| /* |
| * Kernel Probes (KProbes) |
| * arch/ia64/kernel/kprobes.c |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| * |
| * Copyright (C) IBM Corporation, 2002, 2004 |
| * Copyright (C) Intel Corporation, 2005 |
| * |
| * 2005-Apr Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy |
| * <anil.s.keshavamurthy@intel.com> adapted from i386 |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/kprobes.h> |
| #include <linux/ptrace.h> |
| #include <linux/spinlock.h> |
| #include <linux/string.h> |
| #include <linux/slab.h> |
| #include <linux/preempt.h> |
| #include <linux/moduleloader.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/kdebug.h> |
| |
| extern void jprobe_inst_return(void); |
| |
| /* kprobe_status settings */ |
| #define KPROBE_HIT_ACTIVE 0x00000001 |
| #define KPROBE_HIT_SS 0x00000002 |
| |
| static struct kprobe *current_kprobe, *kprobe_prev; |
| static unsigned long kprobe_status, kprobe_status_prev; |
| static struct pt_regs jprobe_saved_regs; |
| |
| enum instruction_type {A, I, M, F, B, L, X, u}; |
| static enum instruction_type bundle_encoding[32][3] = { |
| { M, I, I }, /* 00 */ |
| { M, I, I }, /* 01 */ |
| { M, I, I }, /* 02 */ |
| { M, I, I }, /* 03 */ |
| { M, L, X }, /* 04 */ |
| { M, L, X }, /* 05 */ |
| { u, u, u }, /* 06 */ |
| { u, u, u }, /* 07 */ |
| { M, M, I }, /* 08 */ |
| { M, M, I }, /* 09 */ |
| { M, M, I }, /* 0A */ |
| { M, M, I }, /* 0B */ |
| { M, F, I }, /* 0C */ |
| { M, F, I }, /* 0D */ |
| { M, M, F }, /* 0E */ |
| { M, M, F }, /* 0F */ |
| { M, I, B }, /* 10 */ |
| { M, I, B }, /* 11 */ |
| { M, B, B }, /* 12 */ |
| { M, B, B }, /* 13 */ |
| { u, u, u }, /* 14 */ |
| { u, u, u }, /* 15 */ |
| { B, B, B }, /* 16 */ |
| { B, B, B }, /* 17 */ |
| { M, M, B }, /* 18 */ |
| { M, M, B }, /* 19 */ |
| { u, u, u }, /* 1A */ |
| { u, u, u }, /* 1B */ |
| { M, F, B }, /* 1C */ |
| { M, F, B }, /* 1D */ |
| { u, u, u }, /* 1E */ |
| { u, u, u }, /* 1F */ |
| }; |
| |
| /* |
| * In this function we check to see if the instruction |
| * is IP relative instruction and update the kprobe |
| * inst flag accordingly |
| */ |
| static void update_kprobe_inst_flag(uint template, uint slot, uint major_opcode, |
| unsigned long kprobe_inst, struct kprobe *p) |
| { |
| p->ainsn.inst_flag = 0; |
| p->ainsn.target_br_reg = 0; |
| |
| if (bundle_encoding[template][slot] == B) { |
| switch (major_opcode) { |
| case INDIRECT_CALL_OPCODE: |
| p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG; |
| p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7); |
| break; |
| case IP_RELATIVE_PREDICT_OPCODE: |
| case IP_RELATIVE_BRANCH_OPCODE: |
| p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR; |
| break; |
| case IP_RELATIVE_CALL_OPCODE: |
| p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR; |
| p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG; |
| p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7); |
| break; |
| } |
| } else if (bundle_encoding[template][slot] == X) { |
| switch (major_opcode) { |
| case LONG_CALL_OPCODE: |
| p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG; |
| p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7); |
| break; |
| } |
| } |
| return; |
| } |
| |
| /* |
| * In this function we check to see if the instruction |
| * on which we are inserting kprobe is supported. |
| * Returns 0 if supported |
| * Returns -EINVAL if unsupported |
| */ |
| static int unsupported_inst(uint template, uint slot, uint major_opcode, |
| unsigned long kprobe_inst, struct kprobe *p) |
| { |
| unsigned long addr = (unsigned long)p->addr; |
| |
| if (bundle_encoding[template][slot] == I) { |
| switch (major_opcode) { |
| case 0x0: //I_UNIT_MISC_OPCODE: |
| /* |
| * Check for Integer speculation instruction |
| * - Bit 33-35 to be equal to 0x1 |
| */ |
| if (((kprobe_inst >> 33) & 0x7) == 1) { |
| printk(KERN_WARNING |
