| /* |
| * Generic process-grouping system. |
| * |
| * Based originally on the cpuset system, extracted by Paul Menage |
| * Copyright (C) 2006 Google, Inc |
| * |
| * Notifications support |
| * Copyright (C) 2009 Nokia Corporation |
| * Author: Kirill A. Shutemov |
| * |
| * Copyright notices from the original cpuset code: |
| * -------------------------------------------------- |
| * Copyright (C) 2003 BULL SA. |
| * Copyright (C) 2004-2006 Silicon Graphics, Inc. |
| * |
| * Portions derived from Patrick Mochel's sysfs code. |
| * sysfs is Copyright (c) 2001-3 Patrick Mochel |
| * |
| * 2003-10-10 Written by Simon Derr. |
| * 2003-10-22 Updates by Stephen Hemminger. |
| * 2004 May-July Rework by Paul Jackson. |
| * --------------------------------------------------- |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file COPYING in the main directory of the Linux |
| * distribution for more details. |
| */ |
| |
| #include <linux/cgroup.h> |
| #include <linux/cred.h> |
| #include <linux/ctype.h> |
| #include <linux/errno.h> |
| #include <linux/init_task.h> |
| #include <linux/kernel.h> |
| #include <linux/list.h> |
| #include <linux/mm.h> |
| #include <linux/mutex.h> |
| #include <linux/mount.h> |
| #include <linux/pagemap.h> |
| #include <linux/proc_fs.h> |
| #include <linux/rcupdate.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/string.h> |
| #include <linux/sort.h> |
| #include <linux/kmod.h> |
| #include <linux/delayacct.h> |
| #include <linux/cgroupstats.h> |
| #include <linux/hashtable.h> |
| #include <linux/pid_namespace.h> |
| #include <linux/idr.h> |
| #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */ |
| #include <linux/flex_array.h> /* used in cgroup_attach_task */ |
| #include <linux/kthread.h> |
| |
| #include <linux/atomic.h> |
| |
| /* |
| * pidlists linger the following amount before being destroyed. The goal |
| * is avoiding frequent destruction in the middle of consecutive read calls |
| * Expiring in the middle is a performance problem not a correctness one. |
| * 1 sec should be enough. |
| */ |
| #define CGROUP_PIDLIST_DESTROY_DELAY HZ |
| |
| #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ |
| MAX_CFTYPE_NAME + 2) |
| |
| /* |
| * cgroup_tree_mutex nests above cgroup_mutex and protects cftypes, file |
| * creation/removal and hierarchy changing operations including cgroup |
| * creation, removal, css association and controller rebinding. This outer |
| * lock is needed mainly to resolve the circular dependency between kernfs |
| * active ref and cgroup_mutex. cgroup_tree_mutex nests above both. |
| */ |
| static DEFINE_MUTEX(cgroup_tree_mutex); |
| |
| /* |
| * cgroup_mutex is the master lock. Any modification to cgroup or its |
| * hierarchy must be performed while holding it. |
| */ |
| #ifdef CONFIG_PROVE_RCU |
| DEFINE_MUTEX(cgroup_mutex); |
| EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for lockdep */ |
| #else |
| static DEFINE_MUTEX(cgroup_mutex); |
| #endif |
| |
| /* |
| * Protects cgroup_subsys->release_agent_path. Modifying it also requires |
| * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock. |
| */ |
| static DEFINE_SPINLOCK(release_agent_path_lock); |
| |
| #define cgroup_assert_mutexes_or_rcu_locked() \ |
| rcu_lockdep_assert(rcu_read_lock_held() || \ |
| lockdep_is_held(&cgroup_tree_mutex) || \ |
| lockdep_is_held(&cgroup_mutex), \ |
| "cgroup_[tree_]mutex or RCU read lock required"); |
| |
| /* |
| * cgroup destruction makes heavy use of work items and there can be a lot |
| * of concurrent destructions. Use a separate workqueue so that cgroup |
| * destruction work items don't end up filling up max_active of system_wq |
| * which may lead to deadlock. |
| */ |
| static struct workqueue_struct *cgroup_destroy_wq; |
| |
| /* |
| * pidlist destructions need to be flushed on cgroup destruction. Use a |
| * separate workqueue as flush domain. |
| */ |
| static struct workqueue_struct *cgroup_pidlist_destroy_wq; |
| |
| /* generate an array of cgroup subsystem pointers */ |
| #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, |
| static struct cgroup_subsys *cgroup_subsys[] = { |
| #include <linux/cgroup_subsys.h> |
| }; |
| #undef SUBSYS |
| |
| /* array of cgroup subsystem names */ |
| #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, |
| static const char *cgroup_subsys_name[] = { |
| #include <linux/cgroup_subsys.h> |
| }; |
| #undef SUBSYS |
| |
| /* |
| * The dummy hierarchy, reserved for the subsystems that are otherwise |
| * unattached - it never has more than a single cgroup, and all tasks are |
| * part of that cgroup. |
| */ |
| static struct cgroupfs_root cgroup_dummy_root; |
| |
| /* dummy_top is a shorthand for the dummy hierarchy's top cgroup */ |
| static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup; |
| |
| /* The list of hierarchy roots */ |
| |
| static LIST_HEAD(cgroup_roots); |
| static int cgroup_root_count; |
| |
| /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ |
| static DEFINE_IDR(cgroup_hierarchy_idr); |
| |
| static struct cgroup_name root_cgroup_name = { .name = "/" }; |
| |
| /* |
| * Assign a monotonically increasing serial number to cgroups. It |
| * guarantees cgroups with bigger numbers are newer than those with smaller |
| * numbers. Also, as cgroups are always appended to the parent's |
| * ->children list, it guarantees that sibling cgroups are always sorted in |
| * the ascending serial number order on the list. Protected by |
| * cgroup_mutex. |
| */ |
| static u64 cgroup_serial_nr_next = 1; |
| |
| /* This flag indicates whether tasks in the fork and exit paths should |
| * check for fork/exit handlers to call. This avoids us having to do |
| * extra work in the fork/exit path if none of the subsystems need to |
| * be called. |
| */ |
| static int need_forkexit_callback __read_mostly; |
| |
| static struct cftype cgroup_base_files[]; |
| |
| static void cgroup_put(struct cgroup *cgrp); |
| static int rebind_subsystems(struct cgroupfs_root *root, |
| unsigned long added_mask, unsigned removed_mask); |
| static void cgroup_destroy_css_killed(struct cgroup *cgrp); |
| static int cgroup_destroy_locked(struct cgroup *cgrp); |
| static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[], |
| bool is_add); |
| static void cgroup_pidlist_destroy_all(struct cgroup *cgrp); |
| |
| /** |
| * cgroup_css - obtain a cgroup's css for the specified subsystem |
| * @cgrp: the cgroup of interest |
| * @ss: the subsystem of interest (%NULL returns the dummy_css) |
| * |
| * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This |
| * function must be called either under cgroup_mutex or rcu_read_lock() and |
| * the caller is responsible for pinning the returned css if it wants to |
| * keep accessing it outside the said locks. This function may return |
| * %NULL if @cgrp doesn't have @subsys_id enabled. |
| */ |
| static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, |
| struct cgroup_subsys *ss) |
| { |
| if (ss) |
| return rcu_dereference_check(cgrp->subsys[ss->id], |
| lockdep_is_held(&cgroup_tree_mutex) || |
| lockdep_is_held(&cgroup_mutex)); |
| else |
| return &cgrp->dummy_css; |
| } |
| |
| /* convenient tests for these bits */ |
| static inline bool cgroup_is_dead(const struct cgroup *cgrp) |
| { |
| return test_bit(CGRP_DEAD, &cgrp->flags); |
| } |
| |
| struct cgroup_subsys_state *seq_css(struct seq_file *seq) |
| { |
| struct kernfs_open_file *of = seq->private; |
| struct cgroup *cgrp = of->kn->parent->priv; |
| struct cftype *cft = seq_cft(seq); |
| |
| /* |
| * This is open and unprotected implementation of cgroup_css(). |
| * seq_css() is only called from a kernfs file operation which has |
| * an active reference on the file. Because all the subsystem |
| * files are drained before a css is disassociated with a cgroup, |
| * the matching css from the cgroup's subsys table is guaranteed to |
| * be and stay valid until the enclosing operation is complete. |
| */ |
| if (cft->ss) |
| return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); |
| else |
| return &cgrp->dummy_css; |
| } |
| EXPORT_SYMBOL_GPL(seq_css); |
| |
| /** |
| * cgroup_is_descendant - test ancestry |
| * @cgrp: the cgroup to be tested |
| * @ancestor: possible ancestor of @cgrp |
| * |
| * Test whether @cgrp is a descendant of @ancestor. It also returns %true |
| * if @cgrp == @ancestor. This function is safe to call as long as @cgrp |
| * and @ancestor are accessible. |
| */ |
| bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor) |
| { |
| while (cgrp) { |
| if (cgrp == ancestor) |
| return true; |
| cgrp = cgrp->parent; |
| } |
| return false; |
| } |
| EXPORT_SYMBOL_GPL(cgroup_is_descendant); |
| |
| static int cgroup_is_releasable(const struct cgroup *cgrp) |
| { |
| const int bits = |
| (1 << CGRP_RELEASABLE) | |
| (1 << CGRP_NOTIFY_ON_RELEASE); |
| return (cgrp->flags & bits) == bits; |
| } |
| |
| static int notify_on_release(const struct cgroup *cgrp) |
| { |
| return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); |
| } |
| |
| /** |
| * for_each_css - iterate all css's of a cgroup |
| * @css: the iteration cursor |
| * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end |
| * @cgrp: the target cgroup to iterate css's of |
| * |
| * Should be called under cgroup_mutex. |
| */ |
| #define for_each_css(css, ssid, cgrp) \ |
| for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ |
| if (!((css) = rcu_dereference_check( \ |
| (cgrp)->subsys[(ssid)], \ |
| lockdep_is_held(&cgroup_tree_mutex) || \ |
| lockdep_is_held(&cgroup_mutex)))) { } \ |
| else |
| |
| /** |
| * for_each_subsys - iterate all enabled cgroup subsystems |
| * @ss: the iteration cursor |
| * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end |
| */ |
| #define for_each_subsys(ss, ssid) \ |
| for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \ |
| (((ss) = cgroup_subsys[ssid]) || true); (ssid)++) |
| |
| /* iterate across the active hierarchies */ |
| #define for_each_active_root(root) \ |
| list_for_each_entry((root), &cgroup_roots, root_list) |
| |
| /** |
| * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive. |
| * @cgrp: the cgroup to be checked for liveness |
| * |
| * On success, returns true; the mutex should be later unlocked. On |
| * failure returns false with no lock held. |
| */ |
| static bool cgroup_lock_live_group(struct cgroup *cgrp) |
| { |
| mutex_lock(&cgroup_mutex); |
| if (cgroup_is_dead(cgrp)) { |
| mutex_unlock(&cgroup_mutex); |
| return false; |
| } |
| return true; |
| } |
| |
| /* the list of cgroups eligible for automatic release. Protected by |
| * release_list_lock */ |
| static LIST_HEAD(release_list); |
| static DEFINE_RAW_SPINLOCK(release_list_lock); |
| static void cgroup_release_agent(struct work_struct *work); |
| static DECLARE_WORK(release_agent_work, cgroup_release_agent); |
| static void check_for_release(struct cgroup *cgrp); |
| |
| /* |
| * A cgroup can be associated with multiple css_sets as different tasks may |
| * belong to different cgroups on different hierarchies. In the other |
| * direction, a css_set is naturally associated with multiple cgroups. |
| * This M:N relationship is represented by the following link structure |
| * which exists for each association and allows traversing the associations |
| * from both sides. |
| */ |
| struct cgrp_cset_link { |
| /* the cgroup and css_set this link associates */ |
| struct cgroup *cgrp; |
| struct css_set *cset; |
| |
| /* list of cgrp_cset_links anchored at cgrp->cset_links */ |
| struct list_head cset_link; |
| |
| /* list of cgrp_cset_links anchored at css_set->cgrp_links */ |
| struct list_head cgrp_link; |
| }; |
| |
| /* The default css_set - used by init and its children prior to any |
| * hierarchies being mounted. It contains a pointer to the root state |
| * for each subsystem. Also used to anchor the list of css_sets. Not |
| * reference-counted, to improve performance when child cgroups |
| * haven't been created. |
| */ |
| |
| static struct css_set init_css_set; |
| static struct cgrp_cset_link init_cgrp_cset_link; |
| |
| /* |
| * css_set_lock protects the list of css_set objects, and the chain of |
| * tasks off each css_set. Nests outside task->alloc_lock due to |
| * css_task_iter_start(). |
| */ |
| static DEFINE_RWLOCK(css_set_lock); |
| static int css_set_count; |
| |
| /* |
| * hash table for cgroup groups. This improves the performance to find |
| * an existing css_set. This hash doesn't (currently) take into |
| * account cgroups in empty hierarchies. |
| */ |
| #define CSS_SET_HASH_BITS 7 |
| static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); |
| |
| static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) |
| { |
| unsigned long key = 0UL; |
| struct cgroup_subsys *ss; |
| int i; |
| |
| for_each_subsys(ss, i) |
| key += (unsigned long)css[i]; |
| key = (key >> 16) ^ key; |
| |
| return key; |
| } |
| |
| /* |
| * We don't maintain the lists running through each css_set to its task |
| * until after the first call to css_task_iter_start(). This reduces the |
| * fork()/exit() overhead for people who have cgroups compiled into their |
| * kernel but not actually in use. |
| */ |
| static int use_task_css_set_links __read_mostly; |
| |
| static void __put_css_set(struct css_set *cset, int taskexit) |
| { |
| struct cgrp_cset_link *link, *tmp_link; |
| |
| /* |
| * Ensure that the refcount doesn't hit zero while any readers |
| * can see it. Similar to atomic_dec_and_lock(), but for an |
| * rwlock |
| */ |
| if (atomic_add_unless(&cset->refcount, -1, 1)) |
| return; |
| write_lock(&css_set_lock); |
| if (!atomic_dec_and_test(&cset->refcount)) { |
| write_unlock(&css_set_lock); |
| return; |
| } |
| |
| /* This css_set is dead. unlink it and release cgroup refcounts */ |
| hash_del(&cset->hlist); |
| css_set_count--; |
| |
| list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { |
| struct cgroup *cgrp = link->cgrp; |
| |
| list_del(&link->cset_link); |
| list_del(&link->cgrp_link); |
| |
| /* @cgrp can't go away while we're holding css_set_lock */ |
| if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) { |
| if (taskexit) |
| set_bit(CGRP_RELEASABLE, &cgrp->flags); |
| check_for_release(cgrp); |
| } |
| |
| kfree(link); |
| } |
| |
| write_unlock(&css_set_lock); |
| kfree_rcu(cset, rcu_head); |
| } |
| |
| /* |
| * refcounted get/put for css_set objects |
| */ |
| static inline void get_css_set(struct css_set *cset) |
| { |
| atomic_inc(&cset->refcount); |
| } |
| |
| static inline void put_css_set(struct css_set *cset) |
| { |
| __put_css_set(cset, 0); |
| } |
| |
| static inline void put_css_set_taskexit(struct css_set *cset) |
| { |
| __put_css_set(cset, 1); |
| } |
| |
| /** |
| * compare_css_sets - helper function for find_existing_css_set(). |
| * @cset: candidate css_set being tested |
| * @old_cset: existing css_set for a task |
| * @new_cgrp: cgroup that's being entered by the task |
| * @template: desired set of css pointers in css_set (pre-calculated) |
| * |
| * Returns true if "cset" matches "old_cset" except for the hierarchy |
| * which "new_cgrp" belongs to, for which it should match "new_cgrp". |
| */ |
| static bool compare_css_sets(struct css_set *cset, |
| struct css_set *old_cset, |
| struct cgroup *new_cgrp, |
| struct cgroup_subsys_state *template[]) |
| { |
| struct list_head *l1, *l2; |
| |
| if (memcmp(template, cset->subsys, sizeof(cset->subsys))) { |
| /* Not all subsystems matched */ |
| return false; |
| } |
| |
| /* |
| * Compare cgroup pointers in order to distinguish between |
| * different cgroups in heirarchies with no subsystems. We |
| * could get by with just this check alone (and skip the |
| * memcmp above) but on most setups the memcmp check will |
| * avoid the need for this more expensive check on almost all |
| * candidates. |
| */ |
| |
| l1 = &cset->cgrp_links; |
| l2 = &old_cset->cgrp_links; |
| while (1) { |
| struct cgrp_cset_link *link1, *link2; |
| struct cgroup *cgrp1, *cgrp2; |
| |
| l1 = l1->next; |
| l2 = l2->next; |
| /* See if we reached the end - both lists are equal length. */ |
| if (l1 == &cset->cgrp_links) { |
| BUG_ON(l2 != &old_cset->cgrp_links); |
| break; |
| } else { |
| BUG_ON(l2 == &old_cset->cgrp_links); |
| } |
| /* Locate the cgroups associated with these links. */ |
| link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); |
| link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); |
| cgrp1 = link1->cgrp; |
| cgrp2 = link2->cgrp; |
| /* Hierarchies should be linked in the same order. */ |
| BUG_ON(cgrp1->root != cgrp2->root); |
| |
| /* |
| * If this hierarchy is the hierarchy of the cgroup |
| * that's changing, then we need to check that this |
| * css_set points to the new cgroup; if it's any other |
| * hierarchy, then this css_set should point to the |
| * same cgroup as the old css_set. |
| */ |
| if (cgrp1->root == new_cgrp->root) { |
| if (cgrp1 != new_cgrp) |
| return false; |
| } else { |
| if (cgrp1 != cgrp2) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /** |
| * find_existing_css_set - init css array and find the matching css_set |
| * @old_cset: the css_set that we're using before the cgroup transition |
| * @cgrp: the cgroup that we're moving into |
| * @template: out param for the new set of csses, should be clear on entry |
| */ |
| static struct css_set *find_existing_css_set(struct css_set *old_cset, |
| struct cgroup *cgrp, |
| struct cgroup_subsys_state *template[]) |
| { |
| struct cgroupfs_root *root = cgrp->root; |
| struct cgroup_subsys *ss; |
| struct css_set *cset; |
| unsigned long key; |
| int i; |
| |
| /* |
| * Build the set of subsystem state objects that we want to see in the |
| * new css_set. while subsystems can change globally, the entries here |
| * won't change, so no need for locking. |
| */ |
| for_each_subsys(ss, i) { |
| if (root->subsys_mask & (1UL << i)) { |
| /* Subsystem is in this hierarchy. So we want |
| * the subsystem state from the new |
| * cgroup */ |
| template[i] = cgroup_css(cgrp, ss); |
| } else { |
| /* Subsystem is not in this hierarchy, so we |
| * don't want to change the subsystem state */ |
| template[i] = old_cset->subsys[i]; |
| } |
| } |
| |
| key = css_set_hash(template); |
| hash_for_each_possible(css_set_table, cset, hlist, key) { |
