blob: 0125cde7f74e6129a6e44b67e8d6943d68c84e11 [file] [log] [blame]
#undef TRACE_SYSTEM
#define TRACE_SYSTEM sched
#if !defined(_TRACE_SCHED_H) || defined(TRACE_HEADER_MULTI_READ)
#define _TRACE_SCHED_H
#include <linux/sched.h>
#include <linux/tracepoint.h>
#include <linux/binfmts.h>
struct rq;
/*
* Tracepoint for calling kthread_stop, performed to end a kthread:
*/
TRACE_EVENT(sched_kthread_stop,
TP_PROTO(struct task_struct *t),
TP_ARGS(t),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
),
TP_fast_assign(
memcpy(__entry->comm, t->comm, TASK_COMM_LEN);
__entry->pid = t->pid;
),
TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid)
);
/*
* Tracepoint for the return value of the kthread stopping:
*/
TRACE_EVENT(sched_kthread_stop_ret,
TP_PROTO(int ret),
TP_ARGS(ret),
TP_STRUCT__entry(
__field( int, ret )
),
TP_fast_assign(
__entry->ret = ret;
),
TP_printk("ret=%d", __entry->ret)
);
/*
* Tracepoint for task enqueue/dequeue:
*/
TRACE_EVENT(sched_enq_deq_task,
TP_PROTO(struct task_struct *p, bool enqueue, unsigned int cpus_allowed),
TP_ARGS(p, enqueue, cpus_allowed),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( int, prio )
__field( int, cpu )
__field( bool, enqueue )
__field(unsigned int, nr_running )
__field(unsigned long, cpu_load )
__field(unsigned int, rt_nr_running )
__field(unsigned int, cpus_allowed )
__field(unsigned int, demand )
__field(unsigned int, pred_demand )
),
TP_fast_assign(
memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
__entry->pid = p->pid;
__entry->prio = p->prio;
__entry->cpu = task_cpu(p);
__entry->enqueue = enqueue;
__entry->nr_running = task_rq(p)->nr_running;
__entry->cpu_load = task_rq(p)->cpu_load[0];
__entry->rt_nr_running = task_rq(p)->rt.rt_nr_running;
__entry->cpus_allowed = cpus_allowed;
__entry->demand = task_load(p);
__entry->pred_demand = task_pl(p);
),
TP_printk("cpu=%d %s comm=%s pid=%d prio=%d nr_running=%u cpu_load=%lu rt_nr_running=%u affine=%x demand=%u pred_demand=%u",
__entry->cpu,
__entry->enqueue ? "enqueue" : "dequeue",
__entry->comm, __entry->pid,
__entry->prio, __entry->nr_running,
__entry->cpu_load, __entry->rt_nr_running, __entry->cpus_allowed
, __entry->demand, __entry->pred_demand
)
);
#ifdef CONFIG_SCHED_WALT
struct group_cpu_time;
extern const char *task_event_names[];
#if defined(CREATE_TRACE_POINTS) && defined(CONFIG_SCHED_WALT)
static inline void __window_data(u32 *dst, u32 *src)
{
if (src)
memcpy(dst, src, nr_cpu_ids * sizeof(u32));
else
memset(dst, 0, nr_cpu_ids * sizeof(u32));
}
struct trace_seq;
const char *__window_print(struct trace_seq *p, const u32 *buf, int buf_len)
{
int i;
const char *ret = p->buffer + seq_buf_used(&p->seq);
for (i = 0; i < buf_len; i++)
trace_seq_printf(p, "%u ", buf[i]);
trace_seq_putc(p, 0);
return ret;
}
static inline s64 __rq_update_sum(struct rq *rq, bool curr, bool new)
{
if (curr)
if (new)
return rq->nt_curr_runnable_sum;
else
return rq->curr_runnable_sum;
else
if (new)
return rq->nt_prev_runnable_sum;
else
return rq->prev_runnable_sum;
}
static inline s64 __grp_update_sum(struct rq *rq, bool curr, bool new)
{
if (curr)
if (new)
return rq->grp_time.nt_curr_runnable_sum;
else
return rq->grp_time.curr_runnable_sum;
else
if (new)
return rq->grp_time.nt_prev_runnable_sum;
else
return rq->grp_time.prev_runnable_sum;
}
static inline s64
__get_update_sum(struct rq *rq, enum migrate_types migrate_type,
bool src, bool new, bool curr)
{
switch (migrate_type) {
case RQ_TO_GROUP:
if (src)
return __rq_update_sum(rq, curr, new);
else
return __grp_update_sum(rq, curr, new);
case GROUP_TO_RQ:
if (src)
return __grp_update_sum(rq, curr, new);
else
return __rq_update_sum(rq, curr, new);
default:
WARN_ON_ONCE(1);
return -1;
}
}
#endif
TRACE_EVENT(sched_update_pred_demand,
TP_PROTO(struct rq *rq, struct task_struct *p, u32 runtime, int pct,
unsigned int pred_demand),
TP_ARGS(rq, p, runtime, pct, pred_demand),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field(unsigned int, runtime )
__field( int, pct )
__field(unsigned int, pred_demand )
__array( u8, bucket, NUM_BUSY_BUCKETS)
__field( int, cpu )
),
TP_fast_assign(
memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
__entry->pid = p->pid;
__entry->runtime = runtime;
__entry->pct = pct;
__entry->pred_demand = pred_demand;
memcpy(__entry->bucket, p->ravg.busy_buckets,