| "Kprobes on speculation inst at <0x%lx> not supported\n", |
| addr); |
| return -EINVAL; |
| } |
| |
| /* |
| * IP relative mov instruction |
| * - Bit 27-35 to be equal to 0x30 |
| */ |
| if (((kprobe_inst >> 27) & 0x1FF) == 0x30) { |
| printk(KERN_WARNING |
| "Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n", |
| addr); |
| return -EINVAL; |
| |
| } |
| } |
| } |
| return 0; |
| } |
| |
| |
| /* |
| * In this function we check to see if the instruction |
| * (qp) cmpx.crel.ctype p1,p2=r2,r3 |
| * on which we are inserting kprobe is cmp instruction |
| * with ctype as unc. |
| */ |
| static uint is_cmp_ctype_unc_inst(uint template, uint slot, uint major_opcode, |
| unsigned long kprobe_inst) |
| { |
| cmp_inst_t cmp_inst; |
| uint ctype_unc = 0; |
| |
| if (!((bundle_encoding[template][slot] == I) || |
| (bundle_encoding[template][slot] == M))) |
| goto out; |
| |
| if (!((major_opcode == 0xC) || (major_opcode == 0xD) || |
| (major_opcode == 0xE))) |
| goto out; |
| |
| cmp_inst.l = kprobe_inst; |
| if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) { |
| /* Integere compare - Register Register (A6 type)*/ |
| if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0) |
| &&(cmp_inst.f.c == 1)) |
| ctype_unc = 1; |
| } else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) { |
| /* Integere compare - Immediate Register (A8 type)*/ |
| if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1)) |
| ctype_unc = 1; |
| } |
| out: |
| return ctype_unc; |
| } |
| |
| /* |
| * In this function we override the bundle with |
| * the break instruction at the given slot. |
| */ |
| static void prepare_break_inst(uint template, uint slot, uint major_opcode, |
| unsigned long kprobe_inst, struct kprobe *p) |
| { |
| unsigned long break_inst = BREAK_INST; |
| bundle_t *bundle = &p->ainsn.insn.bundle; |
| |
| /* |
| * Copy the original kprobe_inst qualifying predicate(qp) |
| * to the break instruction iff !is_cmp_ctype_unc_inst |
| * because for cmp instruction with ctype equal to unc, |
| * which is a special instruction always needs to be |
| * executed regradless of qp |
| */ |
| if (!is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst)) |
| break_inst |= (0x3f & kprobe_inst); |
| |
| switch (slot) { |
| case 0: |
| bundle->quad0.slot0 = break_inst; |
| break; |
| case 1: |
| bundle->quad0.slot1_p0 = break_inst; |
| bundle->quad1.slot1_p1 = break_inst >> (64-46); |
| break; |
| case 2: |
| bundle->quad1.slot2 = break_inst; |
| break; |
| } |
| |
| /* |
| * Update the instruction flag, so that we can |
| * emulate the instruction properly after we |
| * single step on original instruction |
| */ |
| update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p); |
| } |
| |
| static inline void get_kprobe_inst(bundle_t *bundle, uint slot, |
| unsigned long *kprobe_inst, uint *major_opcode) |
| { |
| unsigned long kprobe_inst_p0, kprobe_inst_p1; |
| unsigned int template; |
| |
| template = bundle->quad0.template; |
| |
| switch (slot) { |
| case 0: |
| *major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT); |
| *kprobe_inst = bundle->quad0.slot0; |
| break; |
| case 1: |
| *major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT); |
| kprobe_inst_p0 = bundle->quad0.slot1_p0; |
| kprobe_inst_p1 = bundle->quad1.slot1_p1; |
| *kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46)); |
| break; |
| case 2: |
| *major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT); |
| *kprobe_inst = bundle->quad1.slot2; |
| break; |
| } |
| } |
| |
| static int valid_kprobe_addr(int template, int slot, unsigned long addr) |
| { |
| if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) { |
| printk(KERN_WARNING "Attempting to insert unaligned kprobe at 0x%lx\n", |
| addr); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static inline void save_previous_kprobe(void) |
| { |
