blob: 9f1e8c1afab75e26daa0ad1ebe6fec79a6a26aec [file] [log] [blame]
/*
* linux/arch/i386/nmi.c
*
* NMI watchdog support on APIC systems
*
* Started by Ingo Molnar <mingo@redhat.com>
*
* Fixes:
* Mikael Pettersson : AMD K7 support for local APIC NMI watchdog.
* Mikael Pettersson : Power Management for local APIC NMI watchdog.
* Mikael Pettersson : Pentium 4 support for local APIC NMI watchdog.
* Pavel Machek and
* Mikael Pettersson : PM converted to driver model. Disable/enable API.
*/
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/sysdev.h>
#include <linux/sysctl.h>
#include <linux/percpu.h>
#include <linux/dmi.h>
#include <linux/kprobes.h>
#include <linux/cpumask.h>
#include <linux/kernel_stat.h>
#include <asm/smp.h>
#include <asm/nmi.h>
#include <asm/kdebug.h>
#include <asm/intel_arch_perfmon.h>
#include "mach_traps.h"
int unknown_nmi_panic;
int nmi_watchdog_enabled;
/* perfctr_nmi_owner tracks the ownership of the perfctr registers:
* evtsel_nmi_owner tracks the ownership of the event selection
* - different performance counters/ event selection may be reserved for
* different subsystems this reservation system just tries to coordinate
* things a little
*/
/* this number is calculated from Intel's MSR_P4_CRU_ESCR5 register and it's
* offset from MSR_P4_BSU_ESCR0. It will be the max for all platforms (for now)
*/
#define NMI_MAX_COUNTER_BITS 66
#define NMI_MAX_COUNTER_LONGS BITS_TO_LONGS(NMI_MAX_COUNTER_BITS)
static DEFINE_PER_CPU(unsigned long, perfctr_nmi_owner[NMI_MAX_COUNTER_LONGS]);
static DEFINE_PER_CPU(unsigned long, evntsel_nmi_owner[NMI_MAX_COUNTER_LONGS]);
static cpumask_t backtrace_mask = CPU_MASK_NONE;
/* nmi_active:
* >0: the lapic NMI watchdog is active, but can be disabled
* <0: the lapic NMI watchdog has not been set up, and cannot
* be enabled
* 0: the lapic NMI watchdog is disabled, but can be enabled
*/
atomic_t nmi_active = ATOMIC_INIT(0); /* oprofile uses this */
unsigned int nmi_watchdog = NMI_DEFAULT;
static unsigned int nmi_hz = HZ;
struct nmi_watchdog_ctlblk {
int enabled;
u64 check_bit;
unsigned int cccr_msr;
unsigned int perfctr_msr; /* the MSR to reset in NMI handler */
unsigned int evntsel_msr; /* the MSR to select the events to handle */
};
static DEFINE_PER_CPU(struct nmi_watchdog_ctlblk, nmi_watchdog_ctlblk);
/* local prototypes */
static int unknown_nmi_panic_callback(struct pt_regs *regs, int cpu);
extern void show_registers(struct pt_regs *regs);
extern int unknown_nmi_panic;
/* converts an msr to an appropriate reservation bit */
static inline unsigned int nmi_perfctr_msr_to_bit(unsigned int msr)
{
/* returns the bit offset of the performance counter register */
switch (boot_cpu_data.x86_vendor) {
case X86_VENDOR_AMD:
return (msr - MSR_K7_PERFCTR0);
case X86_VENDOR_INTEL:
if (cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
return (msr - MSR_ARCH_PERFMON_PERFCTR0);
switch (boot_cpu_data.x86) {
case 6:
return (msr - MSR_P6_PERFCTR0);
case 15:
return (msr - MSR_P4_BPU_PERFCTR0);
}
}
return 0;
}
/* converts an msr to an appropriate reservation bit */
static inline unsigned int nmi_evntsel_msr_to_bit(unsigned int msr)
{
/* returns the bit offset of the event selection register */
switch (boot_cpu_data.x86_vendor) {
case X86_VENDOR_AMD:
return (msr - MSR_K7_EVNTSEL0);
case X86_VENDOR_INTEL:
if (cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
return (msr - MSR_ARCH_PERFMON_EVENTSEL0);
switch (boot_cpu_data.x86) {
case 6:
return (msr - MSR_P6_EVNTSEL0);
case 15:
return (msr - MSR_P4_BSU_ESCR0);
}
}
return 0;
}
/* checks for a bit availability (hack for oprofile) */
int avail_to_resrv_perfctr_nmi_bit(unsigned int counter)
{
int cpu;