| if (!compare_css_sets(cset, old_cset, cgrp, template)) |
| continue; |
| |
| /* This css_set matches what we need */ |
| return cset; |
| } |
| |
| /* No existing cgroup group matched */ |
| return NULL; |
| } |
| |
| static void free_cgrp_cset_links(struct list_head *links_to_free) |
| { |
| struct cgrp_cset_link *link, *tmp_link; |
| |
| list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { |
| list_del(&link->cset_link); |
| kfree(link); |
| } |
| } |
| |
| /** |
| * allocate_cgrp_cset_links - allocate cgrp_cset_links |
| * @count: the number of links to allocate |
| * @tmp_links: list_head the allocated links are put on |
| * |
| * Allocate @count cgrp_cset_link structures and chain them on @tmp_links |
| * through ->cset_link. Returns 0 on success or -errno. |
| */ |
| static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) |
| { |
| struct cgrp_cset_link *link; |
| int i; |
| |
| INIT_LIST_HEAD(tmp_links); |
| |
| for (i = 0; i < count; i++) { |
| link = kzalloc(sizeof(*link), GFP_KERNEL); |
| if (!link) { |
| free_cgrp_cset_links(tmp_links); |
| return -ENOMEM; |
| } |
| list_add(&link->cset_link, tmp_links); |
| } |
| return 0; |
| } |
| |
| /** |
| * link_css_set - a helper function to link a css_set to a cgroup |
| * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() |
| * @cset: the css_set to be linked |
| * @cgrp: the destination cgroup |
| */ |
| static void link_css_set(struct list_head *tmp_links, struct css_set *cset, |
| struct cgroup *cgrp) |
| { |
| struct cgrp_cset_link *link; |
| |
| BUG_ON(list_empty(tmp_links)); |
| link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); |
| link->cset = cset; |
| link->cgrp = cgrp; |
| list_move(&link->cset_link, &cgrp->cset_links); |
| /* |
| * Always add links to the tail of the list so that the list |
| * is sorted by order of hierarchy creation |
| */ |
| list_add_tail(&link->cgrp_link, &cset->cgrp_links); |
| } |
| |
| /** |
| * find_css_set - return a new css_set with one cgroup updated |
| * @old_cset: the baseline css_set |
| * @cgrp: the cgroup to be updated |
| * |
| * Return a new css_set that's equivalent to @old_cset, but with @cgrp |
| * substituted into the appropriate hierarchy. |
| */ |
| static struct css_set *find_css_set(struct css_set *old_cset, |
| struct cgroup *cgrp) |
| { |
| struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; |
| struct css_set *cset; |
| struct list_head tmp_links; |
| struct cgrp_cset_link *link; |
| unsigned long key; |
| |
| lockdep_assert_held(&cgroup_mutex); |
| |
| /* First see if we already have a cgroup group that matches |
| * the desired set */ |
| read_lock(&css_set_lock); |
| cset = find_existing_css_set(old_cset, cgrp, template); |
| if (cset) |
| get_css_set(cset); |
| read_unlock(&css_set_lock); |
| |
| if (cset) |
| return cset; |
| |
| cset = kzalloc(sizeof(*cset), GFP_KERNEL); |
| if (!cset) |
| return NULL; |
| |
| /* Allocate all the cgrp_cset_link objects that we'll need */ |
| if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { |
| kfree(cset); |
| return NULL; |
| } |
| |
| atomic_set(&cset->refcount, 1); |
| INIT_LIST_HEAD(&cset->cgrp_links); |
| INIT_LIST_HEAD(&cset->tasks); |
| INIT_HLIST_NODE(&cset->hlist); |
| |
| /* Copy the set of subsystem state objects generated in |
| * find_existing_css_set() */ |
| memcpy(cset->subsys, template, sizeof(cset->subsys)); |
| |
| write_lock(&css_set_lock); |
| /* Add reference counts and links from the new css_set. */ |
| list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { |
| struct cgroup *c = link->cgrp; |
| |
| if (c->root == cgrp->root) |
| c = cgrp; |
| link_css_set(&tmp_links, cset, c); |
| } |
| |
| BUG_ON(!list_empty(&tmp_links)); |
| |
| css_set_count++; |
| |
| /* Add this cgroup group to the hash table */ |
| key = css_set_hash(cset->subsys); |
| hash_add(css_set_table, &cset->hlist, key); |
| |
| write_unlock(&css_set_lock); |
| |
| return cset; |
| } |
| |
| static struct cgroupfs_root *cgroup_root_from_kf(struct kernfs_root *kf_root) |
| { |
| struct cgroup *top_cgrp = kf_root->kn->priv; |
| |
| return top_cgrp->root; |
| } |
| |
| static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end) |
| { |
| int id; |
| |
| lockdep_assert_held(&cgroup_mutex); |
| |
| id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end, |
| GFP_KERNEL); |
| if (id < 0) |
| return id; |
| |
| root->hierarchy_id = id; |
| return 0; |
| } |
| |
| static void cgroup_exit_root_id(struct cgroupfs_root *root) |
| { |
| lockdep_assert_held(&cgroup_mutex); |
| |
| if (root->hierarchy_id) { |
| idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); |
| root->hierarchy_id = 0; |
| } |
| } |
| |
| static void cgroup_free_root(struct cgroupfs_root *root) |
| { |
| if (root) { |
| /* hierarhcy ID shoulid already have been released */ |
| WARN_ON_ONCE(root->hierarchy_id); |
| |
| idr_destroy(&root->cgroup_idr); |
| kfree(root); |
| } |
| } |
| |
| static void cgroup_get_root(struct cgroupfs_root *root) |
| { |
| /* |
| * The caller must ensure that @root is alive, which can be |
| * achieved by holding a ref on one of the member cgroups or |
| * following a registered reference to @root while holding |
| * cgroup_tree_mutex. |
| */ |
| WARN_ON_ONCE(atomic_read(&root->refcnt) <= 0); |
| atomic_inc(&root->refcnt); |
| } |
| |
| static void cgroup_put_root(struct cgroupfs_root *root) |
| { |
| struct cgroup *cgrp = &root->top_cgroup; |
| struct cgrp_cset_link *link, *tmp_link; |
| int ret; |
| |
| /* |
| * @root's refcnt reaching zero and its deregistration should be |
| * atomic w.r.t. cgroup_tree_mutex. This ensures that |
| * cgroup_get_root() is safe to invoke if @root is registered. |
| */ |
| mutex_lock(&cgroup_tree_mutex); |
| if (!atomic_dec_and_test(&root->refcnt)) { |
| mutex_unlock(&cgroup_tree_mutex); |
| return; |
| } |
| mutex_lock(&cgroup_mutex); |
| |
| BUG_ON(root->number_of_cgroups != 1); |
| BUG_ON(!list_empty(&cgrp->children)); |
| |
| /* Rebind all subsystems back to the default hierarchy */ |
| if (root->flags & CGRP_ROOT_SUBSYS_BOUND) { |
| ret = rebind_subsystems(root, 0, root->subsys_mask); |
| /* Shouldn't be able to fail ... */ |
| BUG_ON(ret); |
| } |
| |
| /* |
| * Release all the links from cset_links to this hierarchy's |
| * root cgroup |
| */ |
| write_lock(&css_set_lock); |
| |
| list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { |
| list_del(&link->cset_link); |
| list_del(&link->cgrp_link); |
| kfree(link); |
| } |
| write_unlock(&css_set_lock); |
| |
| if (!list_empty(&root->root_list)) { |
| list_del(&root->root_list); |
| cgroup_root_count--; |
| } |
| |
| cgroup_exit_root_id(root); |
| |
| mutex_unlock(&cgroup_mutex); |
| mutex_unlock(&cgroup_tree_mutex); |
| |
| kernfs_destroy_root(root->kf_root); |
| cgroup_free_root(root); |
| } |
| |
| /* |
| * Return the cgroup for "task" from the given hierarchy. Must be |
| * called with cgroup_mutex held. |
| */ |
| static struct cgroup *task_cgroup_from_root(struct task_struct *task, |
| struct cgroupfs_root *root) |
| { |
| struct css_set *cset; |
| struct cgroup *res = NULL; |
| |
| BUG_ON(!mutex_is_locked(&cgroup_mutex)); |
| read_lock(&css_set_lock); |
| /* |
| * No need to lock the task - since we hold cgroup_mutex the |
| * task can't change groups, so the only thing that can happen |
| * is that it exits and its css is set back to init_css_set. |
| */ |
| cset = task_css_set(task); |
| if (cset == &init_css_set) { |
| res = &root->top_cgroup; |
| } else { |
| struct cgrp_cset_link *link; |
| |
| list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { |
| struct cgroup *c = link->cgrp; |
| |
| if (c->root == root) { |
| res = c; |
| break; |
| } |
| } |
| } |
| read_unlock(&css_set_lock); |
| BUG_ON(!res); |
| return res; |
| } |
| |
| /* |
| * There is one global cgroup mutex. We also require taking |
| * task_lock() when dereferencing a task's cgroup subsys pointers. |
| * See "The task_lock() exception", at the end of this comment. |
| * |
| * A task must hold cgroup_mutex to modify cgroups. |
| * |
| * Any task can increment and decrement the count field without lock. |
| * So in general, code holding cgroup_mutex can't rely on the count |
| * field not changing. However, if the count goes to zero, then only |
| * cgroup_attach_task() can increment it again. Because a count of zero |
| * means that no tasks are currently attached, therefore there is no |
| * way a task attached to that cgroup can fork (the other way to |
| * increment the count). So code holding cgroup_mutex can safely |
| * assume that if the count is zero, it will stay zero. Similarly, if |
| * a task holds cgroup_mutex on a cgroup with zero count, it |
| * knows that the cgroup won't be removed, as cgroup_rmdir() |
| * needs that mutex. |
| * |
| * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't |
| * (usually) take cgroup_mutex. These are the two most performance |
| * critical pieces of code here. The exception occurs on cgroup_exit(), |
| * when a task in a notify_on_release cgroup exits. Then cgroup_mutex |
| * is taken, and if the cgroup count is zero, a usermode call made |
| * to the release agent with the name of the cgroup (path relative to |
| * the root of cgroup file system) as the argument. |
| * |
| * A cgroup can only be deleted if both its 'count' of using tasks |
| * is zero, and its list of 'children' cgroups is empty. Since all |
| * tasks in the system use _some_ cgroup, and since there is always at |
| * least one task in the system (init, pid == 1), therefore, top_cgroup |
| * always has either children cgroups and/or using tasks. So we don't |
| * need a special hack to ensure that top_cgroup cannot be deleted. |
| * |
| * The task_lock() exception |
| * |
| * The need for this exception arises from the action of |
| * cgroup_attach_task(), which overwrites one task's cgroup pointer with |
| * another. It does so using cgroup_mutex, however there are |
| * several performance critical places that need to reference |
| * task->cgroup without the expense of grabbing a system global |
| * mutex. Therefore except as noted below, when dereferencing or, as |
| * in cgroup_attach_task(), modifying a task's cgroup pointer we use |
| * task_lock(), which acts on a spinlock (task->alloc_lock) already in |
| * the task_struct routinely used for such matters. |
| * |
| * P.S. One more locking exception. RCU is used to guard the |
| * update of a tasks cgroup pointer by cgroup_attach_task() |
| */ |
| |
| static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask); |
| static struct kernfs_syscall_ops cgroup_kf_syscall_ops; |
| static const struct file_operations proc_cgroupstats_operations; |
| |
| static struct cgroup_name *cgroup_alloc_name(const char *name_str) |
| { |
| struct cgroup_name *name; |
| |
| name = kmalloc(sizeof(*name) + strlen(name_str) + 1, GFP_KERNEL); |
| if (!name) |
| return NULL; |
| strcpy(name->name, name_str); |
| return name; |
| } |
| |
| static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, |
| char *buf) |
| { |
| if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && |
| !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) |
| snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s", |
| cft->ss->name, cft->name); |
| else |
| strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX); |
| return buf; |
| } |
| |
| /** |
| * cgroup_file_mode - deduce file mode of a control file |
| * @cft: the control file in question |
| * |
| * returns cft->mode if ->mode is not 0 |
| * returns S_IRUGO|S_IWUSR if it has both a read and a write handler |
| * returns S_IRUGO if it has only a read handler |
| * returns S_IWUSR if it has only a write hander |
| */ |
| static umode_t cgroup_file_mode(const struct cftype *cft) |
| { |
| umode_t mode = 0; |
| |
| if (cft->mode) |
| return cft->mode; |
| |
| if (cft->read_u64 || cft->read_s64 || cft->seq_show) |
| mode |= S_IRUGO; |
| |
| if (cft->write_u64 || cft->write_s64 || cft->write_string || |
| cft->trigger) |
| mode |= S_IWUSR; |
| |
| return mode; |
| } |
| |
| static void cgroup_free_fn(struct work_struct *work) |
| { |
| struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work); |
| |
| mutex_lock(&cgroup_mutex); |
| cgrp->root->number_of_cgroups--; |
| mutex_unlock(&cgroup_mutex); |
| |
| /* |
| * We get a ref to the parent, and put the ref when this cgroup is |
| * being freed, so it's guaranteed that the parent won't be |
| * destroyed before its children. |
| */ |
| cgroup_put(cgrp->parent); |
| |
| /* put the root reference that we took when we created the cgroup */ |
| cgroup_put_root(cgrp->root); |
| |
| cgroup_pidlist_destroy_all(cgrp); |
| |
| kernfs_put(cgrp->kn); |
| |
| kfree(rcu_dereference_raw(cgrp->name)); |
| kfree(cgrp); |
| } |
| |
| static void cgroup_free_rcu(struct rcu_head *head) |
| { |
| struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head); |
| |
| INIT_WORK(&cgrp->destroy_work, cgroup_free_fn); |
| queue_work(cgroup_destroy_wq, &cgrp->destroy_work); |
| } |
| |
| static void cgroup_get(struct cgroup *cgrp) |
| { |
| WARN_ON_ONCE(cgroup_is_dead(cgrp)); |
| WARN_ON_ONCE(atomic_read(&cgrp->refcnt) <= 0); |
| atomic_inc(&cgrp->refcnt); |
| } |
| |
| static void cgroup_put(struct cgroup *cgrp) |
| { |
| if (!atomic_dec_and_test(&cgrp->refcnt)) |
| return; |
| if (WARN_ON_ONCE(!cgroup_is_dead(cgrp))) |
| return; |
| |
| /* |
| * XXX: cgrp->id is only used to look up css's. As cgroup and |
| * css's lifetimes will be decoupled, it should be made |
| * per-subsystem and moved to css->id so that lookups are |
| * successful until the target css is released. |
| */ |
| mutex_lock(&cgroup_mutex); |
| idr_remove(&cgrp->root->cgroup_idr, cgrp->id); |
| mutex_unlock(&cgroup_mutex); |
| cgrp->id = -1; |
| |
| call_rcu(&cgrp->rcu_head, cgroup_free_rcu); |
| } |
| |
| static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) |
| { |
| char name[CGROUP_FILE_NAME_MAX]; |
| |
| lockdep_assert_held(&cgroup_tree_mutex); |
| kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); |
| } |
| |
| /** |
| * cgroup_clear_dir - remove subsys files in a cgroup directory |
| * @cgrp: target cgroup |
| * @subsys_mask: mask of the subsystem ids whose files should be removed |
| */ |
| static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask) |
| { |
| struct cgroup_subsys *ss; |
| int i; |
| |
| for_each_subsys(ss, i) { |
| struct cftype *cfts; |
| |
| if (!test_bit(i, &subsys_mask)) |
| continue; |
| list_for_each_entry(cfts, &ss->cfts, node) |
| cgroup_addrm_files(cgrp, cfts, false); |
| } |
| } |
| |
| static int rebind_subsystems(struct cgroupfs_root *root, |
| unsigned long added_mask, unsigned removed_mask) |
| { |
| struct cgroup *cgrp = &root->top_cgroup; |
| struct cgroup_subsys *ss; |
| int i, ret; |
| |
| lockdep_assert_held(&cgroup_tree_mutex); |
| lockdep_assert_held(&cgroup_mutex); |
| |
| /* Check that any added subsystems are currently free */ |
| for_each_subsys(ss, i) |
| if ((added_mask & (1 << i)) && ss->root != &cgroup_dummy_root) |
| return -EBUSY; |
| |
| ret = cgroup_populate_dir(cgrp, added_mask); |
| if (ret) |
| return ret; |
| |
| /* |
| * Nothing can fail from this point on. Remove files for the |
| * removed subsystems and rebind each subsystem. |
| */ |
| mutex_unlock(&cgroup_mutex); |
| cgroup_clear_dir(cgrp, removed_mask); |
| mutex_lock(&cgroup_mutex); |
| |
| for_each_subsys(ss, i) { |
| unsigned long bit = 1UL << i; |
| |
| if (bit & added_mask) { |
| /* We're binding this subsystem to this hierarchy */ |
| BUG_ON(cgroup_css(cgrp, ss)); |
| BUG_ON(!cgroup_css(cgroup_dummy_top, ss)); |
| BUG_ON(cgroup_css(cgroup_dummy_top, ss)->cgroup != cgroup_dummy_top); |
| |
| rcu_assign_pointer(cgrp->subsys[i], |
| cgroup_css(cgroup_dummy_top, ss)); |
| cgroup_css(cgrp, ss)->cgroup = cgrp; |
| |
| ss->root = root; |
| if (ss->bind) |
| ss->bind(cgroup_css(cgrp, ss)); |
| |
| /* refcount was already taken, and we're keeping it */ |
| root->subsys_mask |= bit; |
| } else if (bit & removed_mask) { |
| /* We're removing this subsystem */ |
| BUG_ON(cgroup_css(cgrp, ss) != cgroup_css(cgroup_dummy_top, ss)); |
| BUG_ON(cgroup_css(cgrp, ss)->cgroup != cgrp); |
| |
| if (ss->bind) |
| ss->bind(cgroup_css(cgroup_dummy_top, ss)); |
| |
| cgroup_css(cgroup_dummy_top, ss)->cgroup = cgroup_dummy_top; |
| RCU_INIT_POINTER(cgrp->subsys[i], NULL); |
| |
| cgroup_subsys[i]->root = &cgroup_dummy_root; |
| root->subsys_mask &= ~bit; |
| } |
| } |
| |
| /* |
| * Mark @root has finished binding subsystems. @root->subsys_mask |
| * now matches the bound subsystems. |
| */ |
| root->flags |= CGRP_ROOT_SUBSYS_BOUND; |
| kernfs_activate(cgrp->kn); |
| |
| return 0; |
| } |
| |
| static int cgroup_show_options(struct seq_file *seq, |
| struct kernfs_root *kf_root) |
| { |
| struct cgroupfs_root *root = cgroup_root_from_kf(kf_root); |
| struct cgroup_subsys *ss; |
| int ssid; |
| |
| for_each_subsys(ss, ssid) |
| if (root->subsys_mask & (1 << ssid)) |
| seq_printf(seq, ",%s", ss->name); |
| if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) |
| seq_puts(seq, ",sane_behavior"); |
| if (root->flags & CGRP_ROOT_NOPREFIX) |
| seq_puts(seq, ",noprefix"); |
| if (root->flags & CGRP_ROOT_XATTR) |
| seq_puts(seq, ",xattr"); |
| |
| spin_lock(&release_agent_path_lock); |
| if (strlen(root->release_agent_path)) |
| seq_printf(seq, ",release_agent=%s", root->release_agent_path); |
| spin_unlock(&release_agent_path_lock); |
| |
| if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags)) |
| seq_puts(seq, ",clone_children"); |
| if (strlen(root->name)) |
| seq_printf(seq, ",name=%s", root->name); |
| return 0; |
| } |
| |
| struct cgroup_sb_opts { |
| unsigned long subsys_mask; |
| unsigned long flags; |
| char *release_agent; |
| bool cpuset_clone_children; |
| char *name; |
| /* User explicitly requested empty subsystem */ |
| bool none; |
| }; |
| |
| /* |
| * Convert a hierarchy specifier into a bitmask of subsystems and |
| * flags. Call with cgroup_mutex held to protect the cgroup_subsys[] |
| * array. This function takes refcounts on subsystems to be used, unless it |
| * returns error, in which case no refcounts are taken. |
| */ |
| static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts) |
| { |
| char *token, *o = data; |
| bool all_ss = false, one_ss = false; |