| kprobe_prev = current_kprobe; |
| kprobe_status_prev = kprobe_status; |
| } |
| |
| static inline void restore_previous_kprobe(void) |
| { |
| current_kprobe = kprobe_prev; |
| kprobe_status = kprobe_status_prev; |
| } |
| |
| static inline void set_current_kprobe(struct kprobe *p) |
| { |
| current_kprobe = p; |
| } |
| |
| static void kretprobe_trampoline(void) |
| { |
| } |
| |
| /* |
| * At this point the target function has been tricked into |
| * returning into our trampoline. Lookup the associated instance |
| * and then: |
| * - call the handler function |
| * - cleanup by marking the instance as unused |
| * - long jump back to the original return address |
| */ |
| int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| struct kretprobe_instance *ri = NULL; |
| struct hlist_head *head; |
| struct hlist_node *node, *tmp; |
| unsigned long orig_ret_address = 0; |
| unsigned long trampoline_address = |
| ((struct fnptr *)kretprobe_trampoline)->ip; |
| |
| head = kretprobe_inst_table_head(current); |
| |
| /* |
| * It is possible to have multiple instances associated with a given |
| * task either because an multiple functions in the call path |
| * have a return probe installed on them, and/or more then one return |
| * return probe was registered for a target function. |
| * |
| * We can handle this because: |
| * - instances are always inserted at the head of the list |
| * - when multiple return probes are registered for the same |
| * function, the first instance's ret_addr will point to the |
| * real return address, and all the rest will point to |
| * kretprobe_trampoline |
| */ |
| hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { |
| if (ri->task != current) |
| /* another task is sharing our hash bucket */ |
| continue; |
| |
| if (ri->rp && ri->rp->handler) |
| ri->rp->handler(ri, regs); |
| |
| orig_ret_address = (unsigned long)ri->ret_addr; |
| recycle_rp_inst(ri); |
| |
| if (orig_ret_address != trampoline_address) |
| /* |
| * This is the real return address. Any other |
| * instances associated with this task are for |
| * other calls deeper on the call stack |
| */ |
| break; |
| } |
| |
| BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address)); |
| regs->cr_iip = orig_ret_address; |
| |
| unlock_kprobes(); |
| preempt_enable_no_resched(); |
| |
| /* |
| * By returning a non-zero value, we are telling |
| * kprobe_handler() that we have handled unlocking |
| * and re-enabling preemption. |
| */ |
| return 1; |
| } |
| |
| void arch_prepare_kretprobe(struct kretprobe *rp, struct pt_regs *regs) |
| { |
| struct kretprobe_instance *ri; |
| |
| if ((ri = get_free_rp_inst(rp)) != NULL) { |
| ri->rp = rp; |
| ri->task = current; |
| ri->ret_addr = (kprobe_opcode_t *)regs->b0; |
| |
| /* Replace the return addr with trampoline addr */ |
| regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip; |
| |
| add_rp_inst(ri); |
| } else { |
| rp->nmissed++; |
| } |
| } |
| |
| int arch_prepare_kprobe(struct kprobe *p) |
| { |
| unsigned long addr = (unsigned long) p->addr; |
| unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL); |
| unsigned long kprobe_inst=0; |
| unsigned int slot = addr & 0xf, template, major_opcode = 0; |
| bundle_t *bundle = &p->ainsn.insn.bundle; |
| |
| memcpy(&p->opcode.bundle, kprobe_addr, sizeof(bundle_t)); |
| memcpy(&p->ainsn.insn.bundle, kprobe_addr, sizeof(bundle_t)); |
| |
| template = bundle->quad0.template; |
| |
| if(valid_kprobe_addr(template, slot, addr)) |
| return -EINVAL; |
| |
| /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */ |
| if (slot == 1 && bundle_encoding[template][1] == L) |
| slot++; |
| |
| /* Get kprobe_inst and major_opcode from the bundle */ |
| get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode); |
| |
| if (unsupported_inst(template, slot, major_opcode, kprobe_inst, p)) |
| return -EINVAL; |
| |
