| /* |
| * Procedures for creating, accessing and interpreting the device tree. |
| * |
| * Paul Mackerras August 1996. |
| * Copyright (C) 1996-2005 Paul Mackerras. |
| * |
| * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. |
| * {engebret|bergner}@us.ibm.com |
| * |
| * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net |
| * |
| * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and |
| * Grant Likely. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| #include <linux/ctype.h> |
| #include <linux/cpu.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/of_graph.h> |
| #include <linux/spinlock.h> |
| #include <linux/slab.h> |
| #include <linux/proc_fs.h> |
| |
| #include "of_private.h" |
| |
| LIST_HEAD(aliases_lookup); |
| |
| struct device_node *of_allnodes; |
| EXPORT_SYMBOL(of_allnodes); |
| struct device_node *of_chosen; |
| struct device_node *of_aliases; |
| static struct device_node *of_stdout; |
| |
| DEFINE_MUTEX(of_aliases_mutex); |
| |
| /* use when traversing tree through the allnext, child, sibling, |
| * or parent members of struct device_node. |
| */ |
| DEFINE_RAW_SPINLOCK(devtree_lock); |
| |
| int of_n_addr_cells(struct device_node *np) |
| { |
| const __be32 *ip; |
| |
| do { |
| if (np->parent) |
| np = np->parent; |
| ip = of_get_property(np, "#address-cells", NULL); |
| if (ip) |
| return be32_to_cpup(ip); |
| } while (np->parent); |
| /* No #address-cells property for the root node */ |
| return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; |
| } |
| EXPORT_SYMBOL(of_n_addr_cells); |
| |
| int of_n_size_cells(struct device_node *np) |
| { |
| const __be32 *ip; |
| |
| do { |
| if (np->parent) |
| np = np->parent; |
| ip = of_get_property(np, "#size-cells", NULL); |
| if (ip) |
| return be32_to_cpup(ip); |
| } while (np->parent); |
| /* No #size-cells property for the root node */ |
| return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; |
| } |
| EXPORT_SYMBOL(of_n_size_cells); |
| |
| #ifdef CONFIG_NUMA |
| int __weak of_node_to_nid(struct device_node *np) |
| { |
| return numa_node_id(); |
| } |
| #endif |
| |
| #if defined(CONFIG_OF_DYNAMIC) |
| /** |
| * of_node_get - Increment refcount of a node |
| * @node: Node to inc refcount, NULL is supported to |
| * simplify writing of callers |
| * |
| * Returns node. |
| */ |
| struct device_node *of_node_get(struct device_node *node) |
| { |
| if (node) |
| kref_get(&node->kref); |
| return node; |
| } |
| EXPORT_SYMBOL(of_node_get); |
| |
| static inline struct device_node *kref_to_device_node(struct kref *kref) |
| { |
| return container_of(kref, struct device_node, kref); |
| } |
| |
| /** |
| * of_node_release - release a dynamically allocated node |
| * @kref: kref element of the node to be released |
| * |
| * In of_node_put() this function is passed to kref_put() |
| * as the destructor. |
| */ |
| static void of_node_release(struct kref *kref) |
| { |
| struct device_node *node = kref_to_device_node(kref); |
| struct property *prop = node->properties; |
| |
| /* We should never be releasing nodes that haven't been detached. */ |
| if (!of_node_check_flag(node, OF_DETACHED)) { |
| pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name); |
| dump_stack(); |
| kref_init(&node->kref); |
| return; |
| } |
| |
| if (!of_node_check_flag(node, OF_DYNAMIC)) |
| return; |
| |
| while (prop) { |
| struct property *next = prop->next; |
| kfree(prop->name); |
| kfree(prop->value); |
| kfree(prop); |
| prop = next; |
| |
| if (!prop) { |
| prop = node->deadprops; |
| node->deadprops = NULL; |
| } |
| } |
| kfree(node->full_name); |
| kfree(node->data); |
| kfree(node); |
| } |
| |
| /** |
| * of_node_put - Decrement refcount of a node |
| * @node: Node to dec refcount, NULL is supported to |
| * simplify writing of callers |
| * |
| */ |
| void of_node_put(struct device_node *node) |
| { |
| if (node) |
| kref_put(&node->kref, of_node_release); |
| } |
| EXPORT_SYMBOL(of_node_put); |
| #endif /* CONFIG_OF_DYNAMIC */ |
| |
| static struct property *__of_find_property(const struct device_node *np, |
| const char *name, int *lenp) |
| { |
| struct property *pp; |
| |
| if (!np) |
| return NULL; |
| |
| for (pp = np->properties; pp; pp = pp->next) { |
| if (of_prop_cmp(pp->name, name) == 0) { |
| if (lenp) |
| *lenp = pp->length; |
| break; |
| } |
| } |
| |
| return pp; |
| } |
| |
| struct property *of_find_property(const struct device_node *np, |
| const char *name, |
| int *lenp) |
| { |
| struct property *pp; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| pp = __of_find_property(np, name, lenp); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| |
| return pp; |
| } |
| EXPORT_SYMBOL(of_find_property); |
| |
| /** |
| * of_find_all_nodes - Get next node in global list |
| * @prev: Previous node or NULL to start iteration |
| * of_node_put() will be called on it |
| * |
| * Returns a node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_find_all_nodes(struct device_node *prev) |
| { |
| struct device_node *np; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| np = prev ? prev->allnext : of_allnodes; |
| for (; np != NULL; np = np->allnext) |
| if (of_node_get(np)) |
| break; |
| of_node_put(prev); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return np; |
| } |
| EXPORT_SYMBOL(of_find_all_nodes); |
| |
| /* |
| * Find a property with a given name for a given node |
| * and return the value. |
| */ |
| static const void *__of_get_property(const struct device_node *np, |
| const char *name, int *lenp) |
| { |
| struct property *pp = __of_find_property(np, name, lenp); |
| |
| return pp ? pp->value : NULL; |
| } |
| |
| /* |
| * Find a property with a given name for a given node |
| * and return the value. |
| */ |
| const void *of_get_property(const struct device_node *np, const char *name, |
| int *lenp) |
| { |
| struct property *pp = of_find_property(np, name, lenp); |
| |
| return pp ? pp->value : NULL; |
| } |
| EXPORT_SYMBOL(of_get_property); |
| |
| /* |
| * arch_match_cpu_phys_id - Match the given logical CPU and physical id |
| * |
| * @cpu: logical cpu index of a core/thread |
| * @phys_id: physical identifier of a core/thread |
| * |
| * CPU logical to physical index mapping is architecture specific. |
| * However this __weak function provides a default match of physical |
| * id to logical cpu index. phys_id provided here is usually values read |
| * from the device tree which must match the hardware internal registers. |
| * |
| * Returns true if the physical identifier and the logical cpu index |
| * correspond to the same core/thread, false otherwise. |
| */ |
| bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) |
| { |
| return (u32)phys_id == cpu; |
| } |
| |
| /** |
| * Checks if the given "prop_name" property holds the physical id of the |
| * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not |
| * NULL, local thread number within the core is returned in it. |
| */ |
| static bool __of_find_n_match_cpu_property(struct device_node *cpun, |
| const char *prop_name, int cpu, unsigned int *thread) |
| { |
| const __be32 *cell; |
| int ac, prop_len, tid; |
| u64 hwid; |
| |
| ac = of_n_addr_cells(cpun); |
| cell = of_get_property(cpun, prop_name, &prop_len); |
| if (!cell || !ac) |
| return false; |
| prop_len /= sizeof(*cell) * ac; |
| for (tid = 0; tid < prop_len; tid++) { |
| hwid = of_read_number(cell, ac); |
| if (arch_match_cpu_phys_id(cpu, hwid)) { |
| if (thread) |
| *thread = tid; |
| return true; |
| } |
| cell += ac; |
| } |
| return false; |
| } |
| |
| /* |
| * arch_find_n_match_cpu_physical_id - See if the given device node is |