BUG_ON(counter > NMI_MAX_COUNTER_BITS);
for_each_possible_cpu (cpu) {
if (test_bit(counter, &per_cpu(perfctr_nmi_owner, cpu)))
return 0;
}
return 1;
}
/* checks the an msr for availability */
int avail_to_resrv_perfctr_nmi(unsigned int msr)
{
unsigned int counter;
int cpu;
counter = nmi_perfctr_msr_to_bit(msr);
BUG_ON(counter > NMI_MAX_COUNTER_BITS);
for_each_possible_cpu (cpu) {
if (test_bit(counter, &per_cpu(perfctr_nmi_owner, cpu)))
return 0;
}
return 1;
}
static int __reserve_perfctr_nmi(int cpu, unsigned int msr)
{
unsigned int counter;
if (cpu < 0)
cpu = smp_processor_id();
counter = nmi_perfctr_msr_to_bit(msr);
BUG_ON(counter > NMI_MAX_COUNTER_BITS);
if (!test_and_set_bit(counter, &per_cpu(perfctr_nmi_owner, cpu)))
return 1;
return 0;
}
static void __release_perfctr_nmi(int cpu, unsigned int msr)
{
unsigned int counter;
if (cpu < 0)
cpu = smp_processor_id();
counter = nmi_perfctr_msr_to_bit(msr);
BUG_ON(counter > NMI_MAX_COUNTER_BITS);
clear_bit(counter, &per_cpu(perfctr_nmi_owner, cpu));
}
int reserve_perfctr_nmi(unsigned int msr)
{
int cpu, i;
for_each_possible_cpu (cpu) {
if (!__reserve_perfctr_nmi(cpu, msr)) {
for_each_possible_cpu (i) {
if (i >= cpu)
break;
__release_perfctr_nmi(i, msr);
}
return 0;
}
}
return 1;
}
void release_perfctr_nmi(unsigned int msr)
{
int cpu;
for_each_possible_cpu (cpu) {
__release_perfctr_nmi(cpu, msr);
}
}
int __reserve_evntsel_nmi(int cpu, unsigned int msr)
{
unsigned int counter;
if (cpu < 0)
cpu = smp_processor_id();
counter = nmi_evntsel_msr_to_bit(msr);
BUG_ON(counter > NMI_MAX_COUNTER_BITS);
if (!test_and_set_bit(counter, &per_cpu(evntsel_nmi_owner, cpu)[0]))
return 1;
return 0;
}
static void __release_evntsel_nmi(int cpu, unsigned int msr)
{
unsigned int counter;
if (cpu < 0)
cpu = smp_processor_id();
counter = nmi_evntsel_msr_to_bit(msr);
BUG_ON(counter > NMI_MAX_COUNTER_BITS);
clear_bit(counter, &per_cpu(evntsel_nmi_owner, cpu)[0]);
}
int reserve_evntsel_nmi(unsigned int msr)
{
int cpu, i;
for_each_possible_cpu (cpu) {
if (!__reserve_evntsel_nmi(cpu, msr)) {
for_each_possible_cpu (i) {
if (i >= cpu)
break;
__release_evntsel_nmi(i, msr);
}
return 0;
}
}
return 1;
}
void release_evntsel_nmi(unsigned int msr)
{
int cpu;
for_each_possible_cpu (cpu) {
__release_evntsel_nmi(cpu, msr);
}
}
static __cpuinit inline int nmi_known_cpu(void)
{
switch (boot_cpu_data.x86_vendor) {
case X86_VENDOR_AMD:
return ((boot_cpu_data.x86 == 15) || (boot_cpu_data.x86 == 6)
|| (boot_cpu_data.x86 == 16));
case X86_VENDOR_INTEL:
if (cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
return 1;
else
return ((boot_cpu_data.x86 == 15) || (boot_cpu_data.x86 == 6));
}
return 0;
}
static int endflag __initdata = 0;
#ifdef CONFIG_SMP
/* The performance counters used by NMI_LOCAL_APIC don't trigger when
* the CPU is idle. To make sure the NMI watchdog really ticks on all
* CPUs during the test make them busy.
*/
static __init void nmi_cpu_busy(void *data)
{
local_irq_enable_in_hardirq();
/* Intentionally don't use cpu_relax here. This is
to make sure that the performance counter really ticks,
even if there is a simulator or similar that catches the
pause instruction. On a real HT machine this is fine because
all other CPUs are busy with "useless" delay loops and don't
care if they get somewhat less cycles. */
while (endflag == 0)
mb();
}
#endif
static unsigned int adjust_for_32bit_ctr(unsigned int hz)
{
u64 counter_val;
unsigned int retval = hz;
/*
* On Intel CPUs with P6/ARCH_PERFMON only 32 bits in the counter
* are writable, with higher bits sign extending from bit 31.
* So, we can only program the counter with 31 bit values and
* 32nd bit should be 1, for 33.. to be 1.
