blob: 34764de5a6d0a6fafbf8e4e5b6929252abd9fa2a [file] [log] [blame]
/* Copyright (c) 2014-2017, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/*
* MSM PCIe controller driver.
*/
#include <linux/module.h>
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/gpio.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/of_pci.h>
#include <linux/pci.h>
#include <linux/iommu.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/regulator/rpm-smd-regulator.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/of_gpio.h>
#include <linux/clk/msm-clk.h>
#include <linux/reset.h>
#include <linux/msm-bus.h>
#include <linux/msm-bus-board.h>
#include <linux/debugfs.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/msi.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
#include <linux/pm_wakeup.h>
#include <linux/compiler.h>
#include <soc/qcom/scm.h>
#include <linux/ipc_logging.h>
#include <linux/msm_pcie.h>
#ifdef CONFIG_ARCH_MDMCALIFORNIUM
#define PCIE_VENDOR_ID_RCP 0x17cb
#define PCIE_DEVICE_ID_RCP 0x0302
#define PCIE20_L1SUB_CONTROL1 0x158
#define PCIE20_PARF_DBI_BASE_ADDR 0x350
#define PCIE20_PARF_SLV_ADDR_SPACE_SIZE 0x358
#define TX_BASE 0x200
#define RX_BASE 0x400
#define PCS_BASE 0x800
#define PCS_MISC_BASE 0x600
#elif defined(CONFIG_ARCH_MSM8998)
#define PCIE_VENDOR_ID_RCP 0x17cb
#define PCIE_DEVICE_ID_RCP 0x0105
#define PCIE20_L1SUB_CONTROL1 0x1E4
#define PCIE20_PARF_DBI_BASE_ADDR 0x350
#define PCIE20_PARF_SLV_ADDR_SPACE_SIZE 0x358
#define TX_BASE 0
#define RX_BASE 0
#define PCS_BASE 0x800
#define PCS_MISC_BASE 0
#else
#define PCIE_VENDOR_ID_RCP 0x17cb
#define PCIE_DEVICE_ID_RCP 0x0104
#define PCIE20_L1SUB_CONTROL1 0x158
#define PCIE20_PARF_DBI_BASE_ADDR 0x168
#define PCIE20_PARF_SLV_ADDR_SPACE_SIZE 0x16C
#define TX_BASE 0x1000
#define RX_BASE 0x1200
#define PCS_BASE 0x1400
#define PCS_MISC_BASE 0
#endif
#define TX(n, m) (TX_BASE + n * m * 0x1000)
#define RX(n, m) (RX_BASE + n * m * 0x1000)
#define PCS_PORT(n, m) (PCS_BASE + n * m * 0x1000)
#define PCS_MISC_PORT(n, m) (PCS_MISC_BASE + n * m * 0x1000)
#define QSERDES_COM_BG_TIMER 0x00C
#define QSERDES_COM_SSC_EN_CENTER 0x010
#define QSERDES_COM_SSC_ADJ_PER1 0x014
#define QSERDES_COM_SSC_ADJ_PER2 0x018
#define QSERDES_COM_SSC_PER1 0x01C
#define QSERDES_COM_SSC_PER2 0x020
#define QSERDES_COM_SSC_STEP_SIZE1 0x024
#define QSERDES_COM_SSC_STEP_SIZE2 0x028
#define QSERDES_COM_BIAS_EN_CLKBUFLR_EN 0x034
#define QSERDES_COM_CLK_ENABLE1 0x038
#define QSERDES_COM_SYS_CLK_CTRL 0x03C
#define QSERDES_COM_SYSCLK_BUF_ENABLE 0x040
#define QSERDES_COM_PLL_IVCO 0x048
#define QSERDES_COM_LOCK_CMP1_MODE0 0x04C
#define QSERDES_COM_LOCK_CMP2_MODE0 0x050
#define QSERDES_COM_LOCK_CMP3_MODE0 0x054
#define QSERDES_COM_BG_TRIM 0x070
#define QSERDES_COM_CLK_EP_DIV 0x074
#define QSERDES_COM_CP_CTRL_MODE0 0x078
#define QSERDES_COM_PLL_RCTRL_MODE0 0x084
#define QSERDES_COM_PLL_CCTRL_MODE0 0x090
#define QSERDES_COM_SYSCLK_EN_SEL 0x0AC
#define QSERDES_COM_RESETSM_CNTRL 0x0B4
#define QSERDES_COM_RESTRIM_CTRL 0x0BC
#define QSERDES_COM_RESCODE_DIV_NUM 0x0C4
#define QSERDES_COM_LOCK_CMP_EN 0x0C8
#define QSERDES_COM_DEC_START_MODE0 0x0D0
#define QSERDES_COM_DIV_FRAC_START1_MODE0 0x0DC
#define QSERDES_COM_DIV_FRAC_START2_MODE0 0x0E0
#define QSERDES_COM_DIV_FRAC_START3_MODE0 0x0E4
#define QSERDES_COM_INTEGLOOP_GAIN0_MODE0 0x108
#define QSERDES_COM_INTEGLOOP_GAIN1_MODE0 0x10C
#define QSERDES_COM_VCO_TUNE_CTRL 0x124
#define QSERDES_COM_VCO_TUNE_MAP 0x128
#define QSERDES_COM_VCO_TUNE1_MODE0 0x12C
#define QSERDES_COM_VCO_TUNE2_MODE0 0x130
#define QSERDES_COM_VCO_TUNE_TIMER1 0x144
#define QSERDES_COM_VCO_TUNE_TIMER2 0x148
#define QSERDES_COM_BG_CTRL 0x170
#define QSERDES_COM_CLK_SELECT 0x174
#define QSERDES_COM_HSCLK_SEL 0x178
#define QSERDES_COM_CORECLK_DIV 0x184
#define QSERDES_COM_CORE_CLK_EN 0x18C
#define QSERDES_COM_C_READY_STATUS 0x190
#define QSERDES_COM_CMN_CONFIG 0x194
#define QSERDES_COM_SVS_MODE_CLK_SEL 0x19C
#define QSERDES_COM_DEBUG_BUS0 0x1A0
#define QSERDES_COM_DEBUG_BUS1 0x1A4
#define QSERDES_COM_DEBUG_BUS2 0x1A8
#define QSERDES_COM_DEBUG_BUS3 0x1AC
#define QSERDES_COM_DEBUG_BUS_SEL 0x1B0
#define QSERDES_TX_N_RES_CODE_LANE_OFFSET(n, m) (TX(n, m) + 0x4C)
#define QSERDES_TX_N_DEBUG_BUS_SEL(n, m) (TX(n, m) + 0x64)
#define QSERDES_TX_N_HIGHZ_TRANSCEIVEREN_BIAS_DRVR_EN(n, m) (TX(n, m) + 0x68)
#define QSERDES_TX_N_LANE_MODE(n, m) (TX(n, m) + 0x94)
#define QSERDES_TX_N_RCV_DETECT_LVL_2(n, m) (TX(n, m) + 0xAC)
#define QSERDES_RX_N_UCDR_SO_GAIN_HALF(n, m) (RX(n, m) + 0x010)
#define QSERDES_RX_N_UCDR_SO_GAIN(n, m) (RX(n, m) + 0x01C)
#define QSERDES_RX_N_UCDR_SO_SATURATION_AND_ENABLE(n, m) (RX(n, m) + 0x048)
#define QSERDES_RX_N_RX_EQU_ADAPTOR_CNTRL2(n, m) (RX(n, m) + 0x0D8)
#define QSERDES_RX_N_RX_EQU_ADAPTOR_CNTRL3(n, m) (RX(n, m) + 0x0DC)
#define QSERDES_RX_N_RX_EQU_ADAPTOR_CNTRL4(n, m) (RX(n, m) + 0x0E0)
#define QSERDES_RX_N_SIGDET_ENABLES(n, m) (RX(n, m) + 0x110)
#define QSERDES_RX_N_SIGDET_DEGLITCH_CNTRL(n, m) (RX(n, m) + 0x11C)
#define QSERDES_RX_N_SIGDET_LVL(n, m) (RX(n, m) + 0x118)
#define QSERDES_RX_N_RX_BAND(n, m) (RX(n, m) + 0x120)
#define PCIE_MISC_N_DEBUG_BUS_BYTE0_INDEX(n, m) (PCS_MISC_PORT(n, m) + 0x00)
#define PCIE_MISC_N_DEBUG_BUS_BYTE1_INDEX(n, m) (PCS_MISC_PORT(n, m) + 0x04)
#define PCIE_MISC_N_DEBUG_BUS_BYTE2_INDEX(n, m) (PCS_MISC_PORT(n, m) + 0x08)
#define PCIE_MISC_N_DEBUG_BUS_BYTE3_INDEX(n, m) (PCS_MISC_PORT(n, m) + 0x0C)
#define PCIE_MISC_N_DEBUG_BUS_0_STATUS(n, m) (PCS_MISC_PORT(n, m) + 0x14)
#define PCIE_MISC_N_DEBUG_BUS_1_STATUS(n, m) (PCS_MISC_PORT(n, m) + 0x18)
#define PCIE_MISC_N_DEBUG_BUS_2_STATUS(n, m) (PCS_MISC_PORT(n, m) + 0x1C)
#define PCIE_MISC_N_DEBUG_BUS_3_STATUS(n, m) (PCS_MISC_PORT(n, m) + 0x20)
#define PCIE_N_SW_RESET(n, m) (PCS_PORT(n, m) + 0x00)
#define PCIE_N_POWER_DOWN_CONTROL(n, m) (PCS_PORT(n, m) + 0x04)
#define PCIE_N_START_CONTROL(n, m) (PCS_PORT(n, m) + 0x08)
#define PCIE_N_TXDEEMPH_M6DB_V0(n, m) (PCS_PORT(n, m) + 0x24)
#define PCIE_N_TXDEEMPH_M3P5DB_V0(n, m) (PCS_PORT(n, m) + 0x28)
#define PCIE_N_ENDPOINT_REFCLK_DRIVE(n, m) (PCS_PORT(n, m) + 0x54)
#define PCIE_N_RX_IDLE_DTCT_CNTRL(n, m) (PCS_PORT(n, m) + 0x58)
#define PCIE_N_POWER_STATE_CONFIG1(n, m) (PCS_PORT(n, m) + 0x60)
#define PCIE_N_POWER_STATE_CONFIG4(n, m) (PCS_PORT(n, m) + 0x6C)
#define PCIE_N_PWRUP_RESET_DLY_TIME_AUXCLK(n, m) (PCS_PORT(n, m) + 0xA0)
#define PCIE_N_LP_WAKEUP_DLY_TIME_AUXCLK(n, m) (PCS_PORT(n, m) + 0xA4)
#define PCIE_N_PLL_LOCK_CHK_DLY_TIME(n, m) (PCS_PORT(n, m) + 0xA8)
#define PCIE_N_TEST_CONTROL4(n, m) (PCS_PORT(n, m) + 0x11C)
#define PCIE_N_TEST_CONTROL5(n, m) (PCS_PORT(n, m) + 0x120)
#define PCIE_N_TEST_CONTROL6(n, m) (PCS_PORT(n, m) + 0x124)
#define PCIE_N_TEST_CONTROL7(n, m) (PCS_PORT(n, m) + 0x128)
#define PCIE_N_PCS_STATUS(n, m) (PCS_PORT(n, m) + 0x174)
#define PCIE_N_DEBUG_BUS_0_STATUS(n, m) (PCS_PORT(n, m) + 0x198)
#define PCIE_N_DEBUG_BUS_1_STATUS(n, m) (PCS_PORT(n, m) + 0x19C)
#define PCIE_N_DEBUG_BUS_2_STATUS(n, m) (PCS_PORT(n, m) + 0x1A0)
#define PCIE_N_DEBUG_BUS_3_STATUS(n, m) (PCS_PORT(n, m) + 0x1A4)
#define PCIE_N_LP_WAKEUP_DLY_TIME_AUXCLK_MSB(n, m) (PCS_PORT(n, m) + 0x1A8)
#define PCIE_N_OSC_DTCT_ACTIONS(n, m) (PCS_PORT(n, m) + 0x1AC)
#define PCIE_N_SIGDET_CNTRL(n, m) (PCS_PORT(n, m) + 0x1B0)
#define PCIE_N_L1SS_WAKEUP_DLY_TIME_AUXCLK_LSB(n, m) (PCS_PORT(n, m) + 0x1DC)
#define PCIE_N_L1SS_WAKEUP_DLY_TIME_AUXCLK_MSB(n, m) (PCS_PORT(n, m) + 0x1E0)
#define PCIE_COM_SW_RESET 0x400
#define PCIE_COM_POWER_DOWN_CONTROL 0x404
#define PCIE_COM_START_CONTROL 0x408
#define PCIE_COM_DEBUG_BUS_BYTE0_INDEX 0x438
#define PCIE_COM_DEBUG_BUS_BYTE1_INDEX 0x43C
#define PCIE_COM_DEBUG_BUS_BYTE2_INDEX 0x440
#define PCIE_COM_DEBUG_BUS_BYTE3_INDEX 0x444
#define PCIE_COM_PCS_READY_STATUS 0x448
#define PCIE_COM_DEBUG_BUS_0_STATUS 0x45C
#define PCIE_COM_DEBUG_BUS_1_STATUS 0x460
#define PCIE_COM_DEBUG_BUS_2_STATUS 0x464
#define PCIE_COM_DEBUG_BUS_3_STATUS 0x468
#define PCIE20_PARF_SYS_CTRL 0x00
#define PCIE20_PARF_PM_STTS 0x24
#define PCIE20_PARF_PCS_DEEMPH 0x34
#define PCIE20_PARF_PCS_SWING 0x38
#define PCIE20_PARF_PHY_CTRL 0x40
#define PCIE20_PARF_PHY_REFCLK 0x4C
#define PCIE20_PARF_CONFIG_BITS 0x50
#define PCIE20_PARF_TEST_BUS 0xE4
#define PCIE20_PARF_MHI_CLOCK_RESET_CTRL 0x174
#define PCIE20_PARF_AXI_MSTR_WR_ADDR_HALT 0x1A8
#define PCIE20_PARF_LTSSM 0x1B0
#define PCIE20_PARF_INT_ALL_STATUS 0x224
#define PCIE20_PARF_INT_ALL_CLEAR 0x228
#define PCIE20_PARF_INT_ALL_MASK 0x22C
#define PCIE20_PARF_SID_OFFSET 0x234
#define PCIE20_PARF_BDF_TRANSLATE_CFG 0x24C
#define PCIE20_PARF_BDF_TRANSLATE_N 0x250
#define PCIE20_ELBI_VERSION 0x00
#define PCIE20_ELBI_SYS_CTRL 0x04
#define PCIE20_ELBI_SYS_STTS 0x08
#define PCIE20_CAP 0x70
#define PCIE20_CAP_DEVCTRLSTATUS (PCIE20_CAP + 0x08)
#define PCIE20_CAP_LINKCTRLSTATUS (PCIE20_CAP + 0x10)
#define PCIE20_COMMAND_STATUS 0x04
#define PCIE20_HEADER_TYPE 0x0C
#define PCIE20_BUSNUMBERS 0x18
#define PCIE20_MEMORY_BASE_LIMIT 0x20
#define PCIE20_BRIDGE_CTRL 0x3C
#define PCIE20_DEVICE_CONTROL_STATUS 0x78
#define PCIE20_DEVICE_CONTROL2_STATUS2 0x98
#define PCIE20_AUX_CLK_FREQ_REG 0xB40
#define PCIE20_ACK_F_ASPM_CTRL_REG 0x70C
#define PCIE20_ACK_N_FTS 0xff00
#define PCIE20_PLR_IATU_VIEWPORT 0x900
#define PCIE20_PLR_IATU_CTRL1 0x904
#define PCIE20_PLR_IATU_CTRL2 0x908
#define PCIE20_PLR_IATU_LBAR 0x90C
#define PCIE20_PLR_IATU_UBAR 0x910
#define PCIE20_PLR_IATU_LAR 0x914
#define PCIE20_PLR_IATU_LTAR 0x918
#define PCIE20_PLR_IATU_UTAR 0x91c
#define PCIE20_CTRL1_TYPE_CFG0 0x04
#define PCIE20_CTRL1_TYPE_CFG1 0x05
#define PCIE20_CAP_ID 0x10
#define L1SUB_CAP_ID 0x1E
#define PCIE_CAP_PTR_OFFSET 0x34
#define PCIE_EXT_CAP_OFFSET 0x100
#define PCIE20_AER_UNCORR_ERR_STATUS_REG 0x104
#define PCIE20_AER_CORR_ERR_STATUS_REG 0x110
#define PCIE20_AER_ROOT_ERR_STATUS_REG 0x130
#define PCIE20_AER_ERR_SRC_ID_REG 0x134
#define RD 0
#define WR 1
#define MSM_PCIE_ERROR -1
#define PERST_PROPAGATION_DELAY_US_MIN 1000
#define PERST_PROPAGATION_DELAY_US_MAX 1005
#define REFCLK_STABILIZATION_DELAY_US_MIN 1000
#define REFCLK_STABILIZATION_DELAY_US_MAX 1005
#define LINK_UP_TIMEOUT_US_MIN 5000
#define LINK_UP_TIMEOUT_US_MAX 5100
#define LINK_UP_CHECK_MAX_COUNT 20
#define PHY_STABILIZATION_DELAY_US_MIN 995
#define PHY_STABILIZATION_DELAY_US_MAX 1005
#define POWER_DOWN_DELAY_US_MIN 10
#define POWER_DOWN_DELAY_US_MAX 11
#define LINKDOWN_INIT_WAITING_US_MIN 995
#define LINKDOWN_INIT_WAITING_US_MAX 1005
#define LINKDOWN_WAITING_US_MIN 4900
#define LINKDOWN_WAITING_US_MAX 5100
#define LINKDOWN_WAITING_COUNT 200
#define PHY_READY_TIMEOUT_COUNT 10
#define XMLH_LINK_UP 0x400
#define MAX_LINK_RETRIES 5
#define MAX_BUS_NUM 3
#define MAX_PROP_SIZE 32
#define MAX_RC_NAME_LEN 15
#define MSM_PCIE_MAX_VREG 4
#define MSM_PCIE_MAX_CLK 9
#define MSM_PCIE_MAX_PIPE_CLK 1
#define MAX_RC_NUM 3
#define MAX_DEVICE_NUM 20
#define MAX_SHORT_BDF_NUM 16
#define PCIE_TLP_RD_SIZE 0x5
#define PCIE_MSI_NR_IRQS 256
#define MSM_PCIE_MAX_MSI 32
#define MAX_MSG_LEN 80
#define PCIE_LOG_PAGES (50)
#define PCIE_CONF_SPACE_DW 1024
#define PCIE_CLEAR 0xDEADBEEF
#define PCIE_LINK_DOWN 0xFFFFFFFF
#define MSM_PCIE_MAX_RESET 4
#define MSM_PCIE_MAX_PIPE_RESET 1
#define MSM_PCIE_MSI_PHY 0xa0000000
#define PCIE20_MSI_CTRL_ADDR (0x820)
#define PCIE20_MSI_CTRL_UPPER_ADDR (0x824)
#define PCIE20_MSI_CTRL_INTR_EN (0x828)
#define PCIE20_MSI_CTRL_INTR_MASK (0x82C)
#define PCIE20_MSI_CTRL_INTR_STATUS (0x830)
#define PCIE20_MSI_CTRL_MAX 8
/* PM control options */
#define PM_IRQ 0x1
#define PM_CLK 0x2
#define PM_GPIO 0x4
#define PM_VREG 0x8
#define PM_PIPE_CLK 0x10
#define PM_ALL (PM_IRQ | PM_CLK | PM_GPIO | PM_VREG | PM_PIPE_CLK)
#ifdef CONFIG_PHYS_ADDR_T_64BIT
#define PCIE_UPPER_ADDR(addr) ((u32)((addr) >> 32))
#else
#define PCIE_UPPER_ADDR(addr) (0x0)
#endif
#define PCIE_LOWER_ADDR(addr) ((u32)((addr) & 0xffffffff))
/* Config Space Offsets */
#define BDF_OFFSET(bus, devfn) \
((bus << 24) | (devfn << 16))
#define PCIE_GEN_DBG(x...) do { \
if (msm_pcie_debug_mask) \
pr_alert(x); \
} while (0)
#define PCIE_DBG(dev, fmt, arg...) do { \
if ((dev) && (dev)->ipc_log_long) \
ipc_log_string((dev)->ipc_log_long, \
"DBG1:%s: " fmt, __func__, arg); \
if ((dev) && (dev)->ipc_log) \
ipc_log_string((dev)->ipc_log, "%s: " fmt, __func__, arg); \
if (msm_pcie_debug_mask) \
pr_alert("%s: " fmt, __func__, arg); \
} while (0)
#define PCIE_DBG2(dev, fmt, arg...) do { \
if ((dev) && (dev)->ipc_log) \
ipc_log_string((dev)->ipc_log, "DBG2:%s: " fmt, __func__, arg);\
if (msm_pcie_debug_mask) \
pr_alert("%s: " fmt, __func__, arg); \
} while (0)
#define PCIE_DBG3(dev, fmt, arg...) do { \
if ((dev) && (dev)->ipc_log) \
ipc_log_string((dev)->ipc_log, "DBG3:%s: " fmt, __func__, arg);\
if (msm_pcie_debug_mask) \
pr_alert("%s: " fmt, __func__, arg); \
} while (0)
#define PCIE_DUMP(dev, fmt, arg...) do { \
if ((dev) && (dev)->ipc_log_dump) \
ipc_log_string((dev)->ipc_log_dump, \
"DUMP:%s: " fmt, __func__, arg); \
} while (0)
#define PCIE_DBG_FS(dev, fmt, arg...) do { \
if ((dev) && (dev)->ipc_log_dump) \
ipc_log_string((dev)->ipc_log_dump, \
"DBG_FS:%s: " fmt, __func__, arg); \
pr_alert("%s: " fmt, __func__, arg); \
} while (0)
#define PCIE_INFO(dev, fmt, arg...) do { \
if ((dev) && (dev)->ipc_log_long) \
ipc_log_string((dev)->ipc_log_long, \
"INFO:%s: " fmt, __func__, arg); \
if ((dev) && (dev)->ipc_log) \
ipc_log_string((dev)->ipc_log, "%s: " fmt, __func__, arg); \
pr_info("%s: " fmt, __func__, arg); \
} while (0)
#define PCIE_ERR(dev, fmt, arg...) do { \
if ((dev) && (dev)->ipc_log_long) \
ipc_log_string((dev)->ipc_log_long, \
"ERR:%s: " fmt, __func__, arg); \
if ((dev) && (dev)->ipc_log) \
ipc_log_string((dev)->ipc_log, "%s: " fmt, __func__, arg); \
pr_err("%s: " fmt, __func__, arg); \
} while (0)
enum msm_pcie_res {
MSM_PCIE_RES_PARF,
MSM_PCIE_RES_PHY,
MSM_PCIE_RES_DM_CORE,
MSM_PCIE_RES_ELBI,
MSM_PCIE_RES_CONF,
MSM_PCIE_RES_IO,
MSM_PCIE_RES_BARS,
MSM_PCIE_RES_TCSR,
MSM_PCIE_MAX_RES,
};
enum msm_pcie_irq {
MSM_PCIE_INT_MSI,
MSM_PCIE_INT_A,
MSM_PCIE_INT_B,
MSM_PCIE_INT_C,
MSM_PCIE_INT_D,
MSM_PCIE_INT_PLS_PME,
MSM_PCIE_INT_PME_LEGACY,
MSM_PCIE_INT_PLS_ERR,
MSM_PCIE_INT_AER_LEGACY,
MSM_PCIE_INT_LINK_UP,
MSM_PCIE_INT_LINK_DOWN,
MSM_PCIE_INT_BRIDGE_FLUSH_N,
MSM_PCIE_INT_GLOBAL_INT,
MSM_PCIE_MAX_IRQ,
};
enum msm_pcie_irq_event {
MSM_PCIE_INT_EVT_LINK_DOWN = 1,
MSM_PCIE_INT_EVT_BME,
MSM_PCIE_INT_EVT_PM_TURNOFF,
MSM_PCIE_INT_EVT_DEBUG,
MSM_PCIE_INT_EVT_LTR,
MSM_PCIE_INT_EVT_MHI_Q6,
MSM_PCIE_INT_EVT_MHI_A7,
MSM_PCIE_INT_EVT_DSTATE_CHANGE,
MSM_PCIE_INT_EVT_L1SUB_TIMEOUT,
MSM_PCIE_INT_EVT_MMIO_WRITE,
MSM_PCIE_INT_EVT_CFG_WRITE,
MSM_PCIE_INT_EVT_BRIDGE_FLUSH_N,
MSM_PCIE_INT_EVT_LINK_UP,
MSM_PCIE_INT_EVT_AER_LEGACY,
MSM_PCIE_INT_EVT_AER_ERR,
MSM_PCIE_INT_EVT_PME_LEGACY,
MSM_PCIE_INT_EVT_PLS_PME,
MSM_PCIE_INT_EVT_INTD,
MSM_PCIE_INT_EVT_INTC,
MSM_PCIE_INT_EVT_INTB,
MSM_PCIE_INT_EVT_INTA,
MSM_PCIE_INT_EVT_EDMA,
MSM_PCIE_INT_EVT_MSI_0,
MSM_PCIE_INT_EVT_MSI_1,
MSM_PCIE_INT_EVT_MSI_2,
MSM_PCIE_INT_EVT_MSI_3,
MSM_PCIE_INT_EVT_MSI_4,
MSM_PCIE_INT_EVT_MSI_5,
MSM_PCIE_INT_EVT_MSI_6,
MSM_PCIE_INT_EVT_MSI_7,
MSM_PCIE_INT_EVT_MAX = 30,
};
enum msm_pcie_gpio {
MSM_PCIE_GPIO_PERST,
MSM_PCIE_GPIO_WAKE,
MSM_PCIE_GPIO_EP,
MSM_PCIE_MAX_GPIO
};
enum msm_pcie_link_status {
MSM_PCIE_LINK_DEINIT,
MSM_PCIE_LINK_ENABLED,
MSM_PCIE_LINK_DISABLED
};
enum msm_pcie_boot_option {
MSM_PCIE_NO_PROBE_ENUMERATION = BIT(0),
MSM_PCIE_NO_WAKE_ENUMERATION = BIT(1)
};
/* gpio info structure */
struct msm_pcie_gpio_info_t {
char *name;
uint32_t num;
bool out;
uint32_t on;
uint32_t init;
bool required;
};
/* voltage regulator info structrue */
struct msm_pcie_vreg_info_t {
struct regulator *hdl;
char *name;
uint32_t max_v;
uint32_t min_v;
uint32_t opt_mode;
bool required;
};
/* reset info structure */
struct msm_pcie_reset_info_t {
struct reset_control *hdl;
char *name;
bool required;
};
/* clock info structure */
struct msm_pcie_clk_info_t {
struct clk *hdl;
char *name;
u32 freq;
bool config_mem;
bool required;
};
/* resource info structure */
struct msm_pcie_res_info_t {
char *name;
struct resource *resource;
void __iomem *base;
};
/* irq info structrue */
struct msm_pcie_irq_info_t {
char *name;
uint32_t num;
};
/* phy info structure */
struct msm_pcie_phy_info_t {
u32 offset;
u32 val;
u32 delay;
};
/* PCIe device info structure */
struct msm_pcie_device_info {
u32 bdf;
struct pci_dev *dev;
short short_bdf;
u32 sid;
int domain;
void __iomem *conf_base;
unsigned long phy_address;
u32 dev_ctrlstts_offset;
struct msm_pcie_register_event *event_reg;
bool registered;
};
/* msm pcie device structure */
struct msm_pcie_dev_t {
struct platform_device *pdev;
struct pci_dev *dev;
struct regulator *gdsc;
struct regulator *gdsc_smmu;
struct msm_pcie_vreg_info_t vreg[MSM_PCIE_MAX_VREG];
struct msm_pcie_gpio_info_t gpio[MSM_PCIE_MAX_GPIO];
struct msm_pcie_clk_info_t clk[MSM_PCIE_MAX_CLK];
struct msm_pcie_clk_info_t pipeclk[MSM_PCIE_MAX_PIPE_CLK];
struct msm_pcie_res_info_t res[MSM_PCIE_MAX_RES];
struct msm_pcie_irq_info_t irq[MSM_PCIE_MAX_IRQ];
struct msm_pcie_irq_info_t msi[MSM_PCIE_MAX_MSI];
struct msm_pcie_reset_info_t reset[MSM_PCIE_MAX_RESET];
struct msm_pcie_reset_info_t pipe_reset[MSM_PCIE_MAX_PIPE_RESET];
void __iomem *parf;
void __iomem *phy;
void __iomem *elbi;
void __iomem *dm_core;
void __iomem *conf;
void __iomem *bars;
void __iomem *tcsr;
uint32_t axi_bar_start;
uint32_t axi_bar_end;
struct resource *dev_mem_res;
struct resource *dev_io_res;
uint32_t wake_n;
uint32_t vreg_n;
uint32_t gpio_n;
uint32_t parf_deemph;
uint32_t parf_swing;
bool cfg_access;
spinlock_t cfg_lock;
unsigned long irqsave_flags;
struct mutex enumerate_lock;
struct mutex setup_lock;
struct irq_domain *irq_domain;
DECLARE_BITMAP(msi_irq_in_use, PCIE_MSI_NR_IRQS);
uint32_t msi_gicm_addr;
uint32_t msi_gicm_base;
bool use_msi;
enum msm_pcie_link_status link_status;
bool user_suspend;
bool disable_pc;
struct pci_saved_state *saved_state;
struct wakeup_source ws;
struct msm_bus_scale_pdata *bus_scale_table;
uint32_t bus_client;
bool l0s_supported;
bool l1_supported;
bool l1ss_supported;
bool common_clk_en;
bool clk_power_manage_en;
bool aux_clk_sync;
bool aer_enable;
bool smmu_exist;
uint32_t smmu_sid_base;
uint32_t n_fts;
bool ext_ref_clk;
bool common_phy;
uint32_t ep_latency;
uint32_t wr_halt_size;
uint32_t cpl_timeout;
uint32_t current_bdf;
short current_short_bdf;
uint32_t perst_delay_us_min;
uint32_t perst_delay_us_max;
uint32_t tlp_rd_size;
bool linkdown_panic;
uint32_t boot_option;
uint32_t rc_idx;
uint32_t phy_ver;
bool drv_ready;
bool enumerated;
struct work_struct handle_wake_work;
struct mutex recovery_lock;
spinlock_t linkdown_lock;
spinlock_t wakeup_lock;
spinlock_t global_irq_lock;
spinlock_t aer_lock;
ulong linkdown_counter;
ulong link_turned_on_counter;
ulong link_turned_off_counter;
ulong rc_corr_counter;
ulong rc_non_fatal_counter;
ulong rc_fatal_counter;
ulong ep_corr_counter;
ulong ep_non_fatal_counter;
ulong ep_fatal_counter;
bool suspending;
ulong wake_counter;
u32 num_active_ep;
u32 num_ep;
bool pending_ep_reg;
u32 phy_len;
u32 port_phy_len;
struct msm_pcie_phy_info_t *phy_sequence;
struct msm_pcie_phy_info_t *port_phy_sequence;
u32 ep_shadow[MAX_DEVICE_NUM][PCIE_CONF_SPACE_DW];
u32 rc_shadow[PCIE_CONF_SPACE_DW];
bool shadow_en;
bool bridge_found;
struct msm_pcie_register_event *event_reg;
unsigned int scm_dev_id;
bool power_on;
void *ipc_log;
void *ipc_log_long;
void *ipc_log_dump;
bool use_19p2mhz_aux_clk;
bool use_pinctrl;
struct pinctrl *pinctrl;
struct pinctrl_state *pins_default;
struct pinctrl_state *pins_sleep;
struct msm_pcie_device_info pcidev_table[MAX_DEVICE_NUM];
};
/* debug mask sys interface */
static int msm_pcie_debug_mask;
module_param_named(debug_mask, msm_pcie_debug_mask,
int, 0644);
/* debugfs values */
static u32 rc_sel;
static u32 base_sel;
static u32 wr_offset;
static u32 wr_mask;
static u32 wr_value;
static ulong corr_counter_limit = 5;
/* counter to keep track if common PHY needs to be configured */
static u32 num_rc_on;
/* global lock for PCIe common PHY */
static struct mutex com_phy_lock;
/* Table to track info of PCIe devices */
static struct msm_pcie_device_info
msm_pcie_dev_tbl[MAX_RC_NUM * MAX_DEVICE_NUM];
/* PCIe driver state */
struct pcie_drv_sta {
u32 rc_num;
struct mutex drv_lock;
} pcie_drv;
/* msm pcie device data */
static struct msm_pcie_dev_t msm_pcie_dev[MAX_RC_NUM];
/* regulators */
static struct msm_pcie_vreg_info_t msm_pcie_vreg_info[MSM_PCIE_MAX_VREG] = {
{NULL, "vreg-3.3", 0, 0, 0, false},
{NULL, "vreg-1.8", 1800000, 1800000, 14000, true},
{NULL, "vreg-0.9", 1000000, 1000000, 40000, true},
{NULL, "vreg-cx", 0, 0, 0, false}
};
/* GPIOs */
static struct msm_pcie_gpio_info_t msm_pcie_gpio_info[MSM_PCIE_MAX_GPIO] = {
{"perst-gpio", 0, 1, 0, 0, 1},
{"wake-gpio", 0, 0, 0, 0, 0},
{"qcom,ep-gpio", 0, 1, 1, 0, 0}
};
/* resets */
static struct msm_pcie_reset_info_t
msm_pcie_reset_info[MAX_RC_NUM][MSM_PCIE_MAX_RESET] = {
{
{NULL, "pcie_phy_reset", false},
{NULL, "pcie_phy_com_reset", false},
{NULL, "pcie_phy_nocsr_com_phy_reset", false},
{NULL, "pcie_0_phy_reset", false}
},
{
{NULL, "pcie_phy_reset", false},
{NULL, "pcie_phy_com_reset", false},
{NULL, "pcie_phy_nocsr_com_phy_reset", false},
{NULL, "pcie_1_phy_reset", false}
},
{
{NULL, "pcie_phy_reset", false},
{NULL, "pcie_phy_com_reset", false},
{NULL, "pcie_phy_nocsr_com_phy_reset", false},
{NULL, "pcie_2_phy_reset", false}
}
};
/* pipe reset */
static struct msm_pcie_reset_info_t
msm_pcie_pipe_reset_info[MAX_RC_NUM][MSM_PCIE_MAX_PIPE_RESET] = {
{
{NULL, "pcie_0_phy_pipe_reset", false}
},
{
{NULL, "pcie_1_phy_pipe_reset", false}
},
{
{NULL, "pcie_2_phy_pipe_reset", false}
}
};
/* clocks */
static struct msm_pcie_clk_info_t
msm_pcie_clk_info[MAX_RC_NUM][MSM_PCIE_MAX_CLK] = {
{
{NULL, "pcie_0_ref_clk_src", 0, false, false},
{NULL, "pcie_0_aux_clk", 1010000, false, true},
{NULL, "pcie_0_cfg_ahb_clk", 0, false, true},
{NULL, "pcie_0_mstr_axi_clk", 0, true, true},
{NULL, "pcie_0_slv_axi_clk", 0, true, true},
{NULL, "pcie_0_ldo", 0, false, true},
{NULL, "pcie_0_smmu_clk", 0, false, false},
{NULL, "pcie_phy_cfg_ahb_clk", 0, false, false},
{NULL, "pcie_phy_aux_clk", 0, false, false}
},
{
{NULL, "pcie_1_ref_clk_src", 0, false, false},
{NULL, "pcie_1_aux_clk", 1010000, false, true},
{NULL, "pcie_1_cfg_ahb_clk", 0, false, true},
{NULL, "pcie_1_mstr_axi_clk", 0, true, true},
{NULL, "pcie_1_slv_axi_clk", 0, true, true},
{NULL, "pcie_1_ldo", 0, false, true},
{NULL, "pcie_1_smmu_clk", 0, false, false},
{NULL, "pcie_phy_cfg_ahb_clk", 0, false, false},
{NULL, "pcie_phy_aux_clk", 0, false, false}
},
{
{NULL, "pcie_2_ref_clk_src", 0, false, false},
{NULL, "pcie_2_aux_clk", 1010000, false, true},
{NULL, "pcie_2_cfg_ahb_clk", 0, false, true},
{NULL, "pcie_2_mstr_axi_clk", 0, true, true},
{NULL, "pcie_2_slv_axi_clk", 0, true, true},
{NULL, "pcie_2_ldo", 0, false, true},
{NULL, "pcie_2_smmu_clk", 0, false, false},
{NULL, "pcie_phy_cfg_ahb_clk", 0, false, false},
{NULL, "pcie_phy_aux_clk", 0, false, false}
}
};
/* Pipe Clocks */
static struct msm_pcie_clk_info_t
msm_pcie_pipe_clk_info[MAX_RC_NUM][MSM_PCIE_MAX_PIPE_CLK] = {
{
{NULL, "pcie_0_pipe_clk", 125000000, true, true},
},
{
{NULL, "pcie_1_pipe_clk", 125000000, true, true},
},
{
{NULL, "pcie_2_pipe_clk", 125000000, true, true},
}
};
/* resources */
static const struct msm_pcie_res_info_t msm_pcie_res_info[MSM_PCIE_MAX_RES] = {
{"parf", 0, 0},
{"phy", 0, 0},
{"dm_core", 0, 0},
{"elbi", 0, 0},
{"conf", 0, 0},
{"io", 0, 0},