| * for the cpu corresponding to logical cpu 'cpu'. Return true if so, |
| * else false. If 'thread' is non-NULL, the local thread number within the |
| * core is returned in it. |
| */ |
| bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, |
| int cpu, unsigned int *thread) |
| { |
| /* Check for non-standard "ibm,ppc-interrupt-server#s" property |
| * for thread ids on PowerPC. If it doesn't exist fallback to |
| * standard "reg" property. |
| */ |
| if (IS_ENABLED(CONFIG_PPC) && |
| __of_find_n_match_cpu_property(cpun, |
| "ibm,ppc-interrupt-server#s", |
| cpu, thread)) |
| return true; |
| |
| if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread)) |
| return true; |
| |
| return false; |
| } |
| |
| /** |
| * of_get_cpu_node - Get device node associated with the given logical CPU |
| * |
| * @cpu: CPU number(logical index) for which device node is required |
| * @thread: if not NULL, local thread number within the physical core is |
| * returned |
| * |
| * The main purpose of this function is to retrieve the device node for the |
| * given logical CPU index. It should be used to initialize the of_node in |
| * cpu device. Once of_node in cpu device is populated, all the further |
| * references can use that instead. |
| * |
| * CPU logical to physical index mapping is architecture specific and is built |
| * before booting secondary cores. This function uses arch_match_cpu_phys_id |
| * which can be overridden by architecture specific implementation. |
| * |
| * Returns a node pointer for the logical cpu if found, else NULL. |
| */ |
| struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) |
| { |
| struct device_node *cpun; |
| |
| for_each_node_by_type(cpun, "cpu") { |
| if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) |
| return cpun; |
| } |
| return NULL; |
| } |
| EXPORT_SYMBOL(of_get_cpu_node); |
| |
| /** |
| * __of_device_is_compatible() - Check if the node matches given constraints |
| * @device: pointer to node |
| * @compat: required compatible string, NULL or "" for any match |
| * @type: required device_type value, NULL or "" for any match |
| * @name: required node name, NULL or "" for any match |
| * |
| * Checks if the given @compat, @type and @name strings match the |
| * properties of the given @device. A constraints can be skipped by |
| * passing NULL or an empty string as the constraint. |
| * |
| * Returns 0 for no match, and a positive integer on match. The return |
| * value is a relative score with larger values indicating better |
| * matches. The score is weighted for the most specific compatible value |
| * to get the highest score. Matching type is next, followed by matching |
| * name. Practically speaking, this results in the following priority |
| * order for matches: |
| * |
| * 1. specific compatible && type && name |
| * 2. specific compatible && type |
| * 3. specific compatible && name |
| * 4. specific compatible |
| * 5. general compatible && type && name |
| * 6. general compatible && type |
| * 7. general compatible && name |
| * 8. general compatible |
| * 9. type && name |
| * 10. type |
| * 11. name |
| */ |
| static int __of_device_is_compatible(const struct device_node *device, |
| const char *compat, const char *type, const char *name) |
| { |
| struct property *prop; |
| const char *cp; |
| int index = 0, score = 0; |
| |
| /* Compatible match has highest priority */ |
| if (compat && compat[0]) { |
| prop = __of_find_property(device, "compatible", NULL); |
| for (cp = of_prop_next_string(prop, NULL); cp; |
| cp = of_prop_next_string(prop, cp), index++) { |
| if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { |
| score = INT_MAX/2 - (index << 2); |
| break; |
| } |
| } |
| if (!score) |
| return 0; |
| } |
| |
| /* Matching type is better than matching name */ |
| if (type && type[0]) { |
| if (!device->type || of_node_cmp(type, device->type)) |
| return 0; |
| score += 2; |
| } |
| |
| /* Matching name is a bit better than not */ |
| if (name && name[0]) { |
| if (!device->name || of_node_cmp(name, device->name)) |
| return 0; |
| score++; |
| } |
| |
| return score; |
| } |
| |
| /** Checks if the given "compat" string matches one of the strings in |
| * the device's "compatible" property |
| */ |
| int of_device_is_compatible(const struct device_node *device, |
| const char *compat) |
| { |
| unsigned long flags; |
| int res; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| res = __of_device_is_compatible(device, compat, NULL, NULL); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return res; |
| } |
| EXPORT_SYMBOL(of_device_is_compatible); |
| |
| /** |
| * of_machine_is_compatible - Test root of device tree for a given compatible value |
| * @compat: compatible string to look for in root node's compatible property. |
| * |
| * Returns true if the root node has the given value in its |
| * compatible property. |
| */ |
| int of_machine_is_compatible(const char *compat) |
| { |
| struct device_node *root; |
| int rc = 0; |
| |
| root = of_find_node_by_path("/"); |
| if (root) { |
| rc = of_device_is_compatible(root, compat); |
| of_node_put(root); |
| } |
| return rc; |
| } |
| EXPORT_SYMBOL(of_machine_is_compatible); |
| |
| /** |
| * __of_device_is_available - check if a device is available for use |
| * |
| * @device: Node to check for availability, with locks already held |
| * |
| * Returns 1 if the status property is absent or set to "okay" or "ok", |
| * 0 otherwise |
| */ |
| static int __of_device_is_available(const struct device_node *device) |
| { |
| const char *status; |
| int statlen; |
| |
| if (!device) |
| return 0; |
| |
| status = __of_get_property(device, "status", &statlen); |
| if (status == NULL) |
| return 1; |
| |
| if (statlen > 0) { |
| if (!strcmp(status, "okay") || !strcmp(status, "ok")) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * of_device_is_available - check if a device is available for use |
| * |
| * @device: Node to check for availability |
| * |
| * Returns 1 if the status property is absent or set to "okay" or "ok", |
| * 0 otherwise |
| */ |
| int of_device_is_available(const struct device_node *device) |
| { |
| unsigned long flags; |
| int res; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| res = __of_device_is_available(device); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return res; |
| |
| } |
| EXPORT_SYMBOL(of_device_is_available); |
| |
| /** |
| * of_get_parent - Get a node's parent if any |
| * @node: Node to get parent |
| * |
| * Returns a node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_get_parent(const struct device_node *node) |
| { |
| struct device_node *np; |
| unsigned long flags; |
| |
| if (!node) |
| return NULL; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| np = of_node_get(node->parent); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return np; |
| } |
| EXPORT_SYMBOL(of_get_parent); |
| |
| /** |
| * of_get_next_parent - Iterate to a node's parent |
| * @node: Node to get parent of |
| * |
| * This is like of_get_parent() except that it drops the |
| * refcount on the passed node, making it suitable for iterating |
| * through a node's parents. |
| * |
| * Returns a node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_get_next_parent(struct device_node *node) |
| { |
| struct device_node *parent; |
| unsigned long flags; |
| |
| if (!node) |
| return NULL; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| parent = of_node_get(node->parent); |
| of_node_put(node); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return parent; |
| } |
| EXPORT_SYMBOL(of_get_next_parent); |
| |
| /** |
| * of_get_next_child - Iterate a node childs |