| prepare_break_inst(template, slot, major_opcode, kprobe_inst, p); |
| |
| return 0; |
| } |
| |
| void arch_arm_kprobe(struct kprobe *p) |
| { |
| unsigned long addr = (unsigned long)p->addr; |
| unsigned long arm_addr = addr & ~0xFULL; |
| |
| memcpy((char *)arm_addr, &p->ainsn.insn.bundle, sizeof(bundle_t)); |
| flush_icache_range(arm_addr, arm_addr + sizeof(bundle_t)); |
| } |
| |
| void arch_disarm_kprobe(struct kprobe *p) |
| { |
| unsigned long addr = (unsigned long)p->addr; |
| unsigned long arm_addr = addr & ~0xFULL; |
| |
| /* p->opcode contains the original unaltered bundle */ |
| memcpy((char *) arm_addr, (char *) &p->opcode.bundle, sizeof(bundle_t)); |
| flush_icache_range(arm_addr, arm_addr + sizeof(bundle_t)); |
| } |
| |
| void arch_remove_kprobe(struct kprobe *p) |
| { |
| } |
| |
| /* |
| * We are resuming execution after a single step fault, so the pt_regs |
| * structure reflects the register state after we executed the instruction |
| * located in the kprobe (p->ainsn.insn.bundle). We still need to adjust |
| * the ip to point back to the original stack address. To set the IP address |
| * to original stack address, handle the case where we need to fixup the |
| * relative IP address and/or fixup branch register. |
| */ |
| static void resume_execution(struct kprobe *p, struct pt_regs *regs) |
| { |
| unsigned long bundle_addr = ((unsigned long) (&p->opcode.bundle)) & ~0xFULL; |
| unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL; |
| unsigned long template; |
| int slot = ((unsigned long)p->addr & 0xf); |
| |
| template = p->opcode.bundle.quad0.template; |
| |
| if (slot == 1 && bundle_encoding[template][1] == L) |
| slot = 2; |
| |
| if (p->ainsn.inst_flag) { |
| |
| if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) { |
| /* Fix relative IP address */ |
| regs->cr_iip = (regs->cr_iip - bundle_addr) + resume_addr; |
| } |
| |
| if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) { |
| /* |
| * Fix target branch register, software convention is |
| * to use either b0 or b6 or b7, so just checking |
| * only those registers |
| */ |
| switch (p->ainsn.target_br_reg) { |
| case 0: |
| if ((regs->b0 == bundle_addr) || |
| (regs->b0 == bundle_addr + 0x10)) { |
| regs->b0 = (regs->b0 - bundle_addr) + |
| resume_addr; |
| } |
| break; |
| case 6: |
| if ((regs->b6 == bundle_addr) || |
| (regs->b6 == bundle_addr + 0x10)) { |
| regs->b6 = (regs->b6 - bundle_addr) + |
| resume_addr; |
| } |
| break; |
| case 7: |
| if ((regs->b7 == bundle_addr) || |
| (regs->b7 == bundle_addr + 0x10)) { |
| regs->b7 = (regs->b7 - bundle_addr) + |
| resume_addr; |
| } |
| break; |
| } /* end switch */ |
| } |
| goto turn_ss_off; |
| } |
| |
| if (slot == 2) { |
| if (regs->cr_iip == bundle_addr + 0x10) { |
| regs->cr_iip = resume_addr + 0x10; |
| } |
| } else { |
| if (regs->cr_iip == bundle_addr) { |
| regs->cr_iip = resume_addr; |
| } |
| } |
| |
| turn_ss_off: |
| /* Turn off Single Step bit */ |
| ia64_psr(regs)->ss = 0; |
| } |
| |
| static void prepare_ss(struct kprobe *p, struct pt_regs *regs) |
| { |
| unsigned long bundle_addr = (unsigned long) &p->opcode.bundle; |
| unsigned long slot = (unsigned long)p->addr & 0xf; |
| |
| /* Update instruction pointer (IIP) and slot number (IPSR.ri) */ |
| regs->cr_iip = bundle_addr & ~0xFULL; |
| |
| if (slot > 2) |
| slot = 0; |
| |
| ia64_psr(regs)->ri = slot; |
| |
| /* turn on single stepping */ |
| ia64_psr(regs)->ss = 1; |
| } |
| |
| static int pre_kprobes_handler(struct die_args *args) |
| { |
| struct kprobe *p; |
| int ret = 0; |
| struct pt_regs *regs = args->regs; |
| kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs); |
| |
| preempt_disable(); |
| |
| /* Handle recursion cases */ |
| if (kprobe_running()) { |
| p = get_kprobe(addr); |
| if (p) { |
| if (kprobe_status == KPROBE_HIT_SS) { |
| unlock_kprobes(); |
| goto no_kprobe; |