{"bars", 0, 0},
{"tcsr", 0, 0}
};
/* irqs */
static const struct msm_pcie_irq_info_t msm_pcie_irq_info[MSM_PCIE_MAX_IRQ] = {
{"int_msi", 0},
{"int_a", 0},
{"int_b", 0},
{"int_c", 0},
{"int_d", 0},
{"int_pls_pme", 0},
{"int_pme_legacy", 0},
{"int_pls_err", 0},
{"int_aer_legacy", 0},
{"int_pls_link_up", 0},
{"int_pls_link_down", 0},
{"int_bridge_flush_n", 0},
{"int_global_int", 0}
};
/* MSIs */
static const struct msm_pcie_irq_info_t msm_pcie_msi_info[MSM_PCIE_MAX_MSI] = {
{"msi_0", 0}, {"msi_1", 0}, {"msi_2", 0}, {"msi_3", 0},
{"msi_4", 0}, {"msi_5", 0}, {"msi_6", 0}, {"msi_7", 0},
{"msi_8", 0}, {"msi_9", 0}, {"msi_10", 0}, {"msi_11", 0},
{"msi_12", 0}, {"msi_13", 0}, {"msi_14", 0}, {"msi_15", 0},
{"msi_16", 0}, {"msi_17", 0}, {"msi_18", 0}, {"msi_19", 0},
{"msi_20", 0}, {"msi_21", 0}, {"msi_22", 0}, {"msi_23", 0},
{"msi_24", 0}, {"msi_25", 0}, {"msi_26", 0}, {"msi_27", 0},
{"msi_28", 0}, {"msi_29", 0}, {"msi_30", 0}, {"msi_31", 0}
};
#ifdef CONFIG_ARM
#define PCIE_BUS_PRIV_DATA(bus) \
(((struct pci_sys_data *)bus->sysdata)->private_data)
static struct pci_sys_data msm_pcie_sys_data[MAX_RC_NUM];
static inline void *msm_pcie_setup_sys_data(struct msm_pcie_dev_t *dev)
{
msm_pcie_sys_data[dev->rc_idx].domain = dev->rc_idx;
msm_pcie_sys_data[dev->rc_idx].private_data = dev;
return &msm_pcie_sys_data[dev->rc_idx];
}
static inline void msm_pcie_fixup_irqs(struct msm_pcie_dev_t *dev)
{
pci_fixup_irqs(pci_common_swizzle, of_irq_parse_and_map_pci);
}
#else
#define PCIE_BUS_PRIV_DATA(bus) \
(struct msm_pcie_dev_t *)(bus->sysdata)
static inline void *msm_pcie_setup_sys_data(struct msm_pcie_dev_t *dev)
{
return dev;
}
static inline void msm_pcie_fixup_irqs(struct msm_pcie_dev_t *dev)
{
}
#endif
static inline void msm_pcie_write_reg(void *base, u32 offset, u32 value)
{
writel_relaxed(value, base + offset);
/* ensure that changes propagated to the hardware */
wmb();
}
static inline void msm_pcie_write_reg_field(void *base, u32 offset,
const u32 mask, u32 val)
{
u32 shift = find_first_bit((void *)&mask, 32);
u32 tmp = readl_relaxed(base + offset);
tmp &= ~mask; /* clear written bits */
val = tmp | (val << shift);
writel_relaxed(val, base + offset);
/* ensure that changes propagated to the hardware */
wmb();
}
static inline void msm_pcie_config_clock_mem(struct msm_pcie_dev_t *dev,
struct msm_pcie_clk_info_t *info)
{
int ret;
ret = clk_set_flags(info->hdl, CLKFLAG_NORETAIN_MEM);
if (ret)
PCIE_ERR(dev,
"PCIe: RC%d can't configure core memory for clk %s: %d.\n",
dev->rc_idx, info->name, ret);
else
PCIE_DBG2(dev,
"PCIe: RC%d configured core memory for clk %s.\n",
dev->rc_idx, info->name);
ret = clk_set_flags(info->hdl, CLKFLAG_NORETAIN_PERIPH);
if (ret)
PCIE_ERR(dev,
"PCIe: RC%d can't configure peripheral memory for clk %s: %d.\n",
dev->rc_idx, info->name, ret);
else
PCIE_DBG2(dev,
"PCIe: RC%d configured peripheral memory for clk %s.\n",
dev->rc_idx, info->name);
}
#if defined(CONFIG_ARCH_FSM9010)
#define PCIE20_PARF_PHY_STTS 0x3c
#define PCIE2_PHY_RESET_CTRL 0x44
#define PCIE20_PARF_PHY_REFCLK_CTRL2 0xa0
#define PCIE20_PARF_PHY_REFCLK_CTRL3 0xa4
#define PCIE20_PARF_PCS_SWING_CTRL1 0x88
#define PCIE20_PARF_PCS_SWING_CTRL2 0x8c
#define PCIE20_PARF_PCS_DEEMPH1 0x74
#define PCIE20_PARF_PCS_DEEMPH2 0x78
#define PCIE20_PARF_PCS_DEEMPH3 0x7c
#define PCIE20_PARF_CONFIGBITS 0x84
#define PCIE20_PARF_PHY_CTRL3 0x94
#define PCIE20_PARF_PCS_CTRL 0x80
#define TX_AMP_VAL 127
#define PHY_RX0_EQ_GEN1_VAL 0
#define PHY_RX0_EQ_GEN2_VAL 4
#define TX_DEEMPH_GEN1_VAL 24
#define TX_DEEMPH_GEN2_3_5DB_VAL 24
#define TX_DEEMPH_GEN2_6DB_VAL 34
#define PHY_TX0_TERM_OFFST_VAL 0
static inline void pcie_phy_dump(struct msm_pcie_dev_t *dev)
{
}
static inline void pcie20_phy_reset(struct msm_pcie_dev_t *dev, uint32_t assert)
{
msm_pcie_write_reg_field(dev->phy, PCIE2_PHY_RESET_CTRL,
BIT(0), (assert) ? 1 : 0);
}
static void pcie_phy_init(struct msm_pcie_dev_t *dev)
{
PCIE_DBG(dev, "RC%d: Initializing 28LP SNS phy - 100MHz\n",
dev->rc_idx);
/* De-assert Phy SW Reset */
pcie20_phy_reset(dev, 1);
/* Program SSP ENABLE */
if (readl_relaxed(dev->phy + PCIE20_PARF_PHY_REFCLK_CTRL2) & BIT(0))
msm_pcie_write_reg_field(dev->phy, PCIE20_PARF_PHY_REFCLK_CTRL2,
BIT(0), 0);
if ((readl_relaxed(dev->phy + PCIE20_PARF_PHY_REFCLK_CTRL3) &
BIT(0)) == 0)
msm_pcie_write_reg_field(dev->phy, PCIE20_PARF_PHY_REFCLK_CTRL3,
BIT(0), 1);
/* Program Tx Amplitude */
if ((readl_relaxed(dev->phy + PCIE20_PARF_PCS_SWING_CTRL1) &
(BIT(6)|BIT(5)|BIT(4)|BIT(3)|BIT(2)|BIT(1)|BIT(0))) !=
TX_AMP_VAL)
msm_pcie_write_reg_field(dev->phy, PCIE20_PARF_PCS_SWING_CTRL1,
BIT(6)|BIT(5)|BIT(4)|BIT(3)|BIT(2)|BIT(1)|BIT(0),
TX_AMP_VAL);
if ((readl_relaxed(dev->phy + PCIE20_PARF_PCS_SWING_CTRL2) &
(BIT(6)|BIT(5)|BIT(4)|BIT(3)|BIT(2)|BIT(1)|BIT(0))) !=
TX_AMP_VAL)
msm_pcie_write_reg_field(dev->phy, PCIE20_PARF_PCS_SWING_CTRL2,
BIT(6)|BIT(5)|BIT(4)|BIT(3)|BIT(2)|BIT(1)|BIT(0),
TX_AMP_VAL);
/* Program De-Emphasis */
if ((readl_relaxed(dev->phy + PCIE20_PARF_PCS_DEEMPH1) &
(BIT(5)|BIT(4)|BIT(3)|BIT(2)|BIT(1)|BIT(0))) !=
TX_DEEMPH_GEN2_6DB_VAL)
msm_pcie_write_reg_field(dev->phy, PCIE20_PARF_PCS_DEEMPH1,
BIT(5)|BIT(4)|BIT(3)|BIT(2)|BIT(1)|BIT(0),
TX_DEEMPH_GEN2_6DB_VAL);
if ((readl_relaxed(dev->phy + PCIE20_PARF_PCS_DEEMPH2) &
(BIT(5)|BIT(4)|BIT(3)|BIT(2)|BIT(1)|BIT(0))) !=
TX_DEEMPH_GEN2_3_5DB_VAL)
msm_pcie_write_reg_field(dev->phy, PCIE20_PARF_PCS_DEEMPH2,
BIT(5)|BIT(4)|BIT(3)|BIT(2)|BIT(1)|BIT(0),
TX_DEEMPH_GEN2_3_5DB_VAL);
if ((readl_relaxed(dev->phy + PCIE20_PARF_PCS_DEEMPH3) &
(BIT(5)|BIT(4)|BIT(3)|BIT(2)|BIT(1)|BIT(0))) !=
TX_DEEMPH_GEN1_VAL)
msm_pcie_write_reg_field(dev->phy, PCIE20_PARF_PCS_DEEMPH3,
BIT(5)|BIT(4)|BIT(3)|BIT(2)|BIT(1)|BIT(0),
TX_DEEMPH_GEN1_VAL);
/* Program Rx_Eq */
if ((readl_relaxed(dev->phy + PCIE20_PARF_CONFIGBITS) &
(BIT(2)|BIT(1)|BIT(0))) != PHY_RX0_EQ_GEN1_VAL)
msm_pcie_write_reg_field(dev->phy, PCIE20_PARF_CONFIGBITS,
BIT(2)|BIT(1)|BIT(0), PHY_RX0_EQ_GEN1_VAL);
/* Program Tx0_term_offset */
if ((readl_relaxed(dev->phy + PCIE20_PARF_PHY_CTRL3) &
(BIT(4)|BIT(3)|BIT(2)|BIT(1)|BIT(0))) !=
PHY_TX0_TERM_OFFST_VAL)
msm_pcie_write_reg_field(dev->phy, PCIE20_PARF_PHY_CTRL3,
BIT(4)|BIT(3)|BIT(2)|BIT(1)|BIT(0),
PHY_TX0_TERM_OFFST_VAL);
/* Program REF_CLK source */
msm_pcie_write_reg_field(dev->phy, PCIE20_PARF_PHY_REFCLK_CTRL2, BIT(1),
(dev->ext_ref_clk) ? 1 : 0);
/* disable Tx2Rx Loopback */
if (readl_relaxed(dev->phy + PCIE20_PARF_PCS_CTRL) & BIT(1))
msm_pcie_write_reg_field(dev->phy, PCIE20_PARF_PCS_CTRL,
BIT(1), 0);
/* De-assert Phy SW Reset */
pcie20_phy_reset(dev, 0);
}
static bool pcie_phy_is_ready(struct msm_pcie_dev_t *dev)
{
/* read PCIE20_PARF_PHY_STTS twice */
readl_relaxed(dev->phy + PCIE20_PARF_PHY_STTS);
if (readl_relaxed(dev->phy + PCIE20_PARF_PHY_STTS) & BIT(0))
return false;
else
return true;
}
#else
static void pcie_phy_dump_test_cntrl(struct msm_pcie_dev_t *dev,
u32 cntrl4_val, u32 cntrl5_val,
u32 cntrl6_val, u32 cntrl7_val)
{
msm_pcie_write_reg(dev->phy,
PCIE_N_TEST_CONTROL4(dev->rc_idx, dev->common_phy), cntrl4_val);
msm_pcie_write_reg(dev->phy,
PCIE_N_TEST_CONTROL5(dev->rc_idx, dev->common_phy), cntrl5_val);
msm_pcie_write_reg(dev->phy,
PCIE_N_TEST_CONTROL6(dev->rc_idx, dev->common_phy), cntrl6_val);
msm_pcie_write_reg(dev->phy,
PCIE_N_TEST_CONTROL7(dev->rc_idx, dev->common_phy), cntrl7_val);
PCIE_DUMP(dev,
"PCIe: RC%d PCIE_N_TEST_CONTROL4: 0x%x\n", dev->rc_idx,
readl_relaxed(dev->phy +
PCIE_N_TEST_CONTROL4(dev->rc_idx,
dev->common_phy)));
PCIE_DUMP(dev,
"PCIe: RC%d PCIE_N_TEST_CONTROL5: 0x%x\n", dev->rc_idx,
readl_relaxed(dev->phy +
PCIE_N_TEST_CONTROL5(dev->rc_idx,
dev->common_phy)));
PCIE_DUMP(dev,
"PCIe: RC%d PCIE_N_TEST_CONTROL6: 0x%x\n", dev->rc_idx,
readl_relaxed(dev->phy +
PCIE_N_TEST_CONTROL6(dev->rc_idx,
dev->common_phy)));
PCIE_DUMP(dev,
"PCIe: RC%d PCIE_N_TEST_CONTROL7: 0x%x\n", dev->rc_idx,
readl_relaxed(dev->phy +
PCIE_N_TEST_CONTROL7(dev->rc_idx,
dev->common_phy)));
PCIE_DUMP(dev,
"PCIe: RC%d PCIE_N_DEBUG_BUS_0_STATUS: 0x%x\n", dev->rc_idx,
readl_relaxed(dev->phy +
PCIE_N_DEBUG_BUS_0_STATUS(dev->rc_idx,
dev->common_phy)));
PCIE_DUMP(dev,
"PCIe: RC%d PCIE_N_DEBUG_BUS_1_STATUS: 0x%x\n", dev->rc_idx,
readl_relaxed(dev->phy +
PCIE_N_DEBUG_BUS_1_STATUS(dev->rc_idx,
dev->common_phy)));
PCIE_DUMP(dev,
"PCIe: RC%d PCIE_N_DEBUG_BUS_2_STATUS: 0x%x\n", dev->rc_idx,
readl_relaxed(dev->phy +
PCIE_N_DEBUG_BUS_2_STATUS(dev->rc_idx,
dev->common_phy)));
PCIE_DUMP(dev,
"PCIe: RC%d PCIE_N_DEBUG_BUS_3_STATUS: 0x%x\n\n", dev->rc_idx,
readl_relaxed(dev->phy +
PCIE_N_DEBUG_BUS_3_STATUS(dev->rc_idx,
dev->common_phy)));
}
static void pcie_phy_dump(struct msm_pcie_dev_t *dev)
{
int i, size;
u32 write_val;
if (dev->phy_ver >= 0x20) {
PCIE_DUMP(dev, "PCIe: RC%d PHY dump is not supported\n",
dev->rc_idx);
return;
}
PCIE_DUMP(dev, "PCIe: RC%d PHY testbus\n", dev->rc_idx);
pcie_phy_dump_test_cntrl(dev, 0x18, 0x19, 0x1A, 0x1B);
pcie_phy_dump_test_cntrl(dev, 0x1C, 0x1D, 0x1E, 0x1F);
pcie_phy_dump_test_cntrl(dev, 0x20, 0x21, 0x22, 0x23);
for (i = 0; i < 3; i++) {
write_val = 0x1 + i;
msm_pcie_write_reg(dev->phy,
QSERDES_TX_N_DEBUG_BUS_SEL(dev->rc_idx,
dev->common_phy), write_val);
PCIE_DUMP(dev,
"PCIe: RC%d QSERDES_TX_N_DEBUG_BUS_SEL: 0x%x\n",
dev->rc_idx,
readl_relaxed(dev->phy +
QSERDES_TX_N_DEBUG_BUS_SEL(dev->rc_idx,
dev->common_phy)));
pcie_phy_dump_test_cntrl(dev, 0x30, 0x31, 0x32, 0x33);
}
pcie_phy_dump_test_cntrl(dev, 0, 0, 0, 0);
if (dev->phy_ver >= 0x10 && dev->phy_ver < 0x20) {
pcie_phy_dump_test_cntrl(dev, 0x01, 0x02, 0x03, 0x0A);
pcie_phy_dump_test_cntrl(dev, 0x0E, 0x0F, 0x12, 0x13);
pcie_phy_dump_test_cntrl(dev, 0, 0, 0, 0);
for (i = 0; i < 8; i += 4) {
write_val = 0x1 + i;
msm_pcie_write_reg(dev->phy,
PCIE_MISC_N_DEBUG_BUS_BYTE0_INDEX(dev->rc_idx,
dev->common_phy), write_val);
msm_pcie_write_reg(dev->phy,
PCIE_MISC_N_DEBUG_BUS_BYTE1_INDEX(dev->rc_idx,
dev->common_phy), write_val + 1);
msm_pcie_write_reg(dev->phy,
PCIE_MISC_N_DEBUG_BUS_BYTE2_INDEX(dev->rc_idx,
dev->common_phy), write_val + 2);
msm_pcie_write_reg(dev->phy,
PCIE_MISC_N_DEBUG_BUS_BYTE3_INDEX(dev->rc_idx,
dev->common_phy), write_val + 3);
PCIE_DUMP(dev,
"PCIe: RC%d to PCIE_MISC_N_DEBUG_BUS_BYTE0_INDEX: 0x%x\n",
dev->rc_idx,
readl_relaxed(dev->phy +
PCIE_MISC_N_DEBUG_BUS_BYTE0_INDEX(
dev->rc_idx, dev->common_phy)));
PCIE_DUMP(dev,
"PCIe: RC%d to PCIE_MISC_N_DEBUG_BUS_BYTE1_INDEX: 0x%x\n",
dev->rc_idx,
readl_relaxed(dev->phy +
PCIE_MISC_N_DEBUG_BUS_BYTE1_INDEX(
dev->rc_idx, dev->common_phy)));
PCIE_DUMP(dev,
"PCIe: RC%d to PCIE_MISC_N_DEBUG_BUS_BYTE2_INDEX: 0x%x\n",
dev->rc_idx,
readl_relaxed(dev->phy +
PCIE_MISC_N_DEBUG_BUS_BYTE2_INDEX(
dev->rc_idx, dev->common_phy)));
PCIE_DUMP(dev,
"PCIe: RC%d to PCIE_MISC_N_DEBUG_BUS_BYTE3_INDEX: 0x%x\n",
dev->rc_idx,
readl_relaxed(dev->phy +
PCIE_MISC_N_DEBUG_BUS_BYTE3_INDEX(
dev->rc_idx, dev->common_phy)));
PCIE_DUMP(dev,
"PCIe: RC%d PCIE_MISC_N_DEBUG_BUS_0_STATUS: 0x%x\n",
dev->rc_idx,
readl_relaxed(dev->phy +
PCIE_MISC_N_DEBUG_BUS_0_STATUS(
dev->rc_idx, dev->common_phy)));
PCIE_DUMP(dev,
"PCIe: RC%d PCIE_MISC_N_DEBUG_BUS_1_STATUS: 0x%x\n",
dev->rc_idx,
readl_relaxed(dev->phy +
PCIE_MISC_N_DEBUG_BUS_1_STATUS(
dev->rc_idx, dev->common_phy)));
PCIE_DUMP(dev,
"PCIe: RC%d PCIE_MISC_N_DEBUG_BUS_2_STATUS: 0x%x\n",
dev->rc_idx,
readl_relaxed(dev->phy +
PCIE_MISC_N_DEBUG_BUS_2_STATUS(
dev->rc_idx, dev->common_phy)));
PCIE_DUMP(dev,
"PCIe: RC%d PCIE_MISC_N_DEBUG_BUS_3_STATUS: 0x%x\n",
dev->rc_idx,
readl_relaxed(dev->phy +
PCIE_MISC_N_DEBUG_BUS_3_STATUS(
dev->rc_idx, dev->common_phy)));
}
msm_pcie_write_reg(dev->phy,
PCIE_MISC_N_DEBUG_BUS_BYTE0_INDEX(
dev->rc_idx, dev->common_phy), 0);
msm_pcie_write_reg(dev->phy,
PCIE_MISC_N_DEBUG_BUS_BYTE1_INDEX(
dev->rc_idx, dev->common_phy), 0);
msm_pcie_write_reg(dev->phy,
PCIE_MISC_N_DEBUG_BUS_BYTE2_INDEX(
dev->rc_idx, dev->common_phy), 0);
msm_pcie_write_reg(dev->phy,
PCIE_MISC_N_DEBUG_BUS_BYTE3_INDEX(
dev->rc_idx, dev->common_phy), 0);
}
for (i = 0; i < 2; i++) {
write_val = 0x2 + i;
msm_pcie_write_reg(dev->phy, QSERDES_COM_DEBUG_BUS_SEL,
write_val);
PCIE_DUMP(dev,
"PCIe: RC%d to QSERDES_COM_DEBUG_BUS_SEL: 0x%x\n",
dev->rc_idx,
readl_relaxed(dev->phy + QSERDES_COM_DEBUG_BUS_SEL));
PCIE_DUMP(dev,
"PCIe: RC%d QSERDES_COM_DEBUG_BUS0: 0x%x\n",
dev->rc_idx,
readl_relaxed(dev->phy + QSERDES_COM_DEBUG_BUS0));
PCIE_DUMP(dev,
"PCIe: RC%d QSERDES_COM_DEBUG_BUS1: 0x%x\n",
dev->rc_idx,
readl_relaxed(dev->phy + QSERDES_COM_DEBUG_BUS1));
PCIE_DUMP(dev,
"PCIe: RC%d QSERDES_COM_DEBUG_BUS2: 0x%x\n",
dev->rc_idx,
readl_relaxed(dev->phy + QSERDES_COM_DEBUG_BUS2));
PCIE_DUMP(dev,
"PCIe: RC%d QSERDES_COM_DEBUG_BUS3: 0x%x\n\n",
dev->rc_idx,
readl_relaxed(dev->phy + QSERDES_COM_DEBUG_BUS3));
}
msm_pcie_write_reg(dev->phy, QSERDES_COM_DEBUG_BUS_SEL, 0);
if (dev->common_phy) {
msm_pcie_write_reg(dev->phy, PCIE_COM_DEBUG_BUS_BYTE0_INDEX,
0x01);
msm_pcie_write_reg(dev->phy, PCIE_COM_DEBUG_BUS_BYTE1_INDEX,
0x02);
msm_pcie_write_reg(dev->phy, PCIE_COM_DEBUG_BUS_BYTE2_INDEX,
0x03);
msm_pcie_write_reg(dev->phy, PCIE_COM_DEBUG_BUS_BYTE3_INDEX,
0x04);
PCIE_DUMP(dev,
"PCIe: RC%d to PCIE_COM_DEBUG_BUS_BYTE0_INDEX: 0x%x\n",
dev->rc_idx,
readl_relaxed(dev->phy +
PCIE_COM_DEBUG_BUS_BYTE0_INDEX));
PCIE_DUMP(dev,
"PCIe: RC%d to PCIE_COM_DEBUG_BUS_BYTE1_INDEX: 0x%x\n",
dev->rc_idx,
readl_relaxed(dev->phy +
PCIE_COM_DEBUG_BUS_BYTE1_INDEX));
PCIE_DUMP(dev,
"PCIe: RC%d to PCIE_COM_DEBUG_BUS_BYTE2_INDEX: 0x%x\n",
dev->rc_idx,
readl_relaxed(dev->phy +
PCIE_COM_DEBUG_BUS_BYTE2_INDEX));
PCIE_DUMP(dev,
"PCIe: RC%d to PCIE_COM_DEBUG_BUS_BYTE3_INDEX: 0x%x\n",
dev->rc_idx,
readl_relaxed(dev->phy +
PCIE_COM_DEBUG_BUS_BYTE3_INDEX));
PCIE_DUMP(dev,
"PCIe: RC%d PCIE_COM_DEBUG_BUS_0_STATUS: 0x%x\n",
dev->rc_idx,
readl_relaxed(dev->phy +
PCIE_COM_DEBUG_BUS_0_STATUS));
PCIE_DUMP(dev,
"PCIe: RC%d PCIE_COM_DEBUG_BUS_1_STATUS: 0x%x\n",
dev->rc_idx,
readl_relaxed(dev->phy +
PCIE_COM_DEBUG_BUS_1_STATUS));
PCIE_DUMP(dev,
"PCIe: RC%d PCIE_COM_DEBUG_BUS_2_STATUS: 0x%x\n",
dev->rc_idx,
readl_relaxed(dev->phy +
PCIE_COM_DEBUG_BUS_2_STATUS));
PCIE_DUMP(dev,
"PCIe: RC%d PCIE_COM_DEBUG_BUS_3_STATUS: 0x%x\n",
dev->rc_idx,
readl_relaxed(dev->phy +
PCIE_COM_DEBUG_BUS_3_STATUS));
msm_pcie_write_reg(dev->phy, PCIE_COM_DEBUG_BUS_BYTE0_INDEX,
0x05);
PCIE_DUMP(dev,
"PCIe: RC%d to PCIE_COM_DEBUG_BUS_BYTE0_INDEX: 0x%x\n",
dev->rc_idx,
readl_relaxed(dev->phy +
PCIE_COM_DEBUG_BUS_BYTE0_INDEX));
PCIE_DUMP(dev,
"PCIe: RC%d PCIE_COM_DEBUG_BUS_0_STATUS: 0x%x\n\n",
dev->rc_idx,
readl_relaxed(dev->phy +
PCIE_COM_DEBUG_BUS_0_STATUS));
}
size = resource_size(dev->res[MSM_PCIE_RES_PHY].resource);
for (i = 0; i < size; i += 32) {
PCIE_DUMP(dev,
"PCIe PHY of RC%d: 0x%04x %08x %08x %08x %08x %08x %08x %08x %08x\n",
dev->rc_idx, i,
readl_relaxed(dev->phy + i),
readl_relaxed(dev->phy + (i + 4)),
readl_relaxed(dev->phy + (i + 8)),
readl_relaxed(dev->phy + (i + 12)),
readl_relaxed(dev->phy + (i + 16)),
readl_relaxed(dev->phy + (i + 20)),
readl_relaxed(dev->phy + (i + 24)),
readl_relaxed(dev->phy + (i + 28)));
}
}
#ifdef CONFIG_ARCH_MDMCALIFORNIUM
static void pcie_phy_init(struct msm_pcie_dev_t *dev)
{
u8 common_phy;
PCIE_DBG(dev,
"RC%d: Initializing MDM 14nm QMP phy - 19.2MHz with Common Mode Clock (SSC ON)\n",
dev->rc_idx);
if (dev->common_phy)
common_phy = 1;
else
common_phy = 0;
msm_pcie_write_reg(dev->phy,
PCIE_N_SW_RESET(dev->rc_idx, common_phy),
0x01);
msm_pcie_write_reg(dev->phy,
PCIE_N_POWER_DOWN_CONTROL(dev->rc_idx, common_phy),
0x03);
msm_pcie_write_reg(dev->phy, QSERDES_COM_BIAS_EN_CLKBUFLR_EN, 0x18);
msm_pcie_write_reg(dev->phy, QSERDES_COM_CLK_ENABLE1, 0x10);
msm_pcie_write_reg(dev->phy,
QSERDES_TX_N_LANE_MODE(dev->rc_idx, common_phy), 0x06);
msm_pcie_write_reg(dev->phy, QSERDES_COM_LOCK_CMP_EN, 0x01);
msm_pcie_write_reg(dev->phy, QSERDES_COM_VCO_TUNE_MAP, 0x00);
msm_pcie_write_reg(dev->phy, QSERDES_COM_VCO_TUNE_TIMER1, 0xFF);
msm_pcie_write_reg(dev->phy, QSERDES_COM_VCO_TUNE_TIMER2, 0x1F);
msm_pcie_write_reg(dev->phy, QSERDES_COM_BG_TRIM, 0x0F);
msm_pcie_write_reg(dev->phy, QSERDES_COM_PLL_IVCO, 0x0F);
msm_pcie_write_reg(dev->phy, QSERDES_COM_HSCLK_SEL, 0x00);
msm_pcie_write_reg(dev->phy, QSERDES_COM_SVS_MODE_CLK_SEL, 0x01);
msm_pcie_write_reg(dev->phy, QSERDES_COM_CORE_CLK_EN, 0x20);
msm_pcie_write_reg(dev->phy, QSERDES_COM_CORECLK_DIV, 0x0A);
msm_pcie_write_reg(dev->phy, QSERDES_COM_BG_TIMER, 0x09);
if (dev->tcsr) {
PCIE_DBG(dev, "RC%d: TCSR PHY clock scheme is 0x%x\n",
dev->rc_idx, readl_relaxed(dev->tcsr));
if (readl_relaxed(dev->tcsr) & (BIT(1) | BIT(0)))
msm_pcie_write_reg(dev->phy,
QSERDES_COM_SYSCLK_EN_SEL, 0x0A);
else
msm_pcie_write_reg(dev->phy,
QSERDES_COM_SYSCLK_EN_SEL, 0x04);
}
msm_pcie_write_reg(dev->phy, QSERDES_COM_DEC_START_MODE0, 0x82);
msm_pcie_write_reg(dev->phy, QSERDES_COM_DIV_FRAC_START3_MODE0, 0x03);
msm_pcie_write_reg(dev->phy, QSERDES_COM_DIV_FRAC_START2_MODE0, 0x55);
msm_pcie_write_reg(dev->phy, QSERDES_COM_DIV_FRAC_START1_MODE0, 0x55);
msm_pcie_write_reg(dev->phy, QSERDES_COM_LOCK_CMP3_MODE0, 0x00);
msm_pcie_write_reg(dev->phy, QSERDES_COM_LOCK_CMP2_MODE0, 0x0D);
msm_pcie_write_reg(dev->phy, QSERDES_COM_LOCK_CMP1_MODE0, 0x04);
msm_pcie_write_reg(dev->phy, QSERDES_COM_CLK_SELECT, 0x33);
msm_pcie_write_reg(dev->phy, QSERDES_COM_SYS_CLK_CTRL, 0x02);
msm_pcie_write_reg(dev->phy, QSERDES_COM_SYSCLK_BUF_ENABLE, 0x1F);
msm_pcie_write_reg(dev->phy, QSERDES_COM_CP_CTRL_MODE0, 0x0B);
msm_pcie_write_reg(dev->phy, QSERDES_COM_PLL_RCTRL_MODE0, 0x16);
msm_pcie_write_reg(dev->phy, QSERDES_COM_PLL_CCTRL_MODE0, 0x28);
msm_pcie_write_reg(dev->phy, QSERDES_COM_INTEGLOOP_GAIN1_MODE0, 0x00);
msm_pcie_write_reg(dev->phy, QSERDES_COM_INTEGLOOP_GAIN0_MODE0, 0x80);
msm_pcie_write_reg(dev->phy, QSERDES_COM_SSC_EN_CENTER, 0x01);
msm_pcie_write_reg(dev->phy, QSERDES_COM_SSC_PER1, 0x31);
msm_pcie_write_reg(dev->phy, QSERDES_COM_SSC_PER2, 0x01);
msm_pcie_write_reg(dev->phy, QSERDES_COM_SSC_ADJ_PER1, 0x02);
msm_pcie_write_reg(dev->phy, QSERDES_COM_SSC_ADJ_PER2, 0x00);
msm_pcie_write_reg(dev->phy, QSERDES_COM_SSC_STEP_SIZE1, 0x2f);
msm_pcie_write_reg(dev->phy, QSERDES_COM_SSC_STEP_SIZE2, 0x19);
msm_pcie_write_reg(dev->phy,
QSERDES_TX_N_HIGHZ_TRANSCEIVEREN_BIAS_DRVR_EN(dev->rc_idx,
common_phy), 0x45);
msm_pcie_write_reg(dev->phy, QSERDES_COM_CMN_CONFIG, 0x06);
msm_pcie_write_reg(dev->phy,
QSERDES_TX_N_RES_CODE_LANE_OFFSET(dev->rc_idx, common_phy),
0x02);
msm_pcie_write_reg(dev->phy,
QSERDES_TX_N_RCV_DETECT_LVL_2(dev->rc_idx, common_phy),
0x12);
msm_pcie_write_reg(dev->phy,
QSERDES_RX_N_SIGDET_ENABLES(dev->rc_idx, common_phy),
0x1C);
msm_pcie_write_reg(dev->phy,
QSERDES_RX_N_SIGDET_DEGLITCH_CNTRL(dev->rc_idx, common_phy),
0x14);
msm_pcie_write_reg(dev->phy,
QSERDES_RX_N_RX_EQU_ADAPTOR_CNTRL2(dev->rc_idx, common_phy),
0x01);
msm_pcie_write_reg(dev->phy,
QSERDES_RX_N_RX_EQU_ADAPTOR_CNTRL3(dev->rc_idx, common_phy),
0x00);
msm_pcie_write_reg(dev->phy,
QSERDES_RX_N_RX_EQU_ADAPTOR_CNTRL4(dev->rc_idx, common_phy),
0xDB);
msm_pcie_write_reg(dev->phy,
QSERDES_RX_N_UCDR_SO_SATURATION_AND_ENABLE(dev->rc_idx,
common_phy),
0x4B);
msm_pcie_write_reg(dev->phy,
QSERDES_RX_N_UCDR_SO_GAIN(dev->rc_idx, common_phy),
0x04);
msm_pcie_write_reg(dev->phy,
QSERDES_RX_N_UCDR_SO_GAIN_HALF(dev->rc_idx, common_phy),
0x04);
msm_pcie_write_reg(dev->phy, QSERDES_COM_CLK_EP_DIV, 0x19);
msm_pcie_write_reg(dev->phy,
PCIE_N_ENDPOINT_REFCLK_DRIVE(dev->rc_idx, common_phy),
0x04);
msm_pcie_write_reg(dev->phy,
PCIE_N_OSC_DTCT_ACTIONS(dev->rc_idx, common_phy),
0x00);
msm_pcie_write_reg(dev->phy,
PCIE_N_PWRUP_RESET_DLY_TIME_AUXCLK(dev->rc_idx, common_phy),
0x40);
msm_pcie_write_reg(dev->phy,
PCIE_N_L1SS_WAKEUP_DLY_TIME_AUXCLK_MSB(dev->rc_idx, common_phy),
0x00);
msm_pcie_write_reg(dev->phy,
PCIE_N_L1SS_WAKEUP_DLY_TIME_AUXCLK_LSB(dev->rc_idx, common_phy),
0x40);
msm_pcie_write_reg(dev->phy,
PCIE_N_LP_WAKEUP_DLY_TIME_AUXCLK_MSB(dev->rc_idx, common_phy),
0x00);
msm_pcie_write_reg(dev->phy,
PCIE_N_LP_WAKEUP_DLY_TIME_AUXCLK(dev->rc_idx, common_phy),
0x40);
msm_pcie_write_reg(dev->phy,
PCIE_N_PLL_LOCK_CHK_DLY_TIME(dev->rc_idx, common_phy),
0x73);
msm_pcie_write_reg(dev->phy,
QSERDES_RX_N_SIGDET_LVL(dev->rc_idx, common_phy),
0x99);
msm_pcie_write_reg(dev->phy,
PCIE_N_TXDEEMPH_M6DB_V0(dev->rc_idx, common_phy),
0x15);
msm_pcie_write_reg(dev->phy,
PCIE_N_TXDEEMPH_M3P5DB_V0(dev->rc_idx, common_phy),
0x0E);
msm_pcie_write_reg(dev->phy,
PCIE_N_SIGDET_CNTRL(dev->rc_idx, common_phy),
0x07);
msm_pcie_write_reg(dev->phy,
PCIE_N_SW_RESET(dev->rc_idx, common_phy),
0x00);
msm_pcie_write_reg(dev->phy,
PCIE_N_START_CONTROL(dev->rc_idx, common_phy),
0x03);
}
static void pcie_pcs_port_phy_init(struct msm_pcie_dev_t *dev)
{
}
static bool pcie_phy_is_ready(struct msm_pcie_dev_t *dev)
{
if (readl_relaxed(dev->phy +
PCIE_N_PCS_STATUS(dev->rc_idx, dev->common_phy)) & BIT(6))
return false;
else
return true;
}
#else
static void pcie_phy_init(struct msm_pcie_dev_t *dev)
{
int i;
struct msm_pcie_phy_info_t *phy_seq;
PCIE_DBG(dev,
"RC%d: Initializing 14nm QMP phy - 19.2MHz with Common Mode Clock (SSC ON)\n",
dev->rc_idx);
if (dev->phy_sequence) {
i = dev->phy_len;
phy_seq = dev->phy_sequence;
while (i--) {
msm_pcie_write_reg(dev->phy,
phy_seq->offset,
phy_seq->val);
if (phy_seq->delay)
usleep_range(phy_seq->delay,
phy_seq->delay + 1);
phy_seq++;
}
return;
}
if (dev->common_phy)
msm_pcie_write_reg(dev->phy, PCIE_COM_POWER_DOWN_CONTROL, 0x01);
msm_pcie_write_reg(dev->phy, QSERDES_COM_BIAS_EN_CLKBUFLR_EN, 0x1C);
msm_pcie_write_reg(dev->phy, QSERDES_COM_CLK_ENABLE1, 0x10);
msm_pcie_write_reg(dev->phy, QSERDES_COM_CLK_SELECT, 0x33);
msm_pcie_write_reg(dev->phy, QSERDES_COM_CMN_CONFIG, 0x06);
msm_pcie_write_reg(dev->phy, QSERDES_COM_LOCK_CMP_EN, 0x42);
msm_pcie_write_reg(dev->phy, QSERDES_COM_VCO_TUNE_MAP, 0x00);
msm_pcie_write_reg(dev->phy, QSERDES_COM_VCO_TUNE_TIMER1, 0xFF);
msm_pcie_write_reg(dev->phy, QSERDES_COM_VCO_TUNE_TIMER2, 0x1F);
msm_pcie_write_reg(dev->phy, QSERDES_COM_HSCLK_SEL, 0x01);
msm_pcie_write_reg(dev->phy, QSERDES_COM_SVS_MODE_CLK_SEL, 0x01);
msm_pcie_write_reg(dev->phy, QSERDES_COM_CORE_CLK_EN, 0x00);
msm_pcie_write_reg(dev->phy, QSERDES_COM_CORECLK_DIV, 0x0A);
msm_pcie_write_reg(dev->phy, QSERDES_COM_BG_TIMER, 0x09);
msm_pcie_write_reg(dev->phy, QSERDES_COM_DEC_START_MODE0, 0x82);
msm_pcie_write_reg(dev->phy, QSERDES_COM_DIV_FRAC_START3_MODE0, 0x03);
msm_pcie_write_reg(dev->phy, QSERDES_COM_DIV_FRAC_START2_MODE0, 0x55);
msm_pcie_write_reg(dev->phy, QSERDES_COM_DIV_FRAC_START1_MODE0, 0x55);
msm_pcie_write_reg(dev->phy, QSERDES_COM_LOCK_CMP3_MODE0, 0x00);
msm_pcie_write_reg(dev->phy, QSERDES_COM_LOCK_CMP2_MODE0, 0x1A);
msm_pcie_write_reg(dev->phy, QSERDES_COM_LOCK_CMP1_MODE0, 0x0A);
msm_pcie_write_reg(dev->phy, QSERDES_COM_CLK_SELECT, 0x33);
msm_pcie_write_reg(dev->phy, QSERDES_COM_SYS_CLK_CTRL, 0x02);
msm_pcie_write_reg(dev->phy, QSERDES_COM_SYSCLK_BUF_ENABLE, 0x1F);
msm_pcie_write_reg(dev->phy, QSERDES_COM_SYSCLK_EN_SEL, 0x04);
msm_pcie_write_reg(dev->phy, QSERDES_COM_CP_CTRL_MODE0, 0x0B);
msm_pcie_write_reg(dev->phy, QSERDES_COM_PLL_RCTRL_MODE0, 0x16);
msm_pcie_write_reg(dev->phy, QSERDES_COM_PLL_CCTRL_MODE0, 0x28);
msm_pcie_write_reg(dev->phy, QSERDES_COM_INTEGLOOP_GAIN1_MODE0, 0x00);
msm_pcie_write_reg(dev->phy, QSERDES_COM_INTEGLOOP_GAIN0_MODE0, 0x80);
msm_pcie_write_reg(dev->phy, QSERDES_COM_SSC_EN_CENTER, 0x01);
msm_pcie_write_reg(dev->phy, QSERDES_COM_SSC_PER1, 0x31);
msm_pcie_write_reg(dev->phy, QSERDES_COM_SSC_PER2, 0x01);
msm_pcie_write_reg(dev->phy, QSERDES_COM_SSC_ADJ_PER1, 0x02);