| * @node: parent node |
| * @prev: previous child of the parent node, or NULL to get first |
| * |
| * Returns a node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_get_next_child(const struct device_node *node, |
| struct device_node *prev) |
| { |
| struct device_node *next; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| next = prev ? prev->sibling : node->child; |
| for (; next; next = next->sibling) |
| if (of_node_get(next)) |
| break; |
| of_node_put(prev); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return next; |
| } |
| EXPORT_SYMBOL(of_get_next_child); |
| |
| /** |
| * of_get_next_available_child - Find the next available child node |
| * @node: parent node |
| * @prev: previous child of the parent node, or NULL to get first |
| * |
| * This function is like of_get_next_child(), except that it |
| * automatically skips any disabled nodes (i.e. status = "disabled"). |
| */ |
| struct device_node *of_get_next_available_child(const struct device_node *node, |
| struct device_node *prev) |
| { |
| struct device_node *next; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| next = prev ? prev->sibling : node->child; |
| for (; next; next = next->sibling) { |
| if (!__of_device_is_available(next)) |
| continue; |
| if (of_node_get(next)) |
| break; |
| } |
| of_node_put(prev); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return next; |
| } |
| EXPORT_SYMBOL(of_get_next_available_child); |
| |
| /** |
| * of_get_child_by_name - Find the child node by name for a given parent |
| * @node: parent node |
| * @name: child name to look for. |
| * |
| * This function looks for child node for given matching name |
| * |
| * Returns a node pointer if found, with refcount incremented, use |
| * of_node_put() on it when done. |
| * Returns NULL if node is not found. |
| */ |
| struct device_node *of_get_child_by_name(const struct device_node *node, |
| const char *name) |
| { |
| struct device_node *child; |
| |
| for_each_child_of_node(node, child) |
| if (child->name && (of_node_cmp(child->name, name) == 0)) |
| break; |
| return child; |
| } |
| EXPORT_SYMBOL(of_get_child_by_name); |
| |
| /** |
| * of_find_node_by_path - Find a node matching a full OF path |
| * @path: The full path to match |
| * |
| * Returns a node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_find_node_by_path(const char *path) |
| { |
| struct device_node *np = of_allnodes; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| for (; np; np = np->allnext) { |
| if (np->full_name && (of_node_cmp(np->full_name, path) == 0) |
| && of_node_get(np)) |
| break; |
| } |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return np; |
| } |
| EXPORT_SYMBOL(of_find_node_by_path); |
| |
| /** |
| * of_find_node_by_name - Find a node by its "name" property |
| * @from: The node to start searching from or NULL, the node |
| * you pass will not be searched, only the next one |
| * will; typically, you pass what the previous call |
| * returned. of_node_put() will be called on it |
| * @name: The name string to match against |
| * |
| * Returns a node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_find_node_by_name(struct device_node *from, |
| const char *name) |
| { |
| struct device_node *np; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| np = from ? from->allnext : of_allnodes; |
| for (; np; np = np->allnext) |
| if (np->name && (of_node_cmp(np->name, name) == 0) |
| && of_node_get(np)) |
| break; |
| of_node_put(from); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return np; |
| } |
| EXPORT_SYMBOL(of_find_node_by_name); |
| |
| /** |
| * of_find_node_by_type - Find a node by its "device_type" property |
| * @from: The node to start searching from, or NULL to start searching |
| * the entire device tree. The node you pass will not be |
| * searched, only the next one will; typically, you pass |
| * what the previous call returned. of_node_put() will be |
| * called on from for you. |
| * @type: The type string to match against |
| * |
| * Returns a node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_find_node_by_type(struct device_node *from, |
| const char *type) |
| { |
| struct device_node *np; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| np = from ? from->allnext : of_allnodes; |
| for (; np; np = np->allnext) |
| if (np->type && (of_node_cmp(np->type, type) == 0) |
| && of_node_get(np)) |
| break; |
| of_node_put(from); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return np; |
| } |
| EXPORT_SYMBOL(of_find_node_by_type); |
| |
| /** |
| * of_find_compatible_node - Find a node based on type and one of the |
| * tokens in its "compatible" property |
| * @from: The node to start searching from or NULL, the node |
| * you pass will not be searched, only the next one |
| * will; typically, you pass what the previous call |
| * returned. of_node_put() will be called on it |
| * @type: The type string to match "device_type" or NULL to ignore |
| * @compatible: The string to match to one of the tokens in the device |
| * "compatible" list. |
| * |
| * Returns a node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_find_compatible_node(struct device_node *from, |
| const char *type, const char *compatible) |
| { |
| struct device_node *np; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| np = from ? from->allnext : of_allnodes; |
| for (; np; np = np->allnext) { |
| if (__of_device_is_compatible(np, compatible, type, NULL) && |
| of_node_get(np)) |
| break; |
| } |
| of_node_put(from); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return np; |
| } |
| EXPORT_SYMBOL(of_find_compatible_node); |
| |
| /** |
| * of_find_node_with_property - Find a node which has a property with |
| * the given name. |
| * @from: The node to start searching from or NULL, the node |
| * you pass will not be searched, only the next one |
| * will; typically, you pass what the previous call |
| * returned. of_node_put() will be called on it |
| * @prop_name: The name of the property to look for. |
| * |
| * Returns a node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_find_node_with_property(struct device_node *from, |
| const char *prop_name) |
| { |
| struct device_node *np; |
| struct property *pp; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| np = from ? from->allnext : of_allnodes; |
| for (; np; np = np->allnext) { |
| for (pp = np->properties; pp; pp = pp->next) { |
| if (of_prop_cmp(pp->name, prop_name) == 0) { |
| of_node_get(np); |
| goto out; |
| } |
| } |
| } |
| out: |
| of_node_put(from); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return np; |
| } |
| EXPORT_SYMBOL(of_find_node_with_property); |
| |
| static |
| const struct of_device_id *__of_match_node(const struct of_device_id *matches, |
| const struct device_node *node) |
| { |
| const struct of_device_id *best_match = NULL; |
| int score, best_score = 0; |
| |
| if (!matches) |
| return NULL; |
| |
| for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { |
| score = __of_device_is_compatible(node, matches->compatible, |
| matches->type, matches->name); |
| if (score > best_score) { |
| best_match = matches; |
| best_score = score; |
| } |
| } |
| |
| return best_match; |
| } |
| |
| /** |
| * of_match_node - Tell if an device_node has a matching of_match structure |
| * @matches: array of of device match structures to search in |
| * @node: the of device structure to match against |
| * |
| * Low level utility function used by device matching. |
| */ |
| const struct of_device_id *of_match_node(const struct of_device_id *matches, |
| const struct device_node *node) |
| { |
