| /* |
| * arch/arm/kernel/topology.c |
| * |
| * Copyright (C) 2011 Linaro Limited. |
| * Written by: Vincent Guittot |
| * |
| * based on arch/sh/kernel/topology.c |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| */ |
| |
| #include <linux/cpu.h> |
| #include <linux/cpumask.h> |
| #include <linux/export.h> |
| #include <linux/init.h> |
| #include <linux/percpu.h> |
| #include <linux/node.h> |
| #include <linux/nodemask.h> |
| #include <linux/of.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| |
| #include <asm/cputype.h> |
| #include <asm/topology.h> |
| |
| /* |
| * cpu capacity scale management |
| */ |
| |
| /* |
| * cpu capacity table |
| * This per cpu data structure describes the relative capacity of each core. |
| * On a heteregenous system, cores don't have the same computation capacity |
| * and we reflect that difference in the cpu_capacity field so the scheduler |
| * can take this difference into account during load balance. A per cpu |
| * structure is preferred because each CPU updates its own cpu_capacity field |
| * during the load balance except for idle cores. One idle core is selected |
| * to run the rebalance_domains for all idle cores and the cpu_capacity can be |
| * updated during this sequence. |
| */ |
| static DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE; |
| |
| unsigned long scale_cpu_capacity(struct sched_domain *sd, int cpu) |
| { |
| #ifdef CONFIG_CPU_FREQ |
| unsigned long max_freq_scale = cpufreq_scale_max_freq_capacity(cpu); |
| |
| return per_cpu(cpu_scale, cpu) * max_freq_scale >> SCHED_CAPACITY_SHIFT; |
| #else |
| return per_cpu(cpu_scale, cpu); |
| #endif |
| } |
| |
| static void set_capacity_scale(unsigned int cpu, unsigned long capacity) |
| { |
| per_cpu(cpu_scale, cpu) = capacity; |
| } |
| |
| static int __init get_cpu_for_node(struct device_node *node) |
| { |
| struct device_node *cpu_node; |
| int cpu; |
| |
| cpu_node = of_parse_phandle(node, "cpu", 0); |
| if (!cpu_node) |
| return -EINVAL; |
| |
| for_each_possible_cpu(cpu) { |
| if (of_get_cpu_node(cpu, NULL) == cpu_node) { |
| of_node_put(cpu_node); |
| return cpu; |
| } |
| } |
| |
| pr_crit("Unable to find CPU node for %s\n", cpu_node->full_name); |
| |
| of_node_put(cpu_node); |
| return -EINVAL; |
| } |
| |
| static int __init parse_core(struct device_node *core, int cluster_id, |
| int core_id) |
| { |
| char name[10]; |
| bool leaf = true; |
| int i = 0; |
| int cpu; |
| struct device_node *t; |
| |
| do { |
| snprintf(name, sizeof(name), "thread%d", i); |
| t = of_get_child_by_name(core, name); |
| if (t) { |
| leaf = false; |
| cpu = get_cpu_for_node(t); |
| if (cpu >= 0) { |
| cpu_topology[cpu].socket_id = cluster_id; |
| cpu_topology[cpu].core_id = core_id; |
| cpu_topology[cpu].thread_id = i; |
| } else { |
| pr_err("%s: Can't get CPU for thread\n", |
| t->full_name); |
| of_node_put(t); |
| return -EINVAL; |
| } |
| of_node_put(t); |
| } |
| i++; |
| } while (t); |
| |
| cpu = get_cpu_for_node(core); |
| if (cpu >= 0) { |
| if (!leaf) { |
| pr_err("%s: Core has both threads and CPU\n", |
| core->full_name); |
| return -EINVAL; |
| } |
| |
| cpu_topology[cpu].socket_id = cluster_id; |
| cpu_topology[cpu].core_id = core_id; |
| } else if (leaf) { |
| pr_err("%s: Can't get CPU for leaf core\n", core->full_name); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int __init parse_cluster(struct device_node *cluster, int depth) |
| { |
| static int cluster_id __initdata; |
| char name[10]; |
| bool leaf = true; |
| bool has_cores = false; |
| struct device_node *c; |
| int core_id = 0; |
| int i, ret; |
| |
| /* |
| * First check for child clusters; we currently ignore any |
| * information about the nesting of clusters and present the |
| * scheduler with a flat list of them. |