* Find the appropriate nmi_hz
*/
counter_val = (u64)cpu_khz * 1000;
do_div(counter_val, retval);
if (counter_val > 0x7fffffffULL) {
u64 count = (u64)cpu_khz * 1000;
do_div(count, 0x7fffffffUL);
retval = count + 1;
}
return retval;
}
static int __init check_nmi_watchdog(void)
{
unsigned int *prev_nmi_count;
int cpu;
if ((nmi_watchdog == NMI_NONE) || (nmi_watchdog == NMI_DEFAULT))
return 0;
if (!atomic_read(&nmi_active))
return 0;
prev_nmi_count = kmalloc(NR_CPUS * sizeof(int), GFP_KERNEL);
if (!prev_nmi_count)
return -1;
printk(KERN_INFO "Testing NMI watchdog ... ");
if (nmi_watchdog == NMI_LOCAL_APIC)
smp_call_function(nmi_cpu_busy, (void *)&endflag, 0, 0);
for_each_possible_cpu(cpu)
prev_nmi_count[cpu] = per_cpu(irq_stat, cpu).__nmi_count;
local_irq_enable();
mdelay((20*1000)/nmi_hz); // wait 20 ticks
for_each_possible_cpu(cpu) {
#ifdef CONFIG_SMP
/* Check cpu_callin_map here because that is set
after the timer is started. */
if (!cpu_isset(cpu, cpu_callin_map))
continue;
#endif
if (!per_cpu(nmi_watchdog_ctlblk, cpu).enabled)
continue;
if (nmi_count(cpu) - prev_nmi_count[cpu] <= 5) {
printk("CPU#%d: NMI appears to be stuck (%d->%d)!\n",
cpu,
prev_nmi_count[cpu],
nmi_count(cpu));
per_cpu(nmi_watchdog_ctlblk, cpu).enabled = 0;
atomic_dec(&nmi_active);
}
}
if (!atomic_read(&nmi_active)) {
kfree(prev_nmi_count);
atomic_set(&nmi_active, -1);
return -1;
}
endflag = 1;
printk("OK.\n");
/* now that we know it works we can reduce NMI frequency to
something more reasonable; makes a difference in some configs */
if (nmi_watchdog == NMI_LOCAL_APIC) {
struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
nmi_hz = 1;
if (wd->perfctr_msr == MSR_P6_PERFCTR0 ||
wd->perfctr_msr == MSR_ARCH_PERFMON_PERFCTR0) {
nmi_hz = adjust_for_32bit_ctr(nmi_hz);
}
}
kfree(prev_nmi_count);
return 0;
}
/* This needs to happen later in boot so counters are working */
late_initcall(check_nmi_watchdog);
static int __init setup_nmi_watchdog(char *str)
{
int nmi;
get_option(&str, &nmi);
if ((nmi >= NMI_INVALID) || (nmi < NMI_NONE))
return 0;
nmi_watchdog = nmi;
return 1;
}
__setup("nmi_watchdog=", setup_nmi_watchdog);
static void disable_lapic_nmi_watchdog(void)
{
BUG_ON(nmi_watchdog != NMI_LOCAL_APIC);
if (atomic_read(&nmi_active) <= 0)
return;
on_each_cpu(stop_apic_nmi_watchdog, NULL, 0, 1);
BUG_ON(atomic_read(&nmi_active) != 0);
}
static void enable_lapic_nmi_watchdog(void)
{
BUG_ON(nmi_watchdog != NMI_LOCAL_APIC);
/* are we already enabled */
if (atomic_read(&nmi_active) != 0)
return;
/* are we lapic aware */
if (nmi_known_cpu() <= 0)
return;
on_each_cpu(setup_apic_nmi_watchdog, NULL, 0, 1);
touch_nmi_watchdog();
}
void disable_timer_nmi_watchdog(void)
{
BUG_ON(nmi_watchdog != NMI_IO_APIC);
if (atomic_read(&nmi_active) <= 0)
return;
disable_irq(0);
on_each_cpu(stop_apic_nmi_watchdog, NULL, 0, 1);
BUG_ON(atomic_read(&nmi_active) != 0);
}
void enable_timer_nmi_watchdog(void)
{
BUG_ON(nmi_watchdog != NMI_IO_APIC);
if (atomic_read(&nmi_active) == 0) {
touch_nmi_watchdog();
on_each_cpu(setup_apic_nmi_watchdog, NULL, 0, 1);
enable_irq(0);
}
}
static void __acpi_nmi_disable(void *__unused)
{
apic_write_around(APIC_LVT0, APIC_DM_NMI | APIC_LVT_MASKED);
}
/*