| const struct of_device_id *match; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| match = __of_match_node(matches, node); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return match; |
| } |
| EXPORT_SYMBOL(of_match_node); |
| |
| /** |
| * of_find_matching_node_and_match - Find a node based on an of_device_id |
| * match table. |
| * @from: The node to start searching from or NULL, the node |
| * you pass will not be searched, only the next one |
| * will; typically, you pass what the previous call |
| * returned. of_node_put() will be called on it |
| * @matches: array of of device match structures to search in |
| * @match Updated to point at the matches entry which matched |
| * |
| * Returns a node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_find_matching_node_and_match(struct device_node *from, |
| const struct of_device_id *matches, |
| const struct of_device_id **match) |
| { |
| struct device_node *np; |
| const struct of_device_id *m; |
| unsigned long flags; |
| |
| if (match) |
| *match = NULL; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| np = from ? from->allnext : of_allnodes; |
| for (; np; np = np->allnext) { |
| m = __of_match_node(matches, np); |
| if (m && of_node_get(np)) { |
| if (match) |
| *match = m; |
| break; |
| } |
| } |
| of_node_put(from); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return np; |
| } |
| EXPORT_SYMBOL(of_find_matching_node_and_match); |
| |
| /** |
| * of_modalias_node - Lookup appropriate modalias for a device node |
| * @node: pointer to a device tree node |
| * @modalias: Pointer to buffer that modalias value will be copied into |
| * @len: Length of modalias value |
| * |
| * Based on the value of the compatible property, this routine will attempt |
| * to choose an appropriate modalias value for a particular device tree node. |
| * It does this by stripping the manufacturer prefix (as delimited by a ',') |
| * from the first entry in the compatible list property. |
| * |
| * This routine returns 0 on success, <0 on failure. |
| */ |
| int of_modalias_node(struct device_node *node, char *modalias, int len) |
| { |
| const char *compatible, *p; |
| int cplen; |
| |
| compatible = of_get_property(node, "compatible", &cplen); |
| if (!compatible || strlen(compatible) > cplen) |
| return -ENODEV; |
| p = strchr(compatible, ','); |
| strlcpy(modalias, p ? p + 1 : compatible, len); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(of_modalias_node); |
| |
| /** |
| * of_find_node_by_phandle - Find a node given a phandle |
| * @handle: phandle of the node to find |
| * |
| * Returns a node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_find_node_by_phandle(phandle handle) |
| { |
| struct device_node *np; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| for (np = of_allnodes; np; np = np->allnext) |
| if (np->phandle == handle) |
| break; |
| of_node_get(np); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return np; |
| } |
| EXPORT_SYMBOL(of_find_node_by_phandle); |
| |
| /** |
| * of_find_property_value_of_size |
| * |
| * @np: device node from which the property value is to be read. |
| * @propname: name of the property to be searched. |
| * @len: requested length of property value |
| * |
| * Search for a property in a device node and valid the requested size. |
| * Returns the property value on success, -EINVAL if the property does not |
| * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the |
| * property data isn't large enough. |
| * |
| */ |
| static void *of_find_property_value_of_size(const struct device_node *np, |
| const char *propname, u32 len) |
| { |
| struct property *prop = of_find_property(np, propname, NULL); |
| |
| if (!prop) |
| return ERR_PTR(-EINVAL); |
| if (!prop->value) |
| return ERR_PTR(-ENODATA); |
| if (len > prop->length) |
| return ERR_PTR(-EOVERFLOW); |
| |
| return prop->value; |
| } |
| |
| /** |
| * of_property_read_u32_index - Find and read a u32 from a multi-value property. |
| * |
| * @np: device node from which the property value is to be read. |
| * @propname: name of the property to be searched. |
| * @index: index of the u32 in the list of values |
| * @out_value: pointer to return value, modified only if no error. |
| * |
| * Search for a property in a device node and read nth 32-bit value from |
| * it. Returns 0 on success, -EINVAL if the property does not exist, |
| * -ENODATA if property does not have a value, and -EOVERFLOW if the |
| * property data isn't large enough. |
| * |
| * The out_value is modified only if a valid u32 value can be decoded. |
| */ |
| int of_property_read_u32_index(const struct device_node *np, |
| const char *propname, |
| u32 index, u32 *out_value) |
| { |
| const u32 *val = of_find_property_value_of_size(np, propname, |
| ((index + 1) * sizeof(*out_value))); |
| |
| if (IS_ERR(val)) |
| return PTR_ERR(val); |
| |
| *out_value = be32_to_cpup(((__be32 *)val) + index); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(of_property_read_u32_index); |
| |
| /** |
| * of_property_read_u8_array - Find and read an array of u8 from a property. |
| * |
| * @np: device node from which the property value is to be read. |
| * @propname: name of the property to be searched. |
| * @out_values: pointer to return value, modified only if return value is 0. |
| * @sz: number of array elements to read |
| * |
| * Search for a property in a device node and read 8-bit value(s) from |
| * it. Returns 0 on success, -EINVAL if the property does not exist, |
| * -ENODATA if property does not have a value, and -EOVERFLOW if the |
| * property data isn't large enough. |
| * |
| * dts entry of array should be like: |
| * property = /bits/ 8 <0x50 0x60 0x70>; |
| * |
| * The out_values is modified only if a valid u8 value can be decoded. |
| */ |
| int of_property_read_u8_array(const struct device_node *np, |
| const char *propname, u8 *out_values, size_t sz) |
| { |
| const u8 *val = of_find_property_value_of_size(np, propname, |
| (sz * sizeof(*out_values))); |
| |
| if (IS_ERR(val)) |
| return PTR_ERR(val); |
| |
| while (sz--) |
| *out_values++ = *val++; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(of_property_read_u8_array); |
| |
| /** |
| * of_property_read_u16_array - Find and read an array of u16 from a property. |
| * |
| * @np: device node from which the property value is to be read. |
| * @propname: name of the property to be searched. |
| * @out_values: pointer to return value, modified only if return value is 0. |
| * @sz: number of array elements to read |
| * |
| * Search for a property in a device node and read 16-bit value(s) from |
| * it. Returns 0 on success, -EINVAL if the property does not exist, |
| * -ENODATA if property does not have a value, and -EOVERFLOW if the |
| * property data isn't large enough. |
| * |
| * dts entry of array should be like: |
| * property = /bits/ 16 <0x5000 0x6000 0x7000>; |
| * |
| * The out_values is modified only if a valid u16 value can be decoded. |
| */ |
| int of_property_read_u16_array(const struct device_node *np, |
| const char *propname, u16 *out_values, size_t sz) |
| { |
| const __be16 *val = of_find_property_value_of_size(np, propname, |
| (sz * sizeof(*out_values))); |
| |
| if (IS_ERR(val)) |
| return PTR_ERR(val); |
| |
| while (sz--) |
| *out_values++ = be16_to_cpup(val++); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(of_property_read_u16_array); |
| |
| /** |
| * of_property_read_u32_array - Find and read an array of 32 bit integers |
| * from a property. |
| * |
| * @np: device node from which the property value is to be read. |
| * @propname: name of the property to be searched. |