| */ |
| i = 0; |
| do { |
| snprintf(name, sizeof(name), "cluster%d", i); |
| c = of_get_child_by_name(cluster, name); |
| if (c) { |
| leaf = false; |
| ret = parse_cluster(c, depth + 1); |
| of_node_put(c); |
| if (ret != 0) |
| return ret; |
| } |
| i++; |
| } while (c); |
| |
| /* Now check for cores */ |
| i = 0; |
| do { |
| snprintf(name, sizeof(name), "core%d", i); |
| c = of_get_child_by_name(cluster, name); |
| if (c) { |
| has_cores = true; |
| |
| if (depth == 0) { |
| pr_err("%s: cpu-map children should be clusters\n", |
| c->full_name); |
| of_node_put(c); |
| return -EINVAL; |
| } |
| |
| if (leaf) { |
| ret = parse_core(c, cluster_id, core_id++); |
| } else { |
| pr_err("%s: Non-leaf cluster with core %s\n", |
| cluster->full_name, name); |
| ret = -EINVAL; |
| } |
| |
| of_node_put(c); |
| if (ret != 0) |
| return ret; |
| } |
| i++; |
| } while (c); |
| |
| if (leaf && !has_cores) |
| pr_warn("%s: empty cluster\n", cluster->full_name); |
| |
| if (leaf) |
| cluster_id++; |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_OF |
| struct cpu_efficiency { |
| const char *compatible; |
| unsigned long efficiency; |
| }; |
| |
| /* |
| * Table of relative efficiency of each processors |
| * The efficiency value must fit in 20bit and the final |
| * cpu_scale value must be in the range |
| * 0 < cpu_scale < 3*SCHED_CAPACITY_SCALE/2 |
| * in order to return at most 1 when DIV_ROUND_CLOSEST |
| * is used to compute the capacity of a CPU. |
| * Processors that are not defined in the table, |
| * use the default SCHED_CAPACITY_SCALE value for cpu_scale. |
| */ |
| static const struct cpu_efficiency table_efficiency[] = { |
| {"arm,cortex-a15", 3891}, |
| {"arm,cortex-a7", 2048}, |
| {NULL, }, |
| }; |
| |
| static unsigned long *__cpu_capacity; |
| #define cpu_capacity(cpu) __cpu_capacity[cpu] |
| |
| static unsigned long middle_capacity = 1; |
| |
| /* |
| * Iterate all CPUs' descriptor in DT and compute the efficiency |
| * (as per table_efficiency). Also calculate a middle efficiency |
| * as close as possible to (max{eff_i} - min{eff_i}) / 2 |
| * This is later used to scale the cpu_capacity field such that an |
| * 'average' CPU is of middle capacity. Also see the comments near |
| * table_efficiency[] and update_cpu_capacity(). |
| */ |
| static int __init parse_dt_topology(void) |
| { |
| const struct cpu_efficiency *cpu_eff; |
| struct device_node *cn = NULL, *map; |
| unsigned long min_capacity = ULONG_MAX; |
| unsigned long max_capacity = 0; |
| unsigned long capacity = 0; |
| int cpu = 0, ret = 0; |
| |
| __cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity), |
| GFP_NOWAIT); |
| |
| cn = of_find_node_by_path("/cpus"); |
| if (!cn) { |
| pr_err("No CPU information found in DT\n"); |
| return 0; |
| } |
| |
| /* |
| * When topology is provided cpu-map is essentially a root |
| * cluster with restricted subnodes. |
| */ |
| map = of_get_child_by_name(cn, "cpu-map"); |
| if (!map) |
| goto out; |
| |
| ret = parse_cluster(map, 0); |
| if (ret != 0) |
| goto out_map; |
| |
| /* |
| * Check that all cores are in the topology; the SMP code will |
| * only mark cores described in the DT as possible. |
| */ |
| for_each_possible_cpu(cpu) |
| if (cpu_topology[cpu].socket_id == -1) |
| ret = -EINVAL; |
| |
| for_each_possible_cpu(cpu) { |
| const u32 *rate; |
| int len; |
| |
| /* too early to use cpu->of_node */ |
| cn = of_get_cpu_node(cpu, NULL); |
| if (!cn) { |
| pr_err("missing device node for CPU %d\n", cpu); |
| continue; |
| } |
| |
| for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++) |
| if (of_device_is_compatible(cn, cpu_eff->compatible)) |
| break; |
| |
| if (cpu_eff->compatible == NULL) |
| continue; |
| |