* Disable timer based NMIs on all CPUs:
*/
void acpi_nmi_disable(void)
{
if (atomic_read(&nmi_active) && nmi_watchdog == NMI_IO_APIC)
on_each_cpu(__acpi_nmi_disable, NULL, 0, 1);
}
static void __acpi_nmi_enable(void *__unused)
{
apic_write_around(APIC_LVT0, APIC_DM_NMI);
}
/*
* Enable timer based NMIs on all CPUs:
*/
void acpi_nmi_enable(void)
{
if (atomic_read(&nmi_active) && nmi_watchdog == NMI_IO_APIC)
on_each_cpu(__acpi_nmi_enable, NULL, 0, 1);
}
#ifdef CONFIG_PM
static int nmi_pm_active; /* nmi_active before suspend */
static int lapic_nmi_suspend(struct sys_device *dev, pm_message_t state)
{
/* only CPU0 goes here, other CPUs should be offline */
nmi_pm_active = atomic_read(&nmi_active);
stop_apic_nmi_watchdog(NULL);
BUG_ON(atomic_read(&nmi_active) != 0);
return 0;
}
static int lapic_nmi_resume(struct sys_device *dev)
{
/* only CPU0 goes here, other CPUs should be offline */
if (nmi_pm_active > 0) {
setup_apic_nmi_watchdog(NULL);
touch_nmi_watchdog();
}
return 0;
}
static struct sysdev_class nmi_sysclass = {
set_kset_name("lapic_nmi"),
.resume = lapic_nmi_resume,
.suspend = lapic_nmi_suspend,
};
static struct sys_device device_lapic_nmi = {
.id = 0,
.cls = &nmi_sysclass,
};
static int __init init_lapic_nmi_sysfs(void)
{
int error;
/* should really be a BUG_ON but b/c this is an
* init call, it just doesn't work. -dcz
*/
if (nmi_watchdog != NMI_LOCAL_APIC)
return 0;
if ( atomic_read(&nmi_active) < 0 )
return 0;
error = sysdev_class_register(&nmi_sysclass);
if (!error)
error = sysdev_register(&device_lapic_nmi);
return error;
}
/* must come after the local APIC's device_initcall() */
late_initcall(init_lapic_nmi_sysfs);
#endif /* CONFIG_PM */
/*
* Activate the NMI watchdog via the local APIC.
* Original code written by Keith Owens.
*/
static void write_watchdog_counter(unsigned int perfctr_msr, const char *descr)
{
u64 count = (u64)cpu_khz * 1000;
do_div(count, nmi_hz);
if(descr)
Dprintk("setting %s to -0x%08Lx\n", descr, count);
wrmsrl(perfctr_msr, 0 - count);
}
static void write_watchdog_counter32(unsigned int perfctr_msr,
const char *descr)
{
u64 count = (u64)cpu_khz * 1000;
do_div(count, nmi_hz);
if(descr)
Dprintk("setting %s to -0x%08Lx\n", descr, count);
wrmsr(perfctr_msr, (u32)(-count), 0);
}
/* Note that these events don't tick when the CPU idles. This means
the frequency varies with CPU load. */
#define K7_EVNTSEL_ENABLE (1 << 22)
#define K7_EVNTSEL_INT (1 << 20)
#define K7_EVNTSEL_OS (1 << 17)
#define K7_EVNTSEL_USR (1 << 16)
#define K7_EVENT_CYCLES_PROCESSOR_IS_RUNNING 0x76
#define K7_NMI_EVENT K7_EVENT_CYCLES_PROCESSOR_IS_RUNNING
static int setup_k7_watchdog(void)
{
unsigned int perfctr_msr, evntsel_msr;
unsigned int evntsel;
struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
perfctr_msr = MSR_K7_PERFCTR0;
evntsel_msr = MSR_K7_EVNTSEL0;
if (!__reserve_perfctr_nmi(-1, perfctr_msr))
goto fail;
if (!__reserve_evntsel_nmi(-1, evntsel_msr))
goto fail1;
wrmsrl(perfctr_msr, 0UL);
evntsel = K7_EVNTSEL_INT
| K7_EVNTSEL_OS
| K7_EVNTSEL_USR
| K7_NMI_EVENT;
/* setup the timer */
wrmsr(evntsel_msr, evntsel, 0);
write_watchdog_counter(perfctr_msr, "K7_PERFCTR0");
apic_write(APIC_LVTPC, APIC_DM_NMI);
evntsel |= K7_EVNTSEL_ENABLE;