| unsigned long mask = (unsigned long)-1; |
| struct cgroup_subsys *ss; |
| int i; |
| |
| BUG_ON(!mutex_is_locked(&cgroup_mutex)); |
| |
| #ifdef CONFIG_CPUSETS |
| mask = ~(1UL << cpuset_cgrp_id); |
| #endif |
| |
| memset(opts, 0, sizeof(*opts)); |
| |
| while ((token = strsep(&o, ",")) != NULL) { |
| if (!*token) |
| return -EINVAL; |
| if (!strcmp(token, "none")) { |
| /* Explicitly have no subsystems */ |
| opts->none = true; |
| continue; |
| } |
| if (!strcmp(token, "all")) { |
| /* Mutually exclusive option 'all' + subsystem name */ |
| if (one_ss) |
| return -EINVAL; |
| all_ss = true; |
| continue; |
| } |
| if (!strcmp(token, "__DEVEL__sane_behavior")) { |
| opts->flags |= CGRP_ROOT_SANE_BEHAVIOR; |
| continue; |
| } |
| if (!strcmp(token, "noprefix")) { |
| opts->flags |= CGRP_ROOT_NOPREFIX; |
| continue; |
| } |
| if (!strcmp(token, "clone_children")) { |
| opts->cpuset_clone_children = true; |
| continue; |
| } |
| if (!strcmp(token, "xattr")) { |
| opts->flags |= CGRP_ROOT_XATTR; |
| continue; |
| } |
| if (!strncmp(token, "release_agent=", 14)) { |
| /* Specifying two release agents is forbidden */ |
| if (opts->release_agent) |
| return -EINVAL; |
| opts->release_agent = |
| kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL); |
| if (!opts->release_agent) |
| return -ENOMEM; |
| continue; |
| } |
| if (!strncmp(token, "name=", 5)) { |
| const char *name = token + 5; |
| /* Can't specify an empty name */ |
| if (!strlen(name)) |
| return -EINVAL; |
| /* Must match [\w.-]+ */ |
| for (i = 0; i < strlen(name); i++) { |
| char c = name[i]; |
| if (isalnum(c)) |
| continue; |
| if ((c == '.') || (c == '-') || (c == '_')) |
| continue; |
| return -EINVAL; |
| } |
| /* Specifying two names is forbidden */ |
| if (opts->name) |
| return -EINVAL; |
| opts->name = kstrndup(name, |
| MAX_CGROUP_ROOT_NAMELEN - 1, |
| GFP_KERNEL); |
| if (!opts->name) |
| return -ENOMEM; |
| |
| continue; |
| } |
| |
| for_each_subsys(ss, i) { |
| if (strcmp(token, ss->name)) |
| continue; |
| if (ss->disabled) |
| continue; |
| |
| /* Mutually exclusive option 'all' + subsystem name */ |
| if (all_ss) |
| return -EINVAL; |
| set_bit(i, &opts->subsys_mask); |
| one_ss = true; |
| |
| break; |
| } |
| if (i == CGROUP_SUBSYS_COUNT) |
| return -ENOENT; |
| } |
| |
| /* |
| * If the 'all' option was specified select all the subsystems, |
| * otherwise if 'none', 'name=' and a subsystem name options |
| * were not specified, let's default to 'all' |
| */ |
| if (all_ss || (!one_ss && !opts->none && !opts->name)) |
| for_each_subsys(ss, i) |
| if (!ss->disabled) |
| set_bit(i, &opts->subsys_mask); |
| |
| /* Consistency checks */ |
| |
| if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) { |
| pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n"); |
| |
| if (opts->flags & CGRP_ROOT_NOPREFIX) { |
| pr_err("cgroup: sane_behavior: noprefix is not allowed\n"); |
| return -EINVAL; |
| } |
| |
| if (opts->cpuset_clone_children) { |
| pr_err("cgroup: sane_behavior: clone_children is not allowed\n"); |
| return -EINVAL; |
| } |
| |
| if (opts->flags & CGRP_ROOT_XATTR) |
| pr_warning("cgroup: sane_behavior: xattr is always available, flag unnecessary\n"); |
| } |
| |
| /* |
| * Option noprefix was introduced just for backward compatibility |
| * with the old cpuset, so we allow noprefix only if mounting just |
| * the cpuset subsystem. |
| */ |
| if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask)) |
| return -EINVAL; |
| |
| |
| /* Can't specify "none" and some subsystems */ |
| if (opts->subsys_mask && opts->none) |
| return -EINVAL; |
| |
| /* |
| * We either have to specify by name or by subsystems. (So all |
| * empty hierarchies must have a name). |
| */ |
| if (!opts->subsys_mask && !opts->name) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data) |
| { |
| int ret = 0; |
| struct cgroupfs_root *root = cgroup_root_from_kf(kf_root); |
| struct cgroup_sb_opts opts; |
| unsigned long added_mask, removed_mask; |
| |
| if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) { |
| pr_err("cgroup: sane_behavior: remount is not allowed\n"); |
| return -EINVAL; |
| } |
| |
| mutex_lock(&cgroup_tree_mutex); |
| mutex_lock(&cgroup_mutex); |
| |
| /* See what subsystems are wanted */ |
| ret = parse_cgroupfs_options(data, &opts); |
| if (ret) |
| goto out_unlock; |
| |
| if (opts.subsys_mask != root->subsys_mask || opts.release_agent) |
| pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n", |
| task_tgid_nr(current), current->comm); |
| |
| added_mask = opts.subsys_mask & ~root->subsys_mask; |
| removed_mask = root->subsys_mask & ~opts.subsys_mask; |
| |
| /* Don't allow flags or name to change at remount */ |
| if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) || |
| (opts.name && strcmp(opts.name, root->name))) { |
| pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n", |
| opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "", |
| root->flags & CGRP_ROOT_OPTION_MASK, root->name); |
| ret = -EINVAL; |
| goto out_unlock; |
| } |
| |
| /* remounting is not allowed for populated hierarchies */ |
| if (root->number_of_cgroups > 1) { |
| ret = -EBUSY; |
| goto out_unlock; |
| } |
| |
| ret = rebind_subsystems(root, added_mask, removed_mask); |
| if (ret) |
| goto out_unlock; |
| |
| if (opts.release_agent) { |
| spin_lock(&release_agent_path_lock); |
| strcpy(root->release_agent_path, opts.release_agent); |
| spin_unlock(&release_agent_path_lock); |
| } |
| out_unlock: |
| kfree(opts.release_agent); |
| kfree(opts.name); |
| mutex_unlock(&cgroup_mutex); |
| mutex_unlock(&cgroup_tree_mutex); |
| return ret; |
| } |
| |
| static void init_cgroup_housekeeping(struct cgroup *cgrp) |
| { |
| atomic_set(&cgrp->refcnt, 1); |
| INIT_LIST_HEAD(&cgrp->sibling); |
| INIT_LIST_HEAD(&cgrp->children); |
| INIT_LIST_HEAD(&cgrp->cset_links); |
| INIT_LIST_HEAD(&cgrp->release_list); |
| INIT_LIST_HEAD(&cgrp->pidlists); |
| mutex_init(&cgrp->pidlist_mutex); |
| cgrp->dummy_css.cgroup = cgrp; |
| } |
| |
| static void init_cgroup_root(struct cgroupfs_root *root) |
| { |
| struct cgroup *cgrp = &root->top_cgroup; |
| |
| atomic_set(&root->refcnt, 1); |
| INIT_LIST_HEAD(&root->root_list); |
| root->number_of_cgroups = 1; |
| cgrp->root = root; |
| RCU_INIT_POINTER(cgrp->name, &root_cgroup_name); |
| init_cgroup_housekeeping(cgrp); |
| idr_init(&root->cgroup_idr); |
| } |
| |
| static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts) |
| { |
| struct cgroupfs_root *root; |
| |
| if (!opts->subsys_mask && !opts->none) |
| return ERR_PTR(-EINVAL); |
| |
| root = kzalloc(sizeof(*root), GFP_KERNEL); |
| if (!root) |
| return ERR_PTR(-ENOMEM); |
| |
| init_cgroup_root(root); |
| |
| /* |
| * We need to set @root->subsys_mask now so that @root can be |
| * matched by cgroup_test_super() before it finishes |
| * initialization; otherwise, competing mounts with the same |
| * options may try to bind the same subsystems instead of waiting |
| * for the first one leading to unexpected mount errors. |
| * SUBSYS_BOUND will be set once actual binding is complete. |
| */ |
| root->subsys_mask = opts->subsys_mask; |
| root->flags = opts->flags; |
| if (opts->release_agent) |
| strcpy(root->release_agent_path, opts->release_agent); |
| if (opts->name) |
| strcpy(root->name, opts->name); |
| if (opts->cpuset_clone_children) |
| set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags); |
| return root; |
| } |
| |
| static int cgroup_setup_root(struct cgroupfs_root *root) |
| { |
| LIST_HEAD(tmp_links); |
| struct cgroup *root_cgrp = &root->top_cgroup; |
| struct css_set *cset; |
| int i, ret; |
| |
| lockdep_assert_held(&cgroup_tree_mutex); |
| lockdep_assert_held(&cgroup_mutex); |
| |
| ret = idr_alloc(&root->cgroup_idr, root_cgrp, 0, 1, GFP_KERNEL); |
| if (ret < 0) |
| goto out; |
| root_cgrp->id = ret; |
| |
| /* |
| * We're accessing css_set_count without locking css_set_lock here, |
| * but that's OK - it can only be increased by someone holding |
| * cgroup_lock, and that's us. The worst that can happen is that we |
| * have some link structures left over |
| */ |
| ret = allocate_cgrp_cset_links(css_set_count, &tmp_links); |
| if (ret) |
| goto out; |
| |
| /* ID 0 is reserved for dummy root, 1 for unified hierarchy */ |
| ret = cgroup_init_root_id(root, 2, 0); |
| if (ret) |
| goto out; |
| |
| root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops, |
| KERNFS_ROOT_CREATE_DEACTIVATED, |
| root_cgrp); |
| if (IS_ERR(root->kf_root)) { |
| ret = PTR_ERR(root->kf_root); |
| goto exit_root_id; |
| } |
| root_cgrp->kn = root->kf_root->kn; |
| |
| ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true); |
| if (ret) |
| goto destroy_root; |
| |
| ret = rebind_subsystems(root, root->subsys_mask, 0); |
| if (ret) |
| goto destroy_root; |
| |
| /* |
| * There must be no failure case after here, since rebinding takes |
| * care of subsystems' refcounts, which are explicitly dropped in |
| * the failure exit path. |
| */ |
| list_add(&root->root_list, &cgroup_roots); |
| cgroup_root_count++; |
| |
| /* |
| * Link the top cgroup in this hierarchy into all the css_set |
| * objects. |
| */ |
| write_lock(&css_set_lock); |
| hash_for_each(css_set_table, i, cset, hlist) |
| link_css_set(&tmp_links, cset, root_cgrp); |
| write_unlock(&css_set_lock); |
| |
| BUG_ON(!list_empty(&root_cgrp->children)); |
| BUG_ON(root->number_of_cgroups != 1); |
| |
| kernfs_activate(root_cgrp->kn); |
| ret = 0; |
| goto out; |
| |
| destroy_root: |
| kernfs_destroy_root(root->kf_root); |
| root->kf_root = NULL; |
| exit_root_id: |
| cgroup_exit_root_id(root); |
| out: |
| free_cgrp_cset_links(&tmp_links); |
| return ret; |
| } |
| |
| static struct dentry *cgroup_mount(struct file_system_type *fs_type, |
| int flags, const char *unused_dev_name, |
| void *data) |
| { |
| struct cgroupfs_root *root; |
| struct cgroup_sb_opts opts; |
| struct dentry *dentry; |
| int ret; |
| |
| mutex_lock(&cgroup_tree_mutex); |
| mutex_lock(&cgroup_mutex); |
| |
| /* First find the desired set of subsystems */ |
| ret = parse_cgroupfs_options(data, &opts); |
| if (ret) |
| goto out_unlock; |
| |
| /* look for a matching existing root */ |
| for_each_active_root(root) { |
| bool name_match = false; |
| |
| /* |
| * If we asked for a name then it must match. Also, if |
| * name matches but sybsys_mask doesn't, we should fail. |
| * Remember whether name matched. |
| */ |
| if (opts.name) { |
| if (strcmp(opts.name, root->name)) |
| continue; |
| name_match = true; |
| } |
| |
| /* |
| * If we asked for subsystems (or explicitly for no |
| * subsystems) then they must match. |
| */ |
| if ((opts.subsys_mask || opts.none) && |
| (opts.subsys_mask != root->subsys_mask)) { |
| if (!name_match) |
| continue; |
| ret = -EBUSY; |
| goto out_unlock; |
| } |
| |
| if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) { |
| if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) { |
| pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n"); |
| ret = -EINVAL; |
| goto out_unlock; |
| } else { |
| pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n"); |
| } |
| } |
| |
| cgroup_get_root(root); |
| goto out_unlock; |
| } |
| |
| /* no such thing, create a new one */ |
| root = cgroup_root_from_opts(&opts); |
| if (IS_ERR(root)) { |
| ret = PTR_ERR(root); |
| goto out_unlock; |
| } |
| |
| ret = cgroup_setup_root(root); |
| if (ret) |
| cgroup_free_root(root); |
| |
| out_unlock: |
| mutex_unlock(&cgroup_mutex); |
| mutex_unlock(&cgroup_tree_mutex); |
| |
| kfree(opts.release_agent); |
| kfree(opts.name); |
| |
| if (ret) |
| return ERR_PTR(ret); |
| |
| dentry = kernfs_mount(fs_type, flags, root->kf_root); |
| if (IS_ERR(dentry)) |
| cgroup_put_root(root); |
| return dentry; |
| } |
| |
| static void cgroup_kill_sb(struct super_block *sb) |
| { |
| struct kernfs_root *kf_root = kernfs_root_from_sb(sb); |
| struct cgroupfs_root *root = cgroup_root_from_kf(kf_root); |
| |
| cgroup_put_root(root); |
| kernfs_kill_sb(sb); |
| } |
| |
| static struct file_system_type cgroup_fs_type = { |
| .name = "cgroup", |
| .mount = cgroup_mount, |
| .kill_sb = cgroup_kill_sb, |
| }; |
| |
| static struct kobject *cgroup_kobj; |
| |
| /** |
| * cgroup_path - generate the path of a cgroup |
| * @cgrp: the cgroup in question |
| * @buf: the buffer to write the path into |
| * @buflen: the length of the buffer |
| * |
| * Writes path of cgroup into buf. Returns 0 on success, -errno on error. |
| * |
| * We can't generate cgroup path using dentry->d_name, as accessing |
| * dentry->name must be protected by irq-unsafe dentry->d_lock or parent |
| * inode's i_mutex, while on the other hand cgroup_path() can be called |
| * with some irq-safe spinlocks held. |
| */ |
| int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen) |
| { |
| int ret = -ENAMETOOLONG; |
| char *start; |
| |
| if (!cgrp->parent) { |
| if (strlcpy(buf, "/", buflen) >= buflen) |
| return -ENAMETOOLONG; |
| return 0; |
| } |
| |
| start = buf + buflen - 1; |
| *start = '\0'; |
| |
| rcu_read_lock(); |
| do { |
| const char *name = cgroup_name(cgrp); |
| int len; |
| |
| len = strlen(name); |
| if ((start -= len) < buf) |
| goto out; |
| memcpy(start, name, len); |
| |
| if (--start < buf) |
| goto out; |
| *start = '/'; |
| |
| cgrp = cgrp->parent; |
| } while (cgrp->parent); |
| ret = 0; |
| memmove(buf, start, buf + buflen - start); |
| out: |
| rcu_read_unlock(); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(cgroup_path); |
| |
| /** |
| * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy |
| * @task: target task |
| * @buf: the buffer to write the path into |
| * @buflen: the length of the buffer |
| * |
| * Determine @task's cgroup on the first (the one with the lowest non-zero |
| * hierarchy_id) cgroup hierarchy and copy its path into @buf. This |
| * function grabs cgroup_mutex and shouldn't be used inside locks used by |
| * cgroup controller callbacks. |
| * |
| * Returns 0 on success, fails with -%ENAMETOOLONG if @buflen is too short. |
| */ |
| int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) |
| { |
| struct cgroupfs_root *root; |
| struct cgroup *cgrp; |
| int hierarchy_id = 1, ret = 0; |
| |
| if (buflen < 2) |
| return -ENAMETOOLONG; |
| |
| mutex_lock(&cgroup_mutex); |
| |
| root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); |
| |
| if (root) { |
| cgrp = task_cgroup_from_root(task, root); |
| ret = cgroup_path(cgrp, buf, buflen); |
| } else { |
| /* if no hierarchy exists, everyone is in "/" */ |
| memcpy(buf, "/", 2); |
| } |
| |
| mutex_unlock(&cgroup_mutex); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(task_cgroup_path); |
| |
| /* |
| * Control Group taskset |
| */ |
| struct task_and_cgroup { |
| struct task_struct *task; |
| struct cgroup *cgrp; |
| struct css_set *cset; |
| }; |
| |
| struct cgroup_taskset { |
| struct task_and_cgroup single; |
| struct flex_array *tc_array; |
| int tc_array_len; |
| int idx; |
| struct cgroup *cur_cgrp; |
| }; |
| |
| /** |
| * cgroup_taskset_first - reset taskset and return the first task |
| * @tset: taskset of interest |
| * |
| * @tset iteration is initialized and the first task is returned. |
| */ |
| struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset) |
| { |
| if (tset->tc_array) { |
| tset->idx = 0; |
| return cgroup_taskset_next(tset); |
| } else { |
| tset->cur_cgrp = tset->single.cgrp; |
| return tset->single.task; |
| } |
| } |
| EXPORT_SYMBOL_GPL(cgroup_taskset_first); |
| |
| /** |
| * cgroup_taskset_next - iterate to the next task in taskset |
| * @tset: taskset of interest |
| * |
| * Return the next task in @tset. Iteration must have been initialized |
| * with cgroup_taskset_first(). |
| */ |
| struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset) |
| { |
| struct task_and_cgroup *tc; |
| |
| if (!tset->tc_array || tset->idx >= tset->tc_array_len) |
| return NULL; |
| |
| tc = flex_array_get(tset->tc_array, tset->idx++); |
| tset->cur_cgrp = tc->cgrp; |
| return tc->task; |
| } |
| EXPORT_SYMBOL_GPL(cgroup_taskset_next); |
| |
| /** |
| * cgroup_taskset_cur_css - return the matching css for the current task |
| * @tset: taskset of interest |
| * @subsys_id: the ID of the target subsystem |
| * |
| * Return the css for the current (last returned) task of @tset for |
| * subsystem specified by @subsys_id. This function must be preceded by |
| * either cgroup_taskset_first() or cgroup_taskset_next(). |
| */ |
| struct cgroup_subsys_state *cgroup_taskset_cur_css(struct cgroup_taskset *tset, |
| int subsys_id) |
| { |
| return cgroup_css(tset->cur_cgrp, cgroup_subsys[subsys_id]); |
| } |
| EXPORT_SYMBOL_GPL(cgroup_taskset_cur_css); |
| |
| /** |
| * cgroup_taskset_size - return the number of tasks in taskset |
| * @tset: taskset of interest |
| */ |
| int cgroup_taskset_size(struct cgroup_taskset *tset) |
| { |
| return tset->tc_array ? tset->tc_array_len : 1; |
| } |
| EXPORT_SYMBOL_GPL(cgroup_taskset_size); |
| |
| |
| /* |
| * cgroup_task_migrate - move a task from one cgroup to another. |
| * |
| * Must be called with cgroup_mutex and threadgroup locked. |
| */ |
| static void cgroup_task_migrate(struct cgroup *old_cgrp, |
| struct task_struct *tsk, |
| struct css_set *new_cset) |
| { |
| struct css_set *old_cset; |
| |
| /* |
| * We are synchronized through threadgroup_lock() against PF_EXITING |
| * setting such that we can't race against cgroup_exit() changing the |
| * css_set to init_css_set and dropping the old one. |
| */ |
| WARN_ON_ONCE(tsk->flags & PF_EXITING); |
| old_cset = task_css_set(tsk); |
| |
| task_lock(tsk); |
| rcu_assign_pointer(tsk->cgroups, new_cset); |
| task_unlock(tsk); |
| |
| /* Update the css_set linked lists if we're using them */ |
| write_lock(&css_set_lock); |
| if (!list_empty(&tsk->cg_list)) |
| list_move(&tsk->cg_list, &new_cset->tasks); |
| write_unlock(&css_set_lock); |
| |
| /* |
| * We just gained a reference on old_cset by taking it from the |
| * task. As trading it for new_cset is protected by cgroup_mutex, |
| * we're safe to drop it here; it will be freed under RCU. |
| */ |
| set_bit(CGRP_RELEASABLE, &old_cgrp->flags); |
| put_css_set(old_cset); |
| } |
| |
| /** |
| * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup |
| * @cgrp: the cgroup to attach to |