| rate = of_get_property(cn, "clock-frequency", &len); |
| if (!rate || len != 4) { |
| pr_err("%s missing clock-frequency property\n", |
| cn->full_name); |
| continue; |
| } |
| |
| capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency; |
| |
| /* Save min capacity of the system */ |
| if (capacity < min_capacity) |
| min_capacity = capacity; |
| |
| /* Save max capacity of the system */ |
| if (capacity > max_capacity) |
| max_capacity = capacity; |
| |
| cpu_capacity(cpu) = capacity; |
| } |
| |
| /* If min and max capacities are equals, we bypass the update of the |
| * cpu_scale because all CPUs have the same capacity. Otherwise, we |
| * compute a middle_capacity factor that will ensure that the capacity |
| * of an 'average' CPU of the system will be as close as possible to |
| * SCHED_CAPACITY_SCALE, which is the default value, but with the |
| * constraint explained near table_efficiency[]. |
| */ |
| if (4*max_capacity < (3*(max_capacity + min_capacity))) |
| middle_capacity = (min_capacity + max_capacity) |
| >> (SCHED_CAPACITY_SHIFT+1); |
| else |
| middle_capacity = ((max_capacity / 3) |
| >> (SCHED_CAPACITY_SHIFT-1)) + 1; |
| out_map: |
| of_node_put(map); |
| out: |
| of_node_put(cn); |
| return ret; |
| } |
| |
| static const struct sched_group_energy * const cpu_core_energy(int cpu); |
| |
| /* |
| * Look for a customed capacity of a CPU in the cpu_capacity table during the |
| * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the |
| * function returns directly for SMP system. |
| */ |
| static void update_cpu_capacity(unsigned int cpu) |
| { |
| unsigned long capacity = SCHED_CAPACITY_SCALE; |
| |
| if (cpu_core_energy(cpu)) { |
| int max_cap_idx = cpu_core_energy(cpu)->nr_cap_states - 1; |
| capacity = cpu_core_energy(cpu)->cap_states[max_cap_idx].cap; |
| } |
| |
| set_capacity_scale(cpu, capacity); |
| |
| pr_info("CPU%u: update cpu_capacity %lu\n", |
| cpu, arch_scale_cpu_capacity(NULL, cpu)); |
| } |
| |
| #else |
| static inline int parse_dt_topology(void) {} |
| static inline void update_cpu_capacity(unsigned int cpuid) {} |
| #endif |
| |
| /* |
| * cpu topology table |
| */ |
| struct cputopo_arm cpu_topology[NR_CPUS]; |
| EXPORT_SYMBOL_GPL(cpu_topology); |
| |
| const struct cpumask *cpu_coregroup_mask(int cpu) |
| { |
| return &cpu_topology[cpu].core_sibling; |
| } |
| |
| /* |
| * The current assumption is that we can power gate each core independently. |
| * This will be superseded by DT binding once available. |
| */ |
| const struct cpumask *cpu_corepower_mask(int cpu) |
| { |
| return &cpu_topology[cpu].thread_sibling; |
| } |
| |
| static void update_siblings_masks(unsigned int cpuid) |
| { |
| struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid]; |
| int cpu; |
| |
| /* update core and thread sibling masks */ |
| for_each_possible_cpu(cpu) { |
| cpu_topo = &cpu_topology[cpu]; |
| |
| if (cpuid_topo->socket_id != cpu_topo->socket_id) |
| continue; |
| |
| cpumask_set_cpu(cpuid, &cpu_topo->core_sibling); |
| if (cpu != cpuid) |
| cpumask_set_cpu(cpu, &cpuid_topo->core_sibling); |
| |
| if (cpuid_topo->core_id != cpu_topo->core_id) |
| continue; |
| |
| cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling); |
| if (cpu != cpuid) |
| cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling); |
| } |
| |
| smp_wmb(); /* Ensure mask is updated*/ |
| } |
| |
| /* |
| * store_cpu_topology is called at boot when only one cpu is running |
| * and with the mutex cpu_hotplug.lock locked, when several cpus have booted, |
| * which prevents simultaneous write access to cpu_topology array |
| */ |
| void store_cpu_topology(unsigned int cpuid) |
| { |
| struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid]; |
| unsigned int mpidr; |
| |
| if (cpuid_topo->core_id != -1) |