NUM_BUSY_BUCKETS * sizeof(u8));
__entry->cpu = rq->cpu;
),
TP_printk("%d (%s): runtime %u pct %d cpu %d pred_demand %u (buckets: %u %u %u %u %u %u %u %u %u %u)",
__entry->pid, __entry->comm,
__entry->runtime, __entry->pct, __entry->cpu,
__entry->pred_demand, __entry->bucket[0], __entry->bucket[1],
__entry->bucket[2], __entry->bucket[3],__entry->bucket[4],
__entry->bucket[5], __entry->bucket[6], __entry->bucket[7],
__entry->bucket[8], __entry->bucket[9])
);
TRACE_EVENT(sched_update_history,
TP_PROTO(struct rq *rq, struct task_struct *p, u32 runtime, int samples,
enum task_event evt),
TP_ARGS(rq, p, runtime, samples, evt),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field(unsigned int, runtime )
__field( int, samples )
__field(enum task_event, evt )
__field(unsigned int, demand )
__field(unsigned int, coloc_demand )
__field(unsigned int, pred_demand )
__array( u32, hist, RAVG_HIST_SIZE_MAX)
__field(unsigned int, nr_big_tasks )
__field( int, cpu )
),
TP_fast_assign(
memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
__entry->pid = p->pid;
__entry->runtime = runtime;
__entry->samples = samples;
__entry->evt = evt;
__entry->demand = p->ravg.demand;
__entry->coloc_demand = p->ravg.coloc_demand;
__entry->pred_demand = p->ravg.pred_demand;
memcpy(__entry->hist, p->ravg.sum_history,
RAVG_HIST_SIZE_MAX * sizeof(u32));
__entry->nr_big_tasks = rq->walt_stats.nr_big_tasks;
__entry->cpu = rq->cpu;
),
TP_printk("%d (%s): runtime %u samples %d event %s demand %u coloc_demand %u pred_demand %u"
" (hist: %u %u %u %u %u) cpu %d nr_big %u",
__entry->pid, __entry->comm,
__entry->runtime, __entry->samples,
task_event_names[__entry->evt],
__entry->demand, __entry->coloc_demand, __entry->pred_demand,
__entry->hist[0], __entry->hist[1],
__entry->hist[2], __entry->hist[3],
__entry->hist[4], __entry->cpu, __entry->nr_big_tasks)
);
TRACE_EVENT(sched_get_task_cpu_cycles,
TP_PROTO(int cpu, int event, u64 cycles, u64 exec_time, struct task_struct *p),
TP_ARGS(cpu, event, cycles, exec_time, p),
TP_STRUCT__entry(
__field(int, cpu )
__field(int, event )
__field(u64, cycles )
__field(u64, exec_time )
__field(u32, freq )
__field(u32, legacy_freq )
__field(u32, max_freq )
__field(pid_t, pid )
__array(char, comm, TASK_COMM_LEN )
),
TP_fast_assign(
__entry->cpu = cpu;
__entry->event = event;
__entry->cycles = cycles;
__entry->exec_time = exec_time;
__entry->freq = cpu_cycles_to_freq(cycles, exec_time);
__entry->legacy_freq = cpu_cur_freq(cpu);
__entry->max_freq = cpu_max_freq(cpu);
__entry->pid = p->pid;
memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
),
TP_printk("cpu=%d event=%d cycles=%llu exec_time=%llu freq=%u legacy_freq=%u max_freq=%u task=%d (%s)",
__entry->cpu, __entry->event, __entry->cycles,
__entry->exec_time, __entry->freq, __entry->legacy_freq,
__entry->max_freq, __entry->pid, __entry->comm)
);
TRACE_EVENT(sched_update_task_ravg,
TP_PROTO(struct task_struct *p, struct rq *rq, enum task_event evt,
u64 wallclock, u64 irqtime, u64 cycles, u64 exec_time,
struct group_cpu_time *cpu_time),
TP_ARGS(p, rq, evt, wallclock, irqtime, cycles, exec_time, cpu_time),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( pid_t, cur_pid )
__field(unsigned int, cur_freq )
__field( u64, wallclock )
__field( u64, mark_start )
__field( u64, delta_m )
__field( u64, win_start )
__field( u64, delta )
__field( u64, irqtime )
__field(enum task_event, evt )
__field(unsigned int, demand )
__field(unsigned int, coloc_demand )
__field(unsigned int, sum )
__field( int, cpu )
__field(unsigned int, pred_demand )
__field( u64, rq_cs )
__field( u64, rq_ps )
__field( u64, grp_cs )
__field( u64, grp_ps )
__field( u64, grp_nt_cs )
__field( u64, grp_nt_ps )
__field( u32, curr_window )
__field( u32, prev_window )
__dynamic_array(u32, curr_sum, nr_cpu_ids )
__dynamic_array(u32, prev_sum, nr_cpu_ids )
__field( u64, nt_cs )
__field( u64, nt_ps )
__field( u32, active_windows )
__field( u8, curr_top )
__field( u8, prev_top )
),
TP_fast_assign(
__entry->wallclock = wallclock;
__entry->win_start = rq->window_start;
__entry->delta = (wallclock - rq->window_start);
__entry->evt = evt;
__entry->cpu = rq->cpu;
__entry->cur_pid = rq->curr->pid;
__entry->cur_freq = cpu_cycles_to_freq(cycles, exec_time);
memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