| * @tsk: the task or the leader of the threadgroup to be attached |
| * @threadgroup: attach the whole threadgroup? |
| * |
| * Call holding cgroup_mutex and the group_rwsem of the leader. Will take |
| * task_lock of @tsk or each thread in the threadgroup individually in turn. |
| */ |
| static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk, |
| bool threadgroup) |
| { |
| int retval, i, group_size; |
| struct cgroupfs_root *root = cgrp->root; |
| struct cgroup_subsys_state *css, *failed_css = NULL; |
| /* threadgroup list cursor and array */ |
| struct task_struct *leader = tsk; |
| struct task_and_cgroup *tc; |
| struct flex_array *group; |
| struct cgroup_taskset tset = { }; |
| |
| /* |
| * step 0: in order to do expensive, possibly blocking operations for |
| * every thread, we cannot iterate the thread group list, since it needs |
| * rcu or tasklist locked. instead, build an array of all threads in the |
| * group - group_rwsem prevents new threads from appearing, and if |
| * threads exit, this will just be an over-estimate. |
| */ |
| if (threadgroup) |
| group_size = get_nr_threads(tsk); |
| else |
| group_size = 1; |
| /* flex_array supports very large thread-groups better than kmalloc. */ |
| group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL); |
| if (!group) |
| return -ENOMEM; |
| /* pre-allocate to guarantee space while iterating in rcu read-side. */ |
| retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL); |
| if (retval) |
| goto out_free_group_list; |
| |
| i = 0; |
| /* |
| * Prevent freeing of tasks while we take a snapshot. Tasks that are |
| * already PF_EXITING could be freed from underneath us unless we |
| * take an rcu_read_lock. |
| */ |
| rcu_read_lock(); |
| do { |
| struct task_and_cgroup ent; |
| |
| /* @tsk either already exited or can't exit until the end */ |
| if (tsk->flags & PF_EXITING) |
| goto next; |
| |
| /* as per above, nr_threads may decrease, but not increase. */ |
| BUG_ON(i >= group_size); |
| ent.task = tsk; |
| ent.cgrp = task_cgroup_from_root(tsk, root); |
| /* nothing to do if this task is already in the cgroup */ |
| if (ent.cgrp == cgrp) |
| goto next; |
| /* |
| * saying GFP_ATOMIC has no effect here because we did prealloc |
| * earlier, but it's good form to communicate our expectations. |
| */ |
| retval = flex_array_put(group, i, &ent, GFP_ATOMIC); |
| BUG_ON(retval != 0); |
| i++; |
| next: |
| if (!threadgroup) |
| break; |
| } while_each_thread(leader, tsk); |
| rcu_read_unlock(); |
| /* remember the number of threads in the array for later. */ |
| group_size = i; |
| tset.tc_array = group; |
| tset.tc_array_len = group_size; |
| |
| /* methods shouldn't be called if no task is actually migrating */ |
| retval = 0; |
| if (!group_size) |
| goto out_free_group_list; |
| |
| /* |
| * step 1: check that we can legitimately attach to the cgroup. |
| */ |
| for_each_css(css, i, cgrp) { |
| if (css->ss->can_attach) { |
| retval = css->ss->can_attach(css, &tset); |
| if (retval) { |
| failed_css = css; |
| goto out_cancel_attach; |
| } |
| } |
| } |
| |
| /* |
| * step 2: make sure css_sets exist for all threads to be migrated. |
| * we use find_css_set, which allocates a new one if necessary. |
| */ |
| for (i = 0; i < group_size; i++) { |
| struct css_set *old_cset; |
| |
| tc = flex_array_get(group, i); |
| old_cset = task_css_set(tc->task); |
| tc->cset = find_css_set(old_cset, cgrp); |
| if (!tc->cset) { |
| retval = -ENOMEM; |
| goto out_put_css_set_refs; |
| } |
| } |
| |
| /* |
| * step 3: now that we're guaranteed success wrt the css_sets, |
| * proceed to move all tasks to the new cgroup. There are no |
| * failure cases after here, so this is the commit point. |
| */ |
| for (i = 0; i < group_size; i++) { |
| tc = flex_array_get(group, i); |
| cgroup_task_migrate(tc->cgrp, tc->task, tc->cset); |
| } |
| /* nothing is sensitive to fork() after this point. */ |
| |
| /* |
| * step 4: do subsystem attach callbacks. |
| */ |
| for_each_css(css, i, cgrp) |
| if (css->ss->attach) |
| css->ss->attach(css, &tset); |
| |
| /* |
| * step 5: success! and cleanup |
| */ |
| retval = 0; |
| out_put_css_set_refs: |
| if (retval) { |
| for (i = 0; i < group_size; i++) { |
| tc = flex_array_get(group, i); |
| if (!tc->cset) |
| break; |
| put_css_set(tc->cset); |
| } |
| } |
| out_cancel_attach: |
| if (retval) { |
| for_each_css(css, i, cgrp) { |
| if (css == failed_css) |
| break; |
| if (css->ss->cancel_attach) |
| css->ss->cancel_attach(css, &tset); |
| } |
| } |
| out_free_group_list: |
| flex_array_free(group); |
| return retval; |
| } |
| |
| /* |
| * Find the task_struct of the task to attach by vpid and pass it along to the |
| * function to attach either it or all tasks in its threadgroup. Will lock |
| * cgroup_mutex and threadgroup; may take task_lock of task. |
| */ |
| static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup) |
| { |
| struct task_struct *tsk; |
| const struct cred *cred = current_cred(), *tcred; |
| int ret; |
| |
| if (!cgroup_lock_live_group(cgrp)) |
| return -ENODEV; |
| |
| retry_find_task: |
| rcu_read_lock(); |
| if (pid) { |
| tsk = find_task_by_vpid(pid); |
| if (!tsk) { |
| rcu_read_unlock(); |
| ret = -ESRCH; |
| goto out_unlock_cgroup; |
| } |
| /* |
| * even if we're attaching all tasks in the thread group, we |
| * only need to check permissions on one of them. |
| */ |
| tcred = __task_cred(tsk); |
| if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && |
| !uid_eq(cred->euid, tcred->uid) && |
| !uid_eq(cred->euid, tcred->suid)) { |
| rcu_read_unlock(); |
| ret = -EACCES; |
| goto out_unlock_cgroup; |
| } |
| } else |
| tsk = current; |
| |
| if (threadgroup) |
| tsk = tsk->group_leader; |
| |
| /* |
| * Workqueue threads may acquire PF_NO_SETAFFINITY and become |
| * trapped in a cpuset, or RT worker may be born in a cgroup |
| * with no rt_runtime allocated. Just say no. |
| */ |
| if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) { |
| ret = -EINVAL; |
| rcu_read_unlock(); |
| goto out_unlock_cgroup; |
| } |
| |
| get_task_struct(tsk); |
| rcu_read_unlock(); |
| |
| threadgroup_lock(tsk); |
| if (threadgroup) { |
| if (!thread_group_leader(tsk)) { |
| /* |
| * a race with de_thread from another thread's exec() |
| * may strip us of our leadership, if this happens, |
| * there is no choice but to throw this task away and |
| * try again; this is |
| * "double-double-toil-and-trouble-check locking". |
| */ |
| threadgroup_unlock(tsk); |
| put_task_struct(tsk); |
| goto retry_find_task; |
| } |
| } |
| |
| ret = cgroup_attach_task(cgrp, tsk, threadgroup); |
| |
| threadgroup_unlock(tsk); |
| |
| put_task_struct(tsk); |
| out_unlock_cgroup: |
| mutex_unlock(&cgroup_mutex); |
| return ret; |
| } |
| |
| /** |
| * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' |
| * @from: attach to all cgroups of a given task |
| * @tsk: the task to be attached |
| */ |
| int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) |
| { |
| struct cgroupfs_root *root; |
| int retval = 0; |
| |
| mutex_lock(&cgroup_mutex); |
| for_each_active_root(root) { |
| struct cgroup *from_cgrp = task_cgroup_from_root(from, root); |
| |
| retval = cgroup_attach_task(from_cgrp, tsk, false); |
| if (retval) |
| break; |
| } |
| mutex_unlock(&cgroup_mutex); |
| |
| return retval; |
| } |
| EXPORT_SYMBOL_GPL(cgroup_attach_task_all); |
| |
| static int cgroup_tasks_write(struct cgroup_subsys_state *css, |
| struct cftype *cft, u64 pid) |
| { |
| return attach_task_by_pid(css->cgroup, pid, false); |
| } |
| |
| static int cgroup_procs_write(struct cgroup_subsys_state *css, |
| struct cftype *cft, u64 tgid) |
| { |
| return attach_task_by_pid(css->cgroup, tgid, true); |
| } |
| |
| static int cgroup_release_agent_write(struct cgroup_subsys_state *css, |
| struct cftype *cft, const char *buffer) |
| { |
| struct cgroupfs_root *root = css->cgroup->root; |
| |
| BUILD_BUG_ON(sizeof(root->release_agent_path) < PATH_MAX); |
| if (!cgroup_lock_live_group(css->cgroup)) |
| return -ENODEV; |
| spin_lock(&release_agent_path_lock); |
| strlcpy(root->release_agent_path, buffer, |
| sizeof(root->release_agent_path)); |
| spin_unlock(&release_agent_path_lock); |
| mutex_unlock(&cgroup_mutex); |
| return 0; |
| } |
| |
| static int cgroup_release_agent_show(struct seq_file *seq, void *v) |
| { |
| struct cgroup *cgrp = seq_css(seq)->cgroup; |
| |
| if (!cgroup_lock_live_group(cgrp)) |
| return -ENODEV; |
| seq_puts(seq, cgrp->root->release_agent_path); |
| seq_putc(seq, '\n'); |
| mutex_unlock(&cgroup_mutex); |
| return 0; |
| } |
| |
| static int cgroup_sane_behavior_show(struct seq_file *seq, void *v) |
| { |
| struct cgroup *cgrp = seq_css(seq)->cgroup; |
| |
| seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp)); |
| return 0; |
| } |
| |
| static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, |
| size_t nbytes, loff_t off) |
| { |
| struct cgroup *cgrp = of->kn->parent->priv; |
| struct cftype *cft = of->kn->priv; |
| struct cgroup_subsys_state *css; |
| int ret; |
| |
| /* |
| * kernfs guarantees that a file isn't deleted with operations in |
| * flight, which means that the matching css is and stays alive and |
| * doesn't need to be pinned. The RCU locking is not necessary |
| * either. It's just for the convenience of using cgroup_css(). |
| */ |
| rcu_read_lock(); |
| css = cgroup_css(cgrp, cft->ss); |
| rcu_read_unlock(); |
| |
| if (cft->write_string) { |
| ret = cft->write_string(css, cft, strstrip(buf)); |
| } else if (cft->write_u64) { |
| unsigned long long v; |
| ret = kstrtoull(buf, 0, &v); |
| if (!ret) |
| ret = cft->write_u64(css, cft, v); |
| } else if (cft->write_s64) { |
| long long v; |
| ret = kstrtoll(buf, 0, &v); |
| if (!ret) |
| ret = cft->write_s64(css, cft, v); |
| } else if (cft->trigger) { |
| ret = cft->trigger(css, (unsigned int)cft->private); |
| } else { |
| ret = -EINVAL; |
| } |
| |
| return ret ?: nbytes; |
| } |
| |
| static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) |
| { |
| return seq_cft(seq)->seq_start(seq, ppos); |
| } |
| |
| static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) |
| { |
| return seq_cft(seq)->seq_next(seq, v, ppos); |
| } |
| |
| static void cgroup_seqfile_stop(struct seq_file *seq, void *v) |
| { |
| seq_cft(seq)->seq_stop(seq, v); |
| } |
| |
| static int cgroup_seqfile_show(struct seq_file *m, void *arg) |
| { |
| struct cftype *cft = seq_cft(m); |
| struct cgroup_subsys_state *css = seq_css(m); |
| |
| if (cft->seq_show) |
| return cft->seq_show(m, arg); |
| |
| if (cft->read_u64) |
| seq_printf(m, "%llu\n", cft->read_u64(css, cft)); |
| else if (cft->read_s64) |
| seq_printf(m, "%lld\n", cft->read_s64(css, cft)); |
| else |
| return -EINVAL; |
| return 0; |
| } |
| |
| static struct kernfs_ops cgroup_kf_single_ops = { |
| .atomic_write_len = PAGE_SIZE, |
| .write = cgroup_file_write, |
| .seq_show = cgroup_seqfile_show, |
| }; |
| |
| static struct kernfs_ops cgroup_kf_ops = { |
| .atomic_write_len = PAGE_SIZE, |
| .write = cgroup_file_write, |
| .seq_start = cgroup_seqfile_start, |
| .seq_next = cgroup_seqfile_next, |
| .seq_stop = cgroup_seqfile_stop, |
| .seq_show = cgroup_seqfile_show, |
| }; |
| |
| /* |
| * cgroup_rename - Only allow simple rename of directories in place. |
| */ |
| static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, |
| const char *new_name_str) |
| { |
| struct cgroup *cgrp = kn->priv; |
| struct cgroup_name *name, *old_name; |
| int ret; |
| |
| if (kernfs_type(kn) != KERNFS_DIR) |
| return -ENOTDIR; |
| if (kn->parent != new_parent) |
| return -EIO; |
| |
| /* |
| * This isn't a proper migration and its usefulness is very |
| * limited. Disallow if sane_behavior. |
| */ |
| if (cgroup_sane_behavior(cgrp)) |
| return -EPERM; |
| |
| name = cgroup_alloc_name(new_name_str); |
| if (!name) |
| return -ENOMEM; |
| |
| mutex_lock(&cgroup_tree_mutex); |
| mutex_lock(&cgroup_mutex); |
| |
| ret = kernfs_rename(kn, new_parent, new_name_str); |
| if (!ret) { |
| old_name = rcu_dereference_protected(cgrp->name, true); |
| rcu_assign_pointer(cgrp->name, name); |
| } else { |
| old_name = name; |
| } |
| |
| mutex_unlock(&cgroup_mutex); |
| mutex_unlock(&cgroup_tree_mutex); |
| |
| kfree_rcu(old_name, rcu_head); |
| return ret; |
| } |
| |
| static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft) |
| { |
| char name[CGROUP_FILE_NAME_MAX]; |
| struct kernfs_node *kn; |
| struct lock_class_key *key = NULL; |
| |
| #ifdef CONFIG_DEBUG_LOCK_ALLOC |
| key = &cft->lockdep_key; |
| #endif |
| kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), |
| cgroup_file_mode(cft), 0, cft->kf_ops, cft, |
| NULL, false, key); |
| if (IS_ERR(kn)) |
| return PTR_ERR(kn); |
| return 0; |
| } |
| |
| /** |
| * cgroup_addrm_files - add or remove files to a cgroup directory |
| * @cgrp: the target cgroup |
| * @cfts: array of cftypes to be added |
| * @is_add: whether to add or remove |
| * |
| * Depending on @is_add, add or remove files defined by @cfts on @cgrp. |
| * For removals, this function never fails. If addition fails, this |
| * function doesn't remove files already added. The caller is responsible |
| * for cleaning up. |
| */ |
| static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[], |
| bool is_add) |
| { |
| struct cftype *cft; |
| int ret; |
| |
| lockdep_assert_held(&cgroup_tree_mutex); |
| |
| for (cft = cfts; cft->name[0] != '\0'; cft++) { |
| /* does cft->flags tell us to skip this file on @cgrp? */ |
| if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp)) |
| continue; |
| if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent) |
| continue; |
| if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent) |
| continue; |
| |
| if (is_add) { |
| ret = cgroup_add_file(cgrp, cft); |
| if (ret) { |
| pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n", |
| cft->name, ret); |
| return ret; |
| } |
| } else { |
| cgroup_rm_file(cgrp, cft); |
| } |
| } |
| return 0; |
| } |
| |
| static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) |
| { |
| LIST_HEAD(pending); |
| struct cgroup_subsys *ss = cfts[0].ss; |
| struct cgroup *root = &ss->root->top_cgroup; |
| struct cgroup_subsys_state *css; |
| int ret = 0; |
| |
| lockdep_assert_held(&cgroup_tree_mutex); |
| |
| /* don't bother if @ss isn't attached */ |
| if (ss->root == &cgroup_dummy_root) |
| return 0; |
| |
| /* add/rm files for all cgroups created before */ |
| css_for_each_descendant_pre(css, cgroup_css(root, ss)) { |
| struct cgroup *cgrp = css->cgroup; |
| |
| if (cgroup_is_dead(cgrp)) |
| continue; |
| |
| ret = cgroup_addrm_files(cgrp, cfts, is_add); |
| if (ret) |
| break; |
| } |
| |
| if (is_add && !ret) |
| kernfs_activate(root->kn); |
| return ret; |
| } |
| |
| static void cgroup_exit_cftypes(struct cftype *cfts) |
| { |
| struct cftype *cft; |
| |
| for (cft = cfts; cft->name[0] != '\0'; cft++) { |
| /* free copy for custom atomic_write_len, see init_cftypes() */ |
| if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) |
| kfree(cft->kf_ops); |
| cft->kf_ops = NULL; |
| cft->ss = NULL; |
| } |
| } |
| |
| static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) |
| { |
| struct cftype *cft; |
| |
| for (cft = cfts; cft->name[0] != '\0'; cft++) { |
| struct kernfs_ops *kf_ops; |
| |
| WARN_ON(cft->ss || cft->kf_ops); |
| |
| if (cft->seq_start) |
| kf_ops = &cgroup_kf_ops; |
| else |
| kf_ops = &cgroup_kf_single_ops; |
| |
| /* |
| * Ugh... if @cft wants a custom max_write_len, we need to |
| * make a copy of kf_ops to set its atomic_write_len. |
| */ |
| if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { |
| kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); |
| if (!kf_ops) { |
| cgroup_exit_cftypes(cfts); |
| return -ENOMEM; |
| } |
| kf_ops->atomic_write_len = cft->max_write_len; |
| } |
| |
| cft->kf_ops = kf_ops; |
| cft->ss = ss; |
| } |
| |
| return 0; |
| } |
| |
| static int cgroup_rm_cftypes_locked(struct cftype *cfts) |
| { |
| lockdep_assert_held(&cgroup_tree_mutex); |
| |
| if (!cfts || !cfts[0].ss) |
| return -ENOENT; |
| |
| list_del(&cfts->node); |
| cgroup_apply_cftypes(cfts, false); |
| cgroup_exit_cftypes(cfts); |
| return 0; |
| } |
| |
| /** |
| * cgroup_rm_cftypes - remove an array of cftypes from a subsystem |
| * @cfts: zero-length name terminated array of cftypes |
| * |
| * Unregister @cfts. Files described by @cfts are removed from all |
| * existing cgroups and all future cgroups won't have them either. This |
| * function can be called anytime whether @cfts' subsys is attached or not. |
| * |
| * Returns 0 on successful unregistration, -ENOENT if @cfts is not |
| * registered. |
| */ |
| int cgroup_rm_cftypes(struct cftype *cfts) |
| { |
| int ret; |
| |
| mutex_lock(&cgroup_tree_mutex); |
| ret = cgroup_rm_cftypes_locked(cfts); |
| mutex_unlock(&cgroup_tree_mutex); |
| return ret; |
| } |
| |
| /** |
| * cgroup_add_cftypes - add an array of cftypes to a subsystem |
| * @ss: target cgroup subsystem |
| * @cfts: zero-length name terminated array of cftypes |
| * |
| * Register @cfts to @ss. Files described by @cfts are created for all |
| * existing cgroups to which @ss is attached and all future cgroups will |
| * have them too. This function can be called anytime whether @ss is |
| * attached or not. |
| * |
| * Returns 0 on successful registration, -errno on failure. Note that this |
| * function currently returns 0 as long as @cfts registration is successful |
| * even if some file creation attempts on existing cgroups fail. |
| */ |
| int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) |
| { |
| int ret; |
| |
| ret = cgroup_init_cftypes(ss, cfts); |
| if (ret) |
| return ret; |
| |
| mutex_lock(&cgroup_tree_mutex); |
| |
| list_add_tail(&cfts->node, &ss->cfts); |
| ret = cgroup_apply_cftypes(cfts, true); |
| if (ret) |
| cgroup_rm_cftypes_locked(cfts); |
| |
| mutex_unlock(&cgroup_tree_mutex); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(cgroup_add_cftypes); |
| |
| /** |
| * cgroup_task_count - count the number of tasks in a cgroup. |
| * @cgrp: the cgroup in question |
| * |
| * Return the number of tasks in the cgroup. |
| */ |
| int cgroup_task_count(const struct cgroup *cgrp) |
| { |
| int count = 0; |
| struct cgrp_cset_link *link; |
| |
| read_lock(&css_set_lock); |
| list_for_each_entry(link, &cgrp->cset_links, cset_link) |