wrmsr(evntsel_msr, evntsel, 0);
wd->perfctr_msr = perfctr_msr;
wd->evntsel_msr = evntsel_msr;
wd->cccr_msr = 0; //unused
wd->check_bit = 1ULL<<63;
return 1;
fail1:
__release_perfctr_nmi(-1, perfctr_msr);
fail:
return 0;
}
static void stop_k7_watchdog(void)
{
struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
wrmsr(wd->evntsel_msr, 0, 0);
__release_evntsel_nmi(-1, wd->evntsel_msr);
__release_perfctr_nmi(-1, wd->perfctr_msr);
}
#define P6_EVNTSEL0_ENABLE (1 << 22)
#define P6_EVNTSEL_INT (1 << 20)
#define P6_EVNTSEL_OS (1 << 17)
#define P6_EVNTSEL_USR (1 << 16)
#define P6_EVENT_CPU_CLOCKS_NOT_HALTED 0x79
#define P6_NMI_EVENT P6_EVENT_CPU_CLOCKS_NOT_HALTED
static int setup_p6_watchdog(void)
{
unsigned int perfctr_msr, evntsel_msr;
unsigned int evntsel;
struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
perfctr_msr = MSR_P6_PERFCTR0;
evntsel_msr = MSR_P6_EVNTSEL0;
if (!__reserve_perfctr_nmi(-1, perfctr_msr))
goto fail;
if (!__reserve_evntsel_nmi(-1, evntsel_msr))
goto fail1;
wrmsrl(perfctr_msr, 0UL);
evntsel = P6_EVNTSEL_INT
| P6_EVNTSEL_OS
| P6_EVNTSEL_USR
| P6_NMI_EVENT;
/* setup the timer */
wrmsr(evntsel_msr, evntsel, 0);
nmi_hz = adjust_for_32bit_ctr(nmi_hz);
write_watchdog_counter32(perfctr_msr, "P6_PERFCTR0");
apic_write(APIC_LVTPC, APIC_DM_NMI);
evntsel |= P6_EVNTSEL0_ENABLE;
wrmsr(evntsel_msr, evntsel, 0);
wd->perfctr_msr = perfctr_msr;
wd->evntsel_msr = evntsel_msr;
wd->cccr_msr = 0; //unused
wd->check_bit = 1ULL<<39;
return 1;
fail1:
__release_perfctr_nmi(-1, perfctr_msr);
fail:
return 0;
}
static void stop_p6_watchdog(void)
{
struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
wrmsr(wd->evntsel_msr, 0, 0);
__release_evntsel_nmi(-1, wd->evntsel_msr);
__release_perfctr_nmi(-1, wd->perfctr_msr);
}
/* Note that these events don't tick when the CPU idles. This means
the frequency varies with CPU load. */
#define MSR_P4_MISC_ENABLE_PERF_AVAIL (1<<7)
#define P4_ESCR_EVENT_SELECT(N) ((N)<<25)
#define P4_ESCR_OS (1<<3)
#define P4_ESCR_USR (1<<2)
#define P4_CCCR_OVF_PMI0 (1<<26)
#define P4_CCCR_OVF_PMI1 (1<<27)
#define P4_CCCR_THRESHOLD(N) ((N)<<20)
#define P4_CCCR_COMPLEMENT (1<<19)
#define P4_CCCR_COMPARE (1<<18)
#define P4_CCCR_REQUIRED (3<<16)
#define P4_CCCR_ESCR_SELECT(N) ((N)<<13)
#define P4_CCCR_ENABLE (1<<12)
#define P4_CCCR_OVF (1<<31)
/* Set up IQ_COUNTER0 to behave like a clock, by having IQ_CCCR0 filter
CRU_ESCR0 (with any non-null event selector) through a complemented
max threshold. [IA32-Vol3, Section 14.9.9] */
static int setup_p4_watchdog(void)
{
unsigned int perfctr_msr, evntsel_msr, cccr_msr;
unsigned int evntsel, cccr_val;
unsigned int misc_enable, dummy;
unsigned int ht_num;
struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
rdmsr(MSR_IA32_MISC_ENABLE, misc_enable, dummy);
if (!(misc_enable & MSR_P4_MISC_ENABLE_PERF_AVAIL))
return 0;
#ifdef CONFIG_SMP
/* detect which hyperthread we are on */
if (smp_num_siblings == 2) {
unsigned int ebx, apicid;
ebx = cpuid_ebx(1);
apicid = (ebx >> 24) & 0xff;
ht_num = apicid & 1;
} else
#endif
ht_num = 0;
/* performance counters are shared resources
* assign each hyperthread its own set
* (re-use the ESCR0 register, seems safe
* and keeps the cccr_val the same)