__entry->pid = p->pid;
__entry->mark_start = p->ravg.mark_start;
__entry->delta_m = (wallclock - p->ravg.mark_start);
__entry->demand = p->ravg.demand;
__entry->coloc_demand = p->ravg.coloc_demand;
__entry->sum = p->ravg.sum;
__entry->irqtime = irqtime;
__entry->pred_demand = p->ravg.pred_demand;
__entry->rq_cs = rq->curr_runnable_sum;
__entry->rq_ps = rq->prev_runnable_sum;
__entry->grp_cs = cpu_time ? cpu_time->curr_runnable_sum : 0;
__entry->grp_ps = cpu_time ? cpu_time->prev_runnable_sum : 0;
__entry->grp_nt_cs = cpu_time ? cpu_time->nt_curr_runnable_sum : 0;
__entry->grp_nt_ps = cpu_time ? cpu_time->nt_prev_runnable_sum : 0;
__entry->curr_window = p->ravg.curr_window;
__entry->prev_window = p->ravg.prev_window;
__window_data(__get_dynamic_array(curr_sum), p->ravg.curr_window_cpu);
__window_data(__get_dynamic_array(prev_sum), p->ravg.prev_window_cpu);
__entry->nt_cs = rq->nt_curr_runnable_sum;
__entry->nt_ps = rq->nt_prev_runnable_sum;
__entry->active_windows = p->ravg.active_windows;
__entry->curr_top = rq->curr_top;
__entry->prev_top = rq->prev_top;
),
TP_printk("wc %llu ws %llu delta %llu event %s cpu %d cur_freq %u cur_pid %d task %d (%s) ms %llu delta %llu demand %u coloc_demand: %u sum %u irqtime %llu pred_demand %u rq_cs %llu rq_ps %llu cur_window %u (%s) prev_window %u (%s) nt_cs %llu nt_ps %llu active_wins %u grp_cs %lld grp_ps %lld, grp_nt_cs %llu, grp_nt_ps: %llu curr_top %u prev_top %u",
__entry->wallclock, __entry->win_start, __entry->delta,
task_event_names[__entry->evt], __entry->cpu,
__entry->cur_freq, __entry->cur_pid,
__entry->pid, __entry->comm, __entry->mark_start,
__entry->delta_m, __entry->demand, __entry->coloc_demand,
__entry->sum, __entry->irqtime, __entry->pred_demand,
__entry->rq_cs, __entry->rq_ps, __entry->curr_window,
__window_print(p, __get_dynamic_array(curr_sum), nr_cpu_ids),
__entry->prev_window,
__window_print(p, __get_dynamic_array(prev_sum), nr_cpu_ids),
__entry->nt_cs, __entry->nt_ps,
__entry->active_windows, __entry->grp_cs,
__entry->grp_ps, __entry->grp_nt_cs, __entry->grp_nt_ps,
__entry->curr_top, __entry->prev_top)
);
TRACE_EVENT(sched_update_task_ravg_mini,
TP_PROTO(struct task_struct *p, struct rq *rq, enum task_event evt,
u64 wallclock, u64 irqtime, u64 cycles, u64 exec_time,
struct group_cpu_time *cpu_time),
TP_ARGS(p, rq, evt, wallclock, irqtime, cycles, exec_time, cpu_time),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( u64, wallclock )
__field( u64, mark_start )
__field( u64, delta_m )
__field( u64, win_start )
__field( u64, delta )
__field(enum task_event, evt )
__field(unsigned int, demand )
__field( int, cpu )
__field( u64, rq_cs )
__field( u64, rq_ps )
__field( u64, grp_cs )
__field( u64, grp_ps )
__field( u32, curr_window )
__field( u32, prev_window )
),
TP_fast_assign(
__entry->wallclock = wallclock;
__entry->win_start = rq->window_start;
__entry->delta = (wallclock - rq->window_start);
__entry->evt = evt;
__entry->cpu = rq->cpu;
memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
__entry->pid = p->pid;
__entry->mark_start = p->ravg.mark_start;
__entry->delta_m = (wallclock - p->ravg.mark_start);
__entry->demand = p->ravg.demand;
__entry->rq_cs = rq->curr_runnable_sum;
__entry->rq_ps = rq->prev_runnable_sum;
__entry->grp_cs = cpu_time ? cpu_time->curr_runnable_sum : 0;
__entry->grp_ps = cpu_time ? cpu_time->prev_runnable_sum : 0;
__entry->curr_window = p->ravg.curr_window;
__entry->prev_window = p->ravg.prev_window;
),
TP_printk("wc %llu ws %llu delta %llu event %s cpu %d task %d (%s) ms %llu delta %llu demand %u rq_cs %llu rq_ps %llu cur_window %u prev_window %u grp_cs %lld grp_ps %lld",
__entry->wallclock, __entry->win_start, __entry->delta,
task_event_names[__entry->evt], __entry->cpu,
__entry->pid, __entry->comm, __entry->mark_start,
__entry->delta_m, __entry->demand,
__entry->rq_cs, __entry->rq_ps, __entry->curr_window,
__entry->prev_window,
__entry->grp_cs,
__entry->grp_ps)
);
struct migration_sum_data;
extern const char *migrate_type_names[];
TRACE_EVENT(sched_set_preferred_cluster,
TP_PROTO(struct related_thread_group *grp, u64 total_demand),
TP_ARGS(grp, total_demand),
TP_STRUCT__entry(
__field( int, id )
__field( u64, demand )
__field( int, cluster_first_cpu )
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field(unsigned int, task_demand )