| count += atomic_read(&link->cset->refcount); |
| read_unlock(&css_set_lock); |
| return count; |
| } |
| |
| /* |
| * To reduce the fork() overhead for systems that are not actually using |
| * their cgroups capability, we don't maintain the lists running through |
| * each css_set to its tasks until we see the list actually used - in other |
| * words after the first call to css_task_iter_start(). |
| */ |
| static void cgroup_enable_task_cg_lists(void) |
| { |
| struct task_struct *p, *g; |
| write_lock(&css_set_lock); |
| use_task_css_set_links = 1; |
| /* |
| * We need tasklist_lock because RCU is not safe against |
| * while_each_thread(). Besides, a forking task that has passed |
| * cgroup_post_fork() without seeing use_task_css_set_links = 1 |
| * is not guaranteed to have its child immediately visible in the |
| * tasklist if we walk through it with RCU. |
| */ |
| read_lock(&tasklist_lock); |
| do_each_thread(g, p) { |
| task_lock(p); |
| /* |
| * We should check if the process is exiting, otherwise |
| * it will race with cgroup_exit() in that the list |
| * entry won't be deleted though the process has exited. |
| */ |
| if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list)) |
| list_add(&p->cg_list, &task_css_set(p)->tasks); |
| task_unlock(p); |
| } while_each_thread(g, p); |
| read_unlock(&tasklist_lock); |
| write_unlock(&css_set_lock); |
| } |
| |
| /** |
| * css_next_child - find the next child of a given css |
| * @pos_css: the current position (%NULL to initiate traversal) |
| * @parent_css: css whose children to walk |
| * |
| * This function returns the next child of @parent_css and should be called |
| * under either cgroup_mutex or RCU read lock. The only requirement is |
| * that @parent_css and @pos_css are accessible. The next sibling is |
| * guaranteed to be returned regardless of their states. |
| */ |
| struct cgroup_subsys_state * |
| css_next_child(struct cgroup_subsys_state *pos_css, |
| struct cgroup_subsys_state *parent_css) |
| { |
| struct cgroup *pos = pos_css ? pos_css->cgroup : NULL; |
| struct cgroup *cgrp = parent_css->cgroup; |
| struct cgroup *next; |
| |
| cgroup_assert_mutexes_or_rcu_locked(); |
| |
| /* |
| * @pos could already have been removed. Once a cgroup is removed, |
| * its ->sibling.next is no longer updated when its next sibling |
| * changes. As CGRP_DEAD assertion is serialized and happens |
| * before the cgroup is taken off the ->sibling list, if we see it |
| * unasserted, it's guaranteed that the next sibling hasn't |
| * finished its grace period even if it's already removed, and thus |
| * safe to dereference from this RCU critical section. If |
| * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed |
| * to be visible as %true here. |
| * |
| * If @pos is dead, its next pointer can't be dereferenced; |
| * however, as each cgroup is given a monotonically increasing |
| * unique serial number and always appended to the sibling list, |
| * the next one can be found by walking the parent's children until |
| * we see a cgroup with higher serial number than @pos's. While |
| * this path can be slower, it's taken only when either the current |
| * cgroup is removed or iteration and removal race. |
| */ |
| if (!pos) { |
| next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling); |
| } else if (likely(!cgroup_is_dead(pos))) { |
| next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling); |
| } else { |
| list_for_each_entry_rcu(next, &cgrp->children, sibling) |
| if (next->serial_nr > pos->serial_nr) |
| break; |
| } |
| |
| if (&next->sibling == &cgrp->children) |
| return NULL; |
| |
| return cgroup_css(next, parent_css->ss); |
| } |
| EXPORT_SYMBOL_GPL(css_next_child); |
| |
| /** |
| * css_next_descendant_pre - find the next descendant for pre-order walk |
| * @pos: the current position (%NULL to initiate traversal) |
| * @root: css whose descendants to walk |
| * |
| * To be used by css_for_each_descendant_pre(). Find the next descendant |
| * to visit for pre-order traversal of @root's descendants. @root is |
| * included in the iteration and the first node to be visited. |
| * |
| * While this function requires cgroup_mutex or RCU read locking, it |
| * doesn't require the whole traversal to be contained in a single critical |
| * section. This function will return the correct next descendant as long |
| * as both @pos and @root are accessible and @pos is a descendant of @root. |
| */ |
| struct cgroup_subsys_state * |
| css_next_descendant_pre(struct cgroup_subsys_state *pos, |
| struct cgroup_subsys_state *root) |
| { |
| struct cgroup_subsys_state *next; |
| |
| cgroup_assert_mutexes_or_rcu_locked(); |
| |
| /* if first iteration, visit @root */ |
| if (!pos) |
| return root; |
| |
| /* visit the first child if exists */ |
| next = css_next_child(NULL, pos); |
| if (next) |
| return next; |
| |
| /* no child, visit my or the closest ancestor's next sibling */ |
| while (pos != root) { |
| next = css_next_child(pos, css_parent(pos)); |
| if (next) |
| return next; |
| pos = css_parent(pos); |
| } |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL_GPL(css_next_descendant_pre); |
| |
| /** |
| * css_rightmost_descendant - return the rightmost descendant of a css |
| * @pos: css of interest |
| * |
| * Return the rightmost descendant of @pos. If there's no descendant, @pos |
| * is returned. This can be used during pre-order traversal to skip |
| * subtree of @pos. |
| * |
| * While this function requires cgroup_mutex or RCU read locking, it |
| * doesn't require the whole traversal to be contained in a single critical |
| * section. This function will return the correct rightmost descendant as |
| * long as @pos is accessible. |
| */ |
| struct cgroup_subsys_state * |
| css_rightmost_descendant(struct cgroup_subsys_state *pos) |
| { |
| struct cgroup_subsys_state *last, *tmp; |
| |
| cgroup_assert_mutexes_or_rcu_locked(); |
| |
| do { |
| last = pos; |
| /* ->prev isn't RCU safe, walk ->next till the end */ |
| pos = NULL; |
| css_for_each_child(tmp, last) |
| pos = tmp; |
| } while (pos); |
| |
| return last; |
| } |
| EXPORT_SYMBOL_GPL(css_rightmost_descendant); |
| |
| static struct cgroup_subsys_state * |
| css_leftmost_descendant(struct cgroup_subsys_state *pos) |
| { |
| struct cgroup_subsys_state *last; |
| |
| do { |
| last = pos; |
| pos = css_next_child(NULL, pos); |
| } while (pos); |
| |
| return last; |
| } |
| |
| /** |
| * css_next_descendant_post - find the next descendant for post-order walk |
| * @pos: the current position (%NULL to initiate traversal) |
| * @root: css whose descendants to walk |
| * |
| * To be used by css_for_each_descendant_post(). Find the next descendant |
| * to visit for post-order traversal of @root's descendants. @root is |
| * included in the iteration and the last node to be visited. |
| * |
| * While this function requires cgroup_mutex or RCU read locking, it |
| * doesn't require the whole traversal to be contained in a single critical |
| * section. This function will return the correct next descendant as long |
| * as both @pos and @cgroup are accessible and @pos is a descendant of |
| * @cgroup. |
| */ |
| struct cgroup_subsys_state * |
| css_next_descendant_post(struct cgroup_subsys_state *pos, |
| struct cgroup_subsys_state *root) |
| { |
| struct cgroup_subsys_state *next; |
| |
| cgroup_assert_mutexes_or_rcu_locked(); |
| |
| /* if first iteration, visit leftmost descendant which may be @root */ |
| if (!pos) |
| return css_leftmost_descendant(root); |
| |
| /* if we visited @root, we're done */ |
| if (pos == root) |
| return NULL; |
| |
| /* if there's an unvisited sibling, visit its leftmost descendant */ |
| next = css_next_child(pos, css_parent(pos)); |
| if (next) |
| return css_leftmost_descendant(next); |
| |
| /* no sibling left, visit parent */ |
| return css_parent(pos); |
| } |
| EXPORT_SYMBOL_GPL(css_next_descendant_post); |
| |
| /** |
| * css_advance_task_iter - advance a task itererator to the next css_set |
| * @it: the iterator to advance |
| * |
| * Advance @it to the next css_set to walk. |
| */ |
| static void css_advance_task_iter(struct css_task_iter *it) |
| { |
| struct list_head *l = it->cset_link; |
| struct cgrp_cset_link *link; |
| struct css_set *cset; |
| |
| /* Advance to the next non-empty css_set */ |
| do { |
| l = l->next; |
| if (l == &it->origin_css->cgroup->cset_links) { |
| it->cset_link = NULL; |
| return; |
| } |
| link = list_entry(l, struct cgrp_cset_link, cset_link); |
| cset = link->cset; |
| } while (list_empty(&cset->tasks)); |
| it->cset_link = l; |
| it->task = cset->tasks.next; |
| } |
| |
| /** |
| * css_task_iter_start - initiate task iteration |
| * @css: the css to walk tasks of |
| * @it: the task iterator to use |
| * |
| * Initiate iteration through the tasks of @css. The caller can call |
| * css_task_iter_next() to walk through the tasks until the function |
| * returns NULL. On completion of iteration, css_task_iter_end() must be |
| * called. |
| * |
| * Note that this function acquires a lock which is released when the |
| * iteration finishes. The caller can't sleep while iteration is in |
| * progress. |
| */ |
| void css_task_iter_start(struct cgroup_subsys_state *css, |
| struct css_task_iter *it) |
| __acquires(css_set_lock) |
| { |
| /* |
| * The first time anyone tries to iterate across a css, we need to |
| * enable the list linking each css_set to its tasks, and fix up |
| * all existing tasks. |
| */ |
| if (!use_task_css_set_links) |
| cgroup_enable_task_cg_lists(); |
| |
| read_lock(&css_set_lock); |
| |
| it->origin_css = css; |
| it->cset_link = &css->cgroup->cset_links; |
| |
| css_advance_task_iter(it); |
| } |
| |
| /** |
| * css_task_iter_next - return the next task for the iterator |
| * @it: the task iterator being iterated |
| * |
| * The "next" function for task iteration. @it should have been |
| * initialized via css_task_iter_start(). Returns NULL when the iteration |
| * reaches the end. |
| */ |
| struct task_struct *css_task_iter_next(struct css_task_iter *it) |
| { |
| struct task_struct *res; |
| struct list_head *l = it->task; |
| struct cgrp_cset_link *link; |
| |
| /* If the iterator cg is NULL, we have no tasks */ |
| if (!it->cset_link) |
| return NULL; |
| res = list_entry(l, struct task_struct, cg_list); |
| /* Advance iterator to find next entry */ |
| l = l->next; |
| link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link); |
| if (l == &link->cset->tasks) { |
| /* |
| * We reached the end of this task list - move on to the |
| * next cgrp_cset_link. |
| */ |
| css_advance_task_iter(it); |
| } else { |
| it->task = l; |
| } |
| return res; |
| } |
| |
| /** |
| * css_task_iter_end - finish task iteration |
| * @it: the task iterator to finish |
| * |
| * Finish task iteration started by css_task_iter_start(). |
| */ |
| void css_task_iter_end(struct css_task_iter *it) |
| __releases(css_set_lock) |
| { |
| read_unlock(&css_set_lock); |
| } |
| |
| static inline int started_after_time(struct task_struct *t1, |
| struct timespec *time, |
| struct task_struct *t2) |
| { |
| int start_diff = timespec_compare(&t1->start_time, time); |
| if (start_diff > 0) { |
| return 1; |
| } else if (start_diff < 0) { |
| return 0; |
| } else { |
| /* |
| * Arbitrarily, if two processes started at the same |
| * time, we'll say that the lower pointer value |
| * started first. Note that t2 may have exited by now |
| * so this may not be a valid pointer any longer, but |
| * that's fine - it still serves to distinguish |
| * between two tasks started (effectively) simultaneously. |
| */ |
| return t1 > t2; |
| } |
| } |
| |
| /* |
| * This function is a callback from heap_insert() and is used to order |
| * the heap. |
| * In this case we order the heap in descending task start time. |
| */ |
| static inline int started_after(void *p1, void *p2) |
| { |
| struct task_struct *t1 = p1; |
| struct task_struct *t2 = p2; |
| return started_after_time(t1, &t2->start_time, t2); |
| } |
| |
| /** |
| * css_scan_tasks - iterate though all the tasks in a css |
| * @css: the css to iterate tasks of |
| * @test: optional test callback |
| * @process: process callback |
| * @data: data passed to @test and @process |
| * @heap: optional pre-allocated heap used for task iteration |
| * |
| * Iterate through all the tasks in @css, calling @test for each, and if it |
| * returns %true, call @process for it also. |
| * |
| * @test may be NULL, meaning always true (select all tasks), which |
| * effectively duplicates css_task_iter_{start,next,end}() but does not |
| * lock css_set_lock for the call to @process. |
| * |
| * It is guaranteed that @process will act on every task that is a member |
| * of @css for the duration of this call. This function may or may not |
| * call @process for tasks that exit or move to a different css during the |
| * call, or are forked or move into the css during the call. |
| * |
| * Note that @test may be called with locks held, and may in some |
| * situations be called multiple times for the same task, so it should be |
| * cheap. |
| * |
| * If @heap is non-NULL, a heap has been pre-allocated and will be used for |
| * heap operations (and its "gt" member will be overwritten), else a |
| * temporary heap will be used (allocation of which may cause this function |
| * to fail). |
| */ |
| int css_scan_tasks(struct cgroup_subsys_state *css, |
| bool (*test)(struct task_struct *, void *), |
| void (*process)(struct task_struct *, void *), |
| void *data, struct ptr_heap *heap) |
| { |
| int retval, i; |
| struct css_task_iter it; |
| struct task_struct *p, *dropped; |
| /* Never dereference latest_task, since it's not refcounted */ |
| struct task_struct *latest_task = NULL; |
| struct ptr_heap tmp_heap; |
| struct timespec latest_time = { 0, 0 }; |
| |
| if (heap) { |
| /* The caller supplied our heap and pre-allocated its memory */ |
| heap->gt = &started_after; |
| } else { |
| /* We need to allocate our own heap memory */ |
| heap = &tmp_heap; |
| retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after); |
| if (retval) |
| /* cannot allocate the heap */ |
| return retval; |
| } |
| |
| again: |
| /* |
| * Scan tasks in the css, using the @test callback to determine |
| * which are of interest, and invoking @process callback on the |
| * ones which need an update. Since we don't want to hold any |
| * locks during the task updates, gather tasks to be processed in a |
| * heap structure. The heap is sorted by descending task start |
| * time. If the statically-sized heap fills up, we overflow tasks |
| * that started later, and in future iterations only consider tasks |
| * that started after the latest task in the previous pass. This |
| * guarantees forward progress and that we don't miss any tasks. |
| */ |
| heap->size = 0; |
| css_task_iter_start(css, &it); |
| while ((p = css_task_iter_next(&it))) { |
| /* |
| * Only affect tasks that qualify per the caller's callback, |
| * if he provided one |
| */ |
| if (test && !test(p, data)) |
| continue; |
| /* |
| * Only process tasks that started after the last task |
| * we processed |
| */ |
| if (!started_after_time(p, &latest_time, latest_task)) |
| continue; |
| dropped = heap_insert(heap, p); |
| if (dropped == NULL) { |
| /* |
| * The new task was inserted; the heap wasn't |
| * previously full |
| */ |
| get_task_struct(p); |
| } else if (dropped != p) { |
| /* |
| * The new task was inserted, and pushed out a |
| * different task |
| */ |
| get_task_struct(p); |
| put_task_struct(dropped); |
| } |
| /* |
| * Else the new task was newer than anything already in |
| * the heap and wasn't inserted |
| */ |
| } |
| css_task_iter_end(&it); |
| |
| if (heap->size) { |
| for (i = 0; i < heap->size; i++) { |
| struct task_struct *q = heap->ptrs[i]; |
| if (i == 0) { |
| latest_time = q->start_time; |
| latest_task = q; |
| } |
| /* Process the task per the caller's callback */ |
| process(q, data); |
| put_task_struct(q); |
| } |
| /* |
| * If we had to process any tasks at all, scan again |
| * in case some of them were in the middle of forking |
| * children that didn't get processed. |
| * Not the most efficient way to do it, but it avoids |
| * having to take callback_mutex in the fork path |
| */ |
| goto again; |
| } |
| if (heap == &tmp_heap) |
| heap_free(&tmp_heap); |
| return 0; |
| } |
| |
| static void cgroup_transfer_one_task(struct task_struct *task, void *data) |
| { |
| struct cgroup *new_cgroup = data; |
| |
| mutex_lock(&cgroup_mutex); |
| cgroup_attach_task(new_cgroup, task, false); |
| mutex_unlock(&cgroup_mutex); |
| } |
| |
| /** |
| * cgroup_trasnsfer_tasks - move tasks from one cgroup to another |
| * @to: cgroup to which the tasks will be moved |
| * @from: cgroup in which the tasks currently reside |
| */ |
| int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) |
| { |
| return css_scan_tasks(&from->dummy_css, NULL, cgroup_transfer_one_task, |
| to, NULL); |
| } |
| |
| /* |
| * Stuff for reading the 'tasks'/'procs' files. |
| * |
| * Reading this file can return large amounts of data if a cgroup has |
| * *lots* of attached tasks. So it may need several calls to read(), |
| * but we cannot guarantee that the information we produce is correct |
| * unless we produce it entirely atomically. |
| * |
| */ |
| |
| /* which pidlist file are we talking about? */ |
| enum cgroup_filetype { |
| CGROUP_FILE_PROCS, |
| CGROUP_FILE_TASKS, |
| }; |
| |
| /* |
| * A pidlist is a list of pids that virtually represents the contents of one |
| * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, |
| * a pair (one each for procs, tasks) for each pid namespace that's relevant |
| * to the cgroup. |
| */ |
| struct cgroup_pidlist { |
| /* |
| * used to find which pidlist is wanted. doesn't change as long as |
| * this particular list stays in the list. |
| */ |
| struct { enum cgroup_filetype type; struct pid_namespace *ns; } key; |
| /* array of xids */ |
| pid_t *list; |
| /* how many elements the above list has */ |
| int length; |
| /* each of these stored in a list by its cgroup */ |
| struct list_head links; |
| /* pointer to the cgroup we belong to, for list removal purposes */ |
| struct cgroup *owner; |
| /* for delayed destruction */ |