*/
if (!ht_num) {
/* logical cpu 0 */
perfctr_msr = MSR_P4_IQ_PERFCTR0;
evntsel_msr = MSR_P4_CRU_ESCR0;
cccr_msr = MSR_P4_IQ_CCCR0;
cccr_val = P4_CCCR_OVF_PMI0 | P4_CCCR_ESCR_SELECT(4);
} else {
/* logical cpu 1 */
perfctr_msr = MSR_P4_IQ_PERFCTR1;
evntsel_msr = MSR_P4_CRU_ESCR0;
cccr_msr = MSR_P4_IQ_CCCR1;
cccr_val = P4_CCCR_OVF_PMI1 | P4_CCCR_ESCR_SELECT(4);
}
if (!__reserve_perfctr_nmi(-1, perfctr_msr))
goto fail;
if (!__reserve_evntsel_nmi(-1, evntsel_msr))
goto fail1;
evntsel = P4_ESCR_EVENT_SELECT(0x3F)
| P4_ESCR_OS
| P4_ESCR_USR;
cccr_val |= P4_CCCR_THRESHOLD(15)
| P4_CCCR_COMPLEMENT
| P4_CCCR_COMPARE
| P4_CCCR_REQUIRED;
wrmsr(evntsel_msr, evntsel, 0);
wrmsr(cccr_msr, cccr_val, 0);
write_watchdog_counter(perfctr_msr, "P4_IQ_COUNTER0");
apic_write(APIC_LVTPC, APIC_DM_NMI);
cccr_val |= P4_CCCR_ENABLE;
wrmsr(cccr_msr, cccr_val, 0);
wd->perfctr_msr = perfctr_msr;
wd->evntsel_msr = evntsel_msr;
wd->cccr_msr = cccr_msr;
wd->check_bit = 1ULL<<39;
return 1;
fail1:
__release_perfctr_nmi(-1, perfctr_msr);
fail:
return 0;
}
static void stop_p4_watchdog(void)
{
struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
wrmsr(wd->cccr_msr, 0, 0);
wrmsr(wd->evntsel_msr, 0, 0);
__release_evntsel_nmi(-1, wd->evntsel_msr);
__release_perfctr_nmi(-1, wd->perfctr_msr);
}
#define ARCH_PERFMON_NMI_EVENT_SEL ARCH_PERFMON_UNHALTED_CORE_CYCLES_SEL
#define ARCH_PERFMON_NMI_EVENT_UMASK ARCH_PERFMON_UNHALTED_CORE_CYCLES_UMASK
static int setup_intel_arch_watchdog(void)
{
unsigned int ebx;
union cpuid10_eax eax;
unsigned int unused;
unsigned int perfctr_msr, evntsel_msr;
unsigned int evntsel;
struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
/*
* Check whether the Architectural PerfMon supports
* Unhalted Core Cycles Event or not.
* NOTE: Corresponding bit = 0 in ebx indicates event present.
*/
cpuid(10, &(eax.full), &ebx, &unused, &unused);
if ((eax.split.mask_length < (ARCH_PERFMON_UNHALTED_CORE_CYCLES_INDEX+1)) ||
(ebx & ARCH_PERFMON_UNHALTED_CORE_CYCLES_PRESENT))
goto fail;
perfctr_msr = MSR_ARCH_PERFMON_PERFCTR0;
evntsel_msr = MSR_ARCH_PERFMON_EVENTSEL0;
if (!__reserve_perfctr_nmi(-1, perfctr_msr))
goto fail;
if (!__reserve_evntsel_nmi(-1, evntsel_msr))
goto fail1;
wrmsrl(perfctr_msr, 0UL);
evntsel = ARCH_PERFMON_EVENTSEL_INT
| ARCH_PERFMON_EVENTSEL_OS
| ARCH_PERFMON_EVENTSEL_USR
| ARCH_PERFMON_NMI_EVENT_SEL
| ARCH_PERFMON_NMI_EVENT_UMASK;
/* setup the timer */
wrmsr(evntsel_msr, evntsel, 0);
nmi_hz = adjust_for_32bit_ctr(nmi_hz);
write_watchdog_counter32(perfctr_msr, "INTEL_ARCH_PERFCTR0");
apic_write(APIC_LVTPC, APIC_DM_NMI);
evntsel |= ARCH_PERFMON_EVENTSEL0_ENABLE;
wrmsr(evntsel_msr, evntsel, 0);
wd->perfctr_msr = perfctr_msr;
wd->evntsel_msr = evntsel_msr;
wd->cccr_msr = 0; //unused
wd->check_bit = 1ULL << (eax.split.bit_width - 1);
return 1;
fail1:
__release_perfctr_nmi(-1, perfctr_msr);
fail:
return 0;
}
static void stop_intel_arch_watchdog(void)
{
unsigned int ebx;
union cpuid10_eax eax;
unsigned int unused;
struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
/*
* Check whether the Architectural PerfMon supports
* Unhalted Core Cycles Event or not.
* NOTE: Corresponding bit = 0 in ebx indicates event present.
