = ufs_qcom_dbg_add_debugfs,
#endif
};
static struct ufs_hba_crypto_variant_ops ufs_hba_crypto_variant_ops = {
.crypto_req_setup = ufs_qcom_crypto_req_setup,
.crypto_engine_cfg_start = ufs_qcom_crytpo_engine_cfg_start,
.crypto_engine_cfg_end = ufs_qcom_crytpo_engine_cfg_end,
.crypto_engine_reset = ufs_qcom_crytpo_engine_reset,
.crypto_engine_get_status = ufs_qcom_crypto_engine_get_status,
};
static struct ufs_hba_pm_qos_variant_ops ufs_hba_pm_qos_variant_ops = {
.req_start = ufs_qcom_pm_qos_req_start,
.req_end = ufs_qcom_pm_qos_req_end,
};
static struct ufs_hba_variant ufs_hba_qcom_variant = {
.name = "qcom",
.vops = &ufs_hba_qcom_vops,
.crypto_vops = &ufs_hba_crypto_variant_ops,
.pm_qos_vops = &ufs_hba_pm_qos_variant_ops,
};
/**
* ufs_qcom_probe - probe routine of the driver
* @pdev: pointer to Platform device handle
*
* Return zero for success and non-zero for failure
*/
static int ufs_qcom_probe(struct platform_device *pdev)
{
int err;
struct device *dev = &pdev->dev;
/* Perform generic probe */
err = ufshcd_pltfrm_init(pdev, &ufs_hba_qcom_variant);
if (err)
dev_err(dev, "ufshcd_pltfrm_init() failed %d\n", err);
return err;
}
/**
* ufs_qcom_remove - set driver_data of the device to NULL
* @pdev: pointer to platform device handle
*
* Always return 0
*/
static int ufs_qcom_remove(struct platform_device *pdev)
{
struct ufs_hba *hba = platform_get_drvdata(pdev);
pm_runtime_get_sync(&(pdev)->dev);
ufshcd_remove(hba);
return 0;
}
static const struct of_device_id ufs_qcom_of_match[] = {
{ .compatible = "qcom,ufshc"},
{},
};
static const struct dev_pm_ops ufs_qcom_pm_ops = {
.suspend = ufshcd_pltfrm_suspend,
.resume = ufshcd_pltfrm_resume,
.runtime_suspend = ufshcd_pltfrm_runtime_suspend,
.runtime_resume = ufshcd_pltfrm_runtime_resume,
.runtime_idle = ufshcd_pltfrm_runtime_idle,
};
static struct platform_driver ufs_qcom_pltform = {
.probe = ufs_qcom_probe,
.remove = ufs_qcom_remove,
.shutdown = ufshcd_pltfrm_shutdown,
.driver = {
.name = "ufshcd-qcom",
.pm = &ufs_qcom_pm_ops,
.of_match_table = of_match_ptr(ufs_qcom_of_match),
},
};
module_platform_driver(ufs_qcom_pltform);
MODULE_LICENSE("GPL v2");