msm_pcie_write_reg(dev->phy, QSERDES_COM_SSC_ADJ_PER2, 0x00);
msm_pcie_write_reg(dev->phy, QSERDES_COM_SSC_STEP_SIZE1, 0x2f);
msm_pcie_write_reg(dev->phy, QSERDES_COM_SSC_STEP_SIZE2, 0x19);
msm_pcie_write_reg(dev->phy, QSERDES_COM_RESCODE_DIV_NUM, 0x15);
msm_pcie_write_reg(dev->phy, QSERDES_COM_BG_TRIM, 0x0F);
msm_pcie_write_reg(dev->phy, QSERDES_COM_PLL_IVCO, 0x0F);
msm_pcie_write_reg(dev->phy, QSERDES_COM_CLK_EP_DIV, 0x19);
msm_pcie_write_reg(dev->phy, QSERDES_COM_CLK_ENABLE1, 0x10);
if (dev->phy_ver == 0x3) {
msm_pcie_write_reg(dev->phy, QSERDES_COM_HSCLK_SEL, 0x00);
msm_pcie_write_reg(dev->phy, QSERDES_COM_RESCODE_DIV_NUM, 0x40);
}
if (dev->common_phy) {
msm_pcie_write_reg(dev->phy, PCIE_COM_SW_RESET, 0x00);
msm_pcie_write_reg(dev->phy, PCIE_COM_START_CONTROL, 0x03);
}
}
static void pcie_pcs_port_phy_init(struct msm_pcie_dev_t *dev)
{
int i;
struct msm_pcie_phy_info_t *phy_seq;
u8 common_phy;
if (dev->phy_ver >= 0x20)
return;
PCIE_DBG(dev, "RC%d: Initializing PCIe PHY Port\n", dev->rc_idx);
if (dev->common_phy)
common_phy = 1;
else
common_phy = 0;
if (dev->port_phy_sequence) {
i = dev->port_phy_len;
phy_seq = dev->port_phy_sequence;
while (i--) {
msm_pcie_write_reg(dev->phy,
phy_seq->offset,
phy_seq->val);
if (phy_seq->delay)
usleep_range(phy_seq->delay,
phy_seq->delay + 1);
phy_seq++;
}
return;
}
msm_pcie_write_reg(dev->phy,
QSERDES_TX_N_HIGHZ_TRANSCEIVEREN_BIAS_DRVR_EN(dev->rc_idx,
common_phy), 0x45);
msm_pcie_write_reg(dev->phy,
QSERDES_TX_N_LANE_MODE(dev->rc_idx, common_phy),
0x06);
msm_pcie_write_reg(dev->phy,
QSERDES_RX_N_SIGDET_ENABLES(dev->rc_idx, common_phy),
0x1C);
msm_pcie_write_reg(dev->phy,
QSERDES_RX_N_SIGDET_LVL(dev->rc_idx, common_phy),
0x17);
msm_pcie_write_reg(dev->phy,
QSERDES_RX_N_RX_EQU_ADAPTOR_CNTRL2(dev->rc_idx, common_phy),
0x01);
msm_pcie_write_reg(dev->phy,
QSERDES_RX_N_RX_EQU_ADAPTOR_CNTRL3(dev->rc_idx, common_phy),
0x00);
msm_pcie_write_reg(dev->phy,
QSERDES_RX_N_RX_EQU_ADAPTOR_CNTRL4(dev->rc_idx, common_phy),
0xDB);
msm_pcie_write_reg(dev->phy,
QSERDES_RX_N_RX_BAND(dev->rc_idx, common_phy),
0x18);
msm_pcie_write_reg(dev->phy,
QSERDES_RX_N_UCDR_SO_GAIN(dev->rc_idx, common_phy),
0x04);
msm_pcie_write_reg(dev->phy,
QSERDES_RX_N_UCDR_SO_GAIN_HALF(dev->rc_idx, common_phy),
0x04);
msm_pcie_write_reg(dev->phy,
PCIE_N_RX_IDLE_DTCT_CNTRL(dev->rc_idx, common_phy),
0x4C);
msm_pcie_write_reg(dev->phy,
PCIE_N_PWRUP_RESET_DLY_TIME_AUXCLK(dev->rc_idx, common_phy),
0x00);
msm_pcie_write_reg(dev->phy,
PCIE_N_LP_WAKEUP_DLY_TIME_AUXCLK(dev->rc_idx, common_phy),
0x01);
msm_pcie_write_reg(dev->phy,
PCIE_N_PLL_LOCK_CHK_DLY_TIME(dev->rc_idx, common_phy),
0x05);
msm_pcie_write_reg(dev->phy,
QSERDES_RX_N_UCDR_SO_SATURATION_AND_ENABLE(dev->rc_idx,
common_phy), 0x4B);
msm_pcie_write_reg(dev->phy,
QSERDES_RX_N_SIGDET_DEGLITCH_CNTRL(dev->rc_idx, common_phy),
0x14);
msm_pcie_write_reg(dev->phy,
PCIE_N_ENDPOINT_REFCLK_DRIVE(dev->rc_idx, common_phy),
0x05);
msm_pcie_write_reg(dev->phy,
PCIE_N_POWER_DOWN_CONTROL(dev->rc_idx, common_phy),
0x02);
msm_pcie_write_reg(dev->phy,
PCIE_N_POWER_STATE_CONFIG4(dev->rc_idx, common_phy),
0x00);
msm_pcie_write_reg(dev->phy,
PCIE_N_POWER_STATE_CONFIG1(dev->rc_idx, common_phy),
0xA3);
if (dev->phy_ver == 0x3) {
msm_pcie_write_reg(dev->phy,
QSERDES_RX_N_SIGDET_LVL(dev->rc_idx, common_phy),
0x19);
msm_pcie_write_reg(dev->phy,
PCIE_N_TXDEEMPH_M3P5DB_V0(dev->rc_idx, common_phy),
0x0E);
}
msm_pcie_write_reg(dev->phy,
PCIE_N_POWER_DOWN_CONTROL(dev->rc_idx, common_phy),
0x03);
usleep_range(POWER_DOWN_DELAY_US_MIN, POWER_DOWN_DELAY_US_MAX);
msm_pcie_write_reg(dev->phy,
PCIE_N_SW_RESET(dev->rc_idx, common_phy),
0x00);
msm_pcie_write_reg(dev->phy,
PCIE_N_START_CONTROL(dev->rc_idx, common_phy),
0x0A);
}
static bool pcie_phy_is_ready(struct msm_pcie_dev_t *dev)
{
if (dev->phy_ver >= 0x20) {
if (readl_relaxed(dev->phy +
PCIE_N_PCS_STATUS(dev->rc_idx, dev->common_phy)) &
BIT(6))
return false;
else
return true;
}
if (!(readl_relaxed(dev->phy + PCIE_COM_PCS_READY_STATUS) & 0x1))
return false;
else
return true;
}
#endif
#endif
static int msm_pcie_restore_sec_config(struct msm_pcie_dev_t *dev)
{
int ret, scm_ret;
if (!dev) {
pr_err("PCIe: the input pcie dev is NULL.\n");
return -ENODEV;
}
ret = scm_restore_sec_cfg(dev->scm_dev_id, 0, &scm_ret);
if (ret || scm_ret) {
PCIE_ERR(dev,
"PCIe: RC%d failed(%d) to restore sec config, scm_ret=%d\n",
dev->rc_idx, ret, scm_ret);
return ret ? ret : -EINVAL;
}
return 0;
}
static inline int msm_pcie_check_align(struct msm_pcie_dev_t *dev,
u32 offset)
{
if (offset % 4) {
PCIE_ERR(dev,
"PCIe: RC%d: offset 0x%x is not correctly aligned\n",
dev->rc_idx, offset);
return MSM_PCIE_ERROR;
}
return 0;
}
static bool msm_pcie_confirm_linkup(struct msm_pcie_dev_t *dev,
bool check_sw_stts,
bool check_ep,
void __iomem *ep_conf)
{
u32 val;
if (check_sw_stts && (dev->link_status != MSM_PCIE_LINK_ENABLED)) {
PCIE_DBG(dev, "PCIe: The link of RC %d is not enabled.\n",
dev->rc_idx);
return false;
}
if (!(readl_relaxed(dev->dm_core + 0x80) & BIT(29))) {
PCIE_DBG(dev, "PCIe: The link of RC %d is not up.\n",
dev->rc_idx);
return false;
}
val = readl_relaxed(dev->dm_core);
PCIE_DBG(dev, "PCIe: device ID and vender ID of RC %d are 0x%x.\n",
dev->rc_idx, val);
if (val == PCIE_LINK_DOWN) {
PCIE_ERR(dev,
"PCIe: The link of RC %d is not really up; device ID and vender ID of RC %d are 0x%x.\n",
dev->rc_idx, dev->rc_idx, val);
return false;
}
if (check_ep) {
val = readl_relaxed(ep_conf);
PCIE_DBG(dev,
"PCIe: device ID and vender ID of EP of RC %d are 0x%x.\n",
dev->rc_idx, val);
if (val == PCIE_LINK_DOWN) {
PCIE_ERR(dev,
"PCIe: The link of RC %d is not really up; device ID and vender ID of EP of RC %d are 0x%x.\n",
dev->rc_idx, dev->rc_idx, val);
return false;
}
}
return true;
}
static void msm_pcie_cfg_recover(struct msm_pcie_dev_t *dev, bool rc)
{
int i, j;
u32 val = 0;
u32 *shadow;
void *cfg = dev->conf;
for (i = 0; i < MAX_DEVICE_NUM; i++) {
if (!rc && !dev->pcidev_table[i].bdf)
break;
if (rc) {
cfg = dev->dm_core;
shadow = dev->rc_shadow;
} else {
if (!msm_pcie_confirm_linkup(dev, false, true,
dev->pcidev_table[i].conf_base))
continue;
shadow = dev->ep_shadow[i];
PCIE_DBG(dev,
"PCIe Device: %02x:%02x.%01x\n",
dev->pcidev_table[i].bdf >> 24,
dev->pcidev_table[i].bdf >> 19 & 0x1f,
dev->pcidev_table[i].bdf >> 16 & 0x07);
}
for (j = PCIE_CONF_SPACE_DW - 1; j >= 0; j--) {
val = shadow[j];
if (val != PCIE_CLEAR) {
PCIE_DBG3(dev,
"PCIe: before recovery:cfg 0x%x:0x%x\n",
j * 4, readl_relaxed(cfg + j * 4));
PCIE_DBG3(dev,
"PCIe: shadow_dw[%d]:cfg 0x%x:0x%x\n",
j, j * 4, val);
writel_relaxed(val, cfg + j * 4);
/* ensure changes propagated to the hardware */
wmb();
PCIE_DBG3(dev,
"PCIe: after recovery:cfg 0x%x:0x%x\n\n",
j * 4, readl_relaxed(cfg + j * 4));
}
}
if (rc)
break;
pci_save_state(dev->pcidev_table[i].dev);
cfg += SZ_4K;
}
}
static void msm_pcie_write_mask(void __iomem *addr,
uint32_t clear_mask, uint32_t set_mask)
{
uint32_t val;
val = (readl_relaxed(addr) & ~clear_mask) | set_mask;
writel_relaxed(val, addr);
wmb(); /* ensure data is written to hardware register */
}
static void pcie_parf_dump(struct msm_pcie_dev_t *dev)
{
int i, size;
u32 original;
PCIE_DUMP(dev, "PCIe: RC%d PARF testbus\n", dev->rc_idx);
original = readl_relaxed(dev->parf + PCIE20_PARF_SYS_CTRL);
for (i = 1; i <= 0x1A; i++) {
msm_pcie_write_mask(dev->parf + PCIE20_PARF_SYS_CTRL,
0xFF0000, i << 16);
PCIE_DUMP(dev,
"RC%d: PARF_SYS_CTRL: 0%08x PARF_TEST_BUS: 0%08x\n",
dev->rc_idx,
readl_relaxed(dev->parf + PCIE20_PARF_SYS_CTRL),
readl_relaxed(dev->parf + PCIE20_PARF_TEST_BUS));
}
writel_relaxed(original, dev->parf + PCIE20_PARF_SYS_CTRL);
PCIE_DUMP(dev, "PCIe: RC%d PARF register dump\n", dev->rc_idx);
size = resource_size(dev->res[MSM_PCIE_RES_PARF].resource);
for (i = 0; i < size; i += 32) {
PCIE_DUMP(dev,
"RC%d: 0x%04x %08x %08x %08x %08x %08x %08x %08x %08x\n",
dev->rc_idx, i,
readl_relaxed(dev->parf + i),
readl_relaxed(dev->parf + (i + 4)),
readl_relaxed(dev->parf + (i + 8)),
readl_relaxed(dev->parf + (i + 12)),
readl_relaxed(dev->parf + (i + 16)),
readl_relaxed(dev->parf + (i + 20)),
readl_relaxed(dev->parf + (i + 24)),
readl_relaxed(dev->parf + (i + 28)));
}
}
static void msm_pcie_show_status(struct msm_pcie_dev_t *dev)
{
PCIE_DBG_FS(dev, "PCIe: RC%d is %s enumerated\n",
dev->rc_idx, dev->enumerated ? "" : "not");
PCIE_DBG_FS(dev, "PCIe: link is %s\n",
(dev->link_status == MSM_PCIE_LINK_ENABLED)
? "enabled" : "disabled");
PCIE_DBG_FS(dev, "cfg_access is %s allowed\n",
dev->cfg_access ? "" : "not");
PCIE_DBG_FS(dev, "use_msi is %d\n",
dev->use_msi);
PCIE_DBG_FS(dev, "use_pinctrl is %d\n",
dev->use_pinctrl);
PCIE_DBG_FS(dev, "use_19p2mhz_aux_clk is %d\n",
dev->use_19p2mhz_aux_clk);
PCIE_DBG_FS(dev, "user_suspend is %d\n",
dev->user_suspend);
PCIE_DBG_FS(dev, "num_ep: %d\n",
dev->num_ep);
PCIE_DBG_FS(dev, "num_active_ep: %d\n",
dev->num_active_ep);
PCIE_DBG_FS(dev, "pending_ep_reg: %s\n",
dev->pending_ep_reg ? "true" : "false");
PCIE_DBG_FS(dev, "phy_len is %d",
dev->phy_len);
PCIE_DBG_FS(dev, "port_phy_len is %d",
dev->port_phy_len);
PCIE_DBG_FS(dev, "disable_pc is %d",
dev->disable_pc);
PCIE_DBG_FS(dev, "l0s_supported is %s supported\n",
dev->l0s_supported ? "" : "not");
PCIE_DBG_FS(dev, "l1_supported is %s supported\n",
dev->l1_supported ? "" : "not");
PCIE_DBG_FS(dev, "l1ss_supported is %s supported\n",
dev->l1ss_supported ? "" : "not");
PCIE_DBG_FS(dev, "common_clk_en is %d\n",
dev->common_clk_en);
PCIE_DBG_FS(dev, "clk_power_manage_en is %d\n",
dev->clk_power_manage_en);
PCIE_DBG_FS(dev, "aux_clk_sync is %d\n",
dev->aux_clk_sync);
PCIE_DBG_FS(dev, "AER is %s enable\n",
dev->aer_enable ? "" : "not");
PCIE_DBG_FS(dev, "ext_ref_clk is %d\n",
dev->ext_ref_clk);
PCIE_DBG_FS(dev, "boot_option is 0x%x\n",
dev->boot_option);
PCIE_DBG_FS(dev, "phy_ver is %d\n",
dev->phy_ver);
PCIE_DBG_FS(dev, "drv_ready is %d\n",
dev->drv_ready);
PCIE_DBG_FS(dev, "linkdown_panic is %d\n",
dev->linkdown_panic);
PCIE_DBG_FS(dev, "the link is %s suspending\n",
dev->suspending ? "" : "not");
PCIE_DBG_FS(dev, "shadow is %s enabled\n",
dev->shadow_en ? "" : "not");
PCIE_DBG_FS(dev, "the power of RC is %s on\n",
dev->power_on ? "" : "not");
PCIE_DBG_FS(dev, "msi_gicm_addr: 0x%x\n",
dev->msi_gicm_addr);
PCIE_DBG_FS(dev, "msi_gicm_base: 0x%x\n",
dev->msi_gicm_base);
PCIE_DBG_FS(dev, "bus_client: %d\n",
dev->bus_client);
PCIE_DBG_FS(dev, "current short bdf: %d\n",
dev->current_short_bdf);
PCIE_DBG_FS(dev, "smmu does %s exist\n",
dev->smmu_exist ? "" : "not");
PCIE_DBG_FS(dev, "smmu_sid_base: 0x%x\n",
dev->smmu_sid_base);
PCIE_DBG_FS(dev, "n_fts: %d\n",
dev->n_fts);
PCIE_DBG_FS(dev, "common_phy: %d\n",
dev->common_phy);
PCIE_DBG_FS(dev, "ep_latency: %dms\n",
dev->ep_latency);
PCIE_DBG_FS(dev, "wr_halt_size: 0x%x\n",
dev->wr_halt_size);
PCIE_DBG_FS(dev, "cpl_timeout: 0x%x\n",
dev->cpl_timeout);
PCIE_DBG_FS(dev, "current_bdf: 0x%x\n",
dev->current_bdf);
PCIE_DBG_FS(dev, "perst_delay_us_min: %dus\n",
dev->perst_delay_us_min);
PCIE_DBG_FS(dev, "perst_delay_us_max: %dus\n",
dev->perst_delay_us_max);
PCIE_DBG_FS(dev, "tlp_rd_size: 0x%x\n",
dev->tlp_rd_size);
PCIE_DBG_FS(dev, "rc_corr_counter: %lu\n",
dev->rc_corr_counter);
PCIE_DBG_FS(dev, "rc_non_fatal_counter: %lu\n",
dev->rc_non_fatal_counter);
PCIE_DBG_FS(dev, "rc_fatal_counter: %lu\n",
dev->rc_fatal_counter);
PCIE_DBG_FS(dev, "ep_corr_counter: %lu\n",
dev->ep_corr_counter);
PCIE_DBG_FS(dev, "ep_non_fatal_counter: %lu\n",
dev->ep_non_fatal_counter);
PCIE_DBG_FS(dev, "ep_fatal_counter: %lu\n",
dev->ep_fatal_counter);
PCIE_DBG_FS(dev, "linkdown_counter: %lu\n",
dev->linkdown_counter);
PCIE_DBG_FS(dev, "wake_counter: %lu\n",
dev->wake_counter);
PCIE_DBG_FS(dev, "link_turned_on_counter: %lu\n",
dev->link_turned_on_counter);
PCIE_DBG_FS(dev, "link_turned_off_counter: %lu\n",
dev->link_turned_off_counter);
}
static void msm_pcie_shadow_dump(struct msm_pcie_dev_t *dev, bool rc)
{
int i, j;
u32 val = 0;
u32 *shadow;
for (i = 0; i < MAX_DEVICE_NUM; i++) {
if (!rc && !dev->pcidev_table[i].bdf)
break;
if (rc) {
shadow = dev->rc_shadow;
} else {
shadow = dev->ep_shadow[i];
PCIE_DBG_FS(dev, "PCIe Device: %02x:%02x.%01x\n",
dev->pcidev_table[i].bdf >> 24,
dev->pcidev_table[i].bdf >> 19 & 0x1f,
dev->pcidev_table[i].bdf >> 16 & 0x07);
}
for (j = 0; j < PCIE_CONF_SPACE_DW; j++) {
val = shadow[j];
if (val != PCIE_CLEAR) {
PCIE_DBG_FS(dev,
"PCIe: shadow_dw[%d]:cfg 0x%x:0x%x\n",
j, j * 4, val);
}
}
if (rc)
break;
}
}
static void msm_pcie_sel_debug_testcase(struct msm_pcie_dev_t *dev,
u32 testcase)
{
int ret, i;
u32 base_sel_size = 0;
u32 val = 0;
u32 current_offset = 0;
u32 ep_l1sub_ctrl1_offset = 0;
u32 ep_l1sub_cap_reg1_offset = 0;
u32 ep_link_ctrlstts_offset = 0;
u32 ep_dev_ctrl2stts2_offset = 0;
if (testcase >= 5 && testcase <= 10) {
current_offset =
readl_relaxed(dev->conf + PCIE_CAP_PTR_OFFSET) & 0xff;
while (current_offset) {
val = readl_relaxed(dev->conf + current_offset);
if ((val & 0xff) == PCIE20_CAP_ID) {
ep_link_ctrlstts_offset = current_offset +
0x10;
ep_dev_ctrl2stts2_offset = current_offset +
0x28;
break;
}
current_offset = (val >> 8) & 0xff;
}
if (!ep_link_ctrlstts_offset)
PCIE_DBG(dev,
"RC%d endpoint does not support PCIe capability registers\n",
dev->rc_idx);
else
PCIE_DBG(dev,
"RC%d: ep_link_ctrlstts_offset: 0x%x\n",
dev->rc_idx, ep_link_ctrlstts_offset);
}
switch (testcase) {
case 0: /* output status */
PCIE_DBG_FS(dev, "\n\nPCIe: Status for RC%d:\n",
dev->rc_idx);
msm_pcie_show_status(dev);
break;
case 1: /* disable link */
PCIE_DBG_FS(dev,
"\n\nPCIe: RC%d: disable link\n\n", dev->rc_idx);
ret = msm_pcie_pm_control(MSM_PCIE_SUSPEND, 0,
dev->dev, NULL,
MSM_PCIE_CONFIG_NO_CFG_RESTORE);
if (ret)
PCIE_DBG_FS(dev, "PCIe:%s:failed to disable link\n",
__func__);
else
PCIE_DBG_FS(dev, "PCIe:%s:disabled link\n",
__func__);
break;
case 2: /* enable link and recover config space for RC and EP */
PCIE_DBG_FS(dev,
"\n\nPCIe: RC%d: enable link and recover config space\n\n",
dev->rc_idx);
ret = msm_pcie_pm_control(MSM_PCIE_RESUME, 0,
dev->dev, NULL,
MSM_PCIE_CONFIG_NO_CFG_RESTORE);
if (ret)
PCIE_DBG_FS(dev, "PCIe:%s:failed to enable link\n",
__func__);
else {
PCIE_DBG_FS(dev, "PCIe:%s:enabled link\n", __func__);
msm_pcie_recover_config(dev->dev);
}
break;
case 3: /*
* disable and enable link, recover config space for
* RC and EP
*/
PCIE_DBG_FS(dev,
"\n\nPCIe: RC%d: disable and enable link then recover config space\n\n",
dev->rc_idx);
ret = msm_pcie_pm_control(MSM_PCIE_SUSPEND, 0,
dev->dev, NULL,
MSM_PCIE_CONFIG_NO_CFG_RESTORE);
if (ret)
PCIE_DBG_FS(dev, "PCIe:%s:failed to disable link\n",
__func__);
else
PCIE_DBG_FS(dev, "PCIe:%s:disabled link\n", __func__);
ret = msm_pcie_pm_control(MSM_PCIE_RESUME, 0,
dev->dev, NULL,
MSM_PCIE_CONFIG_NO_CFG_RESTORE);
if (ret)
PCIE_DBG_FS(dev, "PCIe:%s:failed to enable link\n",
__func__);
else {
PCIE_DBG_FS(dev, "PCIe:%s:enabled link\n", __func__);
msm_pcie_recover_config(dev->dev);
}
break;
case 4: /* dump shadow registers for RC and EP */
PCIE_DBG_FS(dev,
"\n\nPCIe: RC%d: dumping RC shadow registers\n",
dev->rc_idx);
msm_pcie_shadow_dump(dev, true);
PCIE_DBG_FS(dev,
"\n\nPCIe: RC%d: dumping EP shadow registers\n",
dev->rc_idx);
msm_pcie_shadow_dump(dev, false);
break;
case 5: /* disable L0s */
PCIE_DBG_FS(dev, "\n\nPCIe: RC%d: disable L0s\n\n",
dev->rc_idx);
msm_pcie_write_mask(dev->dm_core +
PCIE20_CAP_LINKCTRLSTATUS,
BIT(0), 0);
msm_pcie_write_mask(dev->conf +
ep_link_ctrlstts_offset,
BIT(0), 0);
if (dev->shadow_en) {
dev->rc_shadow[PCIE20_CAP_LINKCTRLSTATUS / 4] =
readl_relaxed(dev->dm_core +
PCIE20_CAP_LINKCTRLSTATUS);
dev->ep_shadow[0][ep_link_ctrlstts_offset / 4] =
readl_relaxed(dev->conf +
ep_link_ctrlstts_offset);
}
PCIE_DBG_FS(dev, "PCIe: RC's CAP_LINKCTRLSTATUS:0x%x\n",
readl_relaxed(dev->dm_core +
PCIE20_CAP_LINKCTRLSTATUS));
PCIE_DBG_FS(dev, "PCIe: EP's CAP_LINKCTRLSTATUS:0x%x\n",
readl_relaxed(dev->conf +
ep_link_ctrlstts_offset));
break;
case 6: /* enable L0s */
PCIE_DBG_FS(dev, "\n\nPCIe: RC%d: enable L0s\n\n",
dev->rc_idx);
msm_pcie_write_mask(dev->dm_core +
PCIE20_CAP_LINKCTRLSTATUS,
0, BIT(0));
msm_pcie_write_mask(dev->conf +
ep_link_ctrlstts_offset,
0, BIT(0));
if (dev->shadow_en) {
dev->rc_shadow[PCIE20_CAP_LINKCTRLSTATUS / 4] =
readl_relaxed(dev->dm_core +
PCIE20_CAP_LINKCTRLSTATUS);
dev->ep_shadow[0][ep_link_ctrlstts_offset / 4] =
readl_relaxed(dev->conf +
ep_link_ctrlstts_offset);
}
PCIE_DBG_FS(dev, "PCIe: RC's CAP_LINKCTRLSTATUS:0x%x\n",
readl_relaxed(dev->dm_core +
PCIE20_CAP_LINKCTRLSTATUS));
PCIE_DBG_FS(dev, "PCIe: EP's CAP_LINKCTRLSTATUS:0x%x\n",
readl_relaxed(dev->conf +
ep_link_ctrlstts_offset));
break;
case 7: /* disable L1 */
PCIE_DBG_FS(dev, "\n\nPCIe: RC%d: disable L1\n\n",
dev->rc_idx);
msm_pcie_write_mask(dev->dm_core +
PCIE20_CAP_LINKCTRLSTATUS,
BIT(1), 0);
msm_pcie_write_mask(dev->conf +
ep_link_ctrlstts_offset,
BIT(1), 0);
if (dev->shadow_en) {
dev->rc_shadow[PCIE20_CAP_LINKCTRLSTATUS / 4] =
readl_relaxed(dev->dm_core +
PCIE20_CAP_LINKCTRLSTATUS);
dev->ep_shadow[0][ep_link_ctrlstts_offset / 4] =
readl_relaxed(dev->conf +
ep_link_ctrlstts_offset);
}
PCIE_DBG_FS(dev, "PCIe: RC's CAP_LINKCTRLSTATUS:0x%x\n",
readl_relaxed(dev->dm_core +
PCIE20_CAP_LINKCTRLSTATUS));
PCIE_DBG_FS(dev, "PCIe: EP's CAP_LINKCTRLSTATUS:0x%x\n",
readl_relaxed(dev->conf +
ep_link_ctrlstts_offset));
break;
case 8: /* enable L1 */
PCIE_DBG_FS(dev, "\n\nPCIe: RC%d: enable L1\n\n",
dev->rc_idx);
msm_pcie_write_mask(dev->dm_core +
PCIE20_CAP_LINKCTRLSTATUS,
0, BIT(1));
msm_pcie_write_mask(dev->conf +
ep_link_ctrlstts_offset,
0, BIT(1));
if (dev->shadow_en) {
dev->rc_shadow[PCIE20_CAP_LINKCTRLSTATUS / 4] =
readl_relaxed(dev->dm_core +
PCIE20_CAP_LINKCTRLSTATUS);
dev->ep_shadow[0][ep_link_ctrlstts_offset / 4] =
readl_relaxed(dev->conf +
ep_link_ctrlstts_offset);
}
PCIE_DBG_FS(dev, "PCIe: RC's CAP_LINKCTRLSTATUS:0x%x\n",
readl_relaxed(dev->dm_core +
PCIE20_CAP_LINKCTRLSTATUS));
PCIE_DBG_FS(dev, "PCIe: EP's CAP_LINKCTRLSTATUS:0x%x\n",
readl_relaxed(dev->conf +
ep_link_ctrlstts_offset));
break;
case 9: /* disable L1ss */
PCIE_DBG_FS(dev, "\n\nPCIe: RC%d: disable L1ss\n\n",
dev->rc_idx);
current_offset = PCIE_EXT_CAP_OFFSET;
while (current_offset) {
val = readl_relaxed(dev->conf + current_offset);
if ((val & 0xffff) == L1SUB_CAP_ID) {
ep_l1sub_ctrl1_offset =
current_offset + 0x8;
break;
}
current_offset = val >> 20;
}
if (!ep_l1sub_ctrl1_offset) {
PCIE_DBG_FS(dev,
"PCIe: RC%d endpoint does not support l1ss registers\n",
dev->rc_idx);
break;
}
PCIE_DBG_FS(dev, "PCIe: RC%d: ep_l1sub_ctrl1_offset: 0x%x\n",
dev->rc_idx, ep_l1sub_ctrl1_offset);
msm_pcie_write_reg_field(dev->dm_core,
PCIE20_L1SUB_CONTROL1,
0xf, 0);
msm_pcie_write_mask(dev->dm_core +
PCIE20_DEVICE_CONTROL2_STATUS2,
BIT(10), 0);
msm_pcie_write_reg_field(dev->conf,
ep_l1sub_ctrl1_offset,
0xf, 0);
msm_pcie_write_mask(dev->conf +
ep_dev_ctrl2stts2_offset,
BIT(10), 0);
if (dev->shadow_en) {
dev->rc_shadow[PCIE20_L1SUB_CONTROL1 / 4] =
readl_relaxed(dev->dm_core +
PCIE20_L1SUB_CONTROL1);
dev->rc_shadow[PCIE20_DEVICE_CONTROL2_STATUS2 / 4] =
readl_relaxed(dev->dm_core +
PCIE20_DEVICE_CONTROL2_STATUS2);
dev->ep_shadow[0][ep_l1sub_ctrl1_offset / 4] =
readl_relaxed(dev->conf +
ep_l1sub_ctrl1_offset);
dev->ep_shadow[0][ep_dev_ctrl2stts2_offset / 4] =
readl_relaxed(dev->conf +
ep_dev_ctrl2stts2_offset);
}
PCIE_DBG_FS(dev, "PCIe: RC's L1SUB_CONTROL1:0x%x\n",
readl_relaxed(dev->dm_core +
PCIE20_L1SUB_CONTROL1));
PCIE_DBG_FS(dev, "PCIe: RC's DEVICE_CONTROL2_STATUS2:0x%x\n",
readl_relaxed(dev->dm_core +
PCIE20_DEVICE_CONTROL2_STATUS2));
PCIE_DBG_FS(dev, "PCIe: EP's L1SUB_CONTROL1:0x%x\n",
readl_relaxed(dev->conf +
ep_l1sub_ctrl1_offset));
PCIE_DBG_FS(dev, "PCIe: EP's DEVICE_CONTROL2_STATUS2:0x%x\n",
readl_relaxed(dev->conf +
ep_dev_ctrl2stts2_offset));
break;
case 10: /* enable L1ss */
PCIE_DBG_FS(dev, "\n\nPCIe: RC%d: enable L1ss\n\n",
dev->rc_idx);
current_offset = PCIE_EXT_CAP_OFFSET;
while (current_offset) {
val = readl_relaxed(dev->conf + current_offset);
if ((val & 0xffff) == L1SUB_CAP_ID) {
ep_l1sub_cap_reg1_offset =
current_offset + 0x4;
ep_l1sub_ctrl1_offset =
current_offset + 0x8;
break;
}
current_offset = val >> 20;
}
if (!ep_l1sub_ctrl1_offset) {
PCIE_DBG_FS(dev,
"PCIe: RC%d endpoint does not support l1ss registers\n",
dev->rc_idx);
break;
}
val = readl_relaxed(dev->conf +
ep_l1sub_cap_reg1_offset);
PCIE_DBG_FS(dev, "PCIe: EP's L1SUB_CAPABILITY_REG_1: 0x%x\n",
val);
PCIE_DBG_FS(dev, "PCIe: RC%d: ep_l1sub_ctrl1_offset: 0x%x\n",
dev->rc_idx, ep_l1sub_ctrl1_offset);
val &= 0xf;
msm_pcie_write_reg_field(dev->dm_core,
PCIE20_L1SUB_CONTROL1,
0xf, val);
msm_pcie_write_mask(dev->dm_core +
PCIE20_DEVICE_CONTROL2_STATUS2,
0, BIT(10));
msm_pcie_write_reg_field(dev->conf,
ep_l1sub_ctrl1_offset,
0xf, val);
msm_pcie_write_mask(dev->conf +
ep_dev_ctrl2stts2_offset,
0, BIT(10));
if (dev->shadow_en) {
dev->rc_shadow[PCIE20_L1SUB_CONTROL1 / 4] =
readl_relaxed(dev->dm_core +
PCIE20_L1SUB_CONTROL1);
dev->rc_shadow[PCIE20_DEVICE_CONTROL2_STATUS2 / 4] =
readl_relaxed(dev->dm_core +
PCIE20_DEVICE_CONTROL2_STATUS2);
dev->ep_shadow[0][ep_l1sub_ctrl1_offset / 4] =
readl_relaxed(dev->conf +
ep_l1sub_ctrl1_offset);
dev->ep_shadow[0][ep_dev_ctrl2stts2_offset / 4] =
readl_relaxed(dev->conf +
ep_dev_ctrl2stts2_offset);
}
PCIE_DBG_FS(dev, "PCIe: RC's L1SUB_CONTROL1:0x%x\n",
readl_relaxed(dev->dm_core +
PCIE20_L1SUB_CONTROL1));
PCIE_DBG_FS(dev, "PCIe: RC's DEVICE_CONTROL2_STATUS2:0x%x\n",
readl_relaxed(dev->dm_core +
PCIE20_DEVICE_CONTROL2_STATUS2));
PCIE_DBG_FS(dev, "PCIe: EP's L1SUB_CONTROL1:0x%x\n",
readl_relaxed(dev->conf +
ep_l1sub_ctrl1_offset));
PCIE_DBG_FS(dev, "PCIe: EP's DEVICE_CONTROL2_STATUS2:0x%x\n",
readl_relaxed(dev->conf +
ep_dev_ctrl2stts2_offset));
break;
case 11: /* enumerate PCIe */
PCIE_DBG_FS(dev, "\n\nPCIe: attempting to enumerate RC%d\n\n",
dev->rc_idx);
if (dev->enumerated)
PCIE_DBG_FS(dev, "PCIe: RC%d is already enumerated\n",
dev->rc_idx);
else {
if (!msm_pcie_enumerate(dev->rc_idx))
PCIE_DBG_FS(dev,
"PCIe: RC%d is successfully enumerated\n",
dev->rc_idx);
else
PCIE_DBG_FS(dev,
"PCIe: RC%d enumeration failed\n",
dev->rc_idx);
}
break;
case 12: /* write a value to a register */
PCIE_DBG_FS(dev,
"\n\nPCIe: RC%d: writing a value to a register\n\n",
dev->rc_idx);
if (!base_sel) {
PCIE_DBG_FS(dev, "Invalid base_sel: 0x%x\n", base_sel);
break;
}
PCIE_DBG_FS(dev,
"base: %s: 0x%p\nwr_offset: 0x%x\nwr_mask: 0x%x\nwr_value: 0x%x\n",
dev->res[base_sel - 1].name,
dev->res[base_sel - 1].base,
wr_offset, wr_mask, wr_value);
base_sel_size = resource_size(dev->res[base_sel - 1].resource);
if (wr_offset > base_sel_size - 4 ||
msm_pcie_check_align(dev, wr_offset))
PCIE_DBG_FS(dev,
"PCIe: RC%d: Invalid wr_offset: 0x%x. wr_offset should be no more than 0x%x\n",
dev->rc_idx, wr_offset, base_sel_size - 4);
else
msm_pcie_write_reg_field(dev->res[base_sel - 1].base,
wr_offset, wr_mask, wr_value);
break;
case 13: /* dump all registers of base_sel */
if (!base_sel) {
PCIE_DBG_FS(dev, "Invalid base_sel: 0x%x\n", base_sel);
break;
} else if (base_sel - 1 == MSM_PCIE_RES_PARF) {
pcie_parf_dump(dev);
break;
} else if (base_sel - 1 == MSM_PCIE_RES_PHY) {
pcie_phy_dump(dev);
break;
} else if (base_sel - 1 == MSM_PCIE_RES_CONF) {
base_sel_size = 0x1000;
} else {
base_sel_size = resource_size(
dev->res[base_sel - 1].resource);
}
PCIE_DBG_FS(dev, "\n\nPCIe: Dumping %s Registers for RC%d\n\n",
dev->res[base_sel - 1].name, dev->rc_idx);
for (i = 0; i < base_sel_size; i += 32) {
PCIE_DBG_FS(dev,