),
TP_fast_assign(
__entry->id = grp->id;
__entry->demand = total_demand;
__entry->cluster_first_cpu = grp->preferred_cluster ?
cluster_first_cpu(grp->preferred_cluster)
: -1;
),
TP_printk("group_id %d total_demand %llu preferred_cluster_first_cpu %d",
__entry->id, __entry->demand,
__entry->cluster_first_cpu)
);
TRACE_EVENT(sched_migration_update_sum,
TP_PROTO(struct task_struct *p, enum migrate_types migrate_type, struct rq *rq),
TP_ARGS(p, migrate_type, rq),
TP_STRUCT__entry(
__field(int, tcpu )
__field(int, pid )
__field(enum migrate_types, migrate_type )
__field( s64, src_cs )
__field( s64, src_ps )
__field( s64, dst_cs )
__field( s64, dst_ps )
__field( s64, src_nt_cs )
__field( s64, src_nt_ps )
__field( s64, dst_nt_cs )
__field( s64, dst_nt_ps )
),
TP_fast_assign(
__entry->tcpu = task_cpu(p);
__entry->pid = p->pid;
__entry->migrate_type = migrate_type;
__entry->src_cs = __get_update_sum(rq, migrate_type,
true, false, true);
__entry->src_ps = __get_update_sum(rq, migrate_type,
true, false, false);
__entry->dst_cs = __get_update_sum(rq, migrate_type,
false, false, true);
__entry->dst_ps = __get_update_sum(rq, migrate_type,
false, false, false);
__entry->src_nt_cs = __get_update_sum(rq, migrate_type,
true, true, true);
__entry->src_nt_ps = __get_update_sum(rq, migrate_type,
true, true, false);
__entry->dst_nt_cs = __get_update_sum(rq, migrate_type,
false, true, true);
__entry->dst_nt_ps = __get_update_sum(rq, migrate_type,
false, true, false);
),
TP_printk("pid %d task_cpu %d migrate_type %s src_cs %llu src_ps %llu dst_cs %lld dst_ps %lld src_nt_cs %llu src_nt_ps %llu dst_nt_cs %lld dst_nt_ps %lld",
__entry->pid, __entry->tcpu, migrate_type_names[__entry->migrate_type],
__entry->src_cs, __entry->src_ps, __entry->dst_cs, __entry->dst_ps,
__entry->src_nt_cs, __entry->src_nt_ps, __entry->dst_nt_cs, __entry->dst_nt_ps)
);
TRACE_EVENT(sched_set_boost,
TP_PROTO(int type),
TP_ARGS(type),
TP_STRUCT__entry(
__field(int, type )
),
TP_fast_assign(
__entry->type = type;
),
TP_printk("type %d", __entry->type)
);
#endif
#ifdef CONFIG_SCHED_WALT
DECLARE_EVENT_CLASS(sched_cpu_load,
TP_PROTO(struct rq *rq, int idle, u64 irqload, unsigned int power_cost),
TP_ARGS(rq, idle, irqload, power_cost),
TP_STRUCT__entry(
__field(unsigned int, cpu )
__field(unsigned int, idle )
__field(unsigned int, nr_running )
__field(unsigned int, nr_big_tasks )
__field(unsigned int, load_scale_factor )
__field(unsigned int, capacity )
__field( u64, cumulative_runnable_avg )
__field( u64, irqload )
__field(unsigned int, max_freq )
__field(unsigned int, power_cost )
__field( int, cstate )
__field( int, dstate )
),
TP_fast_assign(
__entry->cpu = rq->cpu;
__entry->idle = idle;
__entry->nr_running = rq->nr_running;
__entry->nr_big_tasks = rq->walt_stats.nr_big_tasks;
__entry->load_scale_factor = cpu_load_scale_factor(rq->cpu);
__entry->capacity = cpu_capacity(rq->cpu);
__entry->cumulative_runnable_avg = rq->walt_stats.cumulative_runnable_avg;
__entry->irqload = irqload;
__entry->max_freq = cpu_max_freq(rq->cpu);
__entry->power_cost = power_cost;
__entry->cstate = rq->cstate;
__entry->dstate = rq->cluster->dstate;
),
TP_printk("cpu %u idle %d nr_run %u nr_big %u lsf %u capacity %u cr_avg %llu irqload %llu fmax %u power_cost %u cstate %d dstate %d",
__entry->cpu, __entry->idle, __entry->nr_running, __entry->nr_big_tasks,
__entry->load_scale_factor, __entry->capacity,
__entry->cumulative_runnable_avg, __entry->irqload,
__entry->max_freq, __entry->power_cost, __entry->cstate,
__entry->dstate)
);
DEFINE_EVENT(sched_cpu_load, sched_cpu_load_lb,
TP_PROTO(struct rq *rq, int idle, u64 irqload, unsigned int power_cost),
TP_ARGS(rq, idle, irqload, power_cost)
);
TRACE_EVENT(sched_load_to_gov,
TP_PROTO(struct rq *rq, u64 aggr_grp_load, u32 tt_load, u64 freq_aggr_thresh, u64 load, int policy),
TP_ARGS(rq, aggr_grp_load, tt_load, freq_aggr_thresh, load, policy),
TP_STRUCT__entry(