*/
cpuid(10, &(eax.full), &ebx, &unused, &unused);
if ((eax.split.mask_length < (ARCH_PERFMON_UNHALTED_CORE_CYCLES_INDEX+1)) ||
(ebx & ARCH_PERFMON_UNHALTED_CORE_CYCLES_PRESENT))
return;
wrmsr(wd->evntsel_msr, 0, 0);
__release_evntsel_nmi(-1, wd->evntsel_msr);
__release_perfctr_nmi(-1, wd->perfctr_msr);
}
void setup_apic_nmi_watchdog (void *unused)
{
struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
/* only support LOCAL and IO APICs for now */
if ((nmi_watchdog != NMI_LOCAL_APIC) &&
(nmi_watchdog != NMI_IO_APIC))
return;
if (wd->enabled == 1)
return;
/* cheap hack to support suspend/resume */
/* if cpu0 is not active neither should the other cpus */
if ((smp_processor_id() != 0) && (atomic_read(&nmi_active) <= 0))
return;
if (nmi_watchdog == NMI_LOCAL_APIC) {
switch (boot_cpu_data.x86_vendor) {
case X86_VENDOR_AMD:
if (boot_cpu_data.x86 != 6 && boot_cpu_data.x86 != 15 &&
boot_cpu_data.x86 != 16)
return;
if (!setup_k7_watchdog())
return;
break;
case X86_VENDOR_INTEL:
if (cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
if (!setup_intel_arch_watchdog())
return;
break;
}
switch (boot_cpu_data.x86) {
case 6:
if (boot_cpu_data.x86_model > 0xd)
return;
if (!setup_p6_watchdog())
return;
break;
case 15:
if (boot_cpu_data.x86_model > 0x4)
return;
if (!setup_p4_watchdog())
return;
break;
default:
return;
}
break;
default:
return;
}
}
wd->enabled = 1;
atomic_inc(&nmi_active);
}
void stop_apic_nmi_watchdog(void *unused)
{
struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
/* only support LOCAL and IO APICs for now */
if ((nmi_watchdog != NMI_LOCAL_APIC) &&
(nmi_watchdog != NMI_IO_APIC))
return;
if (wd->enabled == 0)
return;
if (nmi_watchdog == NMI_LOCAL_APIC) {
switch (boot_cpu_data.x86_vendor) {
case X86_VENDOR_AMD:
stop_k7_watchdog();
break;
case X86_VENDOR_INTEL:
if (cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
stop_intel_arch_watchdog();
break;
}
switch (boot_cpu_data.x86) {
case 6:
if (boot_cpu_data.x86_model > 0xd)
break;
stop_p6_watchdog();
break;
case 15:
if (boot_cpu_data.x86_model > 0x4)
break;
stop_p4_watchdog();
break;
}
break;
default:
return;
}
}
wd->enabled = 0;
atomic_dec(&nmi_active);
}
/*
* the best way to detect whether a CPU has a 'hard lockup' problem
* is to check it's local APIC timer IRQ counts. If they are not
* changing then that CPU has some problem.
*
* as these watchdog NMI IRQs are generated on every CPU, we only
* have to check the current processor.
*
* since NMIs don't listen to _any_ locks, we have to be extremely
* careful not to rely on unsafe variables. The printk might lock
* up though, so we have to break up any console locks first ...
* [when there will be more tty-related locks, break them up
* here too!]
*/
static unsigned int
last_irq_sums [NR_CPUS],
alert_counter [NR_CPUS];
void touch_nmi_watchdog (void)
{
if (nmi_watchdog > 0) {
unsigned cpu;
/*
* Just reset the alert counters, (other CPUs might be
* spinning on locks we hold):
*/
for_each_present_cpu (cpu)
alert_counter[cpu] = 0;
}
/*
* Tickle the softlockup detector too:
*/
touch_softlockup_watchdog();
}
EXPORT_SYMBOL(touch_nmi_watchdog);
extern void die_nmi(struct pt_regs *, const char *msg);
__kprobes int nmi_watchdog_tick(struct pt_regs * regs, unsigned reason)
{
/*
* Since current_thread_info()-> is always on the stack, and we
* always switch the stack NMI-atomically, it's safe to use
* smp_processor_id().
*/
unsigned int sum;
int touched = 0;
int cpu = smp_processor_id();
struct nmi_watchdog_ctlblk *wd = &__get_cpu_var(nmi_watchdog_ctlblk);
u64 dummy;
int rc=0;
/* check for other users first */
if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT)
== NOTIFY_STOP) {
rc = 1;
touched = 1;
}
if (cpu_isset(cpu, backtrace_mask)) {
static DEFINE_SPINLOCK(lock); /* Serialise the printks */
spin_lock(&lock);
printk("NMI backtrace for cpu %d\n", cpu);
dump_stack();
spin_unlock(&lock);
cpu_clear(cpu, backtrace_mask);
}
/*
* Take the local apic timer and PIT/HPET into account. We don't
* know which one is active, when we have highres/dyntick on
*/
sum = per_cpu(irq_stat, cpu).apic_timer_irqs + kstat_irqs(0);
/* if the none of the timers isn't firing, this cpu isn't doing much */
if (!touched && last_irq_sums[cpu] == sum) {
/*
* Ayiee, looks like this CPU is stuck ...
* wait a few IRQs (5 seconds) before doing the oops ...
*/
alert_counter[cpu]++;
if (alert_counter[cpu] == 5*nmi_hz)
/*
* die_nmi will return ONLY if NOTIFY_STOP happens..