"0x%04x %08x %08x %08x %08x %08x %08x %08x %08x\n",
i, readl_relaxed(dev->res[base_sel - 1].base + i),
readl_relaxed(dev->res[base_sel - 1].base + (i + 4)),
readl_relaxed(dev->res[base_sel - 1].base + (i + 8)),
readl_relaxed(dev->res[base_sel - 1].base + (i + 12)),
readl_relaxed(dev->res[base_sel - 1].base + (i + 16)),
readl_relaxed(dev->res[base_sel - 1].base + (i + 20)),
readl_relaxed(dev->res[base_sel - 1].base + (i + 24)),
readl_relaxed(dev->res[base_sel - 1].base + (i + 28)));
}
break;
default:
PCIE_DBG_FS(dev, "Invalid testcase: %d.\n", testcase);
break;
}
}
int msm_pcie_debug_info(struct pci_dev *dev, u32 option, u32 base,
u32 offset, u32 mask, u32 value)
{
int ret = 0;
struct msm_pcie_dev_t *pdev = NULL;
if (!dev) {
pr_err("PCIe: the input pci dev is NULL.\n");
return -ENODEV;
}
if (option == 12 || option == 13) {
if (!base || base > 5) {
PCIE_DBG_FS(pdev, "Invalid base_sel: 0x%x\n", base);
PCIE_DBG_FS(pdev,
"PCIe: base_sel is still 0x%x\n", base_sel);
return -EINVAL;
}
base_sel = base;
PCIE_DBG_FS(pdev, "PCIe: base_sel is now 0x%x\n", base_sel);
if (option == 12) {
wr_offset = offset;
wr_mask = mask;
wr_value = value;
PCIE_DBG_FS(pdev,
"PCIe: wr_offset is now 0x%x\n", wr_offset);
PCIE_DBG_FS(pdev,
"PCIe: wr_mask is now 0x%x\n", wr_mask);
PCIE_DBG_FS(pdev,
"PCIe: wr_value is now 0x%x\n", wr_value);
}
}
pdev = PCIE_BUS_PRIV_DATA(dev->bus);
rc_sel = 1 << pdev->rc_idx;
msm_pcie_sel_debug_testcase(pdev, option);
return ret;
}
EXPORT_SYMBOL(msm_pcie_debug_info);
#ifdef CONFIG_SYSFS
static ssize_t msm_pcie_enumerate_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct msm_pcie_dev_t *pcie_dev = (struct msm_pcie_dev_t *)
dev_get_drvdata(dev);
if (pcie_dev)
msm_pcie_enumerate(pcie_dev->rc_idx);
return count;
}
static DEVICE_ATTR(enumerate, 0200, NULL, msm_pcie_enumerate_store);
static void msm_pcie_sysfs_init(struct msm_pcie_dev_t *dev)
{
int ret;
ret = device_create_file(&dev->pdev->dev, &dev_attr_enumerate);
if (ret)
PCIE_DBG_FS(dev,
"RC%d: failed to create sysfs enumerate node\n",
dev->rc_idx);
}
static void msm_pcie_sysfs_exit(struct msm_pcie_dev_t *dev)
{
if (dev->pdev)
device_remove_file(&dev->pdev->dev, &dev_attr_enumerate);
}
#else
static void msm_pcie_sysfs_init(struct msm_pcie_dev_t *dev)
{
}
static void msm_pcie_sysfs_exit(struct msm_pcie_dev_t *dev)
{
}
#endif
#ifdef CONFIG_DEBUG_FS
static struct dentry *dent_msm_pcie;
static struct dentry *dfile_rc_sel;
static struct dentry *dfile_case;
static struct dentry *dfile_base_sel;
static struct dentry *dfile_linkdown_panic;
static struct dentry *dfile_wr_offset;
static struct dentry *dfile_wr_mask;
static struct dentry *dfile_wr_value;
static struct dentry *dfile_boot_option;
static struct dentry *dfile_aer_enable;
static struct dentry *dfile_corr_counter_limit;
static u32 rc_sel_max;
static ssize_t msm_pcie_cmd_debug(struct file *file,
const char __user *buf,
size_t count, loff_t *ppos)
{
unsigned long ret;
char str[MAX_MSG_LEN];
unsigned int testcase = 0;
int i;
u32 size = sizeof(str) < count ? sizeof(str) : count;
memset(str, 0, size);
ret = copy_from_user(str, buf, size);
if (ret)
return -EFAULT;
for (i = 0; i < size && (str[i] >= '0') && (str[i] <= '9'); ++i)
testcase = (testcase * 10) + (str[i] - '0');
if (!rc_sel)
rc_sel = 1;
pr_alert("PCIe: TEST: %d\n", testcase);
for (i = 0; i < MAX_RC_NUM; i++) {
if (!((rc_sel >> i) & 0x1))
continue;
msm_pcie_sel_debug_testcase(&msm_pcie_dev[i], testcase);
}
return count;
}
const struct file_operations msm_pcie_cmd_debug_ops = {
.write = msm_pcie_cmd_debug,
};
static ssize_t msm_pcie_set_rc_sel(struct file *file,
const char __user *buf,
size_t count, loff_t *ppos)
{
unsigned long ret;
char str[MAX_MSG_LEN];
int i;
u32 new_rc_sel = 0;
u32 size = sizeof(str) < count ? sizeof(str) : count;
memset(str, 0, size);
ret = copy_from_user(str, buf, size);
if (ret)
return -EFAULT;
for (i = 0; i < size && (str[i] >= '0') && (str[i] <= '9'); ++i)
new_rc_sel = (new_rc_sel * 10) + (str[i] - '0');
if ((!new_rc_sel) || (new_rc_sel > rc_sel_max)) {
pr_alert("PCIe: invalid value for rc_sel: 0x%x\n", new_rc_sel);
pr_alert("PCIe: rc_sel is still 0x%x\n", rc_sel ? rc_sel : 0x1);
} else {
rc_sel = new_rc_sel;
pr_alert("PCIe: rc_sel is now: 0x%x\n", rc_sel);
}
pr_alert("PCIe: the following RC(s) will be tested:\n");
for (i = 0; i < MAX_RC_NUM; i++) {
if (!rc_sel) {
pr_alert("RC %d\n", i);
break;
} else if (rc_sel & (1 << i)) {
pr_alert("RC %d\n", i);
}
}
return count;
}
const struct file_operations msm_pcie_rc_sel_ops = {
.write = msm_pcie_set_rc_sel,
};
static ssize_t msm_pcie_set_base_sel(struct file *file,
const char __user *buf,
size_t count, loff_t *ppos)
{
unsigned long ret;
char str[MAX_MSG_LEN];
int i;
u32 new_base_sel = 0;
char *base_sel_name;
u32 size = sizeof(str) < count ? sizeof(str) : count;
memset(str, 0, size);
ret = copy_from_user(str, buf, size);
if (ret)
return -EFAULT;
for (i = 0; i < size && (str[i] >= '0') && (str[i] <= '9'); ++i)
new_base_sel = (new_base_sel * 10) + (str[i] - '0');
if (!new_base_sel || new_base_sel > 5) {
pr_alert("PCIe: invalid value for base_sel: 0x%x\n",
new_base_sel);
pr_alert("PCIe: base_sel is still 0x%x\n", base_sel);
} else {
base_sel = new_base_sel;
pr_alert("PCIe: base_sel is now 0x%x\n", base_sel);
}
switch (base_sel) {
case 1:
base_sel_name = "PARF";
break;
case 2:
base_sel_name = "PHY";
break;
case 3:
base_sel_name = "RC CONFIG SPACE";
break;
case 4:
base_sel_name = "ELBI";
break;
case 5:
base_sel_name = "EP CONFIG SPACE";
break;
default:
base_sel_name = "INVALID";
break;
}
pr_alert("%s\n", base_sel_name);
return count;
}
const struct file_operations msm_pcie_base_sel_ops = {
.write = msm_pcie_set_base_sel,
};
static ssize_t msm_pcie_set_linkdown_panic(struct file *file,
const char __user *buf,
size_t count, loff_t *ppos)
{
unsigned long ret;
char str[MAX_MSG_LEN];
u32 new_linkdown_panic = 0;
int i;
memset(str, 0, sizeof(str));
ret = copy_from_user(str, buf, sizeof(str));
if (ret)
return -EFAULT;
for (i = 0; i < sizeof(str) && (str[i] >= '0') && (str[i] <= '9'); ++i)
new_linkdown_panic = (new_linkdown_panic * 10) + (str[i] - '0');
if (new_linkdown_panic <= 1) {
for (i = 0; i < MAX_RC_NUM; i++) {
if (!rc_sel) {
msm_pcie_dev[0].linkdown_panic =
new_linkdown_panic;
PCIE_DBG_FS(&msm_pcie_dev[0],
"PCIe: RC0: linkdown_panic is now %d\n",
msm_pcie_dev[0].linkdown_panic);
break;
} else if (rc_sel & (1 << i)) {
msm_pcie_dev[i].linkdown_panic =
new_linkdown_panic;
PCIE_DBG_FS(&msm_pcie_dev[i],
"PCIe: RC%d: linkdown_panic is now %d\n",
i, msm_pcie_dev[i].linkdown_panic);
}
}
} else {
pr_err("PCIe: Invalid input for linkdown_panic: %d. Please enter 0 or 1.\n",
new_linkdown_panic);
}
return count;
}
const struct file_operations msm_pcie_linkdown_panic_ops = {
.write = msm_pcie_set_linkdown_panic,
};
static ssize_t msm_pcie_set_wr_offset(struct file *file,
const char __user *buf,
size_t count, loff_t *ppos)
{
unsigned long ret;
char str[MAX_MSG_LEN];
int i;
u32 size = sizeof(str) < count ? sizeof(str) : count;
memset(str, 0, size);
ret = copy_from_user(str, buf, size);
if (ret)
return -EFAULT;
wr_offset = 0;
for (i = 0; i < size && (str[i] >= '0') && (str[i] <= '9'); ++i)
wr_offset = (wr_offset * 10) + (str[i] - '0');
pr_alert("PCIe: wr_offset is now 0x%x\n", wr_offset);
return count;
}
const struct file_operations msm_pcie_wr_offset_ops = {
.write = msm_pcie_set_wr_offset,
};
static ssize_t msm_pcie_set_wr_mask(struct file *file,
const char __user *buf,
size_t count, loff_t *ppos)
{
unsigned long ret;
char str[MAX_MSG_LEN];
int i;
u32 size = sizeof(str) < count ? sizeof(str) : count;
memset(str, 0, size);
ret = copy_from_user(str, buf, size);
if (ret)
return -EFAULT;
wr_mask = 0;
for (i = 0; i < size && (str[i] >= '0') && (str[i] <= '9'); ++i)
wr_mask = (wr_mask * 10) + (str[i] - '0');
pr_alert("PCIe: wr_mask is now 0x%x\n", wr_mask);
return count;
}
const struct file_operations msm_pcie_wr_mask_ops = {
.write = msm_pcie_set_wr_mask,
};
static ssize_t msm_pcie_set_wr_value(struct file *file,
const char __user *buf,
size_t count, loff_t *ppos)
{
unsigned long ret;
char str[MAX_MSG_LEN];
int i;
u32 size = sizeof(str) < count ? sizeof(str) : count;
memset(str, 0, size);
ret = copy_from_user(str, buf, size);
if (ret)
return -EFAULT;
wr_value = 0;
for (i = 0; i < size && (str[i] >= '0') && (str[i] <= '9'); ++i)
wr_value = (wr_value * 10) + (str[i] - '0');
pr_alert("PCIe: wr_value is now 0x%x\n", wr_value);
return count;
}
const struct file_operations msm_pcie_wr_value_ops = {
.write = msm_pcie_set_wr_value,
};
static ssize_t msm_pcie_set_boot_option(struct file *file,
const char __user *buf,
size_t count, loff_t *ppos)
{
unsigned long ret;
char str[MAX_MSG_LEN];
u32 new_boot_option = 0;
int i;
memset(str, 0, sizeof(str));
ret = copy_from_user(str, buf, sizeof(str));
if (ret)
return -EFAULT;
for (i = 0; i < sizeof(str) && (str[i] >= '0') && (str[i] <= '9'); ++i)
new_boot_option = (new_boot_option * 10) + (str[i] - '0');
if (new_boot_option <= 1) {
for (i = 0; i < MAX_RC_NUM; i++) {
if (!rc_sel) {
msm_pcie_dev[0].boot_option = new_boot_option;
PCIE_DBG_FS(&msm_pcie_dev[0],
"PCIe: RC0: boot_option is now 0x%x\n",
msm_pcie_dev[0].boot_option);
break;
} else if (rc_sel & (1 << i)) {
msm_pcie_dev[i].boot_option = new_boot_option;
PCIE_DBG_FS(&msm_pcie_dev[i],
"PCIe: RC%d: boot_option is now 0x%x\n",
i, msm_pcie_dev[i].boot_option);
}
}
} else {
pr_err("PCIe: Invalid input for boot_option: 0x%x.\n",
new_boot_option);
}
return count;
}
const struct file_operations msm_pcie_boot_option_ops = {
.write = msm_pcie_set_boot_option,
};
static ssize_t msm_pcie_set_aer_enable(struct file *file,
const char __user *buf,
size_t count, loff_t *ppos)
{
unsigned long ret;
char str[MAX_MSG_LEN];
u32 new_aer_enable = 0;
u32 temp_rc_sel;
int i;
memset(str, 0, sizeof(str));
ret = copy_from_user(str, buf, sizeof(str));
if (ret)
return -EFAULT;
for (i = 0; i < sizeof(str) && (str[i] >= '0') && (str[i] <= '9'); ++i)
new_aer_enable = (new_aer_enable * 10) + (str[i] - '0');
if (new_aer_enable > 1) {
pr_err(
"PCIe: Invalid input for aer_enable: %d. Please enter 0 or 1.\n",
new_aer_enable);
return count;
}
if (rc_sel)
temp_rc_sel = rc_sel;
else
temp_rc_sel = 0x1;
for (i = 0; i < MAX_RC_NUM; i++) {
if (temp_rc_sel & (1 << i)) {
msm_pcie_dev[i].aer_enable = new_aer_enable;
PCIE_DBG_FS(&msm_pcie_dev[i],
"PCIe: RC%d: aer_enable is now %d\n",
i, msm_pcie_dev[i].aer_enable);
msm_pcie_write_mask(msm_pcie_dev[i].dm_core +
PCIE20_BRIDGE_CTRL,
new_aer_enable ? 0 : BIT(16),
new_aer_enable ? BIT(16) : 0);
PCIE_DBG_FS(&msm_pcie_dev[i],
"RC%d: PCIE20_BRIDGE_CTRL: 0x%x\n", i,
readl_relaxed(msm_pcie_dev[i].dm_core +
PCIE20_BRIDGE_CTRL));
}
}
return count;
}
const struct file_operations msm_pcie_aer_enable_ops = {
.write = msm_pcie_set_aer_enable,
};
static ssize_t msm_pcie_set_corr_counter_limit(struct file *file,
const char __user *buf,
size_t count, loff_t *ppos)
{
unsigned long ret;
char str[MAX_MSG_LEN];
int i;
u32 size = sizeof(str) < count ? sizeof(str) : count;
memset(str, 0, size);
ret = copy_from_user(str, buf, size);
if (ret)
return -EFAULT;
corr_counter_limit = 0;
for (i = 0; i < size && (str[i] >= '0') && (str[i] <= '9'); ++i)
corr_counter_limit = (corr_counter_limit * 10) + (str[i] - '0');
pr_info("PCIe: corr_counter_limit is now %lu\n", corr_counter_limit);
return count;
}
const struct file_operations msm_pcie_corr_counter_limit_ops = {
.write = msm_pcie_set_corr_counter_limit,
};
static void msm_pcie_debugfs_init(void)
{
rc_sel_max = (0x1 << MAX_RC_NUM) - 1;
wr_mask = 0xffffffff;
dent_msm_pcie = debugfs_create_dir("pci-msm", 0);
if (IS_ERR(dent_msm_pcie)) {
pr_err("PCIe: fail to create the folder for debug_fs.\n");
return;
}
dfile_rc_sel = debugfs_create_file("rc_sel", 0664,
dent_msm_pcie, 0,
&msm_pcie_rc_sel_ops);
if (!dfile_rc_sel || IS_ERR(dfile_rc_sel)) {
pr_err("PCIe: fail to create the file for debug_fs rc_sel.\n");
goto rc_sel_error;
}
dfile_case = debugfs_create_file("case", 0664,
dent_msm_pcie, 0,
&msm_pcie_cmd_debug_ops);
if (!dfile_case || IS_ERR(dfile_case)) {
pr_err("PCIe: fail to create the file for debug_fs case.\n");
goto case_error;
}
dfile_base_sel = debugfs_create_file("base_sel", 0664,
dent_msm_pcie, 0,
&msm_pcie_base_sel_ops);
if (!dfile_base_sel || IS_ERR(dfile_base_sel)) {
pr_err("PCIe: fail to create the file for debug_fs base_sel.\n");
goto base_sel_error;
}
dfile_linkdown_panic = debugfs_create_file("linkdown_panic", 0644,
dent_msm_pcie, 0,
&msm_pcie_linkdown_panic_ops);
if (!dfile_linkdown_panic || IS_ERR(dfile_linkdown_panic)) {
pr_err("PCIe: fail to create the file for debug_fs linkdown_panic.\n");
goto linkdown_panic_error;
}
dfile_wr_offset = debugfs_create_file("wr_offset", 0664,
dent_msm_pcie, 0,
&msm_pcie_wr_offset_ops);
if (!dfile_wr_offset || IS_ERR(dfile_wr_offset)) {
pr_err("PCIe: fail to create the file for debug_fs wr_offset.\n");
goto wr_offset_error;
}
dfile_wr_mask = debugfs_create_file("wr_mask", 0664,
dent_msm_pcie, 0,
&msm_pcie_wr_mask_ops);
if (!dfile_wr_mask || IS_ERR(dfile_wr_mask)) {
pr_err("PCIe: fail to create the file for debug_fs wr_mask.\n");
goto wr_mask_error;
}
dfile_wr_value = debugfs_create_file("wr_value", 0664,
dent_msm_pcie, 0,
&msm_pcie_wr_value_ops);
if (!dfile_wr_value || IS_ERR(dfile_wr_value)) {
pr_err("PCIe: fail to create the file for debug_fs wr_value.\n");
goto wr_value_error;
}
dfile_boot_option = debugfs_create_file("boot_option", 0664,
dent_msm_pcie, 0,
&msm_pcie_boot_option_ops);
if (!dfile_boot_option || IS_ERR(dfile_boot_option)) {
pr_err("PCIe: fail to create the file for debug_fs boot_option.\n");
goto boot_option_error;
}
dfile_aer_enable = debugfs_create_file("aer_enable", 0664,
dent_msm_pcie, 0,
&msm_pcie_aer_enable_ops);
if (!dfile_aer_enable || IS_ERR(dfile_aer_enable)) {
pr_err("PCIe: fail to create the file for debug_fs aer_enable.\n");
goto aer_enable_error;
}
dfile_corr_counter_limit = debugfs_create_file("corr_counter_limit",
0664, dent_msm_pcie, 0,
&msm_pcie_corr_counter_limit_ops);
if (!dfile_corr_counter_limit || IS_ERR(dfile_corr_counter_limit)) {
pr_err("PCIe: fail to create the file for debug_fs corr_counter_limit.\n");
goto corr_counter_limit_error;
}
return;
corr_counter_limit_error:
debugfs_remove(dfile_aer_enable);
aer_enable_error:
debugfs_remove(dfile_boot_option);
boot_option_error:
debugfs_remove(dfile_wr_value);
wr_value_error:
debugfs_remove(dfile_wr_mask);
wr_mask_error:
debugfs_remove(dfile_wr_offset);
wr_offset_error:
debugfs_remove(dfile_linkdown_panic);
linkdown_panic_error:
debugfs_remove(dfile_base_sel);
base_sel_error:
debugfs_remove(dfile_case);
case_error:
debugfs_remove(dfile_rc_sel);
rc_sel_error:
debugfs_remove(dent_msm_pcie);
}
static void msm_pcie_debugfs_exit(void)
{
debugfs_remove(dfile_rc_sel);
debugfs_remove(dfile_case);
debugfs_remove(dfile_base_sel);
debugfs_remove(dfile_linkdown_panic);
debugfs_remove(dfile_wr_offset);
debugfs_remove(dfile_wr_mask);
debugfs_remove(dfile_wr_value);
debugfs_remove(dfile_boot_option);
debugfs_remove(dfile_aer_enable);
debugfs_remove(dfile_corr_counter_limit);
}
#else
static void msm_pcie_debugfs_init(void)
{
}
static void msm_pcie_debugfs_exit(void)
{
}
#endif
static inline int msm_pcie_is_link_up(struct msm_pcie_dev_t *dev)
{
return readl_relaxed(dev->dm_core +
PCIE20_CAP_LINKCTRLSTATUS) & BIT(29);
}
/**
* msm_pcie_iatu_config - configure outbound address translation region
* @dev: root commpex
* @nr: region number
* @type: target transaction type, see PCIE20_CTRL1_TYPE_xxx
* @host_addr: - region start address on host
* @host_end: - region end address (low 32 bit) on host,
* upper 32 bits are same as for @host_addr
* @target_addr: - region start address on target
*/
static void msm_pcie_iatu_config(struct msm_pcie_dev_t *dev, int nr, u8 type,
unsigned long host_addr, u32 host_end,
unsigned long target_addr)
{
void __iomem *pcie20 = dev->dm_core;
if (dev->shadow_en) {
dev->rc_shadow[PCIE20_PLR_IATU_VIEWPORT / 4] =
nr;
dev->rc_shadow[PCIE20_PLR_IATU_CTRL1 / 4] =
type;
dev->rc_shadow[PCIE20_PLR_IATU_LBAR / 4] =
lower_32_bits(host_addr);
dev->rc_shadow[PCIE20_PLR_IATU_UBAR / 4] =
upper_32_bits(host_addr);
dev->rc_shadow[PCIE20_PLR_IATU_LAR / 4] =
host_end;
dev->rc_shadow[PCIE20_PLR_IATU_LTAR / 4] =
lower_32_bits(target_addr);
dev->rc_shadow[PCIE20_PLR_IATU_UTAR / 4] =
upper_32_bits(target_addr);
dev->rc_shadow[PCIE20_PLR_IATU_CTRL2 / 4] =
BIT(31);
}
/* select region */
writel_relaxed(nr, pcie20 + PCIE20_PLR_IATU_VIEWPORT);
/* ensure that hardware locks it */
wmb();
/* switch off region before changing it */
writel_relaxed(0, pcie20 + PCIE20_PLR_IATU_CTRL2);
/* and wait till it propagates to the hardware */
wmb();
writel_relaxed(type, pcie20 + PCIE20_PLR_IATU_CTRL1);
writel_relaxed(lower_32_bits(host_addr),
pcie20 + PCIE20_PLR_IATU_LBAR);
writel_relaxed(upper_32_bits(host_addr),
pcie20 + PCIE20_PLR_IATU_UBAR);
writel_relaxed(host_end, pcie20 + PCIE20_PLR_IATU_LAR);
writel_relaxed(lower_32_bits(target_addr),
pcie20 + PCIE20_PLR_IATU_LTAR);
writel_relaxed(upper_32_bits(target_addr),
pcie20 + PCIE20_PLR_IATU_UTAR);
/* ensure that changes propagated to the hardware */
wmb();
writel_relaxed(BIT(31), pcie20 + PCIE20_PLR_IATU_CTRL2);
/* ensure that changes propagated to the hardware */
wmb();
if (dev->enumerated) {
PCIE_DBG2(dev, "IATU for Endpoint %02x:%02x.%01x\n",
dev->pcidev_table[nr].bdf >> 24,
dev->pcidev_table[nr].bdf >> 19 & 0x1f,
dev->pcidev_table[nr].bdf >> 16 & 0x07);
PCIE_DBG2(dev, "PCIE20_PLR_IATU_VIEWPORT:0x%x\n",
readl_relaxed(dev->dm_core + PCIE20_PLR_IATU_VIEWPORT));
PCIE_DBG2(dev, "PCIE20_PLR_IATU_CTRL1:0x%x\n",
readl_relaxed(dev->dm_core + PCIE20_PLR_IATU_CTRL1));
PCIE_DBG2(dev, "PCIE20_PLR_IATU_LBAR:0x%x\n",
readl_relaxed(dev->dm_core + PCIE20_PLR_IATU_LBAR));
PCIE_DBG2(dev, "PCIE20_PLR_IATU_UBAR:0x%x\n",
readl_relaxed(dev->dm_core + PCIE20_PLR_IATU_UBAR));
PCIE_DBG2(dev, "PCIE20_PLR_IATU_LAR:0x%x\n",
readl_relaxed(dev->dm_core + PCIE20_PLR_IATU_LAR));
PCIE_DBG2(dev, "PCIE20_PLR_IATU_LTAR:0x%x\n",
readl_relaxed(dev->dm_core + PCIE20_PLR_IATU_LTAR));
PCIE_DBG2(dev, "PCIE20_PLR_IATU_UTAR:0x%x\n",
readl_relaxed(dev->dm_core + PCIE20_PLR_IATU_UTAR));
PCIE_DBG2(dev, "PCIE20_PLR_IATU_CTRL2:0x%x\n\n",
readl_relaxed(dev->dm_core + PCIE20_PLR_IATU_CTRL2));
}
}
/**
* msm_pcie_cfg_bdf - configure for config access
* @dev: root commpex
* @bus: PCI bus number
* @devfn: PCI dev and function number
*
* Remap if required region 0 for config access of proper type
* (CFG0 for bus 1, CFG1 for other buses)
* Cache current device bdf for speed-up
*/
static void msm_pcie_cfg_bdf(struct msm_pcie_dev_t *dev, u8 bus, u8 devfn)
{
struct resource *axi_conf = dev->res[MSM_PCIE_RES_CONF].resource;
u32 bdf = BDF_OFFSET(bus, devfn);
u8 type = bus == 1 ? PCIE20_CTRL1_TYPE_CFG0 : PCIE20_CTRL1_TYPE_CFG1;
if (dev->current_bdf == bdf)
return;
msm_pcie_iatu_config(dev, 0, type,
axi_conf->start,
axi_conf->start + SZ_4K - 1,
bdf);
dev->current_bdf = bdf;
}
static inline void msm_pcie_save_shadow(struct msm_pcie_dev_t *dev,
u32 word_offset, u32 wr_val,
u32 bdf, bool rc)
{
int i, j;
u32 max_dev = MAX_RC_NUM * MAX_DEVICE_NUM;
if (rc) {
dev->rc_shadow[word_offset / 4] = wr_val;
} else {
for (i = 0; i < MAX_DEVICE_NUM; i++) {
if (!dev->pcidev_table[i].bdf) {
for (j = 0; j < max_dev; j++)
if (!msm_pcie_dev_tbl[j].bdf) {
msm_pcie_dev_tbl[j].bdf = bdf;
break;
}
dev->pcidev_table[i].bdf = bdf;
if ((!dev->bridge_found) && (i > 0))
dev->bridge_found = true;
}
if (dev->pcidev_table[i].bdf == bdf) {
dev->ep_shadow[i][word_offset / 4] = wr_val;
break;
}
}
}
}
static inline int msm_pcie_oper_conf(struct pci_bus *bus, u32 devfn, int oper,
int where, int size, u32 *val)
{
uint32_t word_offset, byte_offset, mask;
uint32_t rd_val, wr_val;
struct msm_pcie_dev_t *dev;
void __iomem *config_base;
bool rc = false;
u32 rc_idx;
int rv = 0;
u32 bdf = BDF_OFFSET(bus->number, devfn);
int i;
dev = PCIE_BUS_PRIV_DATA(bus);
if (!dev) {
pr_err("PCIe: No device found for this bus.\n");
*val = ~0;
rv = PCIBIOS_DEVICE_NOT_FOUND;
goto out;
}
rc_idx = dev->rc_idx;
rc = (bus->number == 0);
spin_lock_irqsave(&dev->cfg_lock, dev->irqsave_flags);
if (!dev->cfg_access) {
PCIE_DBG3(dev,
"Access denied for RC%d %d:0x%02x + 0x%04x[%d]\n",
rc_idx, bus->number, devfn, where, size);
*val = ~0;
rv = PCIBIOS_DEVICE_NOT_FOUND;
goto unlock;
}
if (rc && (devfn != 0)) {
PCIE_DBG3(dev, "RC%d invalid %s - bus %d devfn %d\n", rc_idx,
(oper == RD) ? "rd" : "wr", bus->number, devfn);
*val = ~0;
rv = PCIBIOS_DEVICE_NOT_FOUND;
goto unlock;
}
if (dev->link_status != MSM_PCIE_LINK_ENABLED) {
PCIE_DBG3(dev,
"Access to RC%d %d:0x%02x + 0x%04x[%d] is denied because link is down\n",
rc_idx, bus->number, devfn, where, size);
*val = ~0;
rv = PCIBIOS_DEVICE_NOT_FOUND;
goto unlock;
}
/* check if the link is up for endpoint */
if (!rc && !msm_pcie_is_link_up(dev)) {
PCIE_ERR(dev,
"PCIe: RC%d %s fail, link down - bus %d devfn %d\n",
rc_idx, (oper == RD) ? "rd" : "wr",
bus->number, devfn);
*val = ~0;
rv = PCIBIOS_DEVICE_NOT_FOUND;
goto unlock;
}
if (!rc && !dev->enumerated)
msm_pcie_cfg_bdf(dev, bus->number, devfn);
word_offset = where & ~0x3;
byte_offset = where & 0x3;
mask = ((u32)~0 >> (8 * (4 - size))) << (8 * byte_offset);
if (rc || !dev->enumerated) {
config_base = rc ? dev->dm_core : dev->conf;
} else {
for (i = 0; i < MAX_DEVICE_NUM; i++) {
if (dev->pcidev_table[i].bdf == bdf) {
config_base = dev->pcidev_table[i].conf_base;
break;
}
}
if (i == MAX_DEVICE_NUM) {
*val = ~0;
rv = PCIBIOS_DEVICE_NOT_FOUND;
goto unlock;
}
}
rd_val = readl_relaxed(config_base + word_offset);
if (oper == RD) {
*val = ((rd_val & mask) >> (8 * byte_offset));
PCIE_DBG3(dev,
"RC%d %d:0x%02x + 0x%04x[%d] -> 0x%08x; rd 0x%08x\n",
rc_idx, bus->number, devfn, where, size, *val, rd_val);
} else {
wr_val = (rd_val & ~mask) |
((*val << (8 * byte_offset)) & mask);
if ((bus->number == 0) && (where == 0x3c))
wr_val = wr_val | (3 << 16);
writel_relaxed(wr_val, config_base + word_offset);
wmb(); /* ensure config data is written to hardware register */
if (dev->shadow_en) {
if (rd_val == PCIE_LINK_DOWN &&
(readl_relaxed(config_base) == PCIE_LINK_DOWN))
PCIE_ERR(dev,
"Read of RC%d %d:0x%02x + 0x%04x[%d] is all FFs\n",
rc_idx, bus->number, devfn,
where, size);
else
msm_pcie_save_shadow(dev, word_offset, wr_val,
bdf, rc);
}
PCIE_DBG3(dev,
"RC%d %d:0x%02x + 0x%04x[%d] <- 0x%08x; rd 0x%08x val 0x%08x\n",
rc_idx, bus->number, devfn, where, size,
wr_val, rd_val, *val);
}
unlock:
spin_unlock_irqrestore(&dev->cfg_lock, dev->irqsave_flags);
out:
return rv;
}
static int msm_pcie_rd_conf(struct pci_bus *bus, u32 devfn, int where,
int size, u32 *val)
{
int ret = msm_pcie_oper_conf(bus, devfn, RD, where, size, val);
if ((bus->number == 0) && (where == PCI_CLASS_REVISION)) {
*val = (*val & 0xff) | (PCI_CLASS_BRIDGE_PCI << 16);
PCIE_GEN_DBG("change class for RC:0x%x\n", *val);
}
return ret;
}
static int msm_pcie_wr_conf(struct pci_bus *bus, u32 devfn,
int where, int size, u32 val)
{
return msm_pcie_oper_conf(bus, devfn, WR, where, size, &val);
}
static struct pci_ops msm_pcie_ops = {
.read = msm_pcie_rd_conf,
.write = msm_pcie_wr_conf,
};
static int msm_pcie_gpio_init(struct msm_pcie_dev_t *dev)
{
int rc = 0, i;
struct msm_pcie_gpio_info_t *info;
PCIE_DBG(dev, "RC%d\n", dev->rc_idx);
for (i = 0; i < dev->gpio_n; i++) {
info = &dev->gpio[i];
if (!info->num)
continue;
rc = gpio_request(info->num, info->name);
if (rc) {