__field( int, cpu )
__field( int, policy )
__field( int, ed_task_pid )
__field( u64, aggr_grp_load )
__field( u64, freq_aggr_thresh )
__field( u64, tt_load )
__field( u64, rq_ps )
__field( u64, grp_rq_ps )
__field( u64, nt_ps )
__field( u64, grp_nt_ps )
__field( u64, pl )
__field( u64, load )
),
TP_fast_assign(
__entry->cpu = cpu_of(rq);
__entry->policy = policy;
__entry->ed_task_pid = rq->ed_task ? rq->ed_task->pid : -1;
__entry->aggr_grp_load = aggr_grp_load;
__entry->freq_aggr_thresh = freq_aggr_thresh;
__entry->tt_load = tt_load;
__entry->rq_ps = rq->prev_runnable_sum;
__entry->grp_rq_ps = rq->grp_time.prev_runnable_sum;
__entry->nt_ps = rq->nt_prev_runnable_sum;
__entry->grp_nt_ps = rq->grp_time.nt_prev_runnable_sum;
__entry->pl = rq->walt_stats.pred_demands_sum;
__entry->load = load;
),
TP_printk("cpu=%d policy=%d ed_task_pid=%d aggr_grp_load=%llu freq_aggr_thresh=%llu tt_load=%llu rq_ps=%llu grp_rq_ps=%llu nt_ps=%llu grp_nt_ps=%llu pl=%llu load=%llu",
__entry->cpu, __entry->policy, __entry->ed_task_pid,
__entry->aggr_grp_load, __entry->freq_aggr_thresh,
__entry->tt_load, __entry->rq_ps, __entry->grp_rq_ps,
__entry->nt_ps, __entry->grp_nt_ps, __entry->pl, __entry->load)
);
#endif
#ifdef CONFIG_SMP
TRACE_EVENT(sched_cpu_util,
TP_PROTO(struct task_struct *p, int cpu, int task_util, unsigned long curr_util, unsigned long new_cum_util, int sync),
TP_ARGS(p, cpu, task_util, curr_util, new_cum_util, sync),
TP_STRUCT__entry(
__array(char, comm, TASK_COMM_LEN )
__field(int, pid )
__field(unsigned int, cpu )
__field(int, task_util )
__field(unsigned int, nr_running )
__field(long, cpu_util )
__field(long, cpu_util_cum )
__field(long, new_cum_util )
__field(unsigned int, capacity_curr )
__field(unsigned int, capacity )
__field(unsigned long, curr_util )
__field(int, sync )
__field(int, idle_state )
__field(unsigned int, irqload )
__field(int, high_irqload )
__field(int, task_in_cum_demand )
),
TP_fast_assign(
memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
__entry->pid = p->pid;
__entry->cpu = cpu;
__entry->task_util = task_util;
__entry->nr_running = cpu_rq(cpu)->nr_running;
__entry->cpu_util = cpu_util(cpu);
__entry->cpu_util_cum = cpu_util_cum(cpu, 0);
__entry->new_cum_util = new_cum_util;
__entry->task_in_cum_demand = task_in_cum_window_demand(cpu_rq(cpu), p);
__entry->capacity_curr = capacity_curr_of(cpu);
__entry->capacity = capacity_of(cpu);
__entry->curr_util = curr_util;
__entry->sync = sync;
__entry->idle_state = idle_get_state_idx(cpu_rq(cpu));
__entry->irqload = sched_irqload(cpu);
__entry->high_irqload = sched_cpu_high_irqload(cpu);
),
TP_printk("comm=%s pid=%d cpu=%d task_util=%d nr_running=%d cpu_util=%ld cpu_util_cum=%ld new_cum_util=%ld task_in_cum=%d capacity_curr=%u capacity=%u curr_util=%ld sync=%d idle_state=%d irqload=%u high_irqload=%u",
__entry->comm, __entry->pid, __entry->cpu, __entry->task_util, __entry->nr_running, __entry->cpu_util, __entry->cpu_util_cum, __entry->new_cum_util, __entry->task_in_cum_demand, __entry->capacity_curr, __entry->capacity, __entry->curr_util, __entry->sync, __entry->idle_state, __entry->irqload, __entry->high_irqload)
);
TRACE_EVENT(sched_energy_diff_packing,
TP_PROTO(struct task_struct *p, unsigned long task_util,
int targeted_cpus, int nrg_pack, int nrg_spread),
TP_ARGS(p, task_util, targeted_cpus, nrg_pack, nrg_spread),
TP_STRUCT__entry(
__array(char, comm, TASK_COMM_LEN )
__field(int, pid )
__field(unsigned long, task_util )
__field(int, targeted_cpus )
__field(int, nrg_pack )
__field(int, nrg_spread )
),
TP_fast_assign(
memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
__entry->pid = p->pid;
__entry->task_util = task_util;
__entry->targeted_cpus = targeted_cpus;
__entry->nrg_pack = nrg_pack;
__entry->nrg_spread = nrg_spread;
),
TP_printk("comm=%s pid=%d task_util=%lu targeted_cpus=%d nrg_pack=%d nrg_spread=%d nrg_diff=%d",
__entry->comm, __entry->pid, __entry->task_util,
__entry->targeted_cpus, __entry->nrg_pack,
__entry->nrg_spread, __entry->nrg_pack - __entry->nrg_spread)
);
DECLARE_EVENT_CLASS(sched_task_util,
TP_PROTO(struct task_struct *p, int task_cpu, unsigned long task_util, int nominated_cpu, int target_cpu, int ediff, bool need_idle),