| goto topology_populated; |
| |
| mpidr = read_cpuid_mpidr(); |
| |
| /* create cpu topology mapping */ |
| if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) { |
| /* |
| * This is a multiprocessor system |
| * multiprocessor format & multiprocessor mode field are set |
| */ |
| |
| if (mpidr & MPIDR_MT_BITMASK) { |
| /* core performance interdependency */ |
| cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); |
| cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1); |
| cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 2); |
| } else { |
| /* largely independent cores */ |
| cpuid_topo->thread_id = -1; |
| cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); |
| cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 1); |
| } |
| } else { |
| /* |
| * This is an uniprocessor system |
| * we are in multiprocessor format but uniprocessor system |
| * or in the old uniprocessor format |
| */ |
| cpuid_topo->thread_id = -1; |
| cpuid_topo->core_id = 0; |
| cpuid_topo->socket_id = -1; |
| } |
| |
| pr_info("CPU%u: thread %d, cpu %d, cluster %d, mpidr %x\n", |
| cpuid, cpu_topology[cpuid].thread_id, |
| cpu_topology[cpuid].core_id, |
| cpu_topology[cpuid].socket_id, mpidr); |
| |
| topology_populated: |
| update_siblings_masks(cpuid); |
| update_cpu_capacity(cpuid); |
| } |
| |
| /* |
| * ARM TC2 specific energy cost model data. There are no unit requirements for |
| * the data. Data can be normalized to any reference point, but the |
| * normalization must be consistent. That is, one bogo-joule/watt must be the |
| * same quantity for all data, but we don't care what it is. |
| */ |
| static struct idle_state idle_states_cluster_a7[] = { |
| { .power = 25 }, /* arch_cpu_idle() (active idle) = WFI */ |
| { .power = 25 }, /* WFI */ |
| { .power = 10 }, /* cluster-sleep-l */ |
| }; |
| |
| static struct idle_state idle_states_cluster_a15[] = { |
| { .power = 70 }, /* arch_cpu_idle() (active idle) = WFI */ |
| { .power = 70 }, /* WFI */ |
| { .power = 25 }, /* cluster-sleep-b */ |
| }; |
| |
| static struct capacity_state cap_states_cluster_a7[] = { |
| /* Cluster only power */ |
| { .cap = 150, .power = 2967, }, /* 350 MHz */ |
| { .cap = 172, .power = 2792, }, /* 400 MHz */ |
| { .cap = 215, .power = 2810, }, /* 500 MHz */ |
| { .cap = 258, .power = 2815, }, /* 600 MHz */ |
| { .cap = 301, .power = 2919, }, /* 700 MHz */ |
| { .cap = 344, .power = 2847, }, /* 800 MHz */ |
| { .cap = 387, .power = 3917, }, /* 900 MHz */ |
| { .cap = 430, .power = 4905, }, /* 1000 MHz */ |
| }; |
| |
| static struct capacity_state cap_states_cluster_a15[] = { |
| /* Cluster only power */ |
| { .cap = 426, .power = 7920, }, /* 500 MHz */ |
| { .cap = 512, .power = 8165, }, /* 600 MHz */ |
| { .cap = 597, .power = 8172, }, /* 700 MHz */ |
| { .cap = 682, .power = 8195, }, /* 800 MHz */ |
| { .cap = 768, .power = 8265, }, /* 900 MHz */ |
| { .cap = 853, .power = 8446, }, /* 1000 MHz */ |
| { .cap = 938, .power = 11426, }, /* 1100 MHz */ |
| { .cap = 1024, .power = 15200, }, /* 1200 MHz */ |
| }; |
| |
| static struct sched_group_energy energy_cluster_a7 = { |
| .nr_idle_states = ARRAY_SIZE(idle_states_cluster_a7), |
| .idle_states = idle_states_cluster_a7, |
| .nr_cap_states = ARRAY_SIZE(cap_states_cluster_a7), |
| .cap_states = cap_states_cluster_a7, |
| }; |
| |
| static struct sched_group_energy energy_cluster_a15 = { |
| .nr_idle_states = ARRAY_SIZE(idle_states_cluster_a15), |
| .idle_states = idle_states_cluster_a15, |
| .nr_cap_states = ARRAY_SIZE(cap_states_cluster_a15), |
| .cap_states = cap_states_cluster_a15, |
| }; |
| |
| static struct idle_state idle_states_core_a7[] = { |
| { .power = 0 }, /* arch_cpu_idle (active idle) = WFI */ |
| { .power = 0 }, /* WFI */ |