PCIE_ERR(dev, "PCIe: RC%d can't get gpio %s; %d\n",
dev->rc_idx, info->name, rc);
break;
}
if (info->out)
rc = gpio_direction_output(info->num, info->init);
else
rc = gpio_direction_input(info->num);
if (rc) {
PCIE_ERR(dev,
"PCIe: RC%d can't set direction for GPIO %s:%d\n",
dev->rc_idx, info->name, rc);
gpio_free(info->num);
break;
}
}
if (rc)
while (i--)
gpio_free(dev->gpio[i].num);
return rc;
}
static void msm_pcie_gpio_deinit(struct msm_pcie_dev_t *dev)
{
int i;
PCIE_DBG(dev, "RC%d\n", dev->rc_idx);
for (i = 0; i < dev->gpio_n; i++)
gpio_free(dev->gpio[i].num);
}
int msm_pcie_vreg_init(struct msm_pcie_dev_t *dev)
{
int i, rc = 0;
struct regulator *vreg;
struct msm_pcie_vreg_info_t *info;
PCIE_DBG(dev, "RC%d: entry\n", dev->rc_idx);
for (i = 0; i < MSM_PCIE_MAX_VREG; i++) {
info = &dev->vreg[i];
vreg = info->hdl;
if (!vreg)
continue;
PCIE_DBG2(dev, "RC%d Vreg %s is being enabled\n",
dev->rc_idx, info->name);
if (info->max_v) {
rc = regulator_set_voltage(vreg,
info->min_v, info->max_v);
if (rc) {
PCIE_ERR(dev,
"PCIe: RC%d can't set voltage for %s: %d\n",
dev->rc_idx, info->name, rc);
break;
}
}
if (info->opt_mode) {
rc = regulator_set_load(vreg, info->opt_mode);
if (rc < 0) {
PCIE_ERR(dev,
"PCIe: RC%d can't set mode for %s: %d\n",
dev->rc_idx, info->name, rc);
break;
}
}
rc = regulator_enable(vreg);
if (rc) {
PCIE_ERR(dev,
"PCIe: RC%d can't enable regulator %s: %d\n",
dev->rc_idx, info->name, rc);
break;
}
}
if (rc)
while (i--) {
struct regulator *hdl = dev->vreg[i].hdl;
if (hdl) {
regulator_disable(hdl);
if (!strcmp(dev->vreg[i].name, "vreg-cx")) {
PCIE_DBG(dev,
"RC%d: Removing %s vote.\n",
dev->rc_idx,
dev->vreg[i].name);
regulator_set_voltage(hdl,
RPM_REGULATOR_CORNER_NONE,
INT_MAX);
}
}
}
PCIE_DBG(dev, "RC%d: exit\n", dev->rc_idx);
return rc;
}
static void msm_pcie_vreg_deinit(struct msm_pcie_dev_t *dev)
{
int i;
PCIE_DBG(dev, "RC%d: entry\n", dev->rc_idx);
for (i = MSM_PCIE_MAX_VREG - 1; i >= 0; i--) {
if (dev->vreg[i].hdl) {
PCIE_DBG(dev, "Vreg %s is being disabled\n",
dev->vreg[i].name);
regulator_disable(dev->vreg[i].hdl);
if (!strcmp(dev->vreg[i].name, "vreg-cx")) {
PCIE_DBG(dev,
"RC%d: Removing %s vote.\n",
dev->rc_idx,
dev->vreg[i].name);
regulator_set_voltage(dev->vreg[i].hdl,
RPM_REGULATOR_CORNER_NONE,
INT_MAX);
}
}
}
PCIE_DBG(dev, "RC%d: exit\n", dev->rc_idx);
}
static int msm_pcie_clk_init(struct msm_pcie_dev_t *dev)
{
int i, rc = 0;
struct msm_pcie_clk_info_t *info;
struct msm_pcie_reset_info_t *reset_info;
PCIE_DBG(dev, "RC%d: entry\n", dev->rc_idx);
rc = regulator_enable(dev->gdsc);
if (rc) {
PCIE_ERR(dev, "PCIe: fail to enable GDSC for RC%d (%s)\n",
dev->rc_idx, dev->pdev->name);
return rc;
}
if (dev->gdsc_smmu) {
rc = regulator_enable(dev->gdsc_smmu);
if (rc) {
PCIE_ERR(dev,
"PCIe: fail to enable SMMU GDSC for RC%d (%s)\n",
dev->rc_idx, dev->pdev->name);
return rc;
}
}
PCIE_DBG(dev, "PCIe: requesting bus vote for RC%d\n", dev->rc_idx);
if (dev->bus_client) {
rc = msm_bus_scale_client_update_request(dev->bus_client, 1);
if (rc) {
PCIE_ERR(dev,
"PCIe: fail to set bus bandwidth for RC%d:%d.\n",
dev->rc_idx, rc);
return rc;
}
PCIE_DBG2(dev,
"PCIe: set bus bandwidth for RC%d.\n",
dev->rc_idx);
}
for (i = 0; i < MSM_PCIE_MAX_CLK; i++) {
info = &dev->clk[i];
if (!info->hdl)
continue;
if (info->config_mem)
msm_pcie_config_clock_mem(dev, info);
if (info->freq) {
rc = clk_set_rate(info->hdl, info->freq);
if (rc) {
PCIE_ERR(dev,
"PCIe: RC%d can't set rate for clk %s: %d.\n",
dev->rc_idx, info->name, rc);
break;
}
PCIE_DBG2(dev,
"PCIe: RC%d set rate for clk %s.\n",
dev->rc_idx, info->name);
}
rc = clk_prepare_enable(info->hdl);
if (rc)
PCIE_ERR(dev, "PCIe: RC%d failed to enable clk %s\n",
dev->rc_idx, info->name);
else
PCIE_DBG2(dev, "enable clk %s for RC%d.\n",
info->name, dev->rc_idx);
}
if (rc) {
PCIE_DBG(dev, "RC%d disable clocks for error handling.\n",
dev->rc_idx);
while (i--) {
struct clk *hdl = dev->clk[i].hdl;
if (hdl)
clk_disable_unprepare(hdl);
}
if (dev->gdsc_smmu)
regulator_disable(dev->gdsc_smmu);
regulator_disable(dev->gdsc);
}
for (i = 0; i < MSM_PCIE_MAX_RESET; i++) {
reset_info = &dev->reset[i];
if (reset_info->hdl) {
rc = reset_control_deassert(reset_info->hdl);
if (rc)
PCIE_ERR(dev,
"PCIe: RC%d failed to deassert reset for %s.\n",
dev->rc_idx, reset_info->name);
else
PCIE_DBG2(dev,
"PCIe: RC%d successfully deasserted reset for %s.\n",
dev->rc_idx, reset_info->name);
}
}
PCIE_DBG(dev, "RC%d: exit\n", dev->rc_idx);
return rc;
}
static void msm_pcie_clk_deinit(struct msm_pcie_dev_t *dev)
{
int i;
int rc;
PCIE_DBG(dev, "RC%d: entry\n", dev->rc_idx);
for (i = 0; i < MSM_PCIE_MAX_CLK; i++)
if (dev->clk[i].hdl)
clk_disable_unprepare(dev->clk[i].hdl);
if (dev->bus_client) {
PCIE_DBG(dev, "PCIe: removing bus vote for RC%d\n",
dev->rc_idx);
rc = msm_bus_scale_client_update_request(dev->bus_client, 0);
if (rc)
PCIE_ERR(dev,
"PCIe: fail to relinquish bus bandwidth for RC%d:%d.\n",
dev->rc_idx, rc);
else
PCIE_DBG(dev,
"PCIe: relinquish bus bandwidth for RC%d.\n",
dev->rc_idx);
}
if (dev->gdsc_smmu)
regulator_disable(dev->gdsc_smmu);
regulator_disable(dev->gdsc);
PCIE_DBG(dev, "RC%d: exit\n", dev->rc_idx);
}
static int msm_pcie_pipe_clk_init(struct msm_pcie_dev_t *dev)
{
int i, rc = 0;
struct msm_pcie_clk_info_t *info;
struct msm_pcie_reset_info_t *pipe_reset_info;
PCIE_DBG(dev, "RC%d: entry\n", dev->rc_idx);
for (i = 0; i < MSM_PCIE_MAX_PIPE_CLK; i++) {
info = &dev->pipeclk[i];
if (!info->hdl)
continue;
if (info->config_mem)
msm_pcie_config_clock_mem(dev, info);
if (info->freq) {
rc = clk_set_rate(info->hdl, info->freq);
if (rc) {
PCIE_ERR(dev,
"PCIe: RC%d can't set rate for clk %s: %d.\n",
dev->rc_idx, info->name, rc);
break;
}
PCIE_DBG2(dev,
"PCIe: RC%d set rate for clk %s: %d.\n",
dev->rc_idx, info->name, rc);
}
rc = clk_prepare_enable(info->hdl);
if (rc)
PCIE_ERR(dev, "PCIe: RC%d failed to enable clk %s.\n",
dev->rc_idx, info->name);
else
PCIE_DBG2(dev, "RC%d enabled pipe clk %s.\n",
dev->rc_idx, info->name);
}
if (rc) {
PCIE_DBG(dev, "RC%d disable pipe clocks for error handling.\n",
dev->rc_idx);
while (i--)
if (dev->pipeclk[i].hdl)
clk_disable_unprepare(dev->pipeclk[i].hdl);
}
for (i = 0; i < MSM_PCIE_MAX_PIPE_RESET; i++) {
pipe_reset_info = &dev->pipe_reset[i];
if (pipe_reset_info->hdl) {
rc = reset_control_deassert(
pipe_reset_info->hdl);
if (rc)
PCIE_ERR(dev,
"PCIe: RC%d failed to deassert pipe reset for %s.\n",
dev->rc_idx, pipe_reset_info->name);
else
PCIE_DBG2(dev,
"PCIe: RC%d successfully deasserted pipe reset for %s.\n",
dev->rc_idx, pipe_reset_info->name);
}
}
PCIE_DBG(dev, "RC%d: exit\n", dev->rc_idx);
return rc;
}
static void msm_pcie_pipe_clk_deinit(struct msm_pcie_dev_t *dev)
{
int i;
PCIE_DBG(dev, "RC%d: entry\n", dev->rc_idx);
for (i = 0; i < MSM_PCIE_MAX_PIPE_CLK; i++)
if (dev->pipeclk[i].hdl)
clk_disable_unprepare(
dev->pipeclk[i].hdl);
PCIE_DBG(dev, "RC%d: exit\n", dev->rc_idx);
}
static void msm_pcie_iatu_config_all_ep(struct msm_pcie_dev_t *dev)
{
int i;
u8 type;
struct msm_pcie_device_info *dev_table = dev->pcidev_table;
for (i = 0; i < MAX_DEVICE_NUM; i++) {
if (!dev_table[i].bdf)
break;
type = dev_table[i].bdf >> 24 == 0x1 ?
PCIE20_CTRL1_TYPE_CFG0 : PCIE20_CTRL1_TYPE_CFG1;
msm_pcie_iatu_config(dev, i, type, dev_table[i].phy_address,
dev_table[i].phy_address + SZ_4K - 1,
dev_table[i].bdf);
}
}
static void msm_pcie_config_controller(struct msm_pcie_dev_t *dev)
{
int i;
PCIE_DBG(dev, "RC%d\n", dev->rc_idx);
/*
* program and enable address translation region 0 (device config
* address space); region type config;
* axi config address range to device config address range
*/
if (dev->enumerated) {
msm_pcie_iatu_config_all_ep(dev);
} else {
dev->current_bdf = 0; /* to force IATU re-config */
msm_pcie_cfg_bdf(dev, 1, 0);
}
/* configure N_FTS */
PCIE_DBG2(dev, "Original PCIE20_ACK_F_ASPM_CTRL_REG:0x%x\n",
readl_relaxed(dev->dm_core + PCIE20_ACK_F_ASPM_CTRL_REG));
if (!dev->n_fts)
msm_pcie_write_mask(dev->dm_core + PCIE20_ACK_F_ASPM_CTRL_REG,
0, BIT(15));
else
msm_pcie_write_mask(dev->dm_core + PCIE20_ACK_F_ASPM_CTRL_REG,
PCIE20_ACK_N_FTS,
dev->n_fts << 8);
if (dev->shadow_en)
dev->rc_shadow[PCIE20_ACK_F_ASPM_CTRL_REG / 4] =
readl_relaxed(dev->dm_core +
PCIE20_ACK_F_ASPM_CTRL_REG);
PCIE_DBG2(dev, "Updated PCIE20_ACK_F_ASPM_CTRL_REG:0x%x\n",
readl_relaxed(dev->dm_core + PCIE20_ACK_F_ASPM_CTRL_REG));
/* configure AUX clock frequency register for PCIe core */
if (dev->use_19p2mhz_aux_clk)
msm_pcie_write_reg(dev->dm_core, PCIE20_AUX_CLK_FREQ_REG, 0x14);
else
msm_pcie_write_reg(dev->dm_core, PCIE20_AUX_CLK_FREQ_REG, 0x01);
/* configure the completion timeout value for PCIe core */
if (dev->cpl_timeout && dev->bridge_found)
msm_pcie_write_reg_field(dev->dm_core,
PCIE20_DEVICE_CONTROL2_STATUS2,
0xf, dev->cpl_timeout);
/* Enable AER on RC */
if (dev->aer_enable) {
msm_pcie_write_mask(dev->dm_core + PCIE20_BRIDGE_CTRL, 0,
BIT(16)|BIT(17));
msm_pcie_write_mask(dev->dm_core + PCIE20_CAP_DEVCTRLSTATUS, 0,
BIT(3)|BIT(2)|BIT(1)|BIT(0));
PCIE_DBG(dev, "RC's PCIE20_CAP_DEVCTRLSTATUS:0x%x\n",
readl_relaxed(dev->dm_core + PCIE20_CAP_DEVCTRLSTATUS));
}
/* configure SMMU registers */
if (dev->smmu_exist) {
msm_pcie_write_reg(dev->parf,
PCIE20_PARF_BDF_TRANSLATE_CFG, 0);
msm_pcie_write_reg(dev->parf,
PCIE20_PARF_SID_OFFSET, 0);
if (dev->enumerated) {
for (i = 0; i < MAX_DEVICE_NUM; i++) {
if (dev->pcidev_table[i].dev &&
dev->pcidev_table[i].short_bdf) {
msm_pcie_write_reg(dev->parf,
PCIE20_PARF_BDF_TRANSLATE_N +
dev->pcidev_table[i].short_bdf
* 4,
dev->pcidev_table[i].bdf >> 16);
}
}
}
}
}
static void msm_pcie_config_link_state(struct msm_pcie_dev_t *dev)
{
u32 val;
u32 current_offset;
u32 ep_l1sub_ctrl1_offset = 0;
u32 ep_l1sub_cap_reg1_offset = 0;
u32 ep_link_cap_offset = 0;
u32 ep_link_ctrlstts_offset = 0;
u32 ep_dev_ctrl2stts2_offset = 0;
/* Enable the AUX Clock and the Core Clk to be synchronous for L1SS*/
if (!dev->aux_clk_sync && dev->l1ss_supported)
msm_pcie_write_mask(dev->parf +
PCIE20_PARF_SYS_CTRL, BIT(3), 0);
current_offset = readl_relaxed(dev->conf + PCIE_CAP_PTR_OFFSET) & 0xff;
while (current_offset) {
if (msm_pcie_check_align(dev, current_offset))
return;
val = readl_relaxed(dev->conf + current_offset);
if ((val & 0xff) == PCIE20_CAP_ID) {
ep_link_cap_offset = current_offset + 0x0c;
ep_link_ctrlstts_offset = current_offset + 0x10;
ep_dev_ctrl2stts2_offset = current_offset + 0x28;
break;
}
current_offset = (val >> 8) & 0xff;
}
if (!ep_link_cap_offset) {
PCIE_DBG(dev,
"RC%d endpoint does not support PCIe capability registers\n",
dev->rc_idx);
return;
}
PCIE_DBG(dev,
"RC%d: ep_link_cap_offset: 0x%x\n",
dev->rc_idx, ep_link_cap_offset);
if (dev->common_clk_en) {
msm_pcie_write_mask(dev->dm_core + PCIE20_CAP_LINKCTRLSTATUS,
0, BIT(6));
msm_pcie_write_mask(dev->conf + ep_link_ctrlstts_offset,
0, BIT(6));
if (dev->shadow_en) {
dev->rc_shadow[PCIE20_CAP_LINKCTRLSTATUS / 4] =
readl_relaxed(dev->dm_core +
PCIE20_CAP_LINKCTRLSTATUS);
dev->ep_shadow[0][ep_link_ctrlstts_offset / 4] =
readl_relaxed(dev->conf +
ep_link_ctrlstts_offset);
}
PCIE_DBG2(dev, "RC's CAP_LINKCTRLSTATUS:0x%x\n",
readl_relaxed(dev->dm_core +
PCIE20_CAP_LINKCTRLSTATUS));
PCIE_DBG2(dev, "EP's CAP_LINKCTRLSTATUS:0x%x\n",
readl_relaxed(dev->conf + ep_link_ctrlstts_offset));
}
if (dev->clk_power_manage_en) {
val = readl_relaxed(dev->conf + ep_link_cap_offset);
if (val & BIT(18)) {
msm_pcie_write_mask(dev->conf + ep_link_ctrlstts_offset,
0, BIT(8));
if (dev->shadow_en)
dev->ep_shadow[0][ep_link_ctrlstts_offset / 4] =
readl_relaxed(dev->conf +
ep_link_ctrlstts_offset);
PCIE_DBG2(dev, "EP's CAP_LINKCTRLSTATUS:0x%x\n",
readl_relaxed(dev->conf +
ep_link_ctrlstts_offset));
}
}
if (dev->l0s_supported) {
msm_pcie_write_mask(dev->dm_core + PCIE20_CAP_LINKCTRLSTATUS,
0, BIT(0));
msm_pcie_write_mask(dev->conf + ep_link_ctrlstts_offset,
0, BIT(0));
if (dev->shadow_en) {
dev->rc_shadow[PCIE20_CAP_LINKCTRLSTATUS / 4] =
readl_relaxed(dev->dm_core +
PCIE20_CAP_LINKCTRLSTATUS);
dev->ep_shadow[0][ep_link_ctrlstts_offset / 4] =
readl_relaxed(dev->conf +
ep_link_ctrlstts_offset);
}
PCIE_DBG2(dev, "RC's CAP_LINKCTRLSTATUS:0x%x\n",
readl_relaxed(dev->dm_core +
PCIE20_CAP_LINKCTRLSTATUS));
PCIE_DBG2(dev, "EP's CAP_LINKCTRLSTATUS:0x%x\n",
readl_relaxed(dev->conf + ep_link_ctrlstts_offset));
}
if (dev->l1_supported) {
msm_pcie_write_mask(dev->dm_core + PCIE20_CAP_LINKCTRLSTATUS,
0, BIT(1));
msm_pcie_write_mask(dev->conf + ep_link_ctrlstts_offset,
0, BIT(1));
if (dev->shadow_en) {
dev->rc_shadow[PCIE20_CAP_LINKCTRLSTATUS / 4] =
readl_relaxed(dev->dm_core +
PCIE20_CAP_LINKCTRLSTATUS);
dev->ep_shadow[0][ep_link_ctrlstts_offset / 4] =
readl_relaxed(dev->conf +
ep_link_ctrlstts_offset);
}
PCIE_DBG2(dev, "RC's CAP_LINKCTRLSTATUS:0x%x\n",
readl_relaxed(dev->dm_core +
PCIE20_CAP_LINKCTRLSTATUS));
PCIE_DBG2(dev, "EP's CAP_LINKCTRLSTATUS:0x%x\n",
readl_relaxed(dev->conf + ep_link_ctrlstts_offset));
}
if (dev->l1ss_supported) {
current_offset = PCIE_EXT_CAP_OFFSET;
while (current_offset) {
if (msm_pcie_check_align(dev, current_offset))
return;
val = readl_relaxed(dev->conf + current_offset);
if ((val & 0xffff) == L1SUB_CAP_ID) {
ep_l1sub_cap_reg1_offset = current_offset + 0x4;
ep_l1sub_ctrl1_offset = current_offset + 0x8;
break;
}
current_offset = val >> 20;
}
if (!ep_l1sub_ctrl1_offset) {
PCIE_DBG(dev,
"RC%d endpoint does not support l1ss registers\n",
dev->rc_idx);
return;
}
val = readl_relaxed(dev->conf + ep_l1sub_cap_reg1_offset);
PCIE_DBG2(dev, "EP's L1SUB_CAPABILITY_REG_1: 0x%x\n", val);
PCIE_DBG2(dev, "RC%d: ep_l1sub_ctrl1_offset: 0x%x\n",
dev->rc_idx, ep_l1sub_ctrl1_offset);
val &= 0xf;
msm_pcie_write_reg_field(dev->dm_core, PCIE20_L1SUB_CONTROL1,
0xf, val);
msm_pcie_write_mask(dev->dm_core +
PCIE20_DEVICE_CONTROL2_STATUS2,
0, BIT(10));
msm_pcie_write_reg_field(dev->conf, ep_l1sub_ctrl1_offset,
0xf, val);
msm_pcie_write_mask(dev->conf + ep_dev_ctrl2stts2_offset,
0, BIT(10));
if (dev->shadow_en) {
dev->rc_shadow[PCIE20_L1SUB_CONTROL1 / 4] =
readl_relaxed(dev->dm_core +
PCIE20_L1SUB_CONTROL1);
dev->rc_shadow[PCIE20_DEVICE_CONTROL2_STATUS2 / 4] =
readl_relaxed(dev->dm_core +
PCIE20_DEVICE_CONTROL2_STATUS2);
dev->ep_shadow[0][ep_l1sub_ctrl1_offset / 4] =
readl_relaxed(dev->conf +
ep_l1sub_ctrl1_offset);
dev->ep_shadow[0][ep_dev_ctrl2stts2_offset / 4] =
readl_relaxed(dev->conf +
ep_dev_ctrl2stts2_offset);
}
PCIE_DBG2(dev, "RC's L1SUB_CONTROL1:0x%x\n",
readl_relaxed(dev->dm_core + PCIE20_L1SUB_CONTROL1));
PCIE_DBG2(dev, "RC's DEVICE_CONTROL2_STATUS2:0x%x\n",
readl_relaxed(dev->dm_core +
PCIE20_DEVICE_CONTROL2_STATUS2));
PCIE_DBG2(dev, "EP's L1SUB_CONTROL1:0x%x\n",
readl_relaxed(dev->conf + ep_l1sub_ctrl1_offset));
PCIE_DBG2(dev, "EP's DEVICE_CONTROL2_STATUS2:0x%x\n",
readl_relaxed(dev->conf +
ep_dev_ctrl2stts2_offset));
}
}
void msm_pcie_config_msi_controller(struct msm_pcie_dev_t *dev)
{
int i;
PCIE_DBG(dev, "RC%d\n", dev->rc_idx);
/* program MSI controller and enable all interrupts */
writel_relaxed(MSM_PCIE_MSI_PHY, dev->dm_core + PCIE20_MSI_CTRL_ADDR);
writel_relaxed(0, dev->dm_core + PCIE20_MSI_CTRL_UPPER_ADDR);
for (i = 0; i < PCIE20_MSI_CTRL_MAX; i++)
writel_relaxed(~0, dev->dm_core +
PCIE20_MSI_CTRL_INTR_EN + (i * 12));
/* ensure that hardware is configured before proceeding */
wmb();
}
static int msm_pcie_get_resources(struct msm_pcie_dev_t *dev,
struct platform_device *pdev)
{
int i, len, cnt, ret = 0, size = 0;
struct msm_pcie_vreg_info_t *vreg_info;
struct msm_pcie_gpio_info_t *gpio_info;
struct msm_pcie_clk_info_t *clk_info;
struct resource *res;
struct msm_pcie_res_info_t *res_info;
struct msm_pcie_irq_info_t *irq_info;
struct msm_pcie_irq_info_t *msi_info;
struct msm_pcie_reset_info_t *reset_info;
struct msm_pcie_reset_info_t *pipe_reset_info;
char prop_name[MAX_PROP_SIZE];
const __be32 *prop;
u32 *clkfreq = NULL;
PCIE_DBG(dev, "RC%d: entry\n", dev->rc_idx);
cnt = of_property_count_strings((&pdev->dev)->of_node,
"clock-names");
if (cnt > 0) {
clkfreq = kzalloc((MSM_PCIE_MAX_CLK + MSM_PCIE_MAX_PIPE_CLK) *
sizeof(*clkfreq), GFP_KERNEL);
if (!clkfreq) {
PCIE_ERR(dev, "PCIe: memory alloc failed for RC%d\n",
dev->rc_idx);
return -ENOMEM;
}
ret = of_property_read_u32_array(
(&pdev->dev)->of_node,
"max-clock-frequency-hz", clkfreq, cnt);
if (ret) {
PCIE_ERR(dev,
"PCIe: invalid max-clock-frequency-hz property for RC%d:%d\n",
dev->rc_idx, ret);
goto out;
}
}
for (i = 0; i < MSM_PCIE_MAX_VREG; i++) {
vreg_info = &dev->vreg[i];
vreg_info->hdl =
devm_regulator_get(&pdev->dev, vreg_info->name);
if (PTR_ERR(vreg_info->hdl) == -EPROBE_DEFER) {
PCIE_DBG(dev, "EPROBE_DEFER for VReg:%s\n",
vreg_info->name);
ret = PTR_ERR(vreg_info->hdl);
goto out;
}
if (IS_ERR(vreg_info->hdl)) {
if (vreg_info->required) {
PCIE_DBG(dev, "Vreg %s doesn't exist\n",
vreg_info->name);
ret = PTR_ERR(vreg_info->hdl);
goto out;
} else {
PCIE_DBG(dev,
"Optional Vreg %s doesn't exist\n",
vreg_info->name);
vreg_info->hdl = NULL;
}
} else {
dev->vreg_n++;
snprintf(prop_name, MAX_PROP_SIZE,
"qcom,%s-voltage-level", vreg_info->name);
prop = of_get_property((&pdev->dev)->of_node,
prop_name, &len);
if (!prop || (len != (3 * sizeof(__be32)))) {
PCIE_DBG(dev, "%s %s property\n",
prop ? "invalid format" :
"no", prop_name);
} else {
vreg_info->max_v = be32_to_cpup(&prop[0]);
vreg_info->min_v = be32_to_cpup(&prop[1]);
vreg_info->opt_mode =
be32_to_cpup(&prop[2]);
}
}
}
dev->gdsc = devm_regulator_get(&pdev->dev, "gdsc-vdd");
if (IS_ERR(dev->gdsc)) {
PCIE_ERR(dev, "PCIe: RC%d Failed to get %s GDSC:%ld\n",
dev->rc_idx, dev->pdev->name, PTR_ERR(dev->gdsc));
if (PTR_ERR(dev->gdsc) == -EPROBE_DEFER)
PCIE_DBG(dev, "PCIe: EPROBE_DEFER for %s GDSC\n",
dev->pdev->name);
ret = PTR_ERR(dev->gdsc);
goto out;
}
dev->gdsc_smmu = devm_regulator_get(&pdev->dev, "gdsc-smmu");
if (IS_ERR(dev->gdsc_smmu)) {
PCIE_DBG(dev, "PCIe: RC%d SMMU GDSC does not exist",
dev->rc_idx);
dev->gdsc_smmu = NULL;
}
dev->gpio_n = 0;
for (i = 0; i < MSM_PCIE_MAX_GPIO; i++) {
gpio_info = &dev->gpio[i];
ret = of_get_named_gpio((&pdev->dev)->of_node,
gpio_info->name, 0);
if (ret >= 0) {
gpio_info->num = ret;
dev->gpio_n++;
PCIE_DBG(dev, "GPIO num for %s is %d\n",
gpio_info->name, gpio_info->num);
} else {
if (gpio_info->required) {
PCIE_ERR(dev,
"Could not get required GPIO %s\n",
gpio_info->name);
goto out;
} else {
PCIE_DBG(dev,
"Could not get optional GPIO %s\n",
gpio_info->name);
}
}
ret = 0;
}
of_get_property(pdev->dev.of_node, "qcom,phy-sequence", &size);
if (size) {
dev->phy_sequence = (struct msm_pcie_phy_info_t *)
devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
if (dev->phy_sequence) {
dev->phy_len =
size / sizeof(*dev->phy_sequence);
of_property_read_u32_array(pdev->dev.of_node,
"qcom,phy-sequence",
(unsigned int *)dev->phy_sequence,
size / sizeof(dev->phy_sequence->offset));
} else {
PCIE_ERR(dev,
"RC%d: Could not allocate memory for phy init sequence.\n",
dev->rc_idx);
ret = -ENOMEM;
goto out;
}
} else {
PCIE_DBG(dev, "RC%d: phy sequence is not present in DT\n",
dev->rc_idx);
}
of_get_property(pdev->dev.of_node, "qcom,port-phy-sequence", &size);
if (size) {
dev->port_phy_sequence = (struct msm_pcie_phy_info_t *)
devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
if (dev->port_phy_sequence) {
dev->port_phy_len =
size / sizeof(*dev->port_phy_sequence);
of_property_read_u32_array(pdev->dev.of_node,
"qcom,port-phy-sequence",
(unsigned int *)dev->port_phy_sequence,
size / sizeof(dev->port_phy_sequence->offset));
} else {
PCIE_ERR(dev,
"RC%d: Could not allocate memory for port phy init sequence.\n",
dev->rc_idx);
ret = -ENOMEM;
goto out;
}
} else {
PCIE_DBG(dev, "RC%d: port phy sequence is not present in DT\n",
dev->rc_idx);
}
for (i = 0; i < MSM_PCIE_MAX_CLK; i++) {
clk_info = &dev->clk[i];
clk_info->hdl = devm_clk_get(&pdev->dev, clk_info->name);
if (IS_ERR(clk_info->hdl)) {
if (clk_info->required) {
PCIE_DBG(dev, "Clock %s isn't available:%ld\n",
clk_info->name, PTR_ERR(clk_info->hdl));
ret = PTR_ERR(clk_info->hdl);
goto out;
} else {
PCIE_DBG(dev, "Ignoring Clock %s\n",
clk_info->name);
clk_info->hdl = NULL;
}
} else {
if (clkfreq != NULL) {
clk_info->freq = clkfreq[i +
MSM_PCIE_MAX_PIPE_CLK];
PCIE_DBG(dev, "Freq of Clock %s is:%d\n",
clk_info->name, clk_info->freq);
}
}
}
for (i = 0; i < MSM_PCIE_MAX_PIPE_CLK; i++) {
clk_info = &dev->pipeclk[i];
clk_info->hdl = devm_clk_get(&pdev->dev, clk_info->name);
if (IS_ERR(clk_info->hdl)) {
if (clk_info->required) {
PCIE_DBG(dev, "Clock %s isn't available:%ld\n",
clk_info->name, PTR_ERR(clk_info->hdl));
ret = PTR_ERR(clk_info->hdl);
goto out;
} else {
PCIE_DBG(dev, "Ignoring Clock %s\n",
clk_info->name);
clk_info->hdl = NULL;
}
} else {
if (clkfreq != NULL) {
clk_info->freq = clkfreq[i];
PCIE_DBG(dev, "Freq of Clock %s is:%d\n",
clk_info->name, clk_info->freq);
}
}
}
for (i = 0; i < MSM_PCIE_MAX_RESET; i++) {
reset_info = &dev->reset[i];
reset_info->hdl = devm_reset_control_get(&pdev->dev,
reset_info->name);
if (IS_ERR(reset_info->hdl)) {
if (reset_info->required) {
PCIE_DBG(dev,
"Reset %s isn't available:%ld\n",
reset_info->name,
PTR_ERR(reset_info->hdl));
ret = PTR_ERR(reset_info->hdl);
reset_info->hdl = NULL;
goto out;
} else {
PCIE_DBG(dev, "Ignoring Reset %s\n",
reset_info->name);
reset_info->hdl = NULL;
}
}
}
for (i = 0; i < MSM_PCIE_MAX_PIPE_RESET; i++) {
pipe_reset_info = &dev->pipe_reset[i];
pipe_reset_info->hdl = devm_reset_control_get(&pdev->dev,
pipe_reset_info->name);
if (IS_ERR(pipe_reset_info->hdl)) {
if (pipe_reset_info->required) {
PCIE_DBG(dev,
"Pipe Reset %s isn't available:%ld\n",
pipe_reset_info->name,
PTR_ERR(pipe_reset_info->hdl));
ret = PTR_ERR(pipe_reset_info->hdl);
pipe_reset_info->hdl = NULL;
goto out;
} else {
PCIE_DBG(dev, "Ignoring Pipe Reset %s\n",
pipe_reset_info->name);
pipe_reset_info->hdl = NULL;
}
}
}
dev->bus_scale_table = msm_bus_cl_get_pdata(pdev);
if (!dev->bus_scale_table) {
PCIE_DBG(dev, "PCIe: No bus scale table for RC%d (%s)\n",
dev->rc_idx, dev->pdev->name);
dev->bus_client = 0;
} else {
dev->bus_client =
msm_bus_scale_register_client(dev->bus_scale_table);
if (!dev->bus_client) {
PCIE_ERR(dev,
"PCIe: Failed to register bus client for RC%d (%s)\n",
dev->rc_idx, dev->pdev->name);
msm_bus_cl_clear_pdata(dev->bus_scale_table);
ret = -ENODEV;
goto out;
}
}
for (i = 0; i < MSM_PCIE_MAX_RES; i++) {
res_info = &dev->res[i];
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
res_info->name);
if (!res) {
PCIE_ERR(dev, "PCIe: RC%d can't get %s resource.\n",
dev->rc_idx, res_info->name);
} else {
PCIE_DBG(dev, "start addr for %s is %pa.\n",
res_info->name, &res->start);
res_info->base = devm_ioremap(&pdev->dev,
res->start, resource_size(res));
if (!res_info->base) {
PCIE_ERR(dev, "PCIe: RC%d can't remap %s.\n",
dev->rc_idx, res_info->name);
ret = -ENOMEM;
goto out;
} else {
res_info->resource = res;
}
}
}
for (i = 0; i < MSM_PCIE_MAX_IRQ; i++) {
irq_info = &dev->irq[i];
res = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
irq_info->name);
if (!res) {
PCIE_DBG(dev, "PCIe: RC%d can't find IRQ # for %s.\n",
dev->rc_idx, irq_info->name);
} else {
irq_info->num = res->start;
PCIE_DBG(dev, "IRQ # for %s is %d.\n", irq_info->name,
irq_info->num);
}
}
for (i = 0; i < MSM_PCIE_MAX_MSI; i++) {
msi_info = &dev->msi[i];
res = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
msi_info->name);
if (!res) {
PCIE_DBG(dev, "PCIe: RC%d can't find IRQ # for %s.\n",
dev->rc_idx, msi_info->name);
} else {
msi_info->num = res->start;
PCIE_DBG(dev, "IRQ # for %s is %d.\n", msi_info->name,