*/
die_nmi(regs, "BUG: NMI Watchdog detected LOCKUP");
} else {
last_irq_sums[cpu] = sum;
alert_counter[cpu] = 0;
}
/* see if the nmi watchdog went off */
if (wd->enabled) {
if (nmi_watchdog == NMI_LOCAL_APIC) {
rdmsrl(wd->perfctr_msr, dummy);
if (dummy & wd->check_bit){
/* this wasn't a watchdog timer interrupt */
goto done;
}
/* only Intel P4 uses the cccr msr */
if (wd->cccr_msr != 0) {
/*
* P4 quirks:
* - An overflown perfctr will assert its interrupt
* until the OVF flag in its CCCR is cleared.
* - LVTPC is masked on interrupt and must be
* unmasked by the LVTPC handler.
*/
rdmsrl(wd->cccr_msr, dummy);
dummy &= ~P4_CCCR_OVF;
wrmsrl(wd->cccr_msr, dummy);
apic_write(APIC_LVTPC, APIC_DM_NMI);
/* start the cycle over again */
write_watchdog_counter(wd->perfctr_msr, NULL);
}
else if (wd->perfctr_msr == MSR_P6_PERFCTR0 ||
wd->perfctr_msr == MSR_ARCH_PERFMON_PERFCTR0) {
/* P6 based Pentium M need to re-unmask
* the apic vector but it doesn't hurt
* other P6 variant.
* ArchPerfom/Core Duo also needs this */
apic_write(APIC_LVTPC, APIC_DM_NMI);
/* P6/ARCH_PERFMON has 32 bit counter write */
write_watchdog_counter32(wd->perfctr_msr, NULL);
} else {
/* start the cycle over again */
write_watchdog_counter(wd->perfctr_msr, NULL);
}
rc = 1;
} else if (nmi_watchdog == NMI_IO_APIC) {
/* don't know how to accurately check for this.
* just assume it was a watchdog timer interrupt
* This matches the old behaviour.
*/
rc = 1;
}
}
done:
return rc;
}
int do_nmi_callback(struct pt_regs * regs, int cpu)
{
#ifdef CONFIG_SYSCTL
if (unknown_nmi_panic)
return unknown_nmi_panic_callback(regs, cpu);
#endif
return 0;
}
#ifdef CONFIG_SYSCTL
static int unknown_nmi_panic_callback(struct pt_regs *regs, int cpu)
{
unsigned char reason = get_nmi_reason();
char buf[64];
sprintf(buf, "NMI received for unknown reason %02x\n", reason);
die_nmi(regs, buf);
return 0;
}
/*
* proc handler for /proc/sys/kernel/nmi
*/
int proc_nmi_enabled(struct ctl_table *table, int write, struct file *file,
void __user *buffer, size_t *length, loff_t *ppos)
{
int old_state;
nmi_watchdog_enabled = (atomic_read(&nmi_active) > 0) ? 1 : 0;
old_state = nmi_watchdog_enabled;
proc_dointvec(table, write, file, buffer, length, ppos);
if (!!old_state == !!nmi_watchdog_enabled)
return 0;
if (atomic_read(&nmi_active) < 0) {
printk( KERN_WARNING "NMI watchdog is permanently disabled\n");
return -EIO;
}
if (nmi_watchdog == NMI_DEFAULT) {
if (nmi_known_cpu() > 0)
nmi_watchdog = NMI_LOCAL_APIC;
else
nmi_watchdog = NMI_IO_APIC;
}
if (nmi_watchdog == NMI_LOCAL_APIC) {
if (nmi_watchdog_enabled)
enable_lapic_nmi_watchdog();
else
disable_lapic_nmi_watchdog();
} else {
printk( KERN_WARNING
"NMI watchdog doesn't know what hardware to touch\n");
return -EIO;
}
return 0;
}
#endif
void __trigger_all_cpu_backtrace(void)
{
int i;
backtrace_mask = cpu_online_map;
/* Wait for up to 10 seconds for all CPUs to do the backtrace */
for (i = 0; i < 10 * 1000; i++) {
if (cpus_empty(backtrace_mask))
break;
mdelay(1);
}
}
EXPORT_SYMBOL(nmi_active);
EXPORT_SYMBOL(nmi_watchdog);
EXPORT_SYMBOL(avail_to_resrv_perfctr_nmi);
EXPORT_SYMBOL(avail_to_resrv_perfctr_nmi_bit);
EXPORT_SYMBOL(reserve_perfctr_nmi);
EXPORT_SYMBOL(release_perfctr_nmi);
EXPORT_SYMBOL(reserve_evntsel_nmi);
EXPORT_SYMBOL(release_evntsel_nmi);
EXPORT_SYMBOL(disable_timer_nmi_watchdog);
EXPORT_SYMBOL(enable_timer_nmi_watchdog);