| { .power = 0 }, /* cluster-sleep-l */ |
| }; |
| |
| static struct idle_state idle_states_core_a15[] = { |
| { .power = 0 }, /* arch_cpu_idle (active idle) = WFI */ |
| { .power = 0 }, /* WFI */ |
| { .power = 0 }, /* cluster-sleep-b */ |
| }; |
| |
| static struct capacity_state cap_states_core_a7[] = { |
| /* Power per cpu */ |
| { .cap = 150, .power = 187, }, /* 350 MHz */ |
| { .cap = 172, .power = 275, }, /* 400 MHz */ |
| { .cap = 215, .power = 334, }, /* 500 MHz */ |
| { .cap = 258, .power = 407, }, /* 600 MHz */ |
| { .cap = 301, .power = 447, }, /* 700 MHz */ |
| { .cap = 344, .power = 549, }, /* 800 MHz */ |
| { .cap = 387, .power = 761, }, /* 900 MHz */ |
| { .cap = 430, .power = 1024, }, /* 1000 MHz */ |
| }; |
| |
| static struct capacity_state cap_states_core_a15[] = { |
| /* Power per cpu */ |
| { .cap = 426, .power = 2021, }, /* 500 MHz */ |
| { .cap = 512, .power = 2312, }, /* 600 MHz */ |
| { .cap = 597, .power = 2756, }, /* 700 MHz */ |
| { .cap = 682, .power = 3125, }, /* 800 MHz */ |
| { .cap = 768, .power = 3524, }, /* 900 MHz */ |
| { .cap = 853, .power = 3846, }, /* 1000 MHz */ |
| { .cap = 938, .power = 5177, }, /* 1100 MHz */ |
| { .cap = 1024, .power = 6997, }, /* 1200 MHz */ |
| }; |
| |
| static struct sched_group_energy energy_core_a7 = { |
| .nr_idle_states = ARRAY_SIZE(idle_states_core_a7), |
| .idle_states = idle_states_core_a7, |
| .nr_cap_states = ARRAY_SIZE(cap_states_core_a7), |
| .cap_states = cap_states_core_a7, |
| }; |
| |
| static struct sched_group_energy energy_core_a15 = { |
| .nr_idle_states = ARRAY_SIZE(idle_states_core_a15), |
| .idle_states = idle_states_core_a15, |
| .nr_cap_states = ARRAY_SIZE(cap_states_core_a15), |
| .cap_states = cap_states_core_a15, |
| }; |
| |
| /* sd energy functions */ |
| static inline |
| const struct sched_group_energy * const cpu_cluster_energy(int cpu) |
| { |
| return cpu_topology[cpu].socket_id ? &energy_cluster_a7 : |
| &energy_cluster_a15; |
| } |
| |
| static inline |
| const struct sched_group_energy * const cpu_core_energy(int cpu) |
| { |
| return cpu_topology[cpu].socket_id ? &energy_core_a7 : |
| &energy_core_a15; |
| } |
| |
| static inline int cpu_corepower_flags(void) |
| { |
| return SD_SHARE_PKG_RESOURCES | SD_SHARE_POWERDOMAIN | \ |
| SD_SHARE_CAP_STATES; |
| } |
| |
| static struct sched_domain_topology_level arm_topology[] = { |
| #ifdef CONFIG_SCHED_MC |
| { cpu_coregroup_mask, cpu_corepower_flags, cpu_core_energy, SD_INIT_NAME(MC) }, |
| #endif |
| { cpu_cpu_mask, NULL, cpu_cluster_energy, SD_INIT_NAME(DIE) }, |
| { NULL, }, |
| }; |
| |
| static void __init reset_cpu_topology(void) |
| { |
| unsigned int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| struct cputopo_arm *cpu_topo = &cpu_topology[cpu]; |
| |
| cpu_topo->thread_id = -1; |
| cpu_topo->core_id = -1; |
| cpu_topo->socket_id = -1; |
| |
| cpumask_clear(&cpu_topo->core_sibling); |
| cpumask_clear(&cpu_topo->thread_sibling); |
| } |
| smp_wmb(); |
| } |
| |
| static void __init reset_cpu_capacity(void) |
| { |
| unsigned int cpu; |
| |
| for_each_possible_cpu(cpu) |
| set_capacity_scale(cpu, SCHED_CAPACITY_SCALE); |
| } |
| |
| /* |
| * init_cpu_topology is called at boot when only one cpu is running |
| * which prevent simultaneous write access to cpu_topology array |
| */ |
| void __init init_cpu_topology(void) |
| { |
| unsigned int cpu; |
| |
| /* init core mask and capacity */ |
| reset_cpu_topology(); |
| reset_cpu_capacity(); |
| smp_wmb(); /* Ensure CPU topology and capacity are up to date */ |
| |
| if (parse_dt_topology()) { |
| reset_cpu_topology(); |
| reset_cpu_capacity(); |
| } |
| |
| for_each_possible_cpu(cpu) |
| update_siblings_masks(cpu); |
| |
| /* Set scheduler topology descriptor */ |
| set_sched_topology(arm_topology); |
| } |