msi_info->num);
}
}
/* All allocations succeeded */
if (dev->gpio[MSM_PCIE_GPIO_WAKE].num)
dev->wake_n = gpio_to_irq(dev->gpio[MSM_PCIE_GPIO_WAKE].num);
else
dev->wake_n = 0;
dev->parf = dev->res[MSM_PCIE_RES_PARF].base;
dev->phy = dev->res[MSM_PCIE_RES_PHY].base;
dev->elbi = dev->res[MSM_PCIE_RES_ELBI].base;
dev->dm_core = dev->res[MSM_PCIE_RES_DM_CORE].base;
dev->conf = dev->res[MSM_PCIE_RES_CONF].base;
dev->bars = dev->res[MSM_PCIE_RES_BARS].base;
dev->tcsr = dev->res[MSM_PCIE_RES_TCSR].base;
dev->dev_mem_res = dev->res[MSM_PCIE_RES_BARS].resource;
dev->dev_io_res = dev->res[MSM_PCIE_RES_IO].resource;
dev->dev_io_res->flags = IORESOURCE_IO;
out:
kfree(clkfreq);
PCIE_DBG(dev, "RC%d: exit\n", dev->rc_idx);
return ret;
}
static void msm_pcie_release_resources(struct msm_pcie_dev_t *dev)
{
dev->parf = NULL;
dev->elbi = NULL;
dev->dm_core = NULL;
dev->conf = NULL;
dev->bars = NULL;
dev->tcsr = NULL;
dev->dev_mem_res = NULL;
dev->dev_io_res = NULL;
}
int msm_pcie_enable(struct msm_pcie_dev_t *dev, u32 options)
{
int ret = 0;
uint32_t val;
long int retries = 0;
int link_check_count = 0;
PCIE_DBG(dev, "RC%d: entry\n", dev->rc_idx);
mutex_lock(&dev->setup_lock);
if (dev->link_status == MSM_PCIE_LINK_ENABLED) {
PCIE_ERR(dev, "PCIe: the link of RC%d is already enabled\n",
dev->rc_idx);
goto out;
}
/* assert PCIe reset link to keep EP in reset */
PCIE_INFO(dev, "PCIe: Assert the reset of endpoint of RC%d.\n",
dev->rc_idx);
gpio_set_value(dev->gpio[MSM_PCIE_GPIO_PERST].num,
dev->gpio[MSM_PCIE_GPIO_PERST].on);
usleep_range(PERST_PROPAGATION_DELAY_US_MIN,
PERST_PROPAGATION_DELAY_US_MAX);
/* enable power */
if (options & PM_VREG) {
ret = msm_pcie_vreg_init(dev);
if (ret)
goto out;
}
/* enable clocks */
if (options & PM_CLK) {
ret = msm_pcie_clk_init(dev);
/* ensure that changes propagated to the hardware */
wmb();
if (ret)
goto clk_fail;
}
if (dev->scm_dev_id) {
PCIE_DBG(dev, "RC%d: restoring sec config\n", dev->rc_idx);
msm_pcie_restore_sec_config(dev);
}
/* enable PCIe clocks and resets */
msm_pcie_write_mask(dev->parf + PCIE20_PARF_PHY_CTRL, BIT(0), 0);
/* change DBI base address */
writel_relaxed(0, dev->parf + PCIE20_PARF_DBI_BASE_ADDR);
writel_relaxed(0x365E, dev->parf + PCIE20_PARF_SYS_CTRL);
msm_pcie_write_mask(dev->parf + PCIE20_PARF_MHI_CLOCK_RESET_CTRL,
0, BIT(4));
/* enable selected IRQ */
if (dev->irq[MSM_PCIE_INT_GLOBAL_INT].num) {
msm_pcie_write_reg(dev->parf, PCIE20_PARF_INT_ALL_MASK, 0);
msm_pcie_write_mask(dev->parf + PCIE20_PARF_INT_ALL_MASK, 0,
BIT(MSM_PCIE_INT_EVT_LINK_DOWN) |
BIT(MSM_PCIE_INT_EVT_AER_LEGACY) |
BIT(MSM_PCIE_INT_EVT_AER_ERR) |
BIT(MSM_PCIE_INT_EVT_MSI_0) |
BIT(MSM_PCIE_INT_EVT_MSI_1) |
BIT(MSM_PCIE_INT_EVT_MSI_2) |
BIT(MSM_PCIE_INT_EVT_MSI_3) |
BIT(MSM_PCIE_INT_EVT_MSI_4) |
BIT(MSM_PCIE_INT_EVT_MSI_5) |
BIT(MSM_PCIE_INT_EVT_MSI_6) |
BIT(MSM_PCIE_INT_EVT_MSI_7));
PCIE_DBG(dev, "PCIe: RC%d: PCIE20_PARF_INT_ALL_MASK: 0x%x\n",
dev->rc_idx,
readl_relaxed(dev->parf + PCIE20_PARF_INT_ALL_MASK));
}
if (dev->dev_mem_res->end - dev->dev_mem_res->start > SZ_16M)
writel_relaxed(SZ_32M, dev->parf +
PCIE20_PARF_SLV_ADDR_SPACE_SIZE);
else if (dev->dev_mem_res->end - dev->dev_mem_res->start > SZ_8M)
writel_relaxed(SZ_16M, dev->parf +
PCIE20_PARF_SLV_ADDR_SPACE_SIZE);
else
writel_relaxed(SZ_8M, dev->parf +
PCIE20_PARF_SLV_ADDR_SPACE_SIZE);
if (dev->use_msi) {
PCIE_DBG(dev, "RC%d: enable WR halt.\n", dev->rc_idx);
val = dev->wr_halt_size ? dev->wr_halt_size :
readl_relaxed(dev->parf +
PCIE20_PARF_AXI_MSTR_WR_ADDR_HALT);
msm_pcie_write_reg(dev->parf,
PCIE20_PARF_AXI_MSTR_WR_ADDR_HALT,
BIT(31) | val);
PCIE_DBG(dev,
"RC%d: PCIE20_PARF_AXI_MSTR_WR_ADDR_HALT: 0x%x.\n",
dev->rc_idx,
readl_relaxed(dev->parf +
PCIE20_PARF_AXI_MSTR_WR_ADDR_HALT));
}
mutex_lock(&com_phy_lock);
/* init PCIe PHY */
if (!num_rc_on)
pcie_phy_init(dev);
num_rc_on++;
mutex_unlock(&com_phy_lock);
if (options & PM_PIPE_CLK) {
usleep_range(PHY_STABILIZATION_DELAY_US_MIN,
PHY_STABILIZATION_DELAY_US_MAX);
/* Enable the pipe clock */
ret = msm_pcie_pipe_clk_init(dev);
/* ensure that changes propagated to the hardware */
wmb();
if (ret)
goto link_fail;
}
PCIE_DBG(dev, "RC%d: waiting for phy ready...\n", dev->rc_idx);
do {
if (pcie_phy_is_ready(dev))
break;
retries++;
usleep_range(REFCLK_STABILIZATION_DELAY_US_MIN,
REFCLK_STABILIZATION_DELAY_US_MAX);
} while (retries < PHY_READY_TIMEOUT_COUNT);
PCIE_DBG(dev, "RC%d: number of PHY retries:%ld.\n",
dev->rc_idx, retries);
if (pcie_phy_is_ready(dev))
PCIE_INFO(dev, "PCIe RC%d PHY is ready!\n", dev->rc_idx);
else {
PCIE_ERR(dev, "PCIe PHY RC%d failed to come up!\n",
dev->rc_idx);
ret = -ENODEV;
pcie_phy_dump(dev);
goto link_fail;
}
pcie_pcs_port_phy_init(dev);
if (dev->ep_latency)
usleep_range(dev->ep_latency * 1000, dev->ep_latency * 1000);
if (dev->gpio[MSM_PCIE_GPIO_EP].num)
gpio_set_value(dev->gpio[MSM_PCIE_GPIO_EP].num,
dev->gpio[MSM_PCIE_GPIO_EP].on);
/* de-assert PCIe reset link to bring EP out of reset */
PCIE_INFO(dev, "PCIe: Release the reset of endpoint of RC%d.\n",
dev->rc_idx);
gpio_set_value(dev->gpio[MSM_PCIE_GPIO_PERST].num,
1 - dev->gpio[MSM_PCIE_GPIO_PERST].on);
usleep_range(dev->perst_delay_us_min, dev->perst_delay_us_max);
/* set max tlp read size */
msm_pcie_write_reg_field(dev->dm_core, PCIE20_DEVICE_CONTROL_STATUS,
0x7000, dev->tlp_rd_size);
/* enable link training */
msm_pcie_write_mask(dev->parf + PCIE20_PARF_LTSSM, 0, BIT(8));
PCIE_DBG(dev, "%s", "check if link is up\n");
/* Wait for up to 100ms for the link to come up */
do {
usleep_range(LINK_UP_TIMEOUT_US_MIN, LINK_UP_TIMEOUT_US_MAX);
val = readl_relaxed(dev->elbi + PCIE20_ELBI_SYS_STTS);
PCIE_DBG(dev, "PCIe RC%d: LTSSM_STATE:0x%x\n",
dev->rc_idx, (val >> 12) & 0x3f);
} while ((!(val & XMLH_LINK_UP) ||
!msm_pcie_confirm_linkup(dev, false, false, NULL))
&& (link_check_count++ < LINK_UP_CHECK_MAX_COUNT));
if ((val & XMLH_LINK_UP) &&
msm_pcie_confirm_linkup(dev, false, false, NULL)) {
PCIE_DBG(dev, "Link is up after %d checkings\n",
link_check_count);
PCIE_INFO(dev, "PCIe RC%d link initialized\n", dev->rc_idx);
} else {
PCIE_INFO(dev, "PCIe: Assert the reset of endpoint of RC%d.\n",
dev->rc_idx);
gpio_set_value(dev->gpio[MSM_PCIE_GPIO_PERST].num,
dev->gpio[MSM_PCIE_GPIO_PERST].on);
PCIE_ERR(dev, "PCIe RC%d link initialization failed\n",
dev->rc_idx);
ret = -1;
goto link_fail;
}
msm_pcie_config_controller(dev);
if (!dev->msi_gicm_addr)
msm_pcie_config_msi_controller(dev);
msm_pcie_config_link_state(dev);
dev->link_status = MSM_PCIE_LINK_ENABLED;
dev->power_on = true;
dev->suspending = false;
dev->link_turned_on_counter++;
goto out;
link_fail:
if (dev->gpio[MSM_PCIE_GPIO_EP].num)
gpio_set_value(dev->gpio[MSM_PCIE_GPIO_EP].num,
1 - dev->gpio[MSM_PCIE_GPIO_EP].on);
msm_pcie_write_reg(dev->phy,
PCIE_N_SW_RESET(dev->rc_idx, dev->common_phy), 0x1);
msm_pcie_write_reg(dev->phy,
PCIE_N_POWER_DOWN_CONTROL(dev->rc_idx, dev->common_phy), 0);
mutex_lock(&com_phy_lock);
num_rc_on--;
if (!num_rc_on && dev->common_phy) {
PCIE_DBG(dev, "PCIe: RC%d is powering down the common phy\n",
dev->rc_idx);
msm_pcie_write_reg(dev->phy, PCIE_COM_SW_RESET, 0x1);
msm_pcie_write_reg(dev->phy, PCIE_COM_POWER_DOWN_CONTROL, 0);
}
mutex_unlock(&com_phy_lock);
msm_pcie_pipe_clk_deinit(dev);
msm_pcie_clk_deinit(dev);
clk_fail:
msm_pcie_vreg_deinit(dev);
out:
mutex_unlock(&dev->setup_lock);
PCIE_DBG(dev, "RC%d: exit\n", dev->rc_idx);
return ret;
}
void msm_pcie_disable(struct msm_pcie_dev_t *dev, u32 options)
{
PCIE_DBG(dev, "RC%d: entry\n", dev->rc_idx);
mutex_lock(&dev->setup_lock);
if (!dev->power_on) {
PCIE_DBG(dev,
"PCIe: the link of RC%d is already power down.\n",
dev->rc_idx);
mutex_unlock(&dev->setup_lock);
return;
}
dev->link_status = MSM_PCIE_LINK_DISABLED;
dev->power_on = false;
dev->link_turned_off_counter++;
PCIE_INFO(dev, "PCIe: Assert the reset of endpoint of RC%d.\n",
dev->rc_idx);
gpio_set_value(dev->gpio[MSM_PCIE_GPIO_PERST].num,
dev->gpio[MSM_PCIE_GPIO_PERST].on);
msm_pcie_write_reg(dev->phy,
PCIE_N_SW_RESET(dev->rc_idx, dev->common_phy), 0x1);
msm_pcie_write_reg(dev->phy,
PCIE_N_POWER_DOWN_CONTROL(dev->rc_idx, dev->common_phy), 0);
mutex_lock(&com_phy_lock);
num_rc_on--;
if (!num_rc_on && dev->common_phy) {
PCIE_DBG(dev, "PCIe: RC%d is powering down the common phy\n",
dev->rc_idx);
msm_pcie_write_reg(dev->phy, PCIE_COM_SW_RESET, 0x1);
msm_pcie_write_reg(dev->phy, PCIE_COM_POWER_DOWN_CONTROL, 0);
}
mutex_unlock(&com_phy_lock);
if (options & PM_CLK) {
msm_pcie_write_mask(dev->parf + PCIE20_PARF_PHY_CTRL, 0,
BIT(0));
msm_pcie_clk_deinit(dev);
}
if (options & PM_VREG)
msm_pcie_vreg_deinit(dev);
if (options & PM_PIPE_CLK)
msm_pcie_pipe_clk_deinit(dev);
if (dev->gpio[MSM_PCIE_GPIO_EP].num)
gpio_set_value(dev->gpio[MSM_PCIE_GPIO_EP].num,
1 - dev->gpio[MSM_PCIE_GPIO_EP].on);
mutex_unlock(&dev->setup_lock);
PCIE_DBG(dev, "RC%d: exit\n", dev->rc_idx);
}
static void msm_pcie_config_ep_aer(struct msm_pcie_dev_t *dev,
struct msm_pcie_device_info *ep_dev_info)
{
u32 val;
void __iomem *ep_base = ep_dev_info->conf_base;
u32 current_offset = readl_relaxed(ep_base + PCIE_CAP_PTR_OFFSET) &
0xff;
while (current_offset) {
if (msm_pcie_check_align(dev, current_offset))
return;
val = readl_relaxed(ep_base + current_offset);
if ((val & 0xff) == PCIE20_CAP_ID) {
ep_dev_info->dev_ctrlstts_offset =
current_offset + 0x8;
break;
}
current_offset = (val >> 8) & 0xff;
}
if (!ep_dev_info->dev_ctrlstts_offset) {
PCIE_DBG(dev,
"RC%d endpoint does not support PCIe cap registers\n",
dev->rc_idx);
return;
}
PCIE_DBG2(dev, "RC%d: EP dev_ctrlstts_offset: 0x%x\n",
dev->rc_idx, ep_dev_info->dev_ctrlstts_offset);
/* Enable AER on EP */
msm_pcie_write_mask(ep_base + ep_dev_info->dev_ctrlstts_offset, 0,
BIT(3)|BIT(2)|BIT(1)|BIT(0));
PCIE_DBG(dev, "EP's PCIE20_CAP_DEVCTRLSTATUS:0x%x\n",
readl_relaxed(ep_base + ep_dev_info->dev_ctrlstts_offset));
}
static int msm_pcie_config_device_table(struct device *dev, void *pdev)
{
struct pci_dev *pcidev = to_pci_dev(dev);
struct msm_pcie_dev_t *pcie_dev = (struct msm_pcie_dev_t *) pdev;
struct msm_pcie_device_info *dev_table_t = pcie_dev->pcidev_table;
struct resource *axi_conf = pcie_dev->res[MSM_PCIE_RES_CONF].resource;
int ret = 0;
u32 rc_idx = pcie_dev->rc_idx;
u32 i, index;
u32 bdf = 0;
u8 type;
u32 h_type;
u32 bme;
if (!pcidev) {
PCIE_ERR(pcie_dev,
"PCIe: Did not find PCI device in list for RC%d.\n",
pcie_dev->rc_idx);
return -ENODEV;
}
PCIE_DBG(pcie_dev,
"PCI device found: vendor-id:0x%x device-id:0x%x\n",
pcidev->vendor, pcidev->device);
if (!pcidev->bus->number)
return ret;
bdf = BDF_OFFSET(pcidev->bus->number, pcidev->devfn);
type = pcidev->bus->number == 1 ?
PCIE20_CTRL1_TYPE_CFG0 : PCIE20_CTRL1_TYPE_CFG1;
for (i = 0; i < (MAX_RC_NUM * MAX_DEVICE_NUM); i++) {
if (msm_pcie_dev_tbl[i].bdf == bdf &&
!msm_pcie_dev_tbl[i].dev) {
for (index = 0; index < MAX_DEVICE_NUM; index++) {
if (dev_table_t[index].bdf == bdf) {
msm_pcie_dev_tbl[i].dev = pcidev;
msm_pcie_dev_tbl[i].domain = rc_idx;
msm_pcie_dev_tbl[i].conf_base =
pcie_dev->conf + index * SZ_4K;
msm_pcie_dev_tbl[i].phy_address =
axi_conf->start + index * SZ_4K;
dev_table_t[index].dev = pcidev;
dev_table_t[index].domain = rc_idx;
dev_table_t[index].conf_base =
pcie_dev->conf + index * SZ_4K;
dev_table_t[index].phy_address =
axi_conf->start + index * SZ_4K;
msm_pcie_iatu_config(pcie_dev, index,
type,
dev_table_t[index].phy_address,
dev_table_t[index].phy_address
+ SZ_4K - 1,
bdf);
h_type = readl_relaxed(
dev_table_t[index].conf_base +
PCIE20_HEADER_TYPE);
bme = readl_relaxed(
dev_table_t[index].conf_base +
PCIE20_COMMAND_STATUS);
if (h_type & (1 << 16)) {
pci_write_config_dword(pcidev,
PCIE20_COMMAND_STATUS,
bme | 0x06);
} else {
pcie_dev->num_ep++;
dev_table_t[index].registered =
false;
}
if (pcie_dev->num_ep > 1)
pcie_dev->pending_ep_reg = true;
msm_pcie_config_ep_aer(pcie_dev,
&dev_table_t[index]);
break;
}
}
if (index == MAX_DEVICE_NUM) {
PCIE_ERR(pcie_dev,
"RC%d PCI device table is full.\n",
rc_idx);
ret = index;
} else {
break;
}
} else if (msm_pcie_dev_tbl[i].bdf == bdf &&
pcidev == msm_pcie_dev_tbl[i].dev) {
break;
}
}
if (i == MAX_RC_NUM * MAX_DEVICE_NUM) {
PCIE_ERR(pcie_dev,
"Global PCI device table is full: %d elements.\n",
i);
PCIE_ERR(pcie_dev,
"Bus number is 0x%x\nDevice number is 0x%x\n",
pcidev->bus->number, pcidev->devfn);
ret = i;
}
return ret;
}
int msm_pcie_configure_sid(struct device *dev, u32 *sid, int *domain)
{
struct pci_dev *pcidev;
struct msm_pcie_dev_t *pcie_dev;
struct pci_bus *bus;
int i;
u32 bdf;
if (!dev) {
pr_err("%s: PCIe: endpoint device passed in is NULL\n",
__func__);
return MSM_PCIE_ERROR;
}
pcidev = to_pci_dev(dev);
if (!pcidev) {
pr_err("%s: PCIe: PCI device of endpoint is NULL\n",
__func__);
return MSM_PCIE_ERROR;
}
bus = pcidev->bus;
if (!bus) {
pr_err("%s: PCIe: Bus of PCI device is NULL\n",
__func__);
return MSM_PCIE_ERROR;
}
while (!pci_is_root_bus(bus))
bus = bus->parent;
pcie_dev = (struct msm_pcie_dev_t *)(bus->sysdata);
if (!pcie_dev) {
pr_err("%s: PCIe: Could not get PCIe structure\n",
__func__);
return MSM_PCIE_ERROR;
}
if (!pcie_dev->smmu_exist) {
PCIE_DBG(pcie_dev,
"PCIe: RC:%d: smmu does not exist\n",
pcie_dev->rc_idx);
return MSM_PCIE_ERROR;
}
PCIE_DBG(pcie_dev, "PCIe: RC%d: device address is: %p\n",
pcie_dev->rc_idx, dev);
PCIE_DBG(pcie_dev, "PCIe: RC%d: PCI device address is: %p\n",
pcie_dev->rc_idx, pcidev);
*domain = pcie_dev->rc_idx;
if (pcie_dev->current_short_bdf < (MAX_SHORT_BDF_NUM - 1)) {
pcie_dev->current_short_bdf++;
} else {
PCIE_ERR(pcie_dev,
"PCIe: RC%d: No more short BDF left\n",
pcie_dev->rc_idx);
return MSM_PCIE_ERROR;
}
bdf = BDF_OFFSET(pcidev->bus->number, pcidev->devfn);
for (i = 0; i < MAX_DEVICE_NUM; i++) {
if (pcie_dev->pcidev_table[i].bdf == bdf) {
*sid = pcie_dev->smmu_sid_base +
((pcie_dev->rc_idx << 4) |
pcie_dev->current_short_bdf);
msm_pcie_write_reg(pcie_dev->parf,
PCIE20_PARF_BDF_TRANSLATE_N +
pcie_dev->current_short_bdf * 4,
bdf >> 16);
pcie_dev->pcidev_table[i].sid = *sid;
pcie_dev->pcidev_table[i].short_bdf =
pcie_dev->current_short_bdf;
break;
}
}
if (i == MAX_DEVICE_NUM) {
pcie_dev->current_short_bdf--;
PCIE_ERR(pcie_dev,
"PCIe: RC%d could not find BDF:%d\n",
pcie_dev->rc_idx, bdf);
return MSM_PCIE_ERROR;
}
PCIE_DBG(pcie_dev,
"PCIe: RC%d: Device: %02x:%02x.%01x received SID %d\n",
pcie_dev->rc_idx,
bdf >> 24,
bdf >> 19 & 0x1f,
bdf >> 16 & 0x07,
*sid);
return 0;
}
EXPORT_SYMBOL(msm_pcie_configure_sid);
int msm_pcie_enumerate(u32 rc_idx)
{
int ret = 0, bus_ret = 0, scan_ret = 0;
struct msm_pcie_dev_t *dev = &msm_pcie_dev[rc_idx];
mutex_lock(&dev->enumerate_lock);
PCIE_DBG(dev, "Enumerate RC%d\n", rc_idx);
if (!dev->drv_ready) {
PCIE_DBG(dev, "RC%d has not been successfully probed yet\n",
rc_idx);
ret = -EPROBE_DEFER;
goto out;
}
if (!dev->enumerated) {
ret = msm_pcie_enable(dev, PM_ALL);
/* kick start ARM PCI configuration framework */
if (!ret) {
struct pci_dev *pcidev = NULL;
bool found = false;
struct pci_bus *bus;
resource_size_t iobase = 0;
u32 ids = readl_relaxed(msm_pcie_dev[rc_idx].dm_core);
u32 vendor_id = ids & 0xffff;
u32 device_id = (ids & 0xffff0000) >> 16;
LIST_HEAD(res);
PCIE_DBG(dev, "vendor-id:0x%x device_id:0x%x\n",
vendor_id, device_id);
ret = of_pci_get_host_bridge_resources(
dev->pdev->dev.of_node,
0, 0xff, &res, &iobase);
if (ret) {
PCIE_ERR(dev,
"PCIe: failed to get host bridge resources for RC%d: %d\n",
dev->rc_idx, ret);
goto out;
}
bus = pci_create_root_bus(&dev->pdev->dev, 0,
&msm_pcie_ops,
msm_pcie_setup_sys_data(dev),
&res);
if (!bus) {
PCIE_ERR(dev,
"PCIe: failed to create root bus for RC%d\n",
dev->rc_idx);
ret = -ENOMEM;
goto out;
}
scan_ret = pci_scan_child_bus(bus);
PCIE_DBG(dev,
"PCIe: RC%d: The max subordinate bus number discovered is %d\n",
dev->rc_idx, ret);
msm_pcie_fixup_irqs(dev);
pci_assign_unassigned_bus_resources(bus);
pci_bus_add_devices(bus);
dev->enumerated = true;
msm_pcie_write_mask(dev->dm_core +
PCIE20_COMMAND_STATUS, 0, BIT(2)|BIT(1));
if (dev->cpl_timeout && dev->bridge_found)
msm_pcie_write_reg_field(dev->dm_core,
PCIE20_DEVICE_CONTROL2_STATUS2,
0xf, dev->cpl_timeout);
if (dev->shadow_en) {
u32 val = readl_relaxed(dev->dm_core +
PCIE20_COMMAND_STATUS);
PCIE_DBG(dev, "PCIE20_COMMAND_STATUS:0x%x\n",
val);
dev->rc_shadow[PCIE20_COMMAND_STATUS / 4] = val;
}
do {
pcidev = pci_get_device(vendor_id,
device_id, pcidev);
if (pcidev && (&msm_pcie_dev[rc_idx] ==
(struct msm_pcie_dev_t *)
PCIE_BUS_PRIV_DATA(pcidev->bus))) {
msm_pcie_dev[rc_idx].dev = pcidev;
found = true;
PCIE_DBG(&msm_pcie_dev[rc_idx],
"PCI device is found for RC%d\n",
rc_idx);
}
} while (!found && pcidev);
if (!pcidev) {
PCIE_ERR(dev,
"PCIe: Did not find PCI device for RC%d.\n",
dev->rc_idx);
ret = -ENODEV;
goto out;
}
bus_ret = bus_for_each_dev(&pci_bus_type, NULL, dev,
&msm_pcie_config_device_table);
if (bus_ret) {
PCIE_ERR(dev,
"PCIe: Failed to set up device table for RC%d\n",
dev->rc_idx);
ret = -ENODEV;
goto out;
}
} else {
PCIE_ERR(dev, "PCIe: failed to enable RC%d.\n",
dev->rc_idx);
}
} else {
PCIE_ERR(dev, "PCIe: RC%d has already been enumerated.\n",
dev->rc_idx);
}
out:
mutex_unlock(&dev->enumerate_lock);
return ret;
}
EXPORT_SYMBOL(msm_pcie_enumerate);
static void msm_pcie_notify_client(struct msm_pcie_dev_t *dev,
enum msm_pcie_event event)
{
if (dev->event_reg && dev->event_reg->callback &&
(dev->event_reg->events & event)) {
struct msm_pcie_notify *notify = &dev->event_reg->notify;
notify->event = event;
notify->user = dev->event_reg->user;
PCIE_DBG(dev, "PCIe: callback RC%d for event %d\n",
dev->rc_idx, event);
dev->event_reg->callback(notify);
if ((dev->event_reg->options & MSM_PCIE_CONFIG_NO_RECOVERY) &&
(event == MSM_PCIE_EVENT_LINKDOWN)) {
dev->user_suspend = true;
PCIE_DBG(dev,
"PCIe: Client of RC%d will recover the link later.\n",
dev->rc_idx);
return;
}
} else {
PCIE_DBG2(dev,
"PCIe: Client of RC%d does not have registration for event %d\n",
dev->rc_idx, event);
}
}
static void handle_wake_func(struct work_struct *work)
{
int i, ret;
struct msm_pcie_dev_t *dev = container_of(work, struct msm_pcie_dev_t,
handle_wake_work);
PCIE_DBG(dev, "PCIe: Wake work for RC%d\n", dev->rc_idx);
mutex_lock(&dev->recovery_lock);
if (!dev->enumerated) {
PCIE_DBG(dev,
"PCIe: Start enumeration for RC%d upon the wake from endpoint.\n",
dev->rc_idx);
ret = msm_pcie_enumerate(dev->rc_idx);
if (ret) {
PCIE_ERR(dev,
"PCIe: failed to enable RC%d upon wake request from the device.\n",
dev->rc_idx);
goto out;
}
if (dev->num_ep > 1) {
for (i = 0; i < MAX_DEVICE_NUM; i++) {
dev->event_reg = dev->pcidev_table[i].event_reg;
if ((dev->link_status == MSM_PCIE_LINK_ENABLED)
&& dev->event_reg &&
dev->event_reg->callback &&
(dev->event_reg->events &
MSM_PCIE_EVENT_LINKUP)) {
struct msm_pcie_notify *notify =
&dev->event_reg->notify;
notify->event = MSM_PCIE_EVENT_LINKUP;
notify->user = dev->event_reg->user;
PCIE_DBG(dev,
"PCIe: Linkup callback for RC%d after enumeration is successful in wake IRQ handling\n",
dev->rc_idx);
dev->event_reg->callback(notify);
}
}
} else {
if ((dev->link_status == MSM_PCIE_LINK_ENABLED) &&
dev->event_reg && dev->event_reg->callback &&
(dev->event_reg->events &
MSM_PCIE_EVENT_LINKUP)) {
struct msm_pcie_notify *notify =
&dev->event_reg->notify;
notify->event = MSM_PCIE_EVENT_LINKUP;
notify->user = dev->event_reg->user;
PCIE_DBG(dev,
"PCIe: Linkup callback for RC%d after enumeration is successful in wake IRQ handling\n",
dev->rc_idx);
dev->event_reg->callback(notify);
} else {
PCIE_DBG(dev,
"PCIe: Client of RC%d does not have registration for linkup event.\n",
dev->rc_idx);
}
}
goto out;
} else {
PCIE_ERR(dev,
"PCIe: The enumeration for RC%d has already been done.\n",
dev->rc_idx);
goto out;
}
out:
mutex_unlock(&dev->recovery_lock);
}
static irqreturn_t handle_aer_irq(int irq, void *data)
{
struct msm_pcie_dev_t *dev = data;
int corr_val = 0, uncorr_val = 0, rc_err_status = 0;
int ep_corr_val = 0, ep_uncorr_val = 0;
int rc_dev_ctrlstts = 0, ep_dev_ctrlstts = 0;
u32 ep_dev_ctrlstts_offset = 0;
int i, j, ep_src_bdf = 0;
void __iomem *ep_base = NULL;
unsigned long irqsave_flags;
PCIE_DBG2(dev,
"AER Interrupt handler fired for RC%d irq %d\nrc_corr_counter: %lu\nrc_non_fatal_counter: %lu\nrc_fatal_counter: %lu\nep_corr_counter: %lu\nep_non_fatal_counter: %lu\nep_fatal_counter: %lu\n",
dev->rc_idx, irq, dev->rc_corr_counter,
dev->rc_non_fatal_counter, dev->rc_fatal_counter,
dev->ep_corr_counter, dev->ep_non_fatal_counter,
dev->ep_fatal_counter);
spin_lock_irqsave(&dev->aer_lock, irqsave_flags);
if (dev->suspending) {
PCIE_DBG2(dev,
"PCIe: RC%d is currently suspending.\n",
dev->rc_idx);
spin_unlock_irqrestore(&dev->aer_lock, irqsave_flags);
return IRQ_HANDLED;
}
uncorr_val = readl_relaxed(dev->dm_core +
PCIE20_AER_UNCORR_ERR_STATUS_REG);
corr_val = readl_relaxed(dev->dm_core +
PCIE20_AER_CORR_ERR_STATUS_REG);
rc_err_status = readl_relaxed(dev->dm_core +
PCIE20_AER_ROOT_ERR_STATUS_REG);
rc_dev_ctrlstts = readl_relaxed(dev->dm_core +
PCIE20_CAP_DEVCTRLSTATUS);
if (uncorr_val)
PCIE_DBG(dev, "RC's PCIE20_AER_UNCORR_ERR_STATUS_REG:0x%x\n",
uncorr_val);
if (corr_val && (dev->rc_corr_counter < corr_counter_limit))
PCIE_DBG(dev, "RC's PCIE20_AER_CORR_ERR_STATUS_REG:0x%x\n",
corr_val);
if ((rc_dev_ctrlstts >> 18) & 0x1)
dev->rc_fatal_counter++;
if ((rc_dev_ctrlstts >> 17) & 0x1)
dev->rc_non_fatal_counter++;
if ((rc_dev_ctrlstts >> 16) & 0x1)
dev->rc_corr_counter++;
msm_pcie_write_mask(dev->dm_core + PCIE20_CAP_DEVCTRLSTATUS, 0,
BIT(18)|BIT(17)|BIT(16));
if (dev->link_status == MSM_PCIE_LINK_DISABLED) {
PCIE_DBG2(dev, "RC%d link is down\n", dev->rc_idx);
goto out;
}
for (i = 0; i < 2; i++) {
if (i)
ep_src_bdf = readl_relaxed(dev->dm_core +
PCIE20_AER_ERR_SRC_ID_REG) & ~0xffff;
else
ep_src_bdf = (readl_relaxed(dev->dm_core +
PCIE20_AER_ERR_SRC_ID_REG) & 0xffff) << 16;
if (!ep_src_bdf)
continue;
for (j = 0; j < MAX_DEVICE_NUM; j++) {
if (ep_src_bdf == dev->pcidev_table[j].bdf) {
PCIE_DBG2(dev,
"PCIe: %s Error from Endpoint: %02x:%02x.%01x\n",
i ? "Uncorrectable" : "Correctable",
dev->pcidev_table[j].bdf >> 24,
dev->pcidev_table[j].bdf >> 19 & 0x1f,
dev->pcidev_table[j].bdf >> 16 & 0x07);
ep_base = dev->pcidev_table[j].conf_base;
ep_dev_ctrlstts_offset = dev->
pcidev_table[j].dev_ctrlstts_offset;
break;
}
}
if (!ep_base) {
PCIE_ERR(dev,
"PCIe: RC%d no endpoint found for reported error\n",
dev->rc_idx);
goto out;
}
ep_uncorr_val = readl_relaxed(ep_base +
PCIE20_AER_UNCORR_ERR_STATUS_REG);
ep_corr_val = readl_relaxed(ep_base +
PCIE20_AER_CORR_ERR_STATUS_REG);
ep_dev_ctrlstts = readl_relaxed(ep_base +
ep_dev_ctrlstts_offset);
if (ep_uncorr_val)
PCIE_DBG(dev,
"EP's PCIE20_AER_UNCORR_ERR_STATUS_REG:0x%x\n",
ep_uncorr_val);
if (ep_corr_val && (dev->ep_corr_counter < corr_counter_limit))
PCIE_DBG(dev,
"EP's PCIE20_AER_CORR_ERR_STATUS_REG:0x%x\n",
ep_corr_val);
if ((ep_dev_ctrlstts >> 18) & 0x1)
dev->ep_fatal_counter++;
if ((ep_dev_ctrlstts >> 17) & 0x1)
dev->ep_non_fatal_counter++;
if ((ep_dev_ctrlstts >> 16) & 0x1)
dev->ep_corr_counter++;
msm_pcie_write_mask(ep_base + ep_dev_ctrlstts_offset, 0,
BIT(18)|BIT(17)|BIT(16));
msm_pcie_write_reg_field(ep_base,
PCIE20_AER_UNCORR_ERR_STATUS_REG,
0x3fff031, 0x3fff031);
msm_pcie_write_reg_field(ep_base,
PCIE20_AER_CORR_ERR_STATUS_REG,
0xf1c1, 0xf1c1);
}
out:
if (((dev->rc_corr_counter < corr_counter_limit) &&
(dev->ep_corr_counter < corr_counter_limit)) ||
uncorr_val || ep_uncorr_val)
PCIE_DBG(dev, "RC's PCIE20_AER_ROOT_ERR_STATUS_REG:0x%x\n",
rc_err_status);