| } |
| /* We have reentered the pre_kprobe_handler(), since |
| * another probe was hit while within the handler. |
| * We here save the original kprobes variables and |
| * just single step on the instruction of the new probe |
| * without calling any user handlers. |
| */ |
| save_previous_kprobe(); |
| set_current_kprobe(p); |
| p->nmissed++; |
| prepare_ss(p, regs); |
| kprobe_status = KPROBE_REENTER; |
| return 1; |
| } else if (args->err == __IA64_BREAK_JPROBE) { |
| /* |
| * jprobe instrumented function just completed |
| */ |
| p = current_kprobe; |
| if (p->break_handler && p->break_handler(p, regs)) { |
| goto ss_probe; |
| } |
| } else { |
| /* Not our break */ |
| goto no_kprobe; |
| } |
| } |
| |
| lock_kprobes(); |
| p = get_kprobe(addr); |
| if (!p) { |
| unlock_kprobes(); |
| goto no_kprobe; |
| } |
| |
| kprobe_status = KPROBE_HIT_ACTIVE; |
| set_current_kprobe(p); |
| |
| if (p->pre_handler && p->pre_handler(p, regs)) |
| /* |
| * Our pre-handler is specifically requesting that we just |
| * do a return. This is used for both the jprobe pre-handler |
| * and the kretprobe trampoline |
| */ |
| return 1; |
| |
| ss_probe: |
| prepare_ss(p, regs); |
| kprobe_status = KPROBE_HIT_SS; |
| return 1; |
| |
| no_kprobe: |
| preempt_enable_no_resched(); |
| return ret; |
| } |
| |
| static int post_kprobes_handler(struct pt_regs *regs) |
| { |
| if (!kprobe_running()) |
| return 0; |
| |
| if ((kprobe_status != KPROBE_REENTER) && current_kprobe->post_handler) { |
| kprobe_status = KPROBE_HIT_SSDONE; |
| current_kprobe->post_handler(current_kprobe, regs, 0); |
| } |
| |
| resume_execution(current_kprobe, regs); |
| |
| /*Restore back the original saved kprobes variables and continue. */ |
| if (kprobe_status == KPROBE_REENTER) { |
| restore_previous_kprobe(); |
| goto out; |
| } |
| |
| unlock_kprobes(); |
| |
| out: |
| preempt_enable_no_resched(); |
| return 1; |
| } |
| |
| static int kprobes_fault_handler(struct pt_regs *regs, int trapnr) |
| { |
| if (!kprobe_running()) |
| return 0; |
| |
| if (current_kprobe->fault_handler && |
| current_kprobe->fault_handler(current_kprobe, regs, trapnr)) |
| return 1; |
| |
| if (kprobe_status & KPROBE_HIT_SS) { |
| resume_execution(current_kprobe, regs); |
| unlock_kprobes(); |
| preempt_enable_no_resched(); |
| } |
| |
| return 0; |
| } |
| |
| int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, |
| void *data) |
| { |
| struct die_args *args = (struct die_args *)data; |
| switch(val) { |
| case DIE_BREAK: |
| if (pre_kprobes_handler(args)) |
| return NOTIFY_STOP; |
| break; |
| case DIE_SS: |
| if (post_kprobes_handler(args->regs)) |
| return NOTIFY_STOP; |
| break; |
| case DIE_PAGE_FAULT: |
| if (kprobes_fault_handler(args->regs, args->trapnr)) |
| return NOTIFY_STOP; |
| default: |
| break; |
| } |
| return NOTIFY_DONE; |
| } |
| |
| int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| struct jprobe *jp = container_of(p, struct jprobe, kp); |
| unsigned long addr = ((struct fnptr *)(jp->entry))->ip; |
| |
| /* save architectural state */ |
| jprobe_saved_regs = *regs; |
| |
| /* after rfi, execute the jprobe instrumented function */ |
| regs->cr_iip = addr & ~0xFULL; |
| ia64_psr(regs)->ri = addr & 0xf; |
| regs->r1 = ((struct fnptr *)(jp->entry))->gp; |
| |
| /* |
| * fix the return address to our jprobe_inst_return() function |
| * in the jprobes.S file |
| */ |
| regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip; |
| |
| return 1; |
| } |
| |
| int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| *regs = jprobe_saved_regs; |
| return 1; |
| } |
| |
| static struct kprobe trampoline_p = { |
| .pre_handler = trampoline_probe_handler |
| }; |
| |
| int __init arch_init(void) |
| { |
| trampoline_p.addr = |
| (kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip; |
| return register_kprobe(&trampoline_p); |
| } |