| struct delayed_work destroy_dwork; |
| }; |
| |
| /* |
| * The following two functions "fix" the issue where there are more pids |
| * than kmalloc will give memory for; in such cases, we use vmalloc/vfree. |
| * TODO: replace with a kernel-wide solution to this problem |
| */ |
| #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2)) |
| static void *pidlist_allocate(int count) |
| { |
| if (PIDLIST_TOO_LARGE(count)) |
| return vmalloc(count * sizeof(pid_t)); |
| else |
| return kmalloc(count * sizeof(pid_t), GFP_KERNEL); |
| } |
| |
| static void pidlist_free(void *p) |
| { |
| if (is_vmalloc_addr(p)) |
| vfree(p); |
| else |
| kfree(p); |
| } |
| |
| /* |
| * Used to destroy all pidlists lingering waiting for destroy timer. None |
| * should be left afterwards. |
| */ |
| static void cgroup_pidlist_destroy_all(struct cgroup *cgrp) |
| { |
| struct cgroup_pidlist *l, *tmp_l; |
| |
| mutex_lock(&cgrp->pidlist_mutex); |
| list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links) |
| mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0); |
| mutex_unlock(&cgrp->pidlist_mutex); |
| |
| flush_workqueue(cgroup_pidlist_destroy_wq); |
| BUG_ON(!list_empty(&cgrp->pidlists)); |
| } |
| |
| static void cgroup_pidlist_destroy_work_fn(struct work_struct *work) |
| { |
| struct delayed_work *dwork = to_delayed_work(work); |
| struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist, |
| destroy_dwork); |
| struct cgroup_pidlist *tofree = NULL; |
| |
| mutex_lock(&l->owner->pidlist_mutex); |
| |
| /* |
| * Destroy iff we didn't get queued again. The state won't change |
| * as destroy_dwork can only be queued while locked. |
| */ |
| if (!delayed_work_pending(dwork)) { |
| list_del(&l->links); |
| pidlist_free(l->list); |
| put_pid_ns(l->key.ns); |
| tofree = l; |
| } |
| |
| mutex_unlock(&l->owner->pidlist_mutex); |
| kfree(tofree); |
| } |
| |
| /* |
| * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries |
| * Returns the number of unique elements. |
| */ |
| static int pidlist_uniq(pid_t *list, int length) |
| { |
| int src, dest = 1; |
| |
| /* |
| * we presume the 0th element is unique, so i starts at 1. trivial |
| * edge cases first; no work needs to be done for either |
| */ |
| if (length == 0 || length == 1) |
| return length; |
| /* src and dest walk down the list; dest counts unique elements */ |
| for (src = 1; src < length; src++) { |
| /* find next unique element */ |
| while (list[src] == list[src-1]) { |
| src++; |
| if (src == length) |
| goto after; |
| } |
| /* dest always points to where the next unique element goes */ |
| list[dest] = list[src]; |
| dest++; |
| } |
| after: |
| return dest; |
| } |
| |
| /* |
| * The two pid files - task and cgroup.procs - guaranteed that the result |
| * is sorted, which forced this whole pidlist fiasco. As pid order is |
| * different per namespace, each namespace needs differently sorted list, |
| * making it impossible to use, for example, single rbtree of member tasks |
| * sorted by task pointer. As pidlists can be fairly large, allocating one |
| * per open file is dangerous, so cgroup had to implement shared pool of |
| * pidlists keyed by cgroup and namespace. |
| * |
| * All this extra complexity was caused by the original implementation |
| * committing to an entirely unnecessary property. In the long term, we |
| * want to do away with it. Explicitly scramble sort order if |
| * sane_behavior so that no such expectation exists in the new interface. |
| * |
| * Scrambling is done by swapping every two consecutive bits, which is |
| * non-identity one-to-one mapping which disturbs sort order sufficiently. |
| */ |
| static pid_t pid_fry(pid_t pid) |
| { |
| unsigned a = pid & 0x55555555; |
| unsigned b = pid & 0xAAAAAAAA; |
| |
| return (a << 1) | (b >> 1); |
| } |
| |
| static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid) |
| { |
| if (cgroup_sane_behavior(cgrp)) |
| return pid_fry(pid); |
| else |
| return pid; |
| } |
| |
| static int cmppid(const void *a, const void *b) |
| { |
| return *(pid_t *)a - *(pid_t *)b; |
| } |
| |
| static int fried_cmppid(const void *a, const void *b) |
| { |
| return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b); |
| } |
| |
| static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, |
| enum cgroup_filetype type) |
| { |
| struct cgroup_pidlist *l; |
| /* don't need task_nsproxy() if we're looking at ourself */ |
| struct pid_namespace *ns = task_active_pid_ns(current); |
| |
| lockdep_assert_held(&cgrp->pidlist_mutex); |
| |
| list_for_each_entry(l, &cgrp->pidlists, links) |
| if (l->key.type == type && l->key.ns == ns) |
| return l; |
| return NULL; |
| } |
| |
| /* |
| * find the appropriate pidlist for our purpose (given procs vs tasks) |
| * returns with the lock on that pidlist already held, and takes care |
| * of the use count, or returns NULL with no locks held if we're out of |
| * memory. |
| */ |
| static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, |
| enum cgroup_filetype type) |
| { |
| struct cgroup_pidlist *l; |
| |
| lockdep_assert_held(&cgrp->pidlist_mutex); |
| |
| l = cgroup_pidlist_find(cgrp, type); |
| if (l) |
| return l; |
| |
| /* entry not found; create a new one */ |
| l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); |
| if (!l) |
| return l; |
| |
| INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn); |
| l->key.type = type; |
| /* don't need task_nsproxy() if we're looking at ourself */ |
| l->key.ns = get_pid_ns(task_active_pid_ns(current)); |
| l->owner = cgrp; |
| list_add(&l->links, &cgrp->pidlists); |
| return l; |
| } |
| |
| /* |
| * Load a cgroup's pidarray with either procs' tgids or tasks' pids |
| */ |
| static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, |
| struct cgroup_pidlist **lp) |
| { |
| pid_t *array; |
| int length; |
| int pid, n = 0; /* used for populating the array */ |
| struct css_task_iter it; |
| struct task_struct *tsk; |
| struct cgroup_pidlist *l; |
| |
| lockdep_assert_held(&cgrp->pidlist_mutex); |
| |
| /* |
| * If cgroup gets more users after we read count, we won't have |
| * enough space - tough. This race is indistinguishable to the |
| * caller from the case that the additional cgroup users didn't |
| * show up until sometime later on. |
| */ |
| length = cgroup_task_count(cgrp); |
| array = pidlist_allocate(length); |
| if (!array) |
| return -ENOMEM; |
| /* now, populate the array */ |
| css_task_iter_start(&cgrp->dummy_css, &it); |
| while ((tsk = css_task_iter_next(&it))) { |
| if (unlikely(n == length)) |
| break; |
| /* get tgid or pid for procs or tasks file respectively */ |
| if (type == CGROUP_FILE_PROCS) |
| pid = task_tgid_vnr(tsk); |
| else |
| pid = task_pid_vnr(tsk); |
| if (pid > 0) /* make sure to only use valid results */ |
| array[n++] = pid; |
| } |
| css_task_iter_end(&it); |
| length = n; |
| /* now sort & (if procs) strip out duplicates */ |
| if (cgroup_sane_behavior(cgrp)) |
| sort(array, length, sizeof(pid_t), fried_cmppid, NULL); |
| else |
| sort(array, length, sizeof(pid_t), cmppid, NULL); |
| if (type == CGROUP_FILE_PROCS) |
| length = pidlist_uniq(array, length); |
| |
| l = cgroup_pidlist_find_create(cgrp, type); |
| if (!l) { |
| mutex_unlock(&cgrp->pidlist_mutex); |
| pidlist_free(array); |
| return -ENOMEM; |
| } |
| |
| /* store array, freeing old if necessary */ |
| pidlist_free(l->list); |
| l->list = array; |
| l->length = length; |
| *lp = l; |
| return 0; |
| } |
| |
| /** |
| * cgroupstats_build - build and fill cgroupstats |
| * @stats: cgroupstats to fill information into |
| * @dentry: A dentry entry belonging to the cgroup for which stats have |
| * been requested. |
| * |
| * Build and fill cgroupstats so that taskstats can export it to user |
| * space. |
| */ |
| int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) |
| { |
| struct kernfs_node *kn = kernfs_node_from_dentry(dentry); |
| struct cgroup *cgrp; |
| struct css_task_iter it; |
| struct task_struct *tsk; |
| |
| /* it should be kernfs_node belonging to cgroupfs and is a directory */ |
| if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || |
| kernfs_type(kn) != KERNFS_DIR) |
| return -EINVAL; |
| |
| /* |
| * We aren't being called from kernfs and there's no guarantee on |
| * @kn->priv's validity. For this and css_tryget_from_dir(), |
| * @kn->priv is RCU safe. Let's do the RCU dancing. |
| */ |
| rcu_read_lock(); |
| cgrp = rcu_dereference(kn->priv); |
| if (!cgrp) { |
| rcu_read_unlock(); |
| return -ENOENT; |
| } |
| |
| css_task_iter_start(&cgrp->dummy_css, &it); |
| while ((tsk = css_task_iter_next(&it))) { |
| switch (tsk->state) { |
| case TASK_RUNNING: |
| stats->nr_running++; |
| break; |
| case TASK_INTERRUPTIBLE: |
| stats->nr_sleeping++; |
| break; |
| case TASK_UNINTERRUPTIBLE: |
| stats->nr_uninterruptible++; |
| break; |
| case TASK_STOPPED: |
| stats->nr_stopped++; |
| break; |
| default: |
| if (delayacct_is_task_waiting_on_io(tsk)) |
| stats->nr_io_wait++; |
| break; |
| } |
| } |
| css_task_iter_end(&it); |
| |
| rcu_read_unlock(); |
| return 0; |
| } |
| |
| |
| /* |
| * seq_file methods for the tasks/procs files. The seq_file position is the |
| * next pid to display; the seq_file iterator is a pointer to the pid |
| * in the cgroup->l->list array. |
| */ |
| |
| static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) |
| { |
| /* |
| * Initially we receive a position value that corresponds to |
| * one more than the last pid shown (or 0 on the first call or |
| * after a seek to the start). Use a binary-search to find the |
| * next pid to display, if any |
| */ |
| struct kernfs_open_file *of = s->private; |
| struct cgroup *cgrp = seq_css(s)->cgroup; |
| struct cgroup_pidlist *l; |
| enum cgroup_filetype type = seq_cft(s)->private; |
| int index = 0, pid = *pos; |
| int *iter, ret; |
| |
| mutex_lock(&cgrp->pidlist_mutex); |
| |
| /* |
| * !NULL @of->priv indicates that this isn't the first start() |
| * after open. If the matching pidlist is around, we can use that. |
| * Look for it. Note that @of->priv can't be used directly. It |
| * could already have been destroyed. |
| */ |
| if (of->priv) |
| of->priv = cgroup_pidlist_find(cgrp, type); |
| |
| /* |
| * Either this is the first start() after open or the matching |
| * pidlist has been destroyed inbetween. Create a new one. |
| */ |
| if (!of->priv) { |
| ret = pidlist_array_load(cgrp, type, |
| (struct cgroup_pidlist **)&of->priv); |
| if (ret) |
| return ERR_PTR(ret); |
| } |
| l = of->priv; |
| |
| if (pid) { |
| int end = l->length; |
| |
| while (index < end) { |
| int mid = (index + end) / 2; |
| if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) { |
| index = mid; |
| break; |
| } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid) |
| index = mid + 1; |
| else |
| end = mid; |
| } |
| } |
| /* If we're off the end of the array, we're done */ |
| if (index >= l->length) |
| return NULL; |
| /* Update the abstract position to be the actual pid that we found */ |
| iter = l->list + index; |
| *pos = cgroup_pid_fry(cgrp, *iter); |
| return iter; |
| } |
| |
| static void cgroup_pidlist_stop(struct seq_file *s, void *v) |
| { |
| struct kernfs_open_file *of = s->private; |
| struct cgroup_pidlist *l = of->priv; |
| |
| if (l) |
| mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, |
| CGROUP_PIDLIST_DESTROY_DELAY); |
| mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex); |
| } |
| |
| static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) |
| { |
| struct kernfs_open_file *of = s->private; |
| struct cgroup_pidlist *l = of->priv; |
| pid_t *p = v; |
| pid_t *end = l->list + l->length; |
| /* |
| * Advance to the next pid in the array. If this goes off the |
| * end, we're done |
| */ |
| p++; |
| if (p >= end) { |
| return NULL; |
| } else { |
| *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p); |
| return p; |
| } |
| } |
| |
| static int cgroup_pidlist_show(struct seq_file *s, void *v) |
| { |
| return seq_printf(s, "%d\n", *(int *)v); |
| } |
| |
| /* |
| * seq_operations functions for iterating on pidlists through seq_file - |
| * independent of whether it's tasks or procs |
| */ |
| static const struct seq_operations cgroup_pidlist_seq_operations = { |
| .start = cgroup_pidlist_start, |
| .stop = cgroup_pidlist_stop, |
| .next = cgroup_pidlist_next, |
| .show = cgroup_pidlist_show, |
| }; |
| |
| static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css, |
| struct cftype *cft) |
| { |
| return notify_on_release(css->cgroup); |
| } |
| |
| static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css, |
| struct cftype *cft, u64 val) |
| { |
| clear_bit(CGRP_RELEASABLE, &css->cgroup->flags); |
| if (val) |
| set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); |
| else |
| clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); |
| return 0; |
| } |
| |
| static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css, |
| struct cftype *cft) |
| { |
| return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); |
| } |
| |
| static int cgroup_clone_children_write(struct cgroup_subsys_state *css, |
| struct cftype *cft, u64 val) |
| { |
| if (val) |
| set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); |
| else |
| clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); |
| return 0; |
| } |
| |
| static struct cftype cgroup_base_files[] = { |
| { |
| .name = "cgroup.procs", |
| .seq_start = cgroup_pidlist_start, |
| .seq_next = cgroup_pidlist_next, |
| .seq_stop = cgroup_pidlist_stop, |
| .seq_show = cgroup_pidlist_show, |
| .private = CGROUP_FILE_PROCS, |
| .write_u64 = cgroup_procs_write, |
| .mode = S_IRUGO | S_IWUSR, |
| }, |
| { |
| .name = "cgroup.clone_children", |
| .flags = CFTYPE_INSANE, |
| .read_u64 = cgroup_clone_children_read, |
| .write_u64 = cgroup_clone_children_write, |
| }, |
| { |
| .name = "cgroup.sane_behavior", |
| .flags = CFTYPE_ONLY_ON_ROOT, |
| .seq_show = cgroup_sane_behavior_show, |
| }, |
| |
| /* |
| * Historical crazy stuff. These don't have "cgroup." prefix and |
| * don't exist if sane_behavior. If you're depending on these, be |
| * prepared to be burned. |
| */ |
| { |
| .name = "tasks", |
| .flags = CFTYPE_INSANE, /* use "procs" instead */ |
| .seq_start = cgroup_pidlist_start, |
| .seq_next = cgroup_pidlist_next, |
| .seq_stop = cgroup_pidlist_stop, |
| .seq_show = cgroup_pidlist_show, |
| .private = CGROUP_FILE_TASKS, |
| .write_u64 = cgroup_tasks_write, |
| .mode = S_IRUGO | S_IWUSR, |
| }, |
| { |
| .name = "notify_on_release", |
| .flags = CFTYPE_INSANE, |
| .read_u64 = cgroup_read_notify_on_release, |
| .write_u64 = cgroup_write_notify_on_release, |
| }, |
| { |
| .name = "release_agent", |
| .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT, |
| .seq_show = cgroup_release_agent_show, |
| .write_string = cgroup_release_agent_write, |
| .max_write_len = PATH_MAX - 1, |
| }, |
| { } /* terminate */ |
| }; |
| |
| /** |
| * cgroup_populate_dir - create subsys files in a cgroup directory |
| * @cgrp: target cgroup |
| * @subsys_mask: mask of the subsystem ids whose files should be added |
| * |
| * On failure, no file is added. |
| */ |
| static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask) |
| { |
| struct cgroup_subsys *ss; |
| int i, ret = 0; |
| |
| /* process cftsets of each subsystem */ |
| for_each_subsys(ss, i) { |
| struct cftype *cfts; |
| |
| if (!test_bit(i, &subsys_mask)) |
| continue; |
| |
| list_for_each_entry(cfts, &ss->cfts, node) { |
| ret = cgroup_addrm_files(cgrp, cfts, true); |
| if (ret < 0) |
| goto err; |
| } |
| } |
| return 0; |
| err: |
| cgroup_clear_dir(cgrp, subsys_mask); |
| return ret; |
| } |
| |
| /* |
| * css destruction is four-stage process. |
| * |
| * 1. Destruction starts. Killing of the percpu_ref is initiated. |
| * Implemented in kill_css(). |
| * |
| * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs |
| * and thus css_tryget() is guaranteed to fail, the css can be offlined |
| * by invoking offline_css(). After offlining, the base ref is put. |
| * Implemented in css_killed_work_fn(). |
| * |
| * 3. When the percpu_ref reaches zero, the only possible remaining |
| * accessors are inside RCU read sections. css_release() schedules the |
| * RCU callback. |
| * |
| * 4. After the grace period, the css can be freed. Implemented in |
| * css_free_work_fn(). |
| * |
| * It is actually hairier because both step 2 and 4 require process context |
| * and thus involve punting to css->destroy_work adding two additional |
| * steps to the already complex sequence. |
| */ |
| static void css_free_work_fn(struct work_struct *work) |
| { |
| struct cgroup_subsys_state *css = |
| container_of(work, struct cgroup_subsys_state, destroy_work); |
| struct cgroup *cgrp = css->cgroup; |
| |
| if (css->parent) |
| css_put(css->parent); |
| |
| css->ss->css_free(css); |
| cgroup_put(cgrp); |
| } |
| |
| static void css_free_rcu_fn(struct rcu_head *rcu_head) |
| { |
| struct cgroup_subsys_state *css = |
| container_of(rcu_head, struct cgroup_subsys_state, rcu_head); |
| |
| INIT_WORK(&css->destroy_work, css_free_work_fn); |
| queue_work(cgroup_destroy_wq, &css->destroy_work); |
| } |
| |
| static void css_release(struct percpu_ref *ref) |
| { |
| struct cgroup_subsys_state *css = |
| container_of(ref, struct cgroup_subsys_state, refcnt); |
| |
| rcu_assign_pointer(css->cgroup->subsys[css->ss->id], NULL); |
| call_rcu(&css->rcu_head, css_free_rcu_fn); |
| } |
| |
| static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss, |
| struct cgroup *cgrp) |
| { |
| css->cgroup = cgrp; |
| css->ss = ss; |
| css->flags = 0; |
| |
| if (cgrp->parent) |
| css->parent = cgroup_css(cgrp->parent, ss); |
| else |
| css->flags |= CSS_ROOT; |
| |
| BUG_ON(cgroup_css(cgrp, ss)); |
| } |
| |
| /* invoke ->css_online() on a new CSS and mark it online if successful */ |
| static int online_css(struct cgroup_subsys_state *css) |
| { |
| struct cgroup_subsys *ss = css->ss; |
| int ret = 0; |
| |
| lockdep_assert_held(&cgroup_tree_mutex); |
| lockdep_assert_held(&cgroup_mutex); |
| |
| if (ss->css_online) |
| ret = ss->css_online(css); |
| if (!ret) { |
| css->flags |= CSS_ONLINE; |
| css->cgroup->nr_css++; |
| rcu_assign_pointer(css->cgroup->subsys[ss->id], css); |
| } |
| return ret; |
| } |