| * @out_values: pointer to return value, modified only if return value is 0. |
| * @sz: number of array elements to read |
| * |
| * Search for a property in a device node and read 32-bit value(s) from |
| * it. Returns 0 on success, -EINVAL if the property does not exist, |
| * -ENODATA if property does not have a value, and -EOVERFLOW if the |
| * property data isn't large enough. |
| * |
| * The out_values is modified only if a valid u32 value can be decoded. |
| */ |
| int of_property_read_u32_array(const struct device_node *np, |
| const char *propname, u32 *out_values, |
| size_t sz) |
| { |
| const __be32 *val = of_find_property_value_of_size(np, propname, |
| (sz * sizeof(*out_values))); |
| |
| if (IS_ERR(val)) |
| return PTR_ERR(val); |
| |
| while (sz--) |
| *out_values++ = be32_to_cpup(val++); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(of_property_read_u32_array); |
| |
| /** |
| * of_property_read_u64 - Find and read a 64 bit integer from a property |
| * @np: device node from which the property value is to be read. |
| * @propname: name of the property to be searched. |
| * @out_value: pointer to return value, modified only if return value is 0. |
| * |
| * Search for a property in a device node and read a 64-bit value from |
| * it. Returns 0 on success, -EINVAL if the property does not exist, |
| * -ENODATA if property does not have a value, and -EOVERFLOW if the |
| * property data isn't large enough. |
| * |
| * The out_value is modified only if a valid u64 value can be decoded. |
| */ |
| int of_property_read_u64(const struct device_node *np, const char *propname, |
| u64 *out_value) |
| { |
| const __be32 *val = of_find_property_value_of_size(np, propname, |
| sizeof(*out_value)); |
| |
| if (IS_ERR(val)) |
| return PTR_ERR(val); |
| |
| *out_value = of_read_number(val, 2); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(of_property_read_u64); |
| |
| /** |
| * of_property_read_string - Find and read a string from a property |
| * @np: device node from which the property value is to be read. |
| * @propname: name of the property to be searched. |
| * @out_string: pointer to null terminated return string, modified only if |
| * return value is 0. |
| * |
| * Search for a property in a device tree node and retrieve a null |
| * terminated string value (pointer to data, not a copy). Returns 0 on |
| * success, -EINVAL if the property does not exist, -ENODATA if property |
| * does not have a value, and -EILSEQ if the string is not null-terminated |
| * within the length of the property data. |
| * |
| * The out_string pointer is modified only if a valid string can be decoded. |
| */ |
| int of_property_read_string(struct device_node *np, const char *propname, |
| const char **out_string) |
| { |
| struct property *prop = of_find_property(np, propname, NULL); |
| if (!prop) |
| return -EINVAL; |
| if (!prop->value) |
| return -ENODATA; |
| if (strnlen(prop->value, prop->length) >= prop->length) |
| return -EILSEQ; |
| *out_string = prop->value; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(of_property_read_string); |
| |
| /** |
| * of_property_read_string_index - Find and read a string from a multiple |
| * strings property. |
| * @np: device node from which the property value is to be read. |
| * @propname: name of the property to be searched. |
| * @index: index of the string in the list of strings |
| * @out_string: pointer to null terminated return string, modified only if |
| * return value is 0. |
| * |
| * Search for a property in a device tree node and retrieve a null |
| * terminated string value (pointer to data, not a copy) in the list of strings |
| * contained in that property. |
| * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if |
| * property does not have a value, and -EILSEQ if the string is not |
| * null-terminated within the length of the property data. |
| * |
| * The out_string pointer is modified only if a valid string can be decoded. |
| */ |
| int of_property_read_string_index(struct device_node *np, const char *propname, |
| int index, const char **output) |
| { |
| struct property *prop = of_find_property(np, propname, NULL); |
| int i = 0; |
| size_t l = 0, total = 0; |
| const char *p; |
| |
| if (!prop) |
| return -EINVAL; |
| if (!prop->value) |
| return -ENODATA; |
| if (strnlen(prop->value, prop->length) >= prop->length) |
| return -EILSEQ; |
| |
| p = prop->value; |
| |
| for (i = 0; total < prop->length; total += l, p += l) { |
| l = strlen(p) + 1; |
| if (i++ == index) { |
| *output = p; |
| return 0; |
| } |
| } |
| return -ENODATA; |
| } |
| EXPORT_SYMBOL_GPL(of_property_read_string_index); |
| |
| /** |
| * of_property_match_string() - Find string in a list and return index |
| * @np: pointer to node containing string list property |
| * @propname: string list property name |
| * @string: pointer to string to search for in string list |
| * |
| * This function searches a string list property and returns the index |
| * of a specific string value. |
| */ |
| int of_property_match_string(struct device_node *np, const char *propname, |
| const char *string) |
| { |
| struct property *prop = of_find_property(np, propname, NULL); |
| size_t l; |
| int i; |
| const char *p, *end; |
| |
| if (!prop) |
| return -EINVAL; |
| if (!prop->value) |
| return -ENODATA; |
| |
| p = prop->value; |
| end = p + prop->length; |
| |
| for (i = 0; p < end; i++, p += l) { |
| l = strlen(p) + 1; |
| if (p + l > end) |
| return -EILSEQ; |
| pr_debug("comparing %s with %s\n", string, p); |
| if (strcmp(string, p) == 0) |
| return i; /* Found it; return index */ |
| } |
| return -ENODATA; |
| } |
| EXPORT_SYMBOL_GPL(of_property_match_string); |
| |
| /** |
| * of_property_count_strings - Find and return the number of strings from a |
| * multiple strings property. |
| * @np: device node from which the property value is to be read. |
| * @propname: name of the property to be searched. |
| * |
| * Search for a property in a device tree node and retrieve the number of null |
| * terminated string contain in it. Returns the number of strings on |
| * success, -EINVAL if the property does not exist, -ENODATA if property |
| * does not have a value, and -EILSEQ if the string is not null-terminated |
| * within the length of the property data. |
| */ |
| int of_property_count_strings(struct device_node *np, const char *propname) |
| { |
| struct property *prop = of_find_property(np, propname, NULL); |
| int i = 0; |
| size_t l = 0, total = 0; |
| const char *p; |
| |
| if (!prop) |
| return -EINVAL; |
| if (!prop->value) |
| return -ENODATA; |
| if (strnlen(prop->value, prop->length) >= prop->length) |
| return -EILSEQ; |
| |
| p = prop->value; |
| |
| for (i = 0; total < prop->length; total += l, p += l, i++) |
| l = strlen(p) + 1; |
| |
| return i; |
| } |
| EXPORT_SYMBOL_GPL(of_property_count_strings); |
| |
| void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) |
| { |
| int i; |
| printk("%s %s", msg, of_node_full_name(args->np)); |
| for (i = 0; i < args->args_count; i++) |
| printk(i ? ",%08x" : ":%08x", args->args[i]); |
| printk("\n"); |
| } |
| |
| static int __of_parse_phandle_with_args(const struct device_node *np, |
| const char *list_name, |
| const char *cells_name, |
| int cell_count, int index, |
| struct of_phandle_args *out_args) |
| { |
| const __be32 *list, *list_end; |
| int rc = 0, size, cur_index = 0; |
| uint32_t count = 0; |
| struct device_node *node = NULL; |
| phandle phandle; |
| |
| /* Retrieve the phandle list property */ |
| list = of_get_property(np, list_name, &size); |
| if (!list) |
| return -ENOENT; |
| list_end = list + size / sizeof(*list); |
| |
