| /* Fallback functions when the main IOMMU code is not compiled in. This |
| code is roughly equivalent to i386. */ |
| #include <linux/mm.h> |
| #include <linux/init.h> |
| #include <linux/pci.h> |
| #include <linux/string.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/scatterlist.h> |
| |
| #include <asm/iommu.h> |
| #include <asm/processor.h> |
| #include <asm/dma.h> |
| |
| static int |
| check_addr(char *name, struct device *hwdev, dma_addr_t bus, size_t size) |
| { |
| if (hwdev && bus + size > *hwdev->dma_mask) { |
| if (*hwdev->dma_mask >= DMA_32BIT_MASK) |
| printk(KERN_ERR |
| "nommu_%s: overflow %Lx+%zu of device mask %Lx\n", |
| name, (long long)bus, size, |
| (long long)*hwdev->dma_mask); |
| return 0; |
| } |
| return 1; |
| } |
| |
| static dma_addr_t |
| nommu_map_single(struct device *hwdev, phys_addr_t paddr, size_t size, |
| int direction) |
| { |
| dma_addr_t bus = paddr; |
| WARN_ON(size == 0); |
| if (!check_addr("map_single", hwdev, bus, size)) |
| return bad_dma_address; |
| flush_write_buffers(); |
| return bus; |
| } |
| |
| |
| /* Map a set of buffers described by scatterlist in streaming |
| * mode for DMA. This is the scatter-gather version of the |
| * above pci_map_single interface. Here the scatter gather list |
| * elements are each tagged with the appropriate dma address |
| * and length. They are obtained via sg_dma_{address,length}(SG). |
| * |
| * NOTE: An implementation may be able to use a smaller number of |
| * DMA address/length pairs than there are SG table elements. |
| * (for example via virtual mapping capabilities) |
| * The routine returns the number of addr/length pairs actually |
| * used, at most nents. |
| * |
| * Device ownership issues as mentioned above for pci_map_single are |
| * the same here. |
| */ |
| static int nommu_map_sg(struct device *hwdev, struct scatterlist *sg, |
| int nents, int direction) |
| { |
| struct scatterlist *s; |
| int i; |
| |
| WARN_ON(nents == 0 || sg[0].length == 0); |
| |
| for_each_sg(sg, s, nents, i) { |
| BUG_ON(!sg_page(s)); |
| s->dma_address = sg_phys(s); |
| if (!check_addr("map_sg", hwdev, s->dma_address, s->length)) |
| return 0; |
| s->dma_length = s->length; |
| } |
| flush_write_buffers(); |
| return nents; |
| } |
| |
| static void * |
| nommu_alloc_coherent(struct device *hwdev, size_t size, |
| dma_addr_t *dma_addr, gfp_t gfp) |
| { |
| unsigned long dma_mask; |
| int node; |
| struct page *page; |
| |
| dma_mask = dma_alloc_coherent_mask(hwdev, gfp); |
| |
| gfp |= __GFP_ZERO; |
| |
| node = dev_to_node(hwdev); |
| again: |
| page = alloc_pages_node(node, gfp, get_order(size)); |
| if (!page) |
| return NULL; |
| |
| if ((page_to_phys(page) + size > dma_mask) && !(gfp & GFP_DMA)) { |
| free_pages((unsigned long)page_address(page), get_order(size)); |
| gfp |= GFP_DMA; |
| goto again; |
| } |
| |
| *dma_addr = page_to_phys(page); |
| if (check_addr("alloc_coherent", hwdev, *dma_addr, size)) { |
| flush_write_buffers(); |
| return page_address(page); |
| } |
| |
| free_pages((unsigned long)page_address(page), get_order(size)); |
| |
| return NULL; |
| } |
| |
| static void nommu_free_coherent(struct device *dev, size_t size, void *vaddr, |
| dma_addr_t dma_addr) |
| { |
| free_pages((unsigned long)vaddr, get_order(size)); |
| } |
| |
| struct dma_mapping_ops nommu_dma_ops = { |
| .alloc_coherent = nommu_alloc_coherent, |
| .free_coherent = nommu_free_coherent, |
| .map_single = nommu_map_single, |
| .map_sg = nommu_map_sg, |
| .is_phys = 1, |
| }; |
| |
| void __init no_iommu_init(void) |
| { |
| if (dma_ops) |
| return; |
| |
| force_iommu = 0; /* no HW IOMMU */ |
| dma_ops = &nommu_dma_ops; |
| } |