| |
| /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ |
| static void offline_css(struct cgroup_subsys_state *css) |
| { |
| struct cgroup_subsys *ss = css->ss; |
| |
| lockdep_assert_held(&cgroup_tree_mutex); |
| lockdep_assert_held(&cgroup_mutex); |
| |
| if (!(css->flags & CSS_ONLINE)) |
| return; |
| |
| if (ss->css_offline) |
| ss->css_offline(css); |
| |
| css->flags &= ~CSS_ONLINE; |
| css->cgroup->nr_css--; |
| RCU_INIT_POINTER(css->cgroup->subsys[ss->id], css); |
| } |
| |
| /** |
| * create_css - create a cgroup_subsys_state |
| * @cgrp: the cgroup new css will be associated with |
| * @ss: the subsys of new css |
| * |
| * Create a new css associated with @cgrp - @ss pair. On success, the new |
| * css is online and installed in @cgrp with all interface files created. |
| * Returns 0 on success, -errno on failure. |
| */ |
| static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss) |
| { |
| struct cgroup *parent = cgrp->parent; |
| struct cgroup_subsys_state *css; |
| int err; |
| |
| lockdep_assert_held(&cgroup_mutex); |
| |
| css = ss->css_alloc(cgroup_css(parent, ss)); |
| if (IS_ERR(css)) |
| return PTR_ERR(css); |
| |
| err = percpu_ref_init(&css->refcnt, css_release); |
| if (err) |
| goto err_free; |
| |
| init_css(css, ss, cgrp); |
| |
| err = cgroup_populate_dir(cgrp, 1 << ss->id); |
| if (err) |
| goto err_free; |
| |
| err = online_css(css); |
| if (err) |
| goto err_free; |
| |
| cgroup_get(cgrp); |
| css_get(css->parent); |
| |
| if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && |
| parent->parent) { |
| pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", |
| current->comm, current->pid, ss->name); |
| if (!strcmp(ss->name, "memory")) |
| pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n"); |
| ss->warned_broken_hierarchy = true; |
| } |
| |
| return 0; |
| |
| err_free: |
| percpu_ref_cancel_init(&css->refcnt); |
| ss->css_free(css); |
| return err; |
| } |
| |
| /** |
| * cgroup_create - create a cgroup |
| * @parent: cgroup that will be parent of the new cgroup |
| * @name_str: name of the new cgroup |
| * @mode: mode to set on new cgroup |
| */ |
| static long cgroup_create(struct cgroup *parent, const char *name_str, |
| umode_t mode) |
| { |
| struct cgroup *cgrp; |
| struct cgroup_name *name; |
| struct cgroupfs_root *root = parent->root; |
| int ssid, err; |
| struct cgroup_subsys *ss; |
| struct kernfs_node *kn; |
| |
| /* allocate the cgroup and its ID, 0 is reserved for the root */ |
| cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL); |
| if (!cgrp) |
| return -ENOMEM; |
| |
| name = cgroup_alloc_name(name_str); |
| if (!name) { |
| err = -ENOMEM; |
| goto err_free_cgrp; |
| } |
| rcu_assign_pointer(cgrp->name, name); |
| |
| mutex_lock(&cgroup_tree_mutex); |
| |
| /* |
| * Only live parents can have children. Note that the liveliness |
| * check isn't strictly necessary because cgroup_mkdir() and |
| * cgroup_rmdir() are fully synchronized by i_mutex; however, do it |
| * anyway so that locking is contained inside cgroup proper and we |
| * don't get nasty surprises if we ever grow another caller. |
| */ |
| if (!cgroup_lock_live_group(parent)) { |
| err = -ENODEV; |
| goto err_unlock_tree; |
| } |
| |
| /* |
| * Temporarily set the pointer to NULL, so idr_find() won't return |
| * a half-baked cgroup. |
| */ |
| cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL); |
| if (cgrp->id < 0) { |
| err = -ENOMEM; |
| goto err_unlock; |
| } |
| |
| init_cgroup_housekeeping(cgrp); |
| |
| cgrp->parent = parent; |
| cgrp->dummy_css.parent = &parent->dummy_css; |
| cgrp->root = parent->root; |
| |
| if (notify_on_release(parent)) |
| set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); |
| |
| if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) |
| set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); |
| |
| /* create the directory */ |
| kn = kernfs_create_dir(parent->kn, name->name, mode, cgrp); |
| if (IS_ERR(kn)) { |
| err = PTR_ERR(kn); |
| goto err_free_id; |
| } |
| cgrp->kn = kn; |
| |
| /* |
| * This extra ref will be put in cgroup_free_fn() and guarantees |
| * that @cgrp->kn is always accessible. |
| */ |
| kernfs_get(kn); |
| |
| cgrp->serial_nr = cgroup_serial_nr_next++; |
| |
| /* allocation complete, commit to creation */ |
| list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children); |
| root->number_of_cgroups++; |
| |
| /* |
| * Grab a reference on the root and parent so that they don't get |
| * deleted while there are child cgroups. |
| */ |
| cgroup_get_root(root); |
| cgroup_get(parent); |
| |
| /* |
| * @cgrp is now fully operational. If something fails after this |
| * point, it'll be released via the normal destruction path. |
| */ |
| idr_replace(&root->cgroup_idr, cgrp, cgrp->id); |
| |
| err = cgroup_addrm_files(cgrp, cgroup_base_files, true); |
| if (err) |
| goto err_destroy; |
| |
| /* let's create and online css's */ |
| for_each_subsys(ss, ssid) { |
| if (root->subsys_mask & (1 << ssid)) { |
| err = create_css(cgrp, ss); |
| if (err) |
| goto err_destroy; |
| } |
| } |
| |
| kernfs_activate(kn); |
| |
| mutex_unlock(&cgroup_mutex); |
| mutex_unlock(&cgroup_tree_mutex); |
| |
| return 0; |
| |
| err_free_id: |
| idr_remove(&root->cgroup_idr, cgrp->id); |
| err_unlock: |
| mutex_unlock(&cgroup_mutex); |
| err_unlock_tree: |
| mutex_unlock(&cgroup_tree_mutex); |
| kfree(rcu_dereference_raw(cgrp->name)); |
| err_free_cgrp: |
| kfree(cgrp); |
| return err; |
| |
| err_destroy: |
| cgroup_destroy_locked(cgrp); |
| mutex_unlock(&cgroup_mutex); |
| mutex_unlock(&cgroup_tree_mutex); |
| return err; |
| } |
| |
| static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, |
| umode_t mode) |
| { |
| struct cgroup *parent = parent_kn->priv; |
| |
| return cgroup_create(parent, name, mode); |
| } |
| |
| /* |
| * This is called when the refcnt of a css is confirmed to be killed. |
| * css_tryget() is now guaranteed to fail. |
| */ |
| static void css_killed_work_fn(struct work_struct *work) |
| { |
| struct cgroup_subsys_state *css = |
| container_of(work, struct cgroup_subsys_state, destroy_work); |
| struct cgroup *cgrp = css->cgroup; |
| |
| mutex_lock(&cgroup_tree_mutex); |
| mutex_lock(&cgroup_mutex); |
| |
| /* |
| * css_tryget() is guaranteed to fail now. Tell subsystems to |
| * initate destruction. |
| */ |
| offline_css(css); |
| |
| /* |
| * If @cgrp is marked dead, it's waiting for refs of all css's to |
| * be disabled before proceeding to the second phase of cgroup |
| * destruction. If we are the last one, kick it off. |
| */ |
| if (!cgrp->nr_css && cgroup_is_dead(cgrp)) |
| cgroup_destroy_css_killed(cgrp); |
| |
| mutex_unlock(&cgroup_mutex); |
| mutex_unlock(&cgroup_tree_mutex); |
| |
| /* |
| * Put the css refs from kill_css(). Each css holds an extra |
| * reference to the cgroup's dentry and cgroup removal proceeds |
| * regardless of css refs. On the last put of each css, whenever |
| * that may be, the extra dentry ref is put so that dentry |
| * destruction happens only after all css's are released. |
| */ |
| css_put(css); |
| } |
| |
| /* css kill confirmation processing requires process context, bounce */ |
| static void css_killed_ref_fn(struct percpu_ref *ref) |
| { |
| struct cgroup_subsys_state *css = |
| container_of(ref, struct cgroup_subsys_state, refcnt); |
| |
| INIT_WORK(&css->destroy_work, css_killed_work_fn); |
| queue_work(cgroup_destroy_wq, &css->destroy_work); |
| } |
| |
| /** |
| * kill_css - destroy a css |
| * @css: css to destroy |
| * |
| * This function initiates destruction of @css by removing cgroup interface |
| * files and putting its base reference. ->css_offline() will be invoked |
| * asynchronously once css_tryget() is guaranteed to fail and when the |
| * reference count reaches zero, @css will be released. |
| */ |
| static void kill_css(struct cgroup_subsys_state *css) |
| { |
| /* |
| * This must happen before css is disassociated with its cgroup. |
| * See seq_css() for details. |
| */ |
| cgroup_clear_dir(css->cgroup, 1 << css->ss->id); |
| |
| /* |
| * Killing would put the base ref, but we need to keep it alive |
| * until after ->css_offline(). |
| */ |
| css_get(css); |
| |
| /* |
| * cgroup core guarantees that, by the time ->css_offline() is |
| * invoked, no new css reference will be given out via |
| * css_tryget(). We can't simply call percpu_ref_kill() and |
| * proceed to offlining css's because percpu_ref_kill() doesn't |
| * guarantee that the ref is seen as killed on all CPUs on return. |
| * |
| * Use percpu_ref_kill_and_confirm() to get notifications as each |
| * css is confirmed to be seen as killed on all CPUs. |
| */ |
| percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); |
| } |
| |
| /** |
| * cgroup_destroy_locked - the first stage of cgroup destruction |
| * @cgrp: cgroup to be destroyed |
| * |
| * css's make use of percpu refcnts whose killing latency shouldn't be |
| * exposed to userland and are RCU protected. Also, cgroup core needs to |
| * guarantee that css_tryget() won't succeed by the time ->css_offline() is |
| * invoked. To satisfy all the requirements, destruction is implemented in |
| * the following two steps. |
| * |
| * s1. Verify @cgrp can be destroyed and mark it dying. Remove all |
| * userland visible parts and start killing the percpu refcnts of |
| * css's. Set up so that the next stage will be kicked off once all |
| * the percpu refcnts are confirmed to be killed. |
| * |
| * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the |
| * rest of destruction. Once all cgroup references are gone, the |
| * cgroup is RCU-freed. |
| * |
| * This function implements s1. After this step, @cgrp is gone as far as |
| * the userland is concerned and a new cgroup with the same name may be |
| * created. As cgroup doesn't care about the names internally, this |
| * doesn't cause any problem. |
| */ |
| static int cgroup_destroy_locked(struct cgroup *cgrp) |
| __releases(&cgroup_mutex) __acquires(&cgroup_mutex) |
| { |
| struct cgroup *child; |
| struct cgroup_subsys_state *css; |
| bool empty; |
| int ssid; |
| |
| lockdep_assert_held(&cgroup_tree_mutex); |
| lockdep_assert_held(&cgroup_mutex); |
| |
| /* |
| * css_set_lock synchronizes access to ->cset_links and prevents |
| * @cgrp from being removed while __put_css_set() is in progress. |
| */ |
| read_lock(&css_set_lock); |
| empty = list_empty(&cgrp->cset_links); |
| read_unlock(&css_set_lock); |
| if (!empty) |
| return -EBUSY; |
| |
| /* |
| * Make sure there's no live children. We can't test ->children |
| * emptiness as dead children linger on it while being destroyed; |
| * otherwise, "rmdir parent/child parent" may fail with -EBUSY. |
| */ |
| empty = true; |
| rcu_read_lock(); |
| list_for_each_entry_rcu(child, &cgrp->children, sibling) { |
| empty = cgroup_is_dead(child); |
| if (!empty) |
| break; |
| } |
| rcu_read_unlock(); |
| if (!empty) |
| return -EBUSY; |
| |
| /* |
| * Initiate massacre of all css's. cgroup_destroy_css_killed() |
| * will be invoked to perform the rest of destruction once the |
| * percpu refs of all css's are confirmed to be killed. This |
| * involves removing the subsystem's files, drop cgroup_mutex. |
| */ |
| mutex_unlock(&cgroup_mutex); |
| for_each_css(css, ssid, cgrp) |
| kill_css(css); |
| mutex_lock(&cgroup_mutex); |
| |
| /* |
| * Mark @cgrp dead. This prevents further task migration and child |
| * creation by disabling cgroup_lock_live_group(). Note that |
| * CGRP_DEAD assertion is depended upon by css_next_child() to |
| * resume iteration after dropping RCU read lock. See |
| * css_next_child() for details. |
| */ |
| set_bit(CGRP_DEAD, &cgrp->flags); |
| |
| /* CGRP_DEAD is set, remove from ->release_list for the last time */ |
| raw_spin_lock(&release_list_lock); |
| if (!list_empty(&cgrp->release_list)) |
| list_del_init(&cgrp->release_list); |
| raw_spin_unlock(&release_list_lock); |
| |
| /* |
| * If @cgrp has css's attached, the second stage of cgroup |
| * destruction is kicked off from css_killed_work_fn() after the |
| * refs of all attached css's are killed. If @cgrp doesn't have |
| * any css, we kick it off here. |
| */ |
| if (!cgrp->nr_css) |
| cgroup_destroy_css_killed(cgrp); |
| |
| /* remove @cgrp directory along with the base files */ |
| mutex_unlock(&cgroup_mutex); |
| |
| /* |
| * There are two control paths which try to determine cgroup from |
| * dentry without going through kernfs - cgroupstats_build() and |
| * css_tryget_from_dir(). Those are supported by RCU protecting |
| * clearing of cgrp->kn->priv backpointer, which should happen |
| * after all files under it have been removed. |
| */ |
| kernfs_remove(cgrp->kn); /* @cgrp has an extra ref on its kn */ |
| RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL); |
| |
| mutex_lock(&cgroup_mutex); |
| |
| return 0; |
| }; |
| |
| /** |
| * cgroup_destroy_css_killed - the second step of cgroup destruction |
| * @work: cgroup->destroy_free_work |
| * |
| * This function is invoked from a work item for a cgroup which is being |
| * destroyed after all css's are offlined and performs the rest of |
| * destruction. This is the second step of destruction described in the |
| * comment above cgroup_destroy_locked(). |
| */ |
| static void cgroup_destroy_css_killed(struct cgroup *cgrp) |
| { |
| struct cgroup *parent = cgrp->parent; |
| |
| lockdep_assert_held(&cgroup_tree_mutex); |
| lockdep_assert_held(&cgroup_mutex); |
| |
| /* delete this cgroup from parent->children */ |
| list_del_rcu(&cgrp->sibling); |
| |
| cgroup_put(cgrp); |
| |
| set_bit(CGRP_RELEASABLE, &parent->flags); |
| check_for_release(parent); |
| } |
| |
| static int cgroup_rmdir(struct kernfs_node *kn) |
| { |
| struct cgroup *cgrp = kn->priv; |
| int ret = 0; |
| |
| /* |
| * This is self-destruction but @kn can't be removed while this |
| * callback is in progress. Let's break active protection. Once |
| * the protection is broken, @cgrp can be destroyed at any point. |
| * Pin it so that it stays accessible. |
| */ |
| cgroup_get(cgrp); |
| kernfs_break_active_protection(kn); |
| |
| mutex_lock(&cgroup_tree_mutex); |
| mutex_lock(&cgroup_mutex); |
| |
| /* |
| * @cgrp might already have been destroyed while we're trying to |
| * grab the mutexes. |
| */ |
| if (!cgroup_is_dead(cgrp)) |
| ret = cgroup_destroy_locked(cgrp); |
| |
| mutex_unlock(&cgroup_mutex); |
| mutex_unlock(&cgroup_tree_mutex); |
| |
| kernfs_unbreak_active_protection(kn); |
| cgroup_put(cgrp); |
| return ret; |
| } |
| |
| static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { |
| .remount_fs = cgroup_remount, |
| .show_options = cgroup_show_options, |
| .mkdir = cgroup_mkdir, |
| .rmdir = cgroup_rmdir, |
| .rename = cgroup_rename, |
| }; |
| |
| static void __init cgroup_init_subsys(struct cgroup_subsys *ss) |
| { |
| struct cgroup_subsys_state *css; |
| |
| printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name); |
| |
| mutex_lock(&cgroup_tree_mutex); |
| mutex_lock(&cgroup_mutex); |
| |
| INIT_LIST_HEAD(&ss->cfts); |
| |
| /* Create the top cgroup state for this subsystem */ |
| ss->root = &cgroup_dummy_root; |
| css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss)); |
| /* We don't handle early failures gracefully */ |
| BUG_ON(IS_ERR(css)); |
| init_css(css, ss, cgroup_dummy_top); |
| |
| /* Update the init_css_set to contain a subsys |
| * pointer to this state - since the subsystem is |
| * newly registered, all tasks and hence the |
| * init_css_set is in the subsystem's top cgroup. */ |
| init_css_set.subsys[ss->id] = css; |
| |
| need_forkexit_callback |= ss->fork || ss->exit; |
| |
| /* At system boot, before all subsystems have been |
| * registered, no tasks have been forked, so we don't |
| * need to invoke fork callbacks here. */ |
| BUG_ON(!list_empty(&init_task.tasks)); |
| |
| BUG_ON(online_css(css)); |
| |
| mutex_unlock(&cgroup_mutex); |
| mutex_unlock(&cgroup_tree_mutex); |
| } |
| |
| /** |
| * cgroup_init_early - cgroup initialization at system boot |
| * |
| * Initialize cgroups at system boot, and initialize any |
| * subsystems that request early init. |
| */ |
| int __init cgroup_init_early(void) |
| { |
| struct cgroup_subsys *ss; |
| int i; |
| |
| atomic_set(&init_css_set.refcount, 1); |
| INIT_LIST_HEAD(&init_css_set.cgrp_links); |
| INIT_LIST_HEAD(&init_css_set.tasks); |
| INIT_HLIST_NODE(&init_css_set.hlist); |
| css_set_count = 1; |
| init_cgroup_root(&cgroup_dummy_root); |
| cgroup_root_count = 1; |
| RCU_INIT_POINTER(init_task.cgroups, &init_css_set); |
| |
| init_cgrp_cset_link.cset = &init_css_set; |
| init_cgrp_cset_link.cgrp = cgroup_dummy_top; |
| list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links); |
| list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links); |
| |
| for_each_subsys(ss, i) { |
| WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, |
| "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n", |
| i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, |
| ss->id, ss->name); |
| WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, |
| "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); |
| |
| ss->id = i; |
| ss->name = cgroup_subsys_name[i]; |
| |
| if (ss->early_init) |
| cgroup_init_subsys(ss); |
| } |
| return 0; |
| } |
| |
| /** |
| * cgroup_init - cgroup initialization |
| * |
| * Register cgroup filesystem and /proc file, and initialize |
| * any subsystems that didn't request early init. |
| */ |
| int __init cgroup_init(void) |
| { |
| struct cgroup_subsys *ss; |
| unsigned long key; |
| int i, err; |
| |
| BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); |
| |
| for_each_subsys(ss, i) { |
| if (!ss->early_init) |
| cgroup_init_subsys(ss); |
| |
| /* |
| * cftype registration needs kmalloc and can't be done |
| * during early_init. Register base cftypes separately. |
| */ |
| if (ss->base_cftypes) |
| WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes)); |
| } |
| |
| /* allocate id for the dummy hierarchy */ |
| mutex_lock(&cgroup_mutex); |
| |
| /* Add init_css_set to the hash table */ |
| key = css_set_hash(init_css_set.subsys); |
| hash_add(css_set_table, &init_css_set.hlist, key); |
| |
| BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1)); |
| |
| err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top, |