msm_pcie_write_reg_field(dev->dm_core,
PCIE20_AER_UNCORR_ERR_STATUS_REG,
0x3fff031, 0x3fff031);
msm_pcie_write_reg_field(dev->dm_core,
PCIE20_AER_CORR_ERR_STATUS_REG,
0xf1c1, 0xf1c1);
msm_pcie_write_reg_field(dev->dm_core,
PCIE20_AER_ROOT_ERR_STATUS_REG,
0x7f, 0x7f);
spin_unlock_irqrestore(&dev->aer_lock, irqsave_flags);
return IRQ_HANDLED;
}
static irqreturn_t handle_wake_irq(int irq, void *data)
{
struct msm_pcie_dev_t *dev = data;
unsigned long irqsave_flags;
int i;
spin_lock_irqsave(&dev->wakeup_lock, irqsave_flags);
dev->wake_counter++;
PCIE_DBG(dev, "PCIe: No. %ld wake IRQ for RC%d\n",
dev->wake_counter, dev->rc_idx);
PCIE_DBG2(dev, "PCIe WAKE is asserted by Endpoint of RC%d\n",
dev->rc_idx);
if (!dev->enumerated && !(dev->boot_option &
MSM_PCIE_NO_WAKE_ENUMERATION)) {
PCIE_DBG(dev, "Start enumerating RC%d\n", dev->rc_idx);
schedule_work(&dev->handle_wake_work);
} else {
PCIE_DBG2(dev, "Wake up RC%d\n", dev->rc_idx);
__pm_stay_awake(&dev->ws);
__pm_relax(&dev->ws);
if (dev->num_ep > 1) {
for (i = 0; i < MAX_DEVICE_NUM; i++) {
dev->event_reg =
dev->pcidev_table[i].event_reg;
msm_pcie_notify_client(dev,
MSM_PCIE_EVENT_WAKEUP);
}
} else {
msm_pcie_notify_client(dev, MSM_PCIE_EVENT_WAKEUP);
}
}
spin_unlock_irqrestore(&dev->wakeup_lock, irqsave_flags);
return IRQ_HANDLED;
}
static irqreturn_t handle_linkdown_irq(int irq, void *data)
{
struct msm_pcie_dev_t *dev = data;
unsigned long irqsave_flags;
int i;
spin_lock_irqsave(&dev->linkdown_lock, irqsave_flags);
dev->linkdown_counter++;
PCIE_DBG(dev,
"PCIe: No. %ld linkdown IRQ for RC%d.\n",
dev->linkdown_counter, dev->rc_idx);
if (!dev->enumerated || dev->link_status != MSM_PCIE_LINK_ENABLED) {
PCIE_DBG(dev,
"PCIe:Linkdown IRQ for RC%d when the link is not enabled\n",
dev->rc_idx);
} else if (dev->suspending) {
PCIE_DBG(dev,
"PCIe:the link of RC%d is suspending.\n",
dev->rc_idx);
} else {
dev->link_status = MSM_PCIE_LINK_DISABLED;
dev->shadow_en = false;
if (dev->linkdown_panic)
panic("User has chosen to panic on linkdown\n");
/* assert PERST */
gpio_set_value(dev->gpio[MSM_PCIE_GPIO_PERST].num,
dev->gpio[MSM_PCIE_GPIO_PERST].on);
PCIE_ERR(dev, "PCIe link is down for RC%d\n", dev->rc_idx);
if (dev->num_ep > 1) {
for (i = 0; i < MAX_DEVICE_NUM; i++) {
dev->event_reg =
dev->pcidev_table[i].event_reg;
msm_pcie_notify_client(dev,
MSM_PCIE_EVENT_LINKDOWN);
}
} else {
msm_pcie_notify_client(dev, MSM_PCIE_EVENT_LINKDOWN);
}
}
spin_unlock_irqrestore(&dev->linkdown_lock, irqsave_flags);
return IRQ_HANDLED;
}
static irqreturn_t handle_msi_irq(int irq, void *data)
{
int i, j;
unsigned long val;
struct msm_pcie_dev_t *dev = data;
void __iomem *ctrl_status;
PCIE_DUMP(dev, "irq: %d\n", irq);
/*
* check for set bits, clear it by setting that bit
* and trigger corresponding irq
*/
for (i = 0; i < PCIE20_MSI_CTRL_MAX; i++) {
ctrl_status = dev->dm_core +
PCIE20_MSI_CTRL_INTR_STATUS + (i * 12);
val = readl_relaxed(ctrl_status);
while (val) {
j = find_first_bit(&val, 32);
writel_relaxed(BIT(j), ctrl_status);
/* ensure that interrupt is cleared (acked) */
wmb();
generic_handle_irq(
irq_find_mapping(dev->irq_domain, (j + (32*i)))
);
val = readl_relaxed(ctrl_status);
}
}
return IRQ_HANDLED;
}
static irqreturn_t handle_global_irq(int irq, void *data)
{
int i;
struct msm_pcie_dev_t *dev = data;
unsigned long irqsave_flags;
u32 status = 0;
spin_lock_irqsave(&dev->global_irq_lock, irqsave_flags);
status = readl_relaxed(dev->parf + PCIE20_PARF_INT_ALL_STATUS) &
readl_relaxed(dev->parf + PCIE20_PARF_INT_ALL_MASK);
msm_pcie_write_mask(dev->parf + PCIE20_PARF_INT_ALL_CLEAR, 0, status);
PCIE_DBG2(dev, "RC%d: Global IRQ %d received: 0x%x\n",
dev->rc_idx, irq, status);
for (i = 0; i <= MSM_PCIE_INT_EVT_MAX; i++) {
if (status & BIT(i)) {
switch (i) {
case MSM_PCIE_INT_EVT_LINK_DOWN:
PCIE_DBG(dev,
"PCIe: RC%d: handle linkdown event.\n",
dev->rc_idx);
handle_linkdown_irq(irq, data);
break;
case MSM_PCIE_INT_EVT_AER_LEGACY:
PCIE_DBG(dev,
"PCIe: RC%d: AER legacy event.\n",
dev->rc_idx);
handle_aer_irq(irq, data);
break;
case MSM_PCIE_INT_EVT_AER_ERR:
PCIE_DBG(dev,
"PCIe: RC%d: AER event.\n",
dev->rc_idx);
handle_aer_irq(irq, data);
break;
default:
PCIE_ERR(dev,
"PCIe: RC%d: Unexpected event %d is caught!\n",
dev->rc_idx, i);
}
}
}
spin_unlock_irqrestore(&dev->global_irq_lock, irqsave_flags);
return IRQ_HANDLED;
}
static void msm_pcie_unmap_qgic_addr(struct msm_pcie_dev_t *dev,
struct pci_dev *pdev)
{
struct iommu_domain *domain = iommu_get_domain_for_dev(&pdev->dev);
int bypass_en = 0;
if (!domain) {
PCIE_DBG(dev,
"PCIe: RC%d: client does not have an iommu domain\n",
dev->rc_idx);
return;
}
iommu_domain_get_attr(domain, DOMAIN_ATTR_S1_BYPASS, &bypass_en);
if (!bypass_en) {
int ret;
phys_addr_t pcie_base_addr =
dev->res[MSM_PCIE_RES_DM_CORE].resource->start;
dma_addr_t iova = rounddown(pcie_base_addr, PAGE_SIZE);
ret = iommu_unmap(domain, iova, PAGE_SIZE);
if (ret != PAGE_SIZE)
PCIE_ERR(dev,
"PCIe: RC%d: failed to unmap QGIC address. ret = %d\n",
dev->rc_idx, ret);
}
}
void msm_pcie_destroy_irq(unsigned int irq)
{
int pos;
struct pci_dev *pdev = irq_get_chip_data(irq);
struct msi_desc *entry = irq_get_msi_desc(irq);
struct msi_desc *firstentry;
struct msm_pcie_dev_t *dev;
u32 nvec;
int firstirq;
if (!pdev) {
pr_err("PCIe: pci device is null. IRQ:%d\n", irq);
return;
}
dev = PCIE_BUS_PRIV_DATA(pdev->bus);
if (!dev) {
pr_err("PCIe: could not find RC. IRQ:%d\n", irq);
return;
}
if (!entry) {
PCIE_ERR(dev, "PCIe: RC%d: msi desc is null. IRQ:%d\n",
dev->rc_idx, irq);
return;
}
firstentry = first_pci_msi_entry(pdev);
if (!firstentry) {
PCIE_ERR(dev,
"PCIe: RC%d: firstentry msi desc is null. IRQ:%d\n",
dev->rc_idx, irq);
return;
}
firstirq = firstentry->irq;
nvec = (1 << entry->msi_attrib.multiple);
if (dev->msi_gicm_addr) {
PCIE_DBG(dev, "destroy QGIC based irq %d\n", irq);
if (irq < firstirq || irq > firstirq + nvec - 1) {
PCIE_ERR(dev,
"Could not find irq: %d in RC%d MSI table\n",
irq, dev->rc_idx);
return;
}
if (irq == firstirq + nvec - 1)
msm_pcie_unmap_qgic_addr(dev, pdev);
pos = irq - firstirq;
} else {
PCIE_DBG(dev, "destroy default MSI irq %d\n", irq);
pos = irq - irq_find_mapping(dev->irq_domain, 0);
}
PCIE_DBG(dev, "RC%d\n", dev->rc_idx);
PCIE_DBG(dev, "Before clear_bit pos:%d msi_irq_in_use:%ld\n",
pos, *dev->msi_irq_in_use);
clear_bit(pos, dev->msi_irq_in_use);
PCIE_DBG(dev, "After clear_bit pos:%d msi_irq_in_use:%ld\n",
pos, *dev->msi_irq_in_use);
}
/* hookup to linux pci msi framework */
void arch_teardown_msi_irq(unsigned int irq)
{
PCIE_GEN_DBG("irq %d deallocated\n", irq);
msm_pcie_destroy_irq(irq);
}
void arch_teardown_msi_irqs(struct pci_dev *dev)
{
struct msi_desc *entry;
struct msm_pcie_dev_t *pcie_dev = PCIE_BUS_PRIV_DATA(dev->bus);
PCIE_DBG(pcie_dev, "RC:%d EP: vendor_id:0x%x device_id:0x%x\n",
pcie_dev->rc_idx, dev->vendor, dev->device);
pcie_dev->use_msi = false;
list_for_each_entry(entry, &dev->dev.msi_list, list) {
int i, nvec;
if (entry->irq == 0)
continue;
nvec = 1 << entry->msi_attrib.multiple;
for (i = 0; i < nvec; i++)
arch_teardown_msi_irq(entry->irq + i);
}
}
static void msm_pcie_msi_nop(struct irq_data *d)
{
}
static struct irq_chip pcie_msi_chip = {
.name = "msm-pcie-msi",
.irq_ack = msm_pcie_msi_nop,
.irq_enable = unmask_msi_irq,
.irq_disable = mask_msi_irq,
.irq_mask = mask_msi_irq,
.irq_unmask = unmask_msi_irq,
};
static int msm_pcie_create_irq(struct msm_pcie_dev_t *dev)
{
int irq, pos;
PCIE_DBG(dev, "RC%d\n", dev->rc_idx);
again:
pos = find_first_zero_bit(dev->msi_irq_in_use, PCIE_MSI_NR_IRQS);
if (pos >= PCIE_MSI_NR_IRQS)
return -ENOSPC;
PCIE_DBG(dev, "pos:%d msi_irq_in_use:%ld\n", pos, *dev->msi_irq_in_use);
if (test_and_set_bit(pos, dev->msi_irq_in_use))
goto again;
else
PCIE_DBG(dev, "test_and_set_bit is successful pos=%d\n", pos);
irq = irq_create_mapping(dev->irq_domain, pos);
if (!irq)
return -EINVAL;
return irq;
}
static int arch_setup_msi_irq_default(struct pci_dev *pdev,
struct msi_desc *desc, int nvec)
{
int irq;
struct msi_msg msg;
struct msm_pcie_dev_t *dev = PCIE_BUS_PRIV_DATA(pdev->bus);
PCIE_DBG(dev, "RC%d\n", dev->rc_idx);
irq = msm_pcie_create_irq(dev);
PCIE_DBG(dev, "IRQ %d is allocated.\n", irq);
if (irq < 0)
return irq;
PCIE_DBG(dev, "irq %d allocated\n", irq);
irq_set_chip_data(irq, pdev);
irq_set_msi_desc(irq, desc);
/* write msi vector and data */
msg.address_hi = 0;
msg.address_lo = MSM_PCIE_MSI_PHY;
msg.data = irq - irq_find_mapping(dev->irq_domain, 0);
write_msi_msg(irq, &msg);
return 0;
}
static int msm_pcie_create_irq_qgic(struct msm_pcie_dev_t *dev)
{
int irq, pos;
PCIE_DBG(dev, "RC%d\n", dev->rc_idx);
again:
pos = find_first_zero_bit(dev->msi_irq_in_use, PCIE_MSI_NR_IRQS);
if (pos >= PCIE_MSI_NR_IRQS)
return -ENOSPC;
PCIE_DBG(dev, "pos:%d msi_irq_in_use:%ld\n", pos, *dev->msi_irq_in_use);
if (test_and_set_bit(pos, dev->msi_irq_in_use))
goto again;
else
PCIE_DBG(dev, "test_and_set_bit is successful pos=%d\n", pos);
if (pos >= MSM_PCIE_MAX_MSI) {
PCIE_ERR(dev,
"PCIe: RC%d: pos %d is not less than %d\n",
dev->rc_idx, pos, MSM_PCIE_MAX_MSI);
return MSM_PCIE_ERROR;
}
irq = dev->msi[pos].num;
if (!irq) {
PCIE_ERR(dev, "PCIe: RC%d failed to create QGIC MSI IRQ.\n",
dev->rc_idx);
return -EINVAL;
}
return irq;
}
static int msm_pcie_map_qgic_addr(struct msm_pcie_dev_t *dev,
struct pci_dev *pdev,
struct msi_msg *msg)
{
struct iommu_domain *domain = iommu_get_domain_for_dev(&pdev->dev);
int ret, bypass_en = 0;
dma_addr_t iova;
phys_addr_t pcie_base_addr, gicm_db_offset;
msg->address_hi = 0;
msg->address_lo = dev->msi_gicm_addr;
if (!domain) {
PCIE_DBG(dev,
"PCIe: RC%d: client does not have an iommu domain\n",
dev->rc_idx);
return 0;
}
iommu_domain_get_attr(domain, DOMAIN_ATTR_S1_BYPASS, &bypass_en);
PCIE_DBG(dev,
"PCIe: RC%d: Stage 1 is %s for endpoint: %04x:%02x\n",
dev->rc_idx, bypass_en ? "bypass" : "enabled",
pdev->bus->number, pdev->devfn);
if (bypass_en)
return 0;
gicm_db_offset = dev->msi_gicm_addr -
rounddown(dev->msi_gicm_addr, PAGE_SIZE);
/*
* Use PCIe DBI address as the IOVA since client cannot
* use this address for their IOMMU mapping. This will
* prevent any conflicts between PCIe host and
* client's mapping.
*/
pcie_base_addr = dev->res[MSM_PCIE_RES_DM_CORE].resource->start;
iova = rounddown(pcie_base_addr, PAGE_SIZE);
ret = iommu_map(domain, iova, rounddown(dev->msi_gicm_addr, PAGE_SIZE),
PAGE_SIZE, IOMMU_READ | IOMMU_WRITE);
if (ret < 0) {
PCIE_ERR(dev,
"PCIe: RC%d: ret: %d: Could not do iommu map for QGIC address\n",
dev->rc_idx, ret);
return -ENOMEM;
}
msg->address_lo = iova + gicm_db_offset;
return 0;
}
static int arch_setup_msi_irq_qgic(struct pci_dev *pdev,
struct msi_desc *desc, int nvec)
{
int irq, index, ret, firstirq = 0;
struct msi_msg msg;
struct msm_pcie_dev_t *dev = PCIE_BUS_PRIV_DATA(pdev->bus);
PCIE_DBG(dev, "RC%d\n", dev->rc_idx);
for (index = 0; index < nvec; index++) {
irq = msm_pcie_create_irq_qgic(dev);
PCIE_DBG(dev, "irq %d is allocated\n", irq);
if (irq < 0)
return irq;
if (index == 0)
firstirq = irq;
irq_set_irq_type(irq, IRQ_TYPE_EDGE_RISING);
irq_set_chip_data(irq, pdev);
}
/* write msi vector and data */
irq_set_msi_desc(firstirq, desc);
ret = msm_pcie_map_qgic_addr(dev, pdev, &msg);
if (ret)
return ret;
msg.data = dev->msi_gicm_base + (firstirq - dev->msi[0].num);
write_msi_msg(firstirq, &msg);
return 0;
}
int arch_setup_msi_irq(struct pci_dev *pdev, struct msi_desc *desc)
{
struct msm_pcie_dev_t *dev = PCIE_BUS_PRIV_DATA(pdev->bus);
PCIE_DBG(dev, "RC%d\n", dev->rc_idx);
if (dev->msi_gicm_addr)
return arch_setup_msi_irq_qgic(pdev, desc, 1);
else
return arch_setup_msi_irq_default(pdev, desc, 1);
}
static int msm_pcie_get_msi_multiple(int nvec)
{
int msi_multiple = 0;
while (nvec) {
nvec = nvec >> 1;
msi_multiple++;
}
PCIE_GEN_DBG("log2 number of MSI multiple:%d\n",
msi_multiple - 1);
return msi_multiple - 1;
}
int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
{
struct msi_desc *entry;
int ret;
struct msm_pcie_dev_t *pcie_dev = PCIE_BUS_PRIV_DATA(dev->bus);
PCIE_DBG(pcie_dev, "RC%d\n", pcie_dev->rc_idx);
if (type != PCI_CAP_ID_MSI || nvec > 32)
return -ENOSPC;
PCIE_DBG(pcie_dev, "nvec = %d\n", nvec);
list_for_each_entry(entry, &dev->dev.msi_list, list) {
entry->msi_attrib.multiple =
msm_pcie_get_msi_multiple(nvec);
if (pcie_dev->msi_gicm_addr)
ret = arch_setup_msi_irq_qgic(dev, entry, nvec);
else
ret = arch_setup_msi_irq_default(dev, entry, nvec);
PCIE_DBG(pcie_dev, "ret from msi_irq: %d\n", ret);
if (ret < 0)
return ret;
if (ret > 0)
return -ENOSPC;
}
pcie_dev->use_msi = true;
return 0;
}
static int msm_pcie_msi_map(struct irq_domain *domain, unsigned int irq,
irq_hw_number_t hwirq)
{
irq_set_chip_and_handler (irq, &pcie_msi_chip, handle_simple_irq);
return 0;
}
static const struct irq_domain_ops msm_pcie_msi_ops = {
.map = msm_pcie_msi_map,
};
int32_t msm_pcie_irq_init(struct msm_pcie_dev_t *dev)
{
int rc;
int msi_start = 0;
struct device *pdev = &dev->pdev->dev;
PCIE_DBG(dev, "RC%d\n", dev->rc_idx);
if (dev->rc_idx)
wakeup_source_init(&dev->ws, "RC1 pcie_wakeup_source");
else
wakeup_source_init(&dev->ws, "RC0 pcie_wakeup_source");
/* register handler for linkdown interrupt */
if (dev->irq[MSM_PCIE_INT_LINK_DOWN].num) {
rc = devm_request_irq(pdev,
dev->irq[MSM_PCIE_INT_LINK_DOWN].num,
handle_linkdown_irq,
IRQF_TRIGGER_RISING,
dev->irq[MSM_PCIE_INT_LINK_DOWN].name,
dev);
if (rc) {
PCIE_ERR(dev,
"PCIe: Unable to request linkdown interrupt:%d\n",
dev->irq[MSM_PCIE_INT_LINK_DOWN].num);
return rc;
}
}
/* register handler for physical MSI interrupt line */
if (dev->irq[MSM_PCIE_INT_MSI].num) {
rc = devm_request_irq(pdev,
dev->irq[MSM_PCIE_INT_MSI].num,
handle_msi_irq,
IRQF_TRIGGER_RISING,
dev->irq[MSM_PCIE_INT_MSI].name,
dev);
if (rc) {
PCIE_ERR(dev,
"PCIe: RC%d: Unable to request MSI interrupt\n",
dev->rc_idx);
return rc;
}
}
/* register handler for AER interrupt */
if (dev->irq[MSM_PCIE_INT_PLS_ERR].num) {
rc = devm_request_irq(pdev,
dev->irq[MSM_PCIE_INT_PLS_ERR].num,
handle_aer_irq,
IRQF_TRIGGER_RISING,
dev->irq[MSM_PCIE_INT_PLS_ERR].name,
dev);
if (rc) {
PCIE_ERR(dev,
"PCIe: RC%d: Unable to request aer pls_err interrupt: %d\n",
dev->rc_idx,
dev->irq[MSM_PCIE_INT_PLS_ERR].num);
return rc;
}
}
/* register handler for AER legacy interrupt */
if (dev->irq[MSM_PCIE_INT_AER_LEGACY].num) {
rc = devm_request_irq(pdev,
dev->irq[MSM_PCIE_INT_AER_LEGACY].num,
handle_aer_irq,
IRQF_TRIGGER_RISING,
dev->irq[MSM_PCIE_INT_AER_LEGACY].name,
dev);
if (rc) {
PCIE_ERR(dev,
"PCIe: RC%d: Unable to request aer aer_legacy interrupt: %d\n",
dev->rc_idx,
dev->irq[MSM_PCIE_INT_AER_LEGACY].num);
return rc;
}
}
if (dev->irq[MSM_PCIE_INT_GLOBAL_INT].num) {
rc = devm_request_irq(pdev,
dev->irq[MSM_PCIE_INT_GLOBAL_INT].num,
handle_global_irq,
IRQF_TRIGGER_RISING,
dev->irq[MSM_PCIE_INT_GLOBAL_INT].name,
dev);
if (rc) {
PCIE_ERR(dev,
"PCIe: RC%d: Unable to request global_int interrupt: %d\n",
dev->rc_idx,
dev->irq[MSM_PCIE_INT_GLOBAL_INT].num);
return rc;
}
}
/* register handler for PCIE_WAKE_N interrupt line */
if (dev->wake_n) {
rc = devm_request_irq(pdev,
dev->wake_n, handle_wake_irq,
IRQF_TRIGGER_FALLING, "msm_pcie_wake", dev);
if (rc) {
PCIE_ERR(dev,
"PCIe: RC%d: Unable to request wake interrupt\n",
dev->rc_idx);
return rc;
}
INIT_WORK(&dev->handle_wake_work, handle_wake_func);
rc = enable_irq_wake(dev->wake_n);
if (rc) {
PCIE_ERR(dev,
"PCIe: RC%d: Unable to enable wake interrupt\n",
dev->rc_idx);
return rc;
}
}
/* Create a virtual domain of interrupts */
if (!dev->msi_gicm_addr) {
dev->irq_domain = irq_domain_add_linear(dev->pdev->dev.of_node,
PCIE_MSI_NR_IRQS, &msm_pcie_msi_ops, dev);
if (!dev->irq_domain) {
PCIE_ERR(dev,
"PCIe: RC%d: Unable to initialize irq domain\n",
dev->rc_idx);
if (dev->wake_n)
disable_irq(dev->wake_n);
return PTR_ERR(dev->irq_domain);
}
msi_start = irq_create_mapping(dev->irq_domain, 0);
}
return 0;
}
void msm_pcie_irq_deinit(struct msm_pcie_dev_t *dev)
{
PCIE_DBG(dev, "RC%d\n", dev->rc_idx);
wakeup_source_trash(&dev->ws);
if (dev->wake_n)
disable_irq(dev->wake_n);
}
static int msm_pcie_probe(struct platform_device *pdev)
{
int ret = 0;
int rc_idx = -1;
int i, j;
PCIE_GEN_DBG("%s\n", __func__);
mutex_lock(&pcie_drv.drv_lock);
ret = of_property_read_u32((&pdev->dev)->of_node,
"cell-index", &rc_idx);
if (ret) {
PCIE_GEN_DBG("Did not find RC index.\n");
goto out;
} else {
if (rc_idx >= MAX_RC_NUM) {
pr_err(
"PCIe: Invalid RC Index %d (max supported = %d)\n",
rc_idx, MAX_RC_NUM);
goto out;
}
pcie_drv.rc_num++;
PCIE_DBG(&msm_pcie_dev[rc_idx], "PCIe: RC index is %d.\n",
rc_idx);
}
msm_pcie_dev[rc_idx].l0s_supported =
of_property_read_bool((&pdev->dev)->of_node,
"qcom,l0s-supported");
PCIE_DBG(&msm_pcie_dev[rc_idx], "L0s is %s supported.\n",
msm_pcie_dev[rc_idx].l0s_supported ? "" : "not");
msm_pcie_dev[rc_idx].l1_supported =
of_property_read_bool((&pdev->dev)->of_node,
"qcom,l1-supported");
PCIE_DBG(&msm_pcie_dev[rc_idx], "L1 is %s supported.\n",
msm_pcie_dev[rc_idx].l1_supported ? "" : "not");
msm_pcie_dev[rc_idx].l1ss_supported =
of_property_read_bool((&pdev->dev)->of_node,
"qcom,l1ss-supported");
PCIE_DBG(&msm_pcie_dev[rc_idx], "L1ss is %s supported.\n",
msm_pcie_dev[rc_idx].l1ss_supported ? "" : "not");
msm_pcie_dev[rc_idx].common_clk_en =
of_property_read_bool((&pdev->dev)->of_node,
"qcom,common-clk-en");
PCIE_DBG(&msm_pcie_dev[rc_idx], "Common clock is %s enabled.\n",
msm_pcie_dev[rc_idx].common_clk_en ? "" : "not");
msm_pcie_dev[rc_idx].clk_power_manage_en =
of_property_read_bool((&pdev->dev)->of_node,
"qcom,clk-power-manage-en");
PCIE_DBG(&msm_pcie_dev[rc_idx],
"Clock power management is %s enabled.\n",
msm_pcie_dev[rc_idx].clk_power_manage_en ? "" : "not");
msm_pcie_dev[rc_idx].aux_clk_sync =
of_property_read_bool((&pdev->dev)->of_node,
"qcom,aux-clk-sync");
PCIE_DBG(&msm_pcie_dev[rc_idx],
"AUX clock is %s synchronous to Core clock.\n",
msm_pcie_dev[rc_idx].aux_clk_sync ? "" : "not");
msm_pcie_dev[rc_idx].use_19p2mhz_aux_clk =
of_property_read_bool((&pdev->dev)->of_node,
"qcom,use-19p2mhz-aux-clk");
PCIE_DBG(&msm_pcie_dev[rc_idx],
"AUX clock frequency is %s 19.2MHz.\n",
msm_pcie_dev[rc_idx].use_19p2mhz_aux_clk ? "" : "not");
msm_pcie_dev[rc_idx].smmu_exist =
of_property_read_bool((&pdev->dev)->of_node,
"qcom,smmu-exist");
PCIE_DBG(&msm_pcie_dev[rc_idx],
"SMMU does %s exist.\n",
msm_pcie_dev[rc_idx].smmu_exist ? "" : "not");
msm_pcie_dev[rc_idx].smmu_sid_base = 0;
ret = of_property_read_u32((&pdev->dev)->of_node, "qcom,smmu-sid-base",
&msm_pcie_dev[rc_idx].smmu_sid_base);
if (ret)
PCIE_DBG(&msm_pcie_dev[rc_idx],
"RC%d SMMU sid base not found\n",
msm_pcie_dev[rc_idx].rc_idx);
else
PCIE_DBG(&msm_pcie_dev[rc_idx],
"RC%d: qcom,smmu-sid-base: 0x%x.\n",
msm_pcie_dev[rc_idx].rc_idx,
msm_pcie_dev[rc_idx].smmu_sid_base);
msm_pcie_dev[rc_idx].boot_option = 0;
ret = of_property_read_u32((&pdev->dev)->of_node, "qcom,boot-option",
&msm_pcie_dev[rc_idx].boot_option);
PCIE_DBG(&msm_pcie_dev[rc_idx],
"PCIe: RC%d boot option is 0x%x.\n",
rc_idx, msm_pcie_dev[rc_idx].boot_option);
msm_pcie_dev[rc_idx].phy_ver = 1;
ret = of_property_read_u32((&pdev->dev)->of_node,
"qcom,pcie-phy-ver",
&msm_pcie_dev[rc_idx].phy_ver);
if (ret)
PCIE_DBG(&msm_pcie_dev[rc_idx],
"RC%d: pcie-phy-ver does not exist.\n",
msm_pcie_dev[rc_idx].rc_idx);
else
PCIE_DBG(&msm_pcie_dev[rc_idx],
"RC%d: pcie-phy-ver: %d.\n",
msm_pcie_dev[rc_idx].rc_idx,
msm_pcie_dev[rc_idx].phy_ver);
msm_pcie_dev[rc_idx].n_fts = 0;
ret = of_property_read_u32((&pdev->dev)->of_node,
"qcom,n-fts",
&msm_pcie_dev[rc_idx].n_fts);
if (ret)
PCIE_DBG(&msm_pcie_dev[rc_idx],
"n-fts does not exist. ret=%d\n", ret);
else
PCIE_DBG(&msm_pcie_dev[rc_idx], "n-fts: 0x%x.\n",
msm_pcie_dev[rc_idx].n_fts);
msm_pcie_dev[rc_idx].common_phy =
of_property_read_bool((&pdev->dev)->of_node,
"qcom,common-phy");
PCIE_DBG(&msm_pcie_dev[rc_idx],
"PCIe: RC%d: Common PHY does %s exist.\n",
rc_idx, msm_pcie_dev[rc_idx].common_phy ? "" : "not");
msm_pcie_dev[rc_idx].ext_ref_clk =
of_property_read_bool((&pdev->dev)->of_node,
"qcom,ext-ref-clk");
PCIE_DBG(&msm_pcie_dev[rc_idx], "ref clk is %s.\n",
msm_pcie_dev[rc_idx].ext_ref_clk ? "external" : "internal");
msm_pcie_dev[rc_idx].ep_latency = 0;
ret = of_property_read_u32((&pdev->dev)->of_node,
"qcom,ep-latency",
&msm_pcie_dev[rc_idx].ep_latency);
if (ret)
PCIE_DBG(&msm_pcie_dev[rc_idx],
"RC%d: ep-latency does not exist.\n",
rc_idx);
else
PCIE_DBG(&msm_pcie_dev[rc_idx], "RC%d: ep-latency: 0x%x.\n",
rc_idx, msm_pcie_dev[rc_idx].ep_latency);
msm_pcie_dev[rc_idx].wr_halt_size = 0;
ret = of_property_read_u32(pdev->dev.of_node,
"qcom,wr-halt-size",
&msm_pcie_dev[rc_idx].wr_halt_size);
if (ret)
PCIE_DBG(&msm_pcie_dev[rc_idx],
"RC%d: wr-halt-size not specified in dt. Use default value.\n",
rc_idx);
else
PCIE_DBG(&msm_pcie_dev[rc_idx], "RC%d: wr-halt-size: 0x%x.\n",
rc_idx, msm_pcie_dev[rc_idx].wr_halt_size);
msm_pcie_dev[rc_idx].cpl_timeout = 0;
ret = of_property_read_u32((&pdev->dev)->of_node,
"qcom,cpl-timeout",
&msm_pcie_dev[rc_idx].cpl_timeout);
if (ret)
PCIE_DBG(&msm_pcie_dev[rc_idx],
"RC%d: Using default cpl-timeout.\n",
rc_idx);
else
PCIE_DBG(&msm_pcie_dev[rc_idx], "RC%d: cpl-timeout: 0x%x.\n",
rc_idx, msm_pcie_dev[rc_idx].cpl_timeout);
msm_pcie_dev[rc_idx].perst_delay_us_min =
PERST_PROPAGATION_DELAY_US_MIN;
ret = of_property_read_u32(pdev->dev.of_node,
"qcom,perst-delay-us-min",
&msm_pcie_dev[rc_idx].perst_delay_us_min);
if (ret)
PCIE_DBG(&msm_pcie_dev[rc_idx],
"RC%d: perst-delay-us-min does not exist. Use default value %dus.\n",
rc_idx, msm_pcie_dev[rc_idx].perst_delay_us_min);
else
PCIE_DBG(&msm_pcie_dev[rc_idx],
"RC%d: perst-delay-us-min: %dus.\n",
rc_idx, msm_pcie_dev[rc_idx].perst_delay_us_min);
msm_pcie_dev[rc_idx].perst_delay_us_max =
PERST_PROPAGATION_DELAY_US_MAX;
ret = of_property_read_u32(pdev->dev.of_node,
"qcom,perst-delay-us-max",
&msm_pcie_dev[rc_idx].perst_delay_us_max);
if (ret)
PCIE_DBG(&msm_pcie_dev[rc_idx],
"RC%d: perst-delay-us-max does not exist. Use default value %dus.\n",
rc_idx, msm_pcie_dev[rc_idx].perst_delay_us_max);
else
PCIE_DBG(&msm_pcie_dev[rc_idx],
"RC%d: perst-delay-us-max: %dus.\n",
rc_idx, msm_pcie_dev[rc_idx].perst_delay_us_max);
msm_pcie_dev[rc_idx].tlp_rd_size = PCIE_TLP_RD_SIZE;
ret = of_property_read_u32(pdev->dev.of_node,
"qcom,tlp-rd-size",
&msm_pcie_dev[rc_idx].tlp_rd_size);
if (ret)
PCIE_DBG(&msm_pcie_dev[rc_idx],
"RC%d: tlp-rd-size does not exist. tlp-rd-size: 0x%x.\n",
rc_idx, msm_pcie_dev[rc_idx].tlp_rd_size);
else
PCIE_DBG(&msm_pcie_dev[rc_idx], "RC%d: tlp-rd-size: 0x%x.\n",
rc_idx, msm_pcie_dev[rc_idx].tlp_rd_size);
msm_pcie_dev[rc_idx].msi_gicm_addr = 0;
msm_pcie_dev[rc_idx].msi_gicm_base = 0;
ret = of_property_read_u32((&pdev->dev)->of_node,
"qcom,msi-gicm-addr",
&msm_pcie_dev[rc_idx].msi_gicm_addr);
if (ret) {
PCIE_DBG(&msm_pcie_dev[rc_idx], "%s",
"msi-gicm-addr does not exist.\n");
} else {
PCIE_DBG(&msm_pcie_dev[rc_idx], "msi-gicm-addr: 0x%x.\n",
msm_pcie_dev[rc_idx].msi_gicm_addr);
ret = of_property_read_u32((&pdev->dev)->of_node,
"qcom,msi-gicm-base",
&msm_pcie_dev[rc_idx].msi_gicm_base);
if (ret) {
PCIE_ERR(&msm_pcie_dev[rc_idx],
"PCIe: RC%d: msi-gicm-base does not exist.\n",
rc_idx);
goto decrease_rc_num;
} else {
PCIE_DBG(&msm_pcie_dev[rc_idx], "msi-gicm-base: 0x%x\n",
msm_pcie_dev[rc_idx].msi_gicm_base);
}
}
msm_pcie_dev[rc_idx].scm_dev_id = 0;
ret = of_property_read_u32((&pdev->dev)->of_node,
"qcom,scm-dev-id",
&msm_pcie_dev[rc_idx].scm_dev_id);
msm_pcie_dev[rc_idx].rc_idx = rc_idx;
msm_pcie_dev[rc_idx].pdev = pdev;