TP_ARGS(p, task_cpu, task_util, nominated_cpu, target_cpu, ediff, need_idle),
TP_STRUCT__entry(
__array(char, comm, TASK_COMM_LEN )
__field(int, pid )
__field(int, task_cpu )
__field(unsigned long, task_util )
__field(unsigned long, cpu_util_freq )
__field(int, nominated_cpu )
__field(int, target_cpu )
__field(int, ediff )
__field(bool, need_idle )
__field(u64, latency )
),
TP_fast_assign(
memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
__entry->pid = p->pid;
__entry->task_cpu = task_cpu;
__entry->task_util = task_util;
__entry->cpu_util_freq = cpu_util_freq(target_cpu, NULL);
__entry->nominated_cpu = nominated_cpu;
__entry->target_cpu = target_cpu;
__entry->ediff = ediff;
__entry->need_idle = need_idle;
__entry->latency = p->ravg.mark_start ?
ktime_get_ns() -
p->ravg.mark_start : 0;
),
TP_printk("comm=%s pid=%d task_cpu=%d task_util=%lu nominated_cpu=%d target_cpu=%d energy_diff=%d need_idle=%d latency=%llu",
__entry->comm, __entry->pid, __entry->task_cpu, __entry->task_util, __entry->nominated_cpu, __entry->target_cpu, __entry->ediff, __entry->need_idle, __entry->latency)
);
DEFINE_EVENT(sched_task_util, sched_task_util_bias_to_waker,
TP_PROTO(struct task_struct *p, int task_cpu, unsigned long task_util, int nominated_cpu, int target_cpu, int ediff, bool need_idle),
TP_ARGS(p, task_cpu, task_util, nominated_cpu, target_cpu, ediff, need_idle)
);
DEFINE_EVENT(sched_task_util, sched_task_util_colocated,
TP_PROTO(struct task_struct *p, int task_cpu, unsigned long task_util, int nominated_cpu, int target_cpu, int ediff, bool need_idle),
TP_ARGS(p, task_cpu, task_util, nominated_cpu, target_cpu, ediff, need_idle)
);
DEFINE_EVENT(sched_task_util, sched_task_util_boosted,
TP_PROTO(struct task_struct *p, int task_cpu, unsigned long task_util, int nominated_cpu, int target_cpu, int ediff, bool need_idle),
TP_ARGS(p, task_cpu, task_util, nominated_cpu, target_cpu, ediff, need_idle)
);
DEFINE_EVENT(sched_task_util, sched_task_util_overutilzed,
TP_PROTO(struct task_struct *p, int task_cpu, unsigned long task_util, int nominated_cpu, int target_cpu, int ediff, bool need_idle),
TP_ARGS(p, task_cpu, task_util, nominated_cpu, target_cpu, ediff, need_idle)
);
DEFINE_EVENT(sched_task_util, sched_task_util_energy_diff,
TP_PROTO(struct task_struct *p, int task_cpu, unsigned long task_util, int nominated_cpu, int target_cpu, int ediff, bool need_idle),
TP_ARGS(p, task_cpu, task_util, nominated_cpu, target_cpu, ediff, need_idle)
);
DEFINE_EVENT(sched_task_util, sched_task_util_energy_aware,
TP_PROTO(struct task_struct *p, int task_cpu, unsigned long task_util, int nominated_cpu, int target_cpu, int ediff, bool need_idle),
TP_ARGS(p, task_cpu, task_util, nominated_cpu, target_cpu, ediff, need_idle)
);
DEFINE_EVENT(sched_task_util, sched_task_util_imbalance,
TP_PROTO(struct task_struct *p, int task_cpu, unsigned long task_util, int nominated_cpu, int target_cpu, int ediff, bool need_idle),
TP_ARGS(p, task_cpu, task_util, nominated_cpu, target_cpu, ediff, need_idle)
);
DEFINE_EVENT(sched_task_util, sched_task_util_need_idle,
TP_PROTO(struct task_struct *p, int task_cpu, unsigned long task_util, int nominated_cpu, int target_cpu, int ediff, bool need_idle),
TP_ARGS(p, task_cpu, task_util, nominated_cpu, target_cpu, ediff, need_idle)
);
#endif
/*
* Tracepoint for waking up a task:
*/
DECLARE_EVENT_CLASS(sched_wakeup_template,
TP_PROTO(struct task_struct *p),
TP_ARGS(__perf_task(p)),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( int, prio )
__field( int, success )
__field( int, target_cpu )
),
TP_fast_assign(
memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
__entry->pid = p->pid;
__entry->prio = p->prio;
__entry->success = 1; /* rudiment, kill when possible */
__entry->target_cpu = task_cpu(p);
),
TP_printk("comm=%s pid=%d prio=%d target_cpu=%03d",
__entry->comm, __entry->pid, __entry->prio,
__entry->target_cpu)
);
/*
* Tracepoint called when waking a task; this tracepoint is guaranteed to be
* called from the waking context.