| /* Loop over the phandles until all the requested entry is found */ |
| while (list < list_end) { |
| rc = -EINVAL; |
| count = 0; |
| |
| /* |
| * If phandle is 0, then it is an empty entry with no |
| * arguments. Skip forward to the next entry. |
| */ |
| phandle = be32_to_cpup(list++); |
| if (phandle) { |
| /* |
| * Find the provider node and parse the #*-cells |
| * property to determine the argument length. |
| * |
| * This is not needed if the cell count is hard-coded |
| * (i.e. cells_name not set, but cell_count is set), |
| * except when we're going to return the found node |
| * below. |
| */ |
| if (cells_name || cur_index == index) { |
| node = of_find_node_by_phandle(phandle); |
| if (!node) { |
| pr_err("%s: could not find phandle\n", |
| np->full_name); |
| goto err; |
| } |
| } |
| |
| if (cells_name) { |
| if (of_property_read_u32(node, cells_name, |
| &count)) { |
| pr_err("%s: could not get %s for %s\n", |
| np->full_name, cells_name, |
| node->full_name); |
| goto err; |
| } |
| } else { |
| count = cell_count; |
| } |
| |
| /* |
| * Make sure that the arguments actually fit in the |
| * remaining property data length |
| */ |
| if (list + count > list_end) { |
| pr_err("%s: arguments longer than property\n", |
| np->full_name); |
| goto err; |
| } |
| } |
| |
| /* |
| * All of the error cases above bail out of the loop, so at |
| * this point, the parsing is successful. If the requested |
| * index matches, then fill the out_args structure and return, |
| * or return -ENOENT for an empty entry. |
| */ |
| rc = -ENOENT; |
| if (cur_index == index) { |
| if (!phandle) |
| goto err; |
| |
| if (out_args) { |
| int i; |
| if (WARN_ON(count > MAX_PHANDLE_ARGS)) |
| count = MAX_PHANDLE_ARGS; |
| out_args->np = node; |
| out_args->args_count = count; |
| for (i = 0; i < count; i++) |
| out_args->args[i] = be32_to_cpup(list++); |
| } else { |
| of_node_put(node); |
| } |
| |
| /* Found it! return success */ |
| return 0; |
| } |
| |
| of_node_put(node); |
| node = NULL; |
| list += count; |
| cur_index++; |
| } |
| |
| /* |
| * Unlock node before returning result; will be one of: |
| * -ENOENT : index is for empty phandle |
| * -EINVAL : parsing error on data |
| * [1..n] : Number of phandle (count mode; when index = -1) |
| */ |
| rc = index < 0 ? cur_index : -ENOENT; |
| err: |
| if (node) |
| of_node_put(node); |
| return rc; |
| } |
| |
| /** |
| * of_parse_phandle - Resolve a phandle property to a device_node pointer |
| * @np: Pointer to device node holding phandle property |
| * @phandle_name: Name of property holding a phandle value |
| * @index: For properties holding a table of phandles, this is the index into |
| * the table |
| * |
| * Returns the device_node pointer with refcount incremented. Use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_parse_phandle(const struct device_node *np, |
| const char *phandle_name, int index) |
| { |
| struct of_phandle_args args; |
| |
| if (index < 0) |
| return NULL; |
| |
| if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, |
| index, &args)) |
| return NULL; |
| |
| return args.np; |
| } |
| EXPORT_SYMBOL(of_parse_phandle); |
| |
| /** |
| * of_parse_phandle_with_args() - Find a node pointed by phandle in a list |
| * @np: pointer to a device tree node containing a list |
| * @list_name: property name that contains a list |
| * @cells_name: property name that specifies phandles' arguments count |
| * @index: index of a phandle to parse out |
| * @out_args: optional pointer to output arguments structure (will be filled) |
| * |
| * This function is useful to parse lists of phandles and their arguments. |
| * Returns 0 on success and fills out_args, on error returns appropriate |
| * errno value. |
| * |
| * Caller is responsible to call of_node_put() on the returned out_args->node |
| * pointer. |
| * |
| * Example: |
| * |
| * phandle1: node1 { |
| * #list-cells = <2>; |
| * } |
| * |
| * phandle2: node2 { |
| * #list-cells = <1>; |
| * } |
| * |
| * node3 { |
| * list = <&phandle1 1 2 &phandle2 3>; |
| * } |
| * |
| * To get a device_node of the `node2' node you may call this: |
| * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); |
| */ |
| int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, |
| const char *cells_name, int index, |
| struct of_phandle_args *out_args) |
| { |
| if (index < 0) |
| return -EINVAL; |
| return __of_parse_phandle_with_args(np, list_name, cells_name, 0, |
| index, out_args); |
| } |
| EXPORT_SYMBOL(of_parse_phandle_with_args); |
| |
| /** |
| * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list |
| * @np: pointer to a device tree node containing a list |
| * @list_name: property name that contains a list |
| * @cell_count: number of argument cells following the phandle |
| * @index: index of a phandle to parse out |
| * @out_args: optional pointer to output arguments structure (will be filled) |
| * |
| * This function is useful to parse lists of phandles and their arguments. |
| * Returns 0 on success and fills out_args, on error returns appropriate |
| * errno value. |
| * |
| * Caller is responsible to call of_node_put() on the returned out_args->node |
| * pointer. |
| * |
| * Example: |
| * |
| * phandle1: node1 { |
| * } |
| * |
| * phandle2: node2 { |
| * } |
| * |
| * node3 { |
| * list = <&phandle1 0 2 &phandle2 2 3>; |
| * } |
| * |
| * To get a device_node of the `node2' node you may call this: |
| * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); |
| */ |
| int of_parse_phandle_with_fixed_args(const struct device_node *np, |
| const char *list_name, int cell_count, |
| int index, struct of_phandle_args *out_args) |
| { |
| if (index < 0) |
| return -EINVAL; |
| return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, |
| index, out_args); |
| } |
| EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); |
| |
| /** |
| * of_count_phandle_with_args() - Find the number of phandles references in a property |
| * @np: pointer to a device tree node containing a list |
| * @list_name: property name that contains a list |
| * @cells_name: property name that specifies phandles' arguments count |
| * |
| * Returns the number of phandle + argument tuples within a property. It |
| * is a typical pattern to encode a list of phandle and variable |
| * arguments into a single property. The number of arguments is encoded |
| * by a property in the phandle-target node. For example, a gpios |
| * property would contain a list of GPIO specifies consisting of a |
| * phandle and 1 or more arguments. The number of arguments are |
| * determined by the #gpio-cells property in the node pointed to by the |
| * phandle. |
| */ |
| int of_count_phandle_with_args(const struct device_node *np, const char *list_name, |
| const char *cells_name) |
| { |
| return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1, |
| NULL); |
| } |
| EXPORT_SYMBOL(of_count_phandle_with_args); |
| |
| #if defined(CONFIG_OF_DYNAMIC) |
| static int of_property_notify(int action, struct device_node *np, |
| struct property *prop) |
| { |
| struct of_prop_reconfig pr; |
| |
| pr.dn = np; |
| pr.prop = prop; |
| return of_reconfig_notify(action, &pr); |
| } |
| #else |
| static int of_property_notify(int action, struct device_node *np, |
| struct property *prop) |
| { |
| return 0; |
| } |
| #endif |
| |
| /** |
| * of_add_property - Add a property to a node |
| */ |
| int of_add_property(struct device_node *np, struct property *prop) |
| { |
| struct property **next; |
| unsigned long flags; |
| int rc; |
| |
| rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop); |
| if (rc) |
| return rc; |
| |