msm_pcie_dev[rc_idx].vreg_n = 0;
msm_pcie_dev[rc_idx].gpio_n = 0;
msm_pcie_dev[rc_idx].parf_deemph = 0;
msm_pcie_dev[rc_idx].parf_swing = 0;
msm_pcie_dev[rc_idx].link_status = MSM_PCIE_LINK_DEINIT;
msm_pcie_dev[rc_idx].user_suspend = false;
msm_pcie_dev[rc_idx].disable_pc = false;
msm_pcie_dev[rc_idx].saved_state = NULL;
msm_pcie_dev[rc_idx].enumerated = false;
msm_pcie_dev[rc_idx].num_active_ep = 0;
msm_pcie_dev[rc_idx].num_ep = 0;
msm_pcie_dev[rc_idx].pending_ep_reg = false;
msm_pcie_dev[rc_idx].phy_len = 0;
msm_pcie_dev[rc_idx].port_phy_len = 0;
msm_pcie_dev[rc_idx].phy_sequence = NULL;
msm_pcie_dev[rc_idx].port_phy_sequence = NULL;
msm_pcie_dev[rc_idx].event_reg = NULL;
msm_pcie_dev[rc_idx].linkdown_counter = 0;
msm_pcie_dev[rc_idx].link_turned_on_counter = 0;
msm_pcie_dev[rc_idx].link_turned_off_counter = 0;
msm_pcie_dev[rc_idx].rc_corr_counter = 0;
msm_pcie_dev[rc_idx].rc_non_fatal_counter = 0;
msm_pcie_dev[rc_idx].rc_fatal_counter = 0;
msm_pcie_dev[rc_idx].ep_corr_counter = 0;
msm_pcie_dev[rc_idx].ep_non_fatal_counter = 0;
msm_pcie_dev[rc_idx].ep_fatal_counter = 0;
msm_pcie_dev[rc_idx].suspending = false;
msm_pcie_dev[rc_idx].wake_counter = 0;
msm_pcie_dev[rc_idx].aer_enable = true;
msm_pcie_dev[rc_idx].power_on = false;
msm_pcie_dev[rc_idx].current_short_bdf = 0;
msm_pcie_dev[rc_idx].use_msi = false;
msm_pcie_dev[rc_idx].use_pinctrl = false;
msm_pcie_dev[rc_idx].linkdown_panic = false;
msm_pcie_dev[rc_idx].bridge_found = false;
memcpy(msm_pcie_dev[rc_idx].vreg, msm_pcie_vreg_info,
sizeof(msm_pcie_vreg_info));
memcpy(msm_pcie_dev[rc_idx].gpio, msm_pcie_gpio_info,
sizeof(msm_pcie_gpio_info));
memcpy(msm_pcie_dev[rc_idx].clk, msm_pcie_clk_info[rc_idx],
sizeof(msm_pcie_clk_info[rc_idx]));
memcpy(msm_pcie_dev[rc_idx].pipeclk, msm_pcie_pipe_clk_info[rc_idx],
sizeof(msm_pcie_pipe_clk_info[rc_idx]));
memcpy(msm_pcie_dev[rc_idx].res, msm_pcie_res_info,
sizeof(msm_pcie_res_info));
memcpy(msm_pcie_dev[rc_idx].irq, msm_pcie_irq_info,
sizeof(msm_pcie_irq_info));
memcpy(msm_pcie_dev[rc_idx].msi, msm_pcie_msi_info,
sizeof(msm_pcie_msi_info));
memcpy(msm_pcie_dev[rc_idx].reset, msm_pcie_reset_info[rc_idx],
sizeof(msm_pcie_reset_info[rc_idx]));
memcpy(msm_pcie_dev[rc_idx].pipe_reset,
msm_pcie_pipe_reset_info[rc_idx],
sizeof(msm_pcie_pipe_reset_info[rc_idx]));
msm_pcie_dev[rc_idx].shadow_en = true;
for (i = 0; i < PCIE_CONF_SPACE_DW; i++)
msm_pcie_dev[rc_idx].rc_shadow[i] = PCIE_CLEAR;
for (i = 0; i < MAX_DEVICE_NUM; i++)
for (j = 0; j < PCIE_CONF_SPACE_DW; j++)
msm_pcie_dev[rc_idx].ep_shadow[i][j] = PCIE_CLEAR;
for (i = 0; i < MAX_DEVICE_NUM; i++) {
msm_pcie_dev[rc_idx].pcidev_table[i].bdf = 0;
msm_pcie_dev[rc_idx].pcidev_table[i].dev = NULL;
msm_pcie_dev[rc_idx].pcidev_table[i].short_bdf = 0;
msm_pcie_dev[rc_idx].pcidev_table[i].sid = 0;
msm_pcie_dev[rc_idx].pcidev_table[i].domain = rc_idx;
msm_pcie_dev[rc_idx].pcidev_table[i].conf_base = 0;
msm_pcie_dev[rc_idx].pcidev_table[i].phy_address = 0;
msm_pcie_dev[rc_idx].pcidev_table[i].dev_ctrlstts_offset = 0;
msm_pcie_dev[rc_idx].pcidev_table[i].event_reg = NULL;
msm_pcie_dev[rc_idx].pcidev_table[i].registered = true;
}
dev_set_drvdata(&msm_pcie_dev[rc_idx].pdev->dev, &msm_pcie_dev[rc_idx]);
msm_pcie_sysfs_init(&msm_pcie_dev[rc_idx]);
ret = msm_pcie_get_resources(&msm_pcie_dev[rc_idx],
msm_pcie_dev[rc_idx].pdev);
if (ret)
goto decrease_rc_num;
msm_pcie_dev[rc_idx].pinctrl = devm_pinctrl_get(&pdev->dev);
if (IS_ERR_OR_NULL(msm_pcie_dev[rc_idx].pinctrl))
PCIE_ERR(&msm_pcie_dev[rc_idx],
"PCIe: RC%d failed to get pinctrl\n",
rc_idx);
else
msm_pcie_dev[rc_idx].use_pinctrl = true;
if (msm_pcie_dev[rc_idx].use_pinctrl) {
msm_pcie_dev[rc_idx].pins_default =
pinctrl_lookup_state(msm_pcie_dev[rc_idx].pinctrl,
"default");
if (IS_ERR(msm_pcie_dev[rc_idx].pins_default)) {
PCIE_ERR(&msm_pcie_dev[rc_idx],
"PCIe: RC%d could not get pinctrl default state\n",
rc_idx);
msm_pcie_dev[rc_idx].pins_default = NULL;
}
msm_pcie_dev[rc_idx].pins_sleep =
pinctrl_lookup_state(msm_pcie_dev[rc_idx].pinctrl,
"sleep");
if (IS_ERR(msm_pcie_dev[rc_idx].pins_sleep)) {
PCIE_ERR(&msm_pcie_dev[rc_idx],
"PCIe: RC%d could not get pinctrl sleep state\n",
rc_idx);
msm_pcie_dev[rc_idx].pins_sleep = NULL;
}
}
ret = msm_pcie_gpio_init(&msm_pcie_dev[rc_idx]);
if (ret) {
msm_pcie_release_resources(&msm_pcie_dev[rc_idx]);
goto decrease_rc_num;
}
ret = msm_pcie_irq_init(&msm_pcie_dev[rc_idx]);
if (ret) {
msm_pcie_release_resources(&msm_pcie_dev[rc_idx]);
msm_pcie_gpio_deinit(&msm_pcie_dev[rc_idx]);
goto decrease_rc_num;
}
msm_pcie_dev[rc_idx].drv_ready = true;
if (msm_pcie_dev[rc_idx].boot_option &
MSM_PCIE_NO_PROBE_ENUMERATION) {
PCIE_DBG(&msm_pcie_dev[rc_idx],
"PCIe: RC%d will be enumerated by client or endpoint.\n",
rc_idx);
mutex_unlock(&pcie_drv.drv_lock);
return 0;
}
ret = msm_pcie_enumerate(rc_idx);
if (ret)
PCIE_ERR(&msm_pcie_dev[rc_idx],
"PCIe: RC%d is not enabled during bootup; it will be enumerated upon client request.\n",
rc_idx);
else
PCIE_ERR(&msm_pcie_dev[rc_idx], "RC%d is enabled in bootup\n",
rc_idx);
PCIE_DBG(&msm_pcie_dev[rc_idx], "PCIE probed %s\n",
dev_name(&(pdev->dev)));
mutex_unlock(&pcie_drv.drv_lock);
return 0;
decrease_rc_num:
pcie_drv.rc_num--;
out:
if (rc_idx < 0 || rc_idx >= MAX_RC_NUM)
pr_err("PCIe: Invalid RC index %d. Driver probe failed\n",
rc_idx);
else
PCIE_ERR(&msm_pcie_dev[rc_idx],
"PCIe: Driver probe failed for RC%d:%d\n",
rc_idx, ret);
mutex_unlock(&pcie_drv.drv_lock);
return ret;
}
static int msm_pcie_remove(struct platform_device *pdev)
{
int ret = 0;
int rc_idx;
PCIE_GEN_DBG("PCIe:%s.\n", __func__);
mutex_lock(&pcie_drv.drv_lock);
ret = of_property_read_u32((&pdev->dev)->of_node,
"cell-index", &rc_idx);
if (ret) {
pr_err("%s: Did not find RC index.\n", __func__);
goto out;
} else {
pcie_drv.rc_num--;
PCIE_GEN_DBG("%s: RC index is 0x%x.", __func__, rc_idx);
}
msm_pcie_irq_deinit(&msm_pcie_dev[rc_idx]);
msm_pcie_vreg_deinit(&msm_pcie_dev[rc_idx]);
msm_pcie_clk_deinit(&msm_pcie_dev[rc_idx]);
msm_pcie_gpio_deinit(&msm_pcie_dev[rc_idx]);
msm_pcie_release_resources(&msm_pcie_dev[rc_idx]);
out:
mutex_unlock(&pcie_drv.drv_lock);
return ret;
}
static const struct of_device_id msm_pcie_match[] = {
{ .compatible = "qcom,pci-msm",
},
{}
};
static struct platform_driver msm_pcie_driver = {
.probe = msm_pcie_probe,
.remove = msm_pcie_remove,
.driver = {
.name = "pci-msm",
.owner = THIS_MODULE,
.of_match_table = msm_pcie_match,
},
};
int __init pcie_init(void)
{
int ret = 0, i;
char rc_name[MAX_RC_NAME_LEN];
pr_alert("pcie:%s.\n", __func__);
pcie_drv.rc_num = 0;
mutex_init(&pcie_drv.drv_lock);
mutex_init(&com_phy_lock);
for (i = 0; i < MAX_RC_NUM; i++) {
snprintf(rc_name, MAX_RC_NAME_LEN, "pcie%d-short", i);
msm_pcie_dev[i].ipc_log =
ipc_log_context_create(PCIE_LOG_PAGES, rc_name, 0);
if (msm_pcie_dev[i].ipc_log == NULL)
pr_err("%s: unable to create IPC log context for %s\n",
__func__, rc_name);
else
PCIE_DBG(&msm_pcie_dev[i],
"PCIe IPC logging is enable for RC%d\n",
i);
snprintf(rc_name, MAX_RC_NAME_LEN, "pcie%d-long", i);
msm_pcie_dev[i].ipc_log_long =
ipc_log_context_create(PCIE_LOG_PAGES, rc_name, 0);
if (msm_pcie_dev[i].ipc_log_long == NULL)
pr_err("%s: unable to create IPC log context for %s\n",
__func__, rc_name);
else
PCIE_DBG(&msm_pcie_dev[i],
"PCIe IPC logging %s is enable for RC%d\n",
rc_name, i);
snprintf(rc_name, MAX_RC_NAME_LEN, "pcie%d-dump", i);
msm_pcie_dev[i].ipc_log_dump =
ipc_log_context_create(PCIE_LOG_PAGES, rc_name, 0);
if (msm_pcie_dev[i].ipc_log_dump == NULL)
pr_err("%s: unable to create IPC log context for %s\n",
__func__, rc_name);
else
PCIE_DBG(&msm_pcie_dev[i],
"PCIe IPC logging %s is enable for RC%d\n",
rc_name, i);
spin_lock_init(&msm_pcie_dev[i].cfg_lock);
msm_pcie_dev[i].cfg_access = true;
mutex_init(&msm_pcie_dev[i].enumerate_lock);
mutex_init(&msm_pcie_dev[i].setup_lock);
mutex_init(&msm_pcie_dev[i].recovery_lock);
spin_lock_init(&msm_pcie_dev[i].linkdown_lock);
spin_lock_init(&msm_pcie_dev[i].wakeup_lock);
spin_lock_init(&msm_pcie_dev[i].global_irq_lock);
spin_lock_init(&msm_pcie_dev[i].aer_lock);
msm_pcie_dev[i].drv_ready = false;
}
for (i = 0; i < MAX_RC_NUM * MAX_DEVICE_NUM; i++) {
msm_pcie_dev_tbl[i].bdf = 0;
msm_pcie_dev_tbl[i].dev = NULL;
msm_pcie_dev_tbl[i].short_bdf = 0;
msm_pcie_dev_tbl[i].sid = 0;
msm_pcie_dev_tbl[i].domain = -1;
msm_pcie_dev_tbl[i].conf_base = 0;
msm_pcie_dev_tbl[i].phy_address = 0;
msm_pcie_dev_tbl[i].dev_ctrlstts_offset = 0;
msm_pcie_dev_tbl[i].event_reg = NULL;
msm_pcie_dev_tbl[i].registered = true;
}
msm_pcie_debugfs_init();
ret = platform_driver_register(&msm_pcie_driver);
return ret;
}
static void __exit pcie_exit(void)
{
int i;
PCIE_GEN_DBG("pcie:%s.\n", __func__);
platform_driver_unregister(&msm_pcie_driver);
msm_pcie_debugfs_exit();
for (i = 0; i < MAX_RC_NUM; i++)
msm_pcie_sysfs_exit(&msm_pcie_dev[i]);
}
subsys_initcall_sync(pcie_init);
module_exit(pcie_exit);
/* RC do not represent the right class; set it to PCI_CLASS_BRIDGE_PCI */
static void msm_pcie_fixup_early(struct pci_dev *dev)
{
struct msm_pcie_dev_t *pcie_dev = PCIE_BUS_PRIV_DATA(dev->bus);
PCIE_DBG(pcie_dev, "hdr_type %d\n", dev->hdr_type);
if (dev->hdr_type == 1)
dev->class = (dev->class & 0xff) | (PCI_CLASS_BRIDGE_PCI << 8);
}
DECLARE_PCI_FIXUP_EARLY(PCIE_VENDOR_ID_RCP, PCIE_DEVICE_ID_RCP,
msm_pcie_fixup_early);
/* Suspend the PCIe link */
static int msm_pcie_pm_suspend(struct pci_dev *dev,
void *user, void *data, u32 options)
{
int ret = 0;
u32 val = 0;
int ret_l23;
unsigned long irqsave_flags;
struct msm_pcie_dev_t *pcie_dev = PCIE_BUS_PRIV_DATA(dev->bus);
PCIE_DBG(pcie_dev, "RC%d: entry\n", pcie_dev->rc_idx);
spin_lock_irqsave(&pcie_dev->aer_lock, irqsave_flags);
pcie_dev->suspending = true;
spin_unlock_irqrestore(&pcie_dev->aer_lock, irqsave_flags);
if (!pcie_dev->power_on) {
PCIE_DBG(pcie_dev,
"PCIe: power of RC%d has been turned off.\n",
pcie_dev->rc_idx);
return ret;
}
if (dev && !(options & MSM_PCIE_CONFIG_NO_CFG_RESTORE)
&& msm_pcie_confirm_linkup(pcie_dev, true, true,
pcie_dev->conf)) {
ret = pci_save_state(dev);
pcie_dev->saved_state = pci_store_saved_state(dev);
}
if (ret) {
PCIE_ERR(pcie_dev, "PCIe: fail to save state of RC%d:%d.\n",
pcie_dev->rc_idx, ret);
pcie_dev->suspending = false;
return ret;
}
spin_lock_irqsave(&pcie_dev->cfg_lock,
pcie_dev->irqsave_flags);
pcie_dev->cfg_access = false;
spin_unlock_irqrestore(&pcie_dev->cfg_lock,
pcie_dev->irqsave_flags);
msm_pcie_write_mask(pcie_dev->elbi + PCIE20_ELBI_SYS_CTRL, 0,
BIT(4));
PCIE_DBG(pcie_dev, "RC%d: PME_TURNOFF_MSG is sent out\n",
pcie_dev->rc_idx);
ret_l23 = readl_poll_timeout((pcie_dev->parf
+ PCIE20_PARF_PM_STTS), val, (val & BIT(5)), 10000, 100000);
/* check L23_Ready */
PCIE_DBG(pcie_dev, "RC%d: PCIE20_PARF_PM_STTS is 0x%x.\n",
pcie_dev->rc_idx,
readl_relaxed(pcie_dev->parf + PCIE20_PARF_PM_STTS));
if (!ret_l23)
PCIE_DBG(pcie_dev, "RC%d: PM_Enter_L23 is received\n",
pcie_dev->rc_idx);
else
PCIE_DBG(pcie_dev, "RC%d: PM_Enter_L23 is NOT received\n",
pcie_dev->rc_idx);
msm_pcie_disable(pcie_dev, PM_PIPE_CLK | PM_CLK | PM_VREG);
if (pcie_dev->use_pinctrl && pcie_dev->pins_sleep)
pinctrl_select_state(pcie_dev->pinctrl,
pcie_dev->pins_sleep);
PCIE_DBG(pcie_dev, "RC%d: exit\n", pcie_dev->rc_idx);
return ret;
}
static void msm_pcie_fixup_suspend(struct pci_dev *dev)
{
int ret;
struct msm_pcie_dev_t *pcie_dev = PCIE_BUS_PRIV_DATA(dev->bus);
PCIE_DBG(pcie_dev, "RC%d\n", pcie_dev->rc_idx);
if (pcie_dev->link_status != MSM_PCIE_LINK_ENABLED)
return;
spin_lock_irqsave(&pcie_dev->cfg_lock,
pcie_dev->irqsave_flags);
if (pcie_dev->disable_pc) {
PCIE_DBG(pcie_dev,
"RC%d: Skip suspend because of user request\n",
pcie_dev->rc_idx);
spin_unlock_irqrestore(&pcie_dev->cfg_lock,
pcie_dev->irqsave_flags);
return;
}
spin_unlock_irqrestore(&pcie_dev->cfg_lock,
pcie_dev->irqsave_flags);
mutex_lock(&pcie_dev->recovery_lock);
ret = msm_pcie_pm_suspend(dev, NULL, NULL, 0);
if (ret)
PCIE_ERR(pcie_dev, "PCIe: RC%d got failure in suspend:%d.\n",
pcie_dev->rc_idx, ret);
mutex_unlock(&pcie_dev->recovery_lock);
}
DECLARE_PCI_FIXUP_SUSPEND(PCIE_VENDOR_ID_RCP, PCIE_DEVICE_ID_RCP,
msm_pcie_fixup_suspend);
/* Resume the PCIe link */
static int msm_pcie_pm_resume(struct pci_dev *dev,
void *user, void *data, u32 options)
{
int ret;
struct msm_pcie_dev_t *pcie_dev = PCIE_BUS_PRIV_DATA(dev->bus);
PCIE_DBG(pcie_dev, "RC%d: entry\n", pcie_dev->rc_idx);
if (pcie_dev->use_pinctrl && pcie_dev->pins_default)
pinctrl_select_state(pcie_dev->pinctrl,
pcie_dev->pins_default);
spin_lock_irqsave(&pcie_dev->cfg_lock,
pcie_dev->irqsave_flags);
pcie_dev->cfg_access = true;
spin_unlock_irqrestore(&pcie_dev->cfg_lock,
pcie_dev->irqsave_flags);
ret = msm_pcie_enable(pcie_dev, PM_PIPE_CLK | PM_CLK | PM_VREG);
if (ret) {
PCIE_ERR(pcie_dev,
"PCIe: RC%d fail to enable PCIe link in resume.\n",
pcie_dev->rc_idx);
return ret;
}
pcie_dev->suspending = false;
PCIE_DBG(pcie_dev,
"dev->bus->number = %d dev->bus->primary = %d\n",
dev->bus->number, dev->bus->primary);
if (!(options & MSM_PCIE_CONFIG_NO_CFG_RESTORE)) {
PCIE_DBG(pcie_dev,
"RC%d: entry of PCI framework restore state\n",
pcie_dev->rc_idx);
pci_load_and_free_saved_state(dev,
&pcie_dev->saved_state);
pci_restore_state(dev);
PCIE_DBG(pcie_dev,
"RC%d: exit of PCI framework restore state\n",
pcie_dev->rc_idx);
}
if (pcie_dev->bridge_found) {
PCIE_DBG(pcie_dev,
"RC%d: entry of PCIe recover config\n",
pcie_dev->rc_idx);
msm_pcie_recover_config(dev);
PCIE_DBG(pcie_dev,
"RC%d: exit of PCIe recover config\n",
pcie_dev->rc_idx);
}
PCIE_DBG(pcie_dev, "RC%d: exit\n", pcie_dev->rc_idx);
return ret;
}
void msm_pcie_fixup_resume(struct pci_dev *dev)
{
int ret;
struct msm_pcie_dev_t *pcie_dev = PCIE_BUS_PRIV_DATA(dev->bus);
PCIE_DBG(pcie_dev, "RC%d\n", pcie_dev->rc_idx);
if ((pcie_dev->link_status != MSM_PCIE_LINK_DISABLED) ||
pcie_dev->user_suspend)
return;
mutex_lock(&pcie_dev->recovery_lock);
ret = msm_pcie_pm_resume(dev, NULL, NULL, 0);
if (ret)
PCIE_ERR(pcie_dev,
"PCIe: RC%d got failure in fixup resume:%d.\n",
pcie_dev->rc_idx, ret);
mutex_unlock(&pcie_dev->recovery_lock);
}
DECLARE_PCI_FIXUP_RESUME(PCIE_VENDOR_ID_RCP, PCIE_DEVICE_ID_RCP,
msm_pcie_fixup_resume);
void msm_pcie_fixup_resume_early(struct pci_dev *dev)
{
int ret;
struct msm_pcie_dev_t *pcie_dev = PCIE_BUS_PRIV_DATA(dev->bus);
PCIE_DBG(pcie_dev, "RC%d\n", pcie_dev->rc_idx);
if ((pcie_dev->link_status != MSM_PCIE_LINK_DISABLED) ||
pcie_dev->user_suspend)
return;
mutex_lock(&pcie_dev->recovery_lock);
ret = msm_pcie_pm_resume(dev, NULL, NULL, 0);
if (ret)
PCIE_ERR(pcie_dev, "PCIe: RC%d got failure in resume:%d.\n",
pcie_dev->rc_idx, ret);
mutex_unlock(&pcie_dev->recovery_lock);
}
DECLARE_PCI_FIXUP_RESUME_EARLY(PCIE_VENDOR_ID_RCP, PCIE_DEVICE_ID_RCP,
msm_pcie_fixup_resume_early);
int msm_pcie_pm_control(enum msm_pcie_pm_opt pm_opt, u32 busnr, void *user,
void *data, u32 options)
{
int i, ret = 0;
struct pci_dev *dev;
u32 rc_idx = 0;
struct msm_pcie_dev_t *pcie_dev;
PCIE_GEN_DBG("PCIe: pm_opt:%d;busnr:%d;options:%d\n",
pm_opt, busnr, options);
if (!user) {
pr_err("PCIe: endpoint device is NULL\n");
ret = -ENODEV;
goto out;
}
pcie_dev = PCIE_BUS_PRIV_DATA(((struct pci_dev *)user)->bus);
if (pcie_dev) {
rc_idx = pcie_dev->rc_idx;
PCIE_DBG(pcie_dev,
"PCIe: RC%d: pm_opt:%d;busnr:%d;options:%d\n",
rc_idx, pm_opt, busnr, options);
} else {
pr_err(
"PCIe: did not find RC for pci endpoint device.\n"
);
ret = -ENODEV;
goto out;
}
for (i = 0; i < MAX_DEVICE_NUM; i++) {
if (!busnr)
break;
if (user == pcie_dev->pcidev_table[i].dev) {
if (busnr == pcie_dev->pcidev_table[i].bdf >> 24)
break;
PCIE_ERR(pcie_dev,
"PCIe: RC%d: bus number %d does not match with the expected value %d\n",
pcie_dev->rc_idx, busnr,
pcie_dev->pcidev_table[i].bdf >> 24);
ret = MSM_PCIE_ERROR;
goto out;
}
}
if (i == MAX_DEVICE_NUM) {
PCIE_ERR(pcie_dev,
"PCIe: RC%d: endpoint device was not found in device table",
pcie_dev->rc_idx);
ret = MSM_PCIE_ERROR;
goto out;
}
dev = msm_pcie_dev[rc_idx].dev;
if (!msm_pcie_dev[rc_idx].drv_ready) {
PCIE_ERR(&msm_pcie_dev[rc_idx],
"RC%d has not been successfully probed yet\n",
rc_idx);
return -EPROBE_DEFER;
}
switch (pm_opt) {
case MSM_PCIE_SUSPEND:
PCIE_DBG(&msm_pcie_dev[rc_idx],
"User of RC%d requests to suspend the link\n", rc_idx);
if (msm_pcie_dev[rc_idx].link_status != MSM_PCIE_LINK_ENABLED)
PCIE_DBG(&msm_pcie_dev[rc_idx],
"PCIe: RC%d: requested to suspend when link is not enabled:%d.\n",
rc_idx, msm_pcie_dev[rc_idx].link_status);
if (!msm_pcie_dev[rc_idx].power_on) {
PCIE_ERR(&msm_pcie_dev[rc_idx],
"PCIe: RC%d: requested to suspend when link is powered down:%d.\n",
rc_idx, msm_pcie_dev[rc_idx].link_status);
break;
}
if (msm_pcie_dev[rc_idx].pending_ep_reg) {
PCIE_DBG(&msm_pcie_dev[rc_idx],
"PCIe: RC%d: request to suspend the link is rejected\n",
rc_idx);
break;
}
if (pcie_dev->num_active_ep) {
PCIE_DBG(pcie_dev,
"RC%d: an EP requested to suspend the link, but other EPs are still active: %d\n",
pcie_dev->rc_idx, pcie_dev->num_active_ep);
return ret;
}
msm_pcie_dev[rc_idx].user_suspend = true;
mutex_lock(&msm_pcie_dev[rc_idx].recovery_lock);
ret = msm_pcie_pm_suspend(dev, user, data, options);
if (ret) {
PCIE_ERR(&msm_pcie_dev[rc_idx],
"PCIe: RC%d: user failed to suspend the link.\n",
rc_idx);
msm_pcie_dev[rc_idx].user_suspend = false;
}
mutex_unlock(&msm_pcie_dev[rc_idx].recovery_lock);
break;
case MSM_PCIE_RESUME:
PCIE_DBG(&msm_pcie_dev[rc_idx],
"User of RC%d requests to resume the link\n", rc_idx);
if (msm_pcie_dev[rc_idx].link_status !=
MSM_PCIE_LINK_DISABLED) {
PCIE_ERR(&msm_pcie_dev[rc_idx],
"PCIe: RC%d: requested to resume when link is not disabled:%d. Number of active EP(s): %d\n",
rc_idx, msm_pcie_dev[rc_idx].link_status,
msm_pcie_dev[rc_idx].num_active_ep);
break;
}
mutex_lock(&msm_pcie_dev[rc_idx].recovery_lock);
ret = msm_pcie_pm_resume(dev, user, data, options);
if (ret) {
PCIE_ERR(&msm_pcie_dev[rc_idx],
"PCIe: RC%d: user failed to resume the link.\n",
rc_idx);
} else {
PCIE_DBG(&msm_pcie_dev[rc_idx],
"PCIe: RC%d: user succeeded to resume the link.\n",
rc_idx);
msm_pcie_dev[rc_idx].user_suspend = false;
}
mutex_unlock(&msm_pcie_dev[rc_idx].recovery_lock);
break;
case MSM_PCIE_DISABLE_PC:
PCIE_DBG(&msm_pcie_dev[rc_idx],
"User of RC%d requests to keep the link always alive.\n",
rc_idx);
spin_lock_irqsave(&msm_pcie_dev[rc_idx].cfg_lock,
msm_pcie_dev[rc_idx].irqsave_flags);
if (msm_pcie_dev[rc_idx].suspending) {
PCIE_ERR(&msm_pcie_dev[rc_idx],
"PCIe: RC%d Link has been suspended before request\n",
rc_idx);
ret = MSM_PCIE_ERROR;
} else {
msm_pcie_dev[rc_idx].disable_pc = true;
}
spin_unlock_irqrestore(&msm_pcie_dev[rc_idx].cfg_lock,
msm_pcie_dev[rc_idx].irqsave_flags);
break;
case MSM_PCIE_ENABLE_PC:
PCIE_DBG(&msm_pcie_dev[rc_idx],
"User of RC%d cancels the request of alive link.\n",
rc_idx);
spin_lock_irqsave(&msm_pcie_dev[rc_idx].cfg_lock,
msm_pcie_dev[rc_idx].irqsave_flags);
msm_pcie_dev[rc_idx].disable_pc = false;
spin_unlock_irqrestore(&msm_pcie_dev[rc_idx].cfg_lock,
msm_pcie_dev[rc_idx].irqsave_flags);
break;
default:
PCIE_ERR(&msm_pcie_dev[rc_idx],
"PCIe: RC%d: unsupported pm operation:%d.\n",
rc_idx, pm_opt);
ret = -ENODEV;
goto out;
}
out:
return ret;
}
EXPORT_SYMBOL(msm_pcie_pm_control);
int msm_pcie_register_event(struct msm_pcie_register_event *reg)
{
int i, ret = 0;
struct msm_pcie_dev_t *pcie_dev;
if (!reg) {
pr_err("PCIe: Event registration is NULL\n");
return -ENODEV;
}
if (!reg->user) {
pr_err("PCIe: User of event registration is NULL\n");
return -ENODEV;
}
pcie_dev = PCIE_BUS_PRIV_DATA(((struct pci_dev *)reg->user)->bus);
if (!pcie_dev) {
PCIE_ERR(pcie_dev, "%s",
"PCIe: did not find RC for pci endpoint device.\n");
return -ENODEV;
}
if (pcie_dev->num_ep > 1) {
for (i = 0; i < MAX_DEVICE_NUM; i++) {
if (reg->user ==
pcie_dev->pcidev_table[i].dev) {
pcie_dev->event_reg =
pcie_dev->pcidev_table[i].event_reg;
if (!pcie_dev->event_reg) {
pcie_dev->pcidev_table[i].registered =
true;
pcie_dev->num_active_ep++;
PCIE_DBG(pcie_dev,
"PCIe: RC%d: number of active EP(s): %d.\n",
pcie_dev->rc_idx,
pcie_dev->num_active_ep);
}
pcie_dev->event_reg = reg;
pcie_dev->pcidev_table[i].event_reg = reg;
PCIE_DBG(pcie_dev,
"Event 0x%x is registered for RC %d\n",
reg->events,
pcie_dev->rc_idx);
break;
}
}
if (pcie_dev->pending_ep_reg) {
for (i = 0; i < MAX_DEVICE_NUM; i++)
if (!pcie_dev->pcidev_table[i].registered)
break;
if (i == MAX_DEVICE_NUM)
pcie_dev->pending_ep_reg = false;
}
} else {
pcie_dev->event_reg = reg;
PCIE_DBG(pcie_dev,
"Event 0x%x is registered for RC %d\n", reg->events,
pcie_dev->rc_idx);
}
return ret;
}
EXPORT_SYMBOL(msm_pcie_register_event);
int msm_pcie_deregister_event(struct msm_pcie_register_event *reg)
{
int i, ret = 0;
struct msm_pcie_dev_t *pcie_dev;
if (!reg) {
pr_err("PCIe: Event deregistration is NULL\n");
return -ENODEV;
}
if (!reg->user) {
pr_err("PCIe: User of event deregistration is NULL\n");
return -ENODEV;
}
pcie_dev = PCIE_BUS_PRIV_DATA(((struct pci_dev *)reg->user)->bus);
if (!pcie_dev) {
PCIE_ERR(pcie_dev, "%s",
"PCIe: did not find RC for pci endpoint device.\n");
return -ENODEV;
}
if (pcie_dev->num_ep > 1) {
for (i = 0; i < MAX_DEVICE_NUM; i++) {
if (reg->user == pcie_dev->pcidev_table[i].dev) {
if (pcie_dev->pcidev_table[i].event_reg) {
pcie_dev->num_active_ep--;
PCIE_DBG(pcie_dev,
"PCIe: RC%d: number of active EP(s) left: %d.\n",
pcie_dev->rc_idx,
pcie_dev->num_active_ep);
}
pcie_dev->event_reg = NULL;
pcie_dev->pcidev_table[i].event_reg = NULL;
PCIE_DBG(pcie_dev,
"Event is deregistered for RC %d\n",
pcie_dev->rc_idx);
break;
}
}
} else {
pcie_dev->event_reg = NULL;
PCIE_DBG(pcie_dev, "Event is deregistered for RC %d\n",
pcie_dev->rc_idx);
}
return ret;
}
EXPORT_SYMBOL(msm_pcie_deregister_event);
int msm_pcie_recover_config(struct pci_dev *dev)
{
int ret = 0;
struct msm_pcie_dev_t *pcie_dev;
if (dev) {
pcie_dev = PCIE_BUS_PRIV_DATA(dev->bus);
PCIE_DBG(pcie_dev,
"Recovery for the link of RC%d\n", pcie_dev->rc_idx);
} else {
pr_err("PCIe: the input pci dev is NULL.\n");
return -ENODEV;
}
if (msm_pcie_confirm_linkup(pcie_dev, true, true, pcie_dev->conf)) {
PCIE_DBG(pcie_dev,
"Recover config space of RC%d and its EP\n",
pcie_dev->rc_idx);
pcie_dev->shadow_en = false;
PCIE_DBG(pcie_dev, "Recover RC%d\n", pcie_dev->rc_idx);
msm_pcie_cfg_recover(pcie_dev, true);
PCIE_DBG(pcie_dev, "Recover EP of RC%d\n", pcie_dev->rc_idx);
msm_pcie_cfg_recover(pcie_dev, false);
PCIE_DBG(pcie_dev,
"Refreshing the saved config space in PCI framework for RC%d and its EP\n",
pcie_dev->rc_idx);
pci_save_state(pcie_dev->dev);
pci_save_state(dev);
pcie_dev->shadow_en = true;
PCIE_DBG(pcie_dev, "Turn on shadow for RC%d\n",
pcie_dev->rc_idx);
} else {
PCIE_ERR(pcie_dev,
"PCIe: the link of RC%d is not up yet; can't recover config space.\n",
pcie_dev->rc_idx);
ret = -ENODEV;
}
return ret;
}
EXPORT_SYMBOL(msm_pcie_recover_config);
int msm_pcie_shadow_control(struct pci_dev *dev, bool enable)
{
int ret = 0;
struct msm_pcie_dev_t *pcie_dev;
if (dev) {
pcie_dev = PCIE_BUS_PRIV_DATA(dev->bus);
PCIE_DBG(pcie_dev,
"User requests to %s shadow\n",
enable ? "enable" : "disable");
} else {
pr_err("PCIe: the input pci dev is NULL.\n");
return -ENODEV;
}
PCIE_DBG(pcie_dev,
"The shadowing of RC%d is %s enabled currently.\n",
pcie_dev->rc_idx, pcie_dev->shadow_en ? "" : "not");
pcie_dev->shadow_en = enable;
PCIE_DBG(pcie_dev,
"Shadowing of RC%d is turned %s upon user's request.\n",
pcie_dev->rc_idx, enable ? "on" : "off");
return ret;
}
EXPORT_SYMBOL(msm_pcie_shadow_control);