*/
DEFINE_EVENT(sched_wakeup_template, sched_waking,
TP_PROTO(struct task_struct *p),
TP_ARGS(p));
/*
* Tracepoint called when the task is actually woken; p->state == TASK_RUNNNG.
* It it not always called from the waking context.
*/
DEFINE_EVENT(sched_wakeup_template, sched_wakeup,
TP_PROTO(struct task_struct *p),
TP_ARGS(p));
/*
* Tracepoint for waking up a new task:
*/
DEFINE_EVENT(sched_wakeup_template, sched_wakeup_new,
TP_PROTO(struct task_struct *p),
TP_ARGS(p));
#ifdef CREATE_TRACE_POINTS
static inline long __trace_sched_switch_state(bool preempt, struct task_struct *p)
{
#ifdef CONFIG_SCHED_DEBUG
BUG_ON(p != current);
#endif /* CONFIG_SCHED_DEBUG */
/*
* Preemption ignores task state, therefore preempted tasks are always
* RUNNING (we will not have dequeued if state != RUNNING).
*/
return preempt ? TASK_RUNNING | TASK_STATE_MAX : p->state;
}
#endif /* CREATE_TRACE_POINTS */
/*
* Tracepoint for task switches, performed by the scheduler:
*/
TRACE_EVENT(sched_switch,
TP_PROTO(bool preempt,
struct task_struct *prev,
struct task_struct *next),
TP_ARGS(preempt, prev, next),
TP_STRUCT__entry(
__array( char, prev_comm, TASK_COMM_LEN )
__field( pid_t, prev_pid )
__field( int, prev_prio )
__field( long, prev_state )
__array( char, next_comm, TASK_COMM_LEN )
__field( pid_t, next_pid )
__field( int, next_prio )
),
TP_fast_assign(
memcpy(__entry->next_comm, next->comm, TASK_COMM_LEN);
__entry->prev_pid = prev->pid;
__entry->prev_prio = prev->prio;
__entry->prev_state = __trace_sched_switch_state(preempt, prev);
memcpy(__entry->prev_comm, prev->comm, TASK_COMM_LEN);
__entry->next_pid = next->pid;
__entry->next_prio = next->prio;
),
TP_printk("prev_comm=%s prev_pid=%d prev_prio=%d prev_state=%s%s ==> next_comm=%s next_pid=%d next_prio=%d",
__entry->prev_comm, __entry->prev_pid, __entry->prev_prio,
__entry->prev_state & (TASK_STATE_MAX-1) ?
__print_flags(__entry->prev_state & (TASK_STATE_MAX-1), "|",
{ 1, "S"} , { 2, "D" }, { 4, "T" }, { 8, "t" },
{ 16, "Z" }, { 32, "X" }, { 64, "x" },
{ 128, "K" }, { 256, "W" }, { 512, "P" },
{ 1024, "N" }) : "R",
__entry->prev_state & TASK_STATE_MAX ? "+" : "",
__entry->next_comm, __entry->next_pid, __entry->next_prio)
);
/*
* Tracepoint for a task being migrated:
*/
TRACE_EVENT(sched_migrate_task,
TP_PROTO(struct task_struct *p, int dest_cpu, unsigned int load),
TP_ARGS(p, dest_cpu, load),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( int, prio )
__field(unsigned int, load )
__field( int, orig_cpu )
__field( int, dest_cpu )
),
TP_fast_assign(
memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
__entry->pid = p->pid;
__entry->prio = p->prio;
__entry->load = load;
__entry->orig_cpu = task_cpu(p);
__entry->dest_cpu = dest_cpu;
),
TP_printk("comm=%s pid=%d prio=%d load=%d orig_cpu=%d dest_cpu=%d",
__entry->comm, __entry->pid, __entry->prio, __entry->load,
__entry->orig_cpu, __entry->dest_cpu)
);
/*
* Tracepoint for a CPU going offline/online:
*/
TRACE_EVENT(sched_cpu_hotplug,
TP_PROTO(int affected_cpu, int error, int status),
TP_ARGS(affected_cpu, error, status),
TP_STRUCT__entry(
__field( int, affected_cpu )
__field( int, error )
__field( int, status )
),
TP_fast_assign(
__entry->affected_cpu = affected_cpu;
__entry->error = error;
__entry->status = status;
),
TP_printk("cpu %d %s error=%d", __entry->affected_cpu,
__entry->status ? "online" : "offline", __entry->error)
);
/*
* Tracepoint for load balancing:
*/
#if NR_CPUS > 32
#error "Unsupported NR_CPUS for lb tracepoint."