| prop->next = NULL; |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| next = &np->properties; |
| while (*next) { |
| if (strcmp(prop->name, (*next)->name) == 0) { |
| /* duplicate ! don't insert it */ |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return -1; |
| } |
| next = &(*next)->next; |
| } |
| *next = prop; |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| |
| #ifdef CONFIG_PROC_DEVICETREE |
| /* try to add to proc as well if it was initialized */ |
| if (np->pde) |
| proc_device_tree_add_prop(np->pde, prop); |
| #endif /* CONFIG_PROC_DEVICETREE */ |
| |
| return 0; |
| } |
| |
| /** |
| * of_remove_property - Remove a property from a node. |
| * |
| * Note that we don't actually remove it, since we have given out |
| * who-knows-how-many pointers to the data using get-property. |
| * Instead we just move the property to the "dead properties" |
| * list, so it won't be found any more. |
| */ |
| int of_remove_property(struct device_node *np, struct property *prop) |
| { |
| struct property **next; |
| unsigned long flags; |
| int found = 0; |
| int rc; |
| |
| rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop); |
| if (rc) |
| return rc; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| next = &np->properties; |
| while (*next) { |
| if (*next == prop) { |
| /* found the node */ |
| *next = prop->next; |
| prop->next = np->deadprops; |
| np->deadprops = prop; |
| found = 1; |
| break; |
| } |
| next = &(*next)->next; |
| } |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| |
| if (!found) |
| return -ENODEV; |
| |
| #ifdef CONFIG_PROC_DEVICETREE |
| /* try to remove the proc node as well */ |
| if (np->pde) |
| proc_device_tree_remove_prop(np->pde, prop); |
| #endif /* CONFIG_PROC_DEVICETREE */ |
| |
| return 0; |
| } |
| |
| /* |
| * of_update_property - Update a property in a node, if the property does |
| * not exist, add it. |
| * |
| * Note that we don't actually remove it, since we have given out |
| * who-knows-how-many pointers to the data using get-property. |
| * Instead we just move the property to the "dead properties" list, |
| * and add the new property to the property list |
| */ |
| int of_update_property(struct device_node *np, struct property *newprop) |
| { |
| struct property **next, *oldprop; |
| unsigned long flags; |
| int rc, found = 0; |
| |
| rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop); |
| if (rc) |
| return rc; |
| |
| if (!newprop->name) |
| return -EINVAL; |
| |
| oldprop = of_find_property(np, newprop->name, NULL); |
| if (!oldprop) |
| return of_add_property(np, newprop); |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| next = &np->properties; |
| while (*next) { |
| if (*next == oldprop) { |
| /* found the node */ |
| newprop->next = oldprop->next; |
| *next = newprop; |
| oldprop->next = np->deadprops; |
| np->deadprops = oldprop; |
| found = 1; |
| break; |
| } |
| next = &(*next)->next; |
| } |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| |
| if (!found) |
| return -ENODEV; |
| |
| #ifdef CONFIG_PROC_DEVICETREE |
| /* try to add to proc as well if it was initialized */ |
| if (np->pde) |
| proc_device_tree_update_prop(np->pde, newprop, oldprop); |
| #endif /* CONFIG_PROC_DEVICETREE */ |
| |
| return 0; |
| } |
| |
| #if defined(CONFIG_OF_DYNAMIC) |
| /* |
| * Support for dynamic device trees. |
| * |
| * On some platforms, the device tree can be manipulated at runtime. |
| * The routines in this section support adding, removing and changing |
| * device tree nodes. |
| */ |
| |
| static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain); |
| |
| int of_reconfig_notifier_register(struct notifier_block *nb) |
| { |
| return blocking_notifier_chain_register(&of_reconfig_chain, nb); |
| } |
| EXPORT_SYMBOL_GPL(of_reconfig_notifier_register); |
| |
| int of_reconfig_notifier_unregister(struct notifier_block *nb) |
| { |
| return blocking_notifier_chain_unregister(&of_reconfig_chain, nb); |
| } |
| EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister); |
| |
| int of_reconfig_notify(unsigned long action, void *p) |
| { |
| int rc; |
| |
| rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p); |
| return notifier_to_errno(rc); |
| } |
| |
| #ifdef CONFIG_PROC_DEVICETREE |
| static void of_add_proc_dt_entry(struct device_node *dn) |
| { |
| struct proc_dir_entry *ent; |
| |
| ent = proc_mkdir(strrchr(dn->full_name, '/') + 1, dn->parent->pde); |
| if (ent) |
| proc_device_tree_add_node(dn, ent); |
| } |
| #else |
| static void of_add_proc_dt_entry(struct device_node *dn) |
| { |
| return; |
| } |
| #endif |
| |
| /** |
| * of_attach_node - Plug a device node into the tree and global list. |
| */ |
| int of_attach_node(struct device_node *np) |
| { |
| unsigned long flags; |
| int rc; |
| |
| rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np); |
| if (rc) |
| return rc; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| np->sibling = np->parent->child; |
| np->allnext = of_allnodes; |
| np->parent->child = np; |
| of_allnodes = np; |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| |
| of_add_proc_dt_entry(np); |
| return 0; |
| } |
| |
| #ifdef CONFIG_PROC_DEVICETREE |
| static void of_remove_proc_dt_entry(struct device_node *dn) |
| { |
| proc_remove(dn->pde); |
| } |
| #else |
| static void of_remove_proc_dt_entry(struct device_node *dn) |
| { |
| return; |
| } |
| #endif |
| |
| /** |
| * of_detach_node - "Unplug" a node from the device tree. |
| * |
| * The caller must hold a reference to the node. The memory associated with |
| * the node is not freed until its refcount goes to zero. |
| */ |
| int of_detach_node(struct device_node *np) |
| { |
| struct device_node *parent; |
| unsigned long flags; |
| int rc = 0; |
| |
| rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np); |
| if (rc) |
| return rc; |
| |
| raw_spin_lock_irqsave(&devtree_lock, flags); |
| |
| if (of_node_check_flag(np, OF_DETACHED)) { |
| /* someone already detached it */ |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return rc; |
| } |
| |
| parent = np->parent; |
| if (!parent) { |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| return rc; |
| } |
| |
| if (of_allnodes == np) |
| of_allnodes = np->allnext; |
| else { |
| struct device_node *prev; |
| for (prev = of_allnodes; |
| prev->allnext != np; |
| prev = prev->allnext) |
| ; |
| prev->allnext = np->allnext; |
| } |
| |
| if (parent->child == np) |
| parent->child = np->sibling; |
| else { |
| struct device_node *prevsib; |
| for (prevsib = np->parent->child; |
| prevsib->sibling != np; |
| prevsib = prevsib->sibling) |
| ; |
| prevsib->sibling = np->sibling; |
| } |
| |
| of_node_set_flag(np, OF_DETACHED); |
| raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| |
| of_remove_proc_dt_entry(np); |
| return rc; |
| } |
| #endif /* defined(CONFIG_OF_DYNAMIC) */ |
| |
| static void of_alias_add(struct alias_prop *ap, struct device_node *np, |
| int id, const char *stem, int stem_len) |
| { |
| ap->np = np; |
| ap->id = id; |
| strncpy(ap->stem, stem, stem_len); |
| ap->stem[stem_len] = 0; |
| list_add_tail(&ap->link, &aliases_lookup); |
| pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n", |
| ap->alias, ap->stem, ap->id, of_node_full_name(np)); |
| } |
| |
| /** |
| * of_alias_scan - Scan all properties of 'aliases' node |
| * |
| * The function scans all the properties of 'aliases' node and populate |
| * the the global lookup table with the properties. It returns the |
| * number of alias_prop found, or error code in error case. |
| * |
| * @dt_alloc: An allocator that provides a virtual address to memory |
| * for the resulting tree |
| */ |