| 0, 1, GFP_KERNEL); |
| BUG_ON(err < 0); |
| |
| mutex_unlock(&cgroup_mutex); |
| |
| cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj); |
| if (!cgroup_kobj) |
| return -ENOMEM; |
| |
| err = register_filesystem(&cgroup_fs_type); |
| if (err < 0) { |
| kobject_put(cgroup_kobj); |
| return err; |
| } |
| |
| proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations); |
| return 0; |
| } |
| |
| static int __init cgroup_wq_init(void) |
| { |
| /* |
| * There isn't much point in executing destruction path in |
| * parallel. Good chunk is serialized with cgroup_mutex anyway. |
| * |
| * XXX: Must be ordered to make sure parent is offlined after |
| * children. The ordering requirement is for memcg where a |
| * parent's offline may wait for a child's leading to deadlock. In |
| * the long term, this should be fixed from memcg side. |
| * |
| * We would prefer to do this in cgroup_init() above, but that |
| * is called before init_workqueues(): so leave this until after. |
| */ |
| cgroup_destroy_wq = alloc_ordered_workqueue("cgroup_destroy", 0); |
| BUG_ON(!cgroup_destroy_wq); |
| |
| /* |
| * Used to destroy pidlists and separate to serve as flush domain. |
| * Cap @max_active to 1 too. |
| */ |
| cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", |
| 0, 1); |
| BUG_ON(!cgroup_pidlist_destroy_wq); |
| |
| return 0; |
| } |
| core_initcall(cgroup_wq_init); |
| |
| /* |
| * proc_cgroup_show() |
| * - Print task's cgroup paths into seq_file, one line for each hierarchy |
| * - Used for /proc/<pid>/cgroup. |
| * - No need to task_lock(tsk) on this tsk->cgroup reference, as it |
| * doesn't really matter if tsk->cgroup changes after we read it, |
| * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it |
| * anyway. No need to check that tsk->cgroup != NULL, thanks to |
| * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks |
| * cgroup to top_cgroup. |
| */ |
| |
| /* TODO: Use a proper seq_file iterator */ |
| int proc_cgroup_show(struct seq_file *m, void *v) |
| { |
| struct pid *pid; |
| struct task_struct *tsk; |
| char *buf; |
| int retval; |
| struct cgroupfs_root *root; |
| |
| retval = -ENOMEM; |
| buf = kmalloc(PAGE_SIZE, GFP_KERNEL); |
| if (!buf) |
| goto out; |
| |
| retval = -ESRCH; |
| pid = m->private; |
| tsk = get_pid_task(pid, PIDTYPE_PID); |
| if (!tsk) |
| goto out_free; |
| |
| retval = 0; |
| |
| mutex_lock(&cgroup_mutex); |
| |
| for_each_active_root(root) { |
| struct cgroup_subsys *ss; |
| struct cgroup *cgrp; |
| int ssid, count = 0; |
| |
| seq_printf(m, "%d:", root->hierarchy_id); |
| for_each_subsys(ss, ssid) |
| if (root->subsys_mask & (1 << ssid)) |
| seq_printf(m, "%s%s", count++ ? "," : "", ss->name); |
| if (strlen(root->name)) |
| seq_printf(m, "%sname=%s", count ? "," : "", |
| root->name); |
| seq_putc(m, ':'); |
| cgrp = task_cgroup_from_root(tsk, root); |
| retval = cgroup_path(cgrp, buf, PAGE_SIZE); |
| if (retval < 0) |
| goto out_unlock; |
| seq_puts(m, buf); |
| seq_putc(m, '\n'); |
| } |
| |
| out_unlock: |
| mutex_unlock(&cgroup_mutex); |
| put_task_struct(tsk); |
| out_free: |
| kfree(buf); |
| out: |
| return retval; |
| } |
| |
| /* Display information about each subsystem and each hierarchy */ |
| static int proc_cgroupstats_show(struct seq_file *m, void *v) |
| { |
| struct cgroup_subsys *ss; |
| int i; |
| |
| seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); |
| /* |
| * ideally we don't want subsystems moving around while we do this. |
| * cgroup_mutex is also necessary to guarantee an atomic snapshot of |
| * subsys/hierarchy state. |
| */ |
| mutex_lock(&cgroup_mutex); |
| |
| for_each_subsys(ss, i) |
| seq_printf(m, "%s\t%d\t%d\t%d\n", |
| ss->name, ss->root->hierarchy_id, |
| ss->root->number_of_cgroups, !ss->disabled); |
| |
| mutex_unlock(&cgroup_mutex); |
| return 0; |
| } |
| |
| static int cgroupstats_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, proc_cgroupstats_show, NULL); |
| } |
| |
| static const struct file_operations proc_cgroupstats_operations = { |
| .open = cgroupstats_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| /** |
| * cgroup_fork - attach newly forked task to its parents cgroup. |
| * @child: pointer to task_struct of forking parent process. |
| * |
| * Description: A task inherits its parent's cgroup at fork(). |
| * |
| * A pointer to the shared css_set was automatically copied in |
| * fork.c by dup_task_struct(). However, we ignore that copy, since |
| * it was not made under the protection of RCU or cgroup_mutex, so |
| * might no longer be a valid cgroup pointer. cgroup_attach_task() might |
| * have already changed current->cgroups, allowing the previously |
| * referenced cgroup group to be removed and freed. |
| * |
| * At the point that cgroup_fork() is called, 'current' is the parent |
| * task, and the passed argument 'child' points to the child task. |
| */ |
| void cgroup_fork(struct task_struct *child) |
| { |
| task_lock(current); |
| get_css_set(task_css_set(current)); |
| child->cgroups = current->cgroups; |
| task_unlock(current); |
| INIT_LIST_HEAD(&child->cg_list); |
| } |
| |
| /** |
| * cgroup_post_fork - called on a new task after adding it to the task list |
| * @child: the task in question |
| * |
| * Adds the task to the list running through its css_set if necessary and |
| * call the subsystem fork() callbacks. Has to be after the task is |
| * visible on the task list in case we race with the first call to |
| * cgroup_task_iter_start() - to guarantee that the new task ends up on its |
| * list. |
| */ |
| void cgroup_post_fork(struct task_struct *child) |
| { |
| struct cgroup_subsys *ss; |
| int i; |
| |
| /* |
| * use_task_css_set_links is set to 1 before we walk the tasklist |
| * under the tasklist_lock and we read it here after we added the child |
| * to the tasklist under the tasklist_lock as well. If the child wasn't |
| * yet in the tasklist when we walked through it from |
| * cgroup_enable_task_cg_lists(), then use_task_css_set_links value |
| * should be visible now due to the paired locking and barriers implied |
| * by LOCK/UNLOCK: it is written before the tasklist_lock unlock |
| * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock |
| * lock on fork. |
| */ |
| if (use_task_css_set_links) { |
| write_lock(&css_set_lock); |
| task_lock(child); |
| if (list_empty(&child->cg_list)) |
| list_add(&child->cg_list, &task_css_set(child)->tasks); |
| task_unlock(child); |
| write_unlock(&css_set_lock); |
| } |
| |
| /* |
| * Call ss->fork(). This must happen after @child is linked on |
| * css_set; otherwise, @child might change state between ->fork() |
| * and addition to css_set. |
| */ |
| if (need_forkexit_callback) { |
| for_each_subsys(ss, i) |
| if (ss->fork) |
| ss->fork(child); |
| } |
| } |
| |
| /** |
| * cgroup_exit - detach cgroup from exiting task |
| * @tsk: pointer to task_struct of exiting process |
| * @run_callback: run exit callbacks? |
| * |
| * Description: Detach cgroup from @tsk and release it. |
| * |
| * Note that cgroups marked notify_on_release force every task in |
| * them to take the global cgroup_mutex mutex when exiting. |
| * This could impact scaling on very large systems. Be reluctant to |
| * use notify_on_release cgroups where very high task exit scaling |
| * is required on large systems. |
| * |
| * the_top_cgroup_hack: |
| * |
| * Set the exiting tasks cgroup to the root cgroup (top_cgroup). |
| * |
| * We call cgroup_exit() while the task is still competent to |
| * handle notify_on_release(), then leave the task attached to the |
| * root cgroup in each hierarchy for the remainder of its exit. |
| * |
| * To do this properly, we would increment the reference count on |
| * top_cgroup, and near the very end of the kernel/exit.c do_exit() |
| * code we would add a second cgroup function call, to drop that |
| * reference. This would just create an unnecessary hot spot on |
| * the top_cgroup reference count, to no avail. |
| * |
| * Normally, holding a reference to a cgroup without bumping its |
| * count is unsafe. The cgroup could go away, or someone could |
| * attach us to a different cgroup, decrementing the count on |
| * the first cgroup that we never incremented. But in this case, |
| * top_cgroup isn't going away, and either task has PF_EXITING set, |
| * which wards off any cgroup_attach_task() attempts, or task is a failed |
| * fork, never visible to cgroup_attach_task. |
| */ |
| void cgroup_exit(struct task_struct *tsk, int run_callbacks) |
| { |
| struct cgroup_subsys *ss; |
| struct css_set *cset; |
| int i; |
| |
| /* |
| * Unlink from the css_set task list if necessary. |
| * Optimistically check cg_list before taking |
| * css_set_lock |
| */ |
| if (!list_empty(&tsk->cg_list)) { |
| write_lock(&css_set_lock); |
| if (!list_empty(&tsk->cg_list)) |
| list_del_init(&tsk->cg_list); |
| write_unlock(&css_set_lock); |
| } |
| |
| /* Reassign the task to the init_css_set. */ |
| task_lock(tsk); |
| cset = task_css_set(tsk); |
| RCU_INIT_POINTER(tsk->cgroups, &init_css_set); |
| |
| if (run_callbacks && need_forkexit_callback) { |
| /* see cgroup_post_fork() for details */ |
| for_each_subsys(ss, i) { |
| if (ss->exit) { |
| struct cgroup_subsys_state *old_css = cset->subsys[i]; |
| struct cgroup_subsys_state *css = task_css(tsk, i); |
| |
| ss->exit(css, old_css, tsk); |
| } |
| } |
| } |
| task_unlock(tsk); |
| |
| put_css_set_taskexit(cset); |
| } |
| |
| static void check_for_release(struct cgroup *cgrp) |
| { |
| if (cgroup_is_releasable(cgrp) && |
| list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) { |
| /* |
| * Control Group is currently removeable. If it's not |
| * already queued for a userspace notification, queue |
| * it now |
| */ |
| int need_schedule_work = 0; |
| |
| raw_spin_lock(&release_list_lock); |
| if (!cgroup_is_dead(cgrp) && |
| list_empty(&cgrp->release_list)) { |
| list_add(&cgrp->release_list, &release_list); |
| need_schedule_work = 1; |
| } |
| raw_spin_unlock(&release_list_lock); |
| if (need_schedule_work) |
| schedule_work(&release_agent_work); |
| } |
| } |
| |
| /* |
| * Notify userspace when a cgroup is released, by running the |
| * configured release agent with the name of the cgroup (path |
| * relative to the root of cgroup file system) as the argument. |
| * |
| * Most likely, this user command will try to rmdir this cgroup. |
| * |
| * This races with the possibility that some other task will be |
| * attached to this cgroup before it is removed, or that some other |
| * user task will 'mkdir' a child cgroup of this cgroup. That's ok. |
| * The presumed 'rmdir' will fail quietly if this cgroup is no longer |
| * unused, and this cgroup will be reprieved from its death sentence, |
| * to continue to serve a useful existence. Next time it's released, |
| * we will get notified again, if it still has 'notify_on_release' set. |
| * |
| * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which |
| * means only wait until the task is successfully execve()'d. The |
| * separate release agent task is forked by call_usermodehelper(), |
| * then control in this thread returns here, without waiting for the |
| * release agent task. We don't bother to wait because the caller of |
| * this routine has no use for the exit status of the release agent |
| * task, so no sense holding our caller up for that. |
| */ |
| static void cgroup_release_agent(struct work_struct *work) |
| { |
| BUG_ON(work != &release_agent_work); |
| mutex_lock(&cgroup_mutex); |
| raw_spin_lock(&release_list_lock); |
| while (!list_empty(&release_list)) { |
| char *argv[3], *envp[3]; |
| int i; |
| char *pathbuf = NULL, *agentbuf = NULL; |
| struct cgroup *cgrp = list_entry(release_list.next, |
| struct cgroup, |
| release_list); |
| list_del_init(&cgrp->release_list); |
| raw_spin_unlock(&release_list_lock); |
| pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL); |
| if (!pathbuf) |
| goto continue_free; |
| if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0) |
| goto continue_free; |
| agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL); |
| if (!agentbuf) |
| goto continue_free; |
| |
| i = 0; |
| argv[i++] = agentbuf; |
| argv[i++] = pathbuf; |
| argv[i] = NULL; |
| |
| i = 0; |
| /* minimal command environment */ |
| envp[i++] = "HOME=/"; |
| envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; |
| envp[i] = NULL; |
| |
| /* Drop the lock while we invoke the usermode helper, |
| * since the exec could involve hitting disk and hence |
| * be a slow process */ |
| mutex_unlock(&cgroup_mutex); |
| call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); |
| mutex_lock(&cgroup_mutex); |
| continue_free: |
| kfree(pathbuf); |
| kfree(agentbuf); |
| raw_spin_lock(&release_list_lock); |
| } |
| raw_spin_unlock(&release_list_lock); |
| mutex_unlock(&cgroup_mutex); |
| } |
| |
| static int __init cgroup_disable(char *str) |
| { |
| struct cgroup_subsys *ss; |
| char *token; |
| int i; |
| |
| while ((token = strsep(&str, ",")) != NULL) { |
| if (!*token) |
| continue; |
| |
| for_each_subsys(ss, i) { |
| if (!strcmp(token, ss->name)) { |
| ss->disabled = 1; |
| printk(KERN_INFO "Disabling %s control group" |
| " subsystem\n", ss->name); |
| break; |
| } |
| } |
| } |
| return 1; |
| } |
| __setup("cgroup_disable=", cgroup_disable); |
| |
| /** |
| * css_tryget_from_dir - get corresponding css from the dentry of a cgroup dir |
| * @dentry: directory dentry of interest |
| * @ss: subsystem of interest |
| * |
| * If @dentry is a directory for a cgroup which has @ss enabled on it, try |
| * to get the corresponding css and return it. If such css doesn't exist |
| * or can't be pinned, an ERR_PTR value is returned. |
| */ |
| struct cgroup_subsys_state *css_tryget_from_dir(struct dentry *dentry, |
| struct cgroup_subsys *ss) |
| { |
| struct kernfs_node *kn = kernfs_node_from_dentry(dentry); |
| struct cgroup_subsys_state *css = NULL; |
| struct cgroup *cgrp; |
| |
| /* is @dentry a cgroup dir? */ |
| if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || |
| kernfs_type(kn) != KERNFS_DIR) |
| return ERR_PTR(-EBADF); |
| |
| rcu_read_lock(); |
| |
| /* |
| * This path doesn't originate from kernfs and @kn could already |
| * have been or be removed at any point. @kn->priv is RCU |
| * protected for this access. See destroy_locked() for details. |
| */ |
| cgrp = rcu_dereference(kn->priv); |
| if (cgrp) |
| css = cgroup_css(cgrp, ss); |
| |
| if (!css || !css_tryget(css)) |
| css = ERR_PTR(-ENOENT); |
| |
| rcu_read_unlock(); |
| return css; |
| } |
| |
| /** |
| * css_from_id - lookup css by id |
| * @id: the cgroup id |
| * @ss: cgroup subsys to be looked into |
| * |
| * Returns the css if there's valid one with @id, otherwise returns NULL. |
| * Should be called under rcu_read_lock(). |
| */ |
| struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) |
| { |
| struct cgroup *cgrp; |
| |
| cgroup_assert_mutexes_or_rcu_locked(); |
| |
| cgrp = idr_find(&ss->root->cgroup_idr, id); |
| if (cgrp) |
| return cgroup_css(cgrp, ss); |
| return NULL; |
| } |
| |
| #ifdef CONFIG_CGROUP_DEBUG |
| static struct cgroup_subsys_state * |
| debug_css_alloc(struct cgroup_subsys_state *parent_css) |
| { |
| struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL); |
| |
| if (!css) |
| return ERR_PTR(-ENOMEM); |
| |
| return css; |
| } |
| |
| static void debug_css_free(struct cgroup_subsys_state *css) |
| { |
| kfree(css); |
| } |
| |
| static u64 debug_taskcount_read(struct cgroup_subsys_state *css, |
| struct cftype *cft) |
| { |
| return cgroup_task_count(css->cgroup); |
| } |
| |
| static u64 current_css_set_read(struct cgroup_subsys_state *css, |
| struct cftype *cft) |
| { |
| return (u64)(unsigned long)current->cgroups; |
| } |
| |
| static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css, |
| struct cftype *cft) |
| { |
| u64 count; |
| |
| rcu_read_lock(); |
| count = atomic_read(&task_css_set(current)->refcount); |
| rcu_read_unlock(); |
| return count; |
| } |
| |
| static int current_css_set_cg_links_read(struct seq_file *seq, void *v) |
| { |
| struct cgrp_cset_link *link; |
| struct css_set *cset; |
| |
| read_lock(&css_set_lock); |
| rcu_read_lock(); |
| cset = rcu_dereference(current->cgroups); |
| list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { |
| struct cgroup *c = link->cgrp; |
| const char *name = "?"; |
| |
| if (c != cgroup_dummy_top) |
| name = cgroup_name(c); |
| |
| seq_printf(seq, "Root %d group %s\n", |
| c->root->hierarchy_id, name); |
| } |
| rcu_read_unlock(); |
| read_unlock(&css_set_lock); |
| return 0; |
| } |
| |
| #define MAX_TASKS_SHOWN_PER_CSS 25 |
| static int cgroup_css_links_read(struct seq_file *seq, void *v) |
| { |
| struct cgroup_subsys_state *css = seq_css(seq); |
| struct cgrp_cset_link *link; |
| |
| read_lock(&css_set_lock); |
| list_for_each_entry(link, &css->cgroup->cset_links, cset_link) { |
| struct css_set *cset = link->cset; |
| struct task_struct *task; |
| int count = 0; |
| seq_printf(seq, "css_set %p\n", cset); |
| list_for_each_entry(task, &cset->tasks, cg_list) { |
| if (count++ > MAX_TASKS_SHOWN_PER_CSS) { |
| seq_puts(seq, " ...\n"); |
| break; |
| } else { |
| seq_printf(seq, " task %d\n", |
| task_pid_vnr(task)); |
| } |
| } |
| } |
| read_unlock(&css_set_lock); |
| return 0; |
| } |
| |
| static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft) |
| { |
| return test_bit(CGRP_RELEASABLE, &css->cgroup->flags); |
| } |
| |
| static struct cftype debug_files[] = { |
| { |
| .name = "taskcount", |
| .read_u64 = debug_taskcount_read, |
| }, |
| |
| { |
| .name = "current_css_set", |
| .read_u64 = current_css_set_read, |
| }, |
| |
| { |
| .name = "current_css_set_refcount", |
| .read_u64 = current_css_set_refcount_read, |
| }, |
| |
| { |
| .name = "current_css_set_cg_links", |
| .seq_show = current_css_set_cg_links_read, |
| }, |
| |
| { |
| .name = "cgroup_css_links", |
| .seq_show = cgroup_css_links_read, |
| }, |
| |
| { |
| .name = "releasable", |
| .read_u64 = releasable_read, |
| }, |
| |
| { } /* terminate */ |
| }; |
| |
| struct cgroup_subsys debug_cgrp_subsys = { |
| .css_alloc = debug_css_alloc, |
| .css_free = debug_css_free, |
| .base_cftypes = debug_files, |
| }; |
| #endif /* CONFIG_CGROUP_DEBUG */ |