| void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) |
| { |
| struct property *pp; |
| |
| of_chosen = of_find_node_by_path("/chosen"); |
| if (of_chosen == NULL) |
| of_chosen = of_find_node_by_path("/chosen@0"); |
| |
| if (of_chosen) { |
| const char *name; |
| |
| name = of_get_property(of_chosen, "linux,stdout-path", NULL); |
| if (name) |
| of_stdout = of_find_node_by_path(name); |
| } |
| |
| of_aliases = of_find_node_by_path("/aliases"); |
| if (!of_aliases) |
| return; |
| |
| for_each_property_of_node(of_aliases, pp) { |
| const char *start = pp->name; |
| const char *end = start + strlen(start); |
| struct device_node *np; |
| struct alias_prop *ap; |
| int id, len; |
| |
| /* Skip those we do not want to proceed */ |
| if (!strcmp(pp->name, "name") || |
| !strcmp(pp->name, "phandle") || |
| !strcmp(pp->name, "linux,phandle")) |
| continue; |
| |
| np = of_find_node_by_path(pp->value); |
| if (!np) |
| continue; |
| |
| /* walk the alias backwards to extract the id and work out |
| * the 'stem' string */ |
| while (isdigit(*(end-1)) && end > start) |
| end--; |
| len = end - start; |
| |
| if (kstrtoint(end, 10, &id) < 0) |
| continue; |
| |
| /* Allocate an alias_prop with enough space for the stem */ |
| ap = dt_alloc(sizeof(*ap) + len + 1, 4); |
| if (!ap) |
| continue; |
| memset(ap, 0, sizeof(*ap) + len + 1); |
| ap->alias = start; |
| of_alias_add(ap, np, id, start, len); |
| } |
| } |
| |
| /** |
| * of_alias_get_id - Get alias id for the given device_node |
| * @np: Pointer to the given device_node |
| * @stem: Alias stem of the given device_node |
| * |
| * The function travels the lookup table to get alias id for the given |
| * device_node and alias stem. It returns the alias id if find it. |
| */ |
| int of_alias_get_id(struct device_node *np, const char *stem) |
| { |
| struct alias_prop *app; |
| int id = -ENODEV; |
| |
| mutex_lock(&of_aliases_mutex); |
| list_for_each_entry(app, &aliases_lookup, link) { |
| if (strcmp(app->stem, stem) != 0) |
| continue; |
| |
| if (np == app->np) { |
| id = app->id; |
| break; |
| } |
| } |
| mutex_unlock(&of_aliases_mutex); |
| |
| return id; |
| } |
| EXPORT_SYMBOL_GPL(of_alias_get_id); |
| |
| const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, |
| u32 *pu) |
| { |
| const void *curv = cur; |
| |
| if (!prop) |
| return NULL; |
| |
| if (!cur) { |
| curv = prop->value; |
| goto out_val; |
| } |
| |
| curv += sizeof(*cur); |
| if (curv >= prop->value + prop->length) |
| return NULL; |
| |
| out_val: |
| *pu = be32_to_cpup(curv); |
| return curv; |
| } |
| EXPORT_SYMBOL_GPL(of_prop_next_u32); |
| |
| const char *of_prop_next_string(struct property *prop, const char *cur) |
| { |
| const void *curv = cur; |
| |
| if (!prop) |
| return NULL; |
| |
| if (!cur) |
| return prop->value; |
| |
| curv += strlen(cur) + 1; |
| if (curv >= prop->value + prop->length) |
| return NULL; |
| |
| return curv; |
| } |
| EXPORT_SYMBOL_GPL(of_prop_next_string); |
| |
| /** |
| * of_device_is_stdout_path - check if a device node matches the |
| * linux,stdout-path property |
| * |
| * Check if this device node matches the linux,stdout-path property |
| * in the chosen node. return true if yes, false otherwise. |
| */ |
| int of_device_is_stdout_path(struct device_node *dn) |
| { |
| if (!of_stdout) |
| return false; |
| |
| return of_stdout == dn; |
| } |
| EXPORT_SYMBOL_GPL(of_device_is_stdout_path); |
| |
| /** |
| * of_find_next_cache_node - Find a node's subsidiary cache |
| * @np: node of type "cpu" or "cache" |
| * |
| * Returns a node pointer with refcount incremented, use |
| * of_node_put() on it when done. Caller should hold a reference |
| * to np. |
| */ |
| struct device_node *of_find_next_cache_node(const struct device_node *np) |
| { |
| struct device_node *child; |
| const phandle *handle; |
| |
| handle = of_get_property(np, "l2-cache", NULL); |
| if (!handle) |
| handle = of_get_property(np, "next-level-cache", NULL); |
| |
| if (handle) |
| return of_find_node_by_phandle(be32_to_cpup(handle)); |
| |
| /* OF on pmac has nodes instead of properties named "l2-cache" |
| * beneath CPU nodes. |
| */ |
| if (!strcmp(np->type, "cpu")) |
| for_each_child_of_node(np, child) |
| if (!strcmp(child->type, "cache")) |
| return child; |
| |
| return NULL; |
| } |
| |
| /** |
| * of_graph_get_next_endpoint() - get next endpoint node |
| * @parent: pointer to the parent device node |
| * @prev: previous endpoint node, or NULL to get first |
| * |
| * Return: An 'endpoint' node pointer with refcount incremented. Refcount |
| * of the passed @prev node is not decremented, the caller have to use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_graph_get_next_endpoint(const struct device_node *parent, |
| struct device_node *prev) |
| { |
| struct device_node *endpoint; |
| struct device_node *port = NULL; |
| |
| if (!parent) |
| return NULL; |
| |
| if (!prev) { |
| struct device_node *node; |
| /* |
| * It's the first call, we have to find a port subnode |
| * within this node or within an optional 'ports' node. |
| */ |
| node = of_get_child_by_name(parent, "ports"); |
| if (node) |
| parent = node; |
| |
| port = of_get_child_by_name(parent, "port"); |
| |
| if (port) { |
| /* Found a port, get an endpoint. */ |
| endpoint = of_get_next_child(port, NULL); |
| of_node_put(port); |
| } else { |
| endpoint = NULL; |
| } |
| |
| if (!endpoint) |
| pr_err("%s(): no endpoint nodes specified for %s\n", |
| __func__, parent->full_name); |
| of_node_put(node); |
| } else { |
| port = of_get_parent(prev); |
| if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n", |
| __func__, prev->full_name)) |
| return NULL; |
| |
| /* Avoid dropping prev node refcount to 0. */ |
| of_node_get(prev); |
| endpoint = of_get_next_child(port, prev); |
| if (endpoint) { |
| of_node_put(port); |
| return endpoint; |
| } |
| |
| /* No more endpoints under this port, try the next one. */ |
| do { |
| port = of_get_next_child(parent, port); |
| if (!port) |
| return NULL; |
| } while (of_node_cmp(port->name, "port")); |
| |
| /* Pick up the first endpoint in this port. */ |
| endpoint = of_get_next_child(port, NULL); |
| of_node_put(port); |
| } |
| |
| return endpoint; |
| } |
| EXPORT_SYMBOL(of_graph_get_next_endpoint); |
| |
| /** |
| * of_graph_get_remote_port_parent() - get remote port's parent node |
| * @node: pointer to a local endpoint device_node |
| * |
| * Return: Remote device node associated with remote endpoint node linked |
| * to @node. Use of_node_put() on it when done. |
| */ |
| struct device_node *of_graph_get_remote_port_parent( |
| const struct device_node *node) |
| { |
| struct device_node *np; |
| unsigned int depth; |
| |
| /* Get remote endpoint node. */ |
| np = of_parse_phandle(node, "remote-endpoint", 0); |
| |
| /* Walk 3 levels up only if there is 'ports' node. */ |
| for (depth = 3; depth && np; depth--) { |
| np = of_get_next_parent(np); |
| if (depth == 2 && of_node_cmp(np->name, "ports")) |
| break; |
| } |
| return np; |
| } |
| EXPORT_SYMBOL(of_graph_get_remote_port_parent); |
| |
| /** |
| * of_graph_get_remote_port() - get remote port node |
| * @node: pointer to a local endpoint device_node |
| * |
| * Return: Remote port node associated with remote endpoint node linked |
| * to @node. Use of_node_put() on it when done. |
| */ |
| struct device_node *of_graph_get_remote_port(const struct device_node *node) |
| { |
| struct device_node *np; |
| |
| /* Get remote endpoint node. */ |
| np = of_parse_phandle(node, "remote-endpoint", 0); |
| if (!np) |
| return NULL; |
| return of_get_next_parent(np); |
| } |
| EXPORT_SYMBOL(of_graph_get_remote_port); |