#endif
TRACE_EVENT(sched_load_balance,
TP_PROTO(int cpu, enum cpu_idle_type idle, int balance,
unsigned long group_mask, int busiest_nr_running,
unsigned long imbalance, unsigned int env_flags, int ld_moved,
unsigned int balance_interval),
TP_ARGS(cpu, idle, balance, group_mask, busiest_nr_running,
imbalance, env_flags, ld_moved, balance_interval),
TP_STRUCT__entry(
__field( int, cpu)
__field( enum cpu_idle_type, idle)
__field( int, balance)
__field( unsigned long, group_mask)
__field( int, busiest_nr_running)
__field( unsigned long, imbalance)
__field( unsigned int, env_flags)
__field( int, ld_moved)
__field( unsigned int, balance_interval)
),
TP_fast_assign(
__entry->cpu = cpu;
__entry->idle = idle;
__entry->balance = balance;
__entry->group_mask = group_mask;
__entry->busiest_nr_running = busiest_nr_running;
__entry->imbalance = imbalance;
__entry->env_flags = env_flags;
__entry->ld_moved = ld_moved;
__entry->balance_interval = balance_interval;
),
TP_printk("cpu=%d state=%s balance=%d group=%#lx busy_nr=%d imbalance=%ld flags=%#x ld_moved=%d bal_int=%d",
__entry->cpu,
__entry->idle == CPU_IDLE ? "idle" :
(__entry->idle == CPU_NEWLY_IDLE ? "newly_idle" : "busy"),
__entry->balance,
__entry->group_mask, __entry->busiest_nr_running,
__entry->imbalance, __entry->env_flags, __entry->ld_moved,
__entry->balance_interval)
);
DECLARE_EVENT_CLASS(sched_process_template,
TP_PROTO(struct task_struct *p),
TP_ARGS(p),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( int, prio )
),
TP_fast_assign(
memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
__entry->pid = p->pid;
__entry->prio = p->prio;
),
TP_printk("comm=%s pid=%d prio=%d",
__entry->comm, __entry->pid, __entry->prio)
);
/*
* Tracepoint for freeing a task:
*/
DEFINE_EVENT(sched_process_template, sched_process_free,
TP_PROTO(struct task_struct *p),
TP_ARGS(p));
/*
* Tracepoint for a task exiting:
*/
DEFINE_EVENT(sched_process_template, sched_process_exit,
TP_PROTO(struct task_struct *p),
TP_ARGS(p));
/*
* Tracepoint for waiting on task to unschedule:
*/
DEFINE_EVENT(sched_process_template, sched_wait_task,
TP_PROTO(struct task_struct *p),
TP_ARGS(p));
/*
* Tracepoint for a waiting task:
*/
TRACE_EVENT(sched_process_wait,
TP_PROTO(struct pid *pid),
TP_ARGS(pid),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( int, prio )
),
TP_fast_assign(
memcpy(__entry->comm, current->comm, TASK_COMM_LEN);
__entry->pid = pid_nr(pid);
__entry->prio = current->prio;
),
TP_printk("comm=%s pid=%d prio=%d",
__entry->comm, __entry->pid, __entry->prio)
);
/*
* Tracepoint for do_fork:
*/
TRACE_EVENT(sched_process_fork,
TP_PROTO(struct task_struct *parent, struct task_struct *child),
TP_ARGS(parent, child),
TP_STRUCT__entry(
__array( char, parent_comm, TASK_COMM_LEN )
__field( pid_t, parent_pid )
__array( char, child_comm, TASK_COMM_LEN )
__field( pid_t, child_pid )
),
TP_fast_assign(
memcpy(__entry->parent_comm, parent->comm, TASK_COMM_LEN);
__entry->parent_pid = parent->pid;
memcpy(__entry->child_comm, child->comm, TASK_COMM_LEN);
__entry->child_pid = child->pid;
),
TP_printk("comm=%s pid=%d child_comm=%s child_pid=%d",
__entry->parent_comm, __entry->parent_pid,
__entry->child_comm, __entry->child_pid)
);
/*
* Tracepoint for exec:
*/
TRACE_EVENT(sched_process_exec,
TP_PROTO(struct task_struct *p, pid_t old_pid,
struct linux_binprm *bprm),
TP_ARGS(p, old_pid, bprm),
TP_STRUCT__entry(
__string( filename, bprm->filename )
__field( pid_t, pid )
__field( pid_t, old_pid )
),
TP_fast_assign(
__assign_str(filename, bprm->filename);
__entry->pid = p->pid;
__entry->old_pid = old_pid;
),
TP_printk("filename=%s pid=%d old_pid=%d", __get_str(filename),
__entry->pid, __entry->old_pid)
);
/*
* XXX the below sched_stat tracepoints only apply to SCHED_OTHER/BATCH/IDLE
* adding sched_stat support to SCHED_FIFO/RR would be welcome.
*/
DECLARE_EVENT_CLASS(sched_stat_template,
TP_PROTO(struct task_struct *tsk, u64 delay),
TP_ARGS(__perf_task(tsk), __perf_count(delay)),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( u64, delay )
),
TP_fast_assign(
memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
__entry->pid = tsk->pid;
__entry->delay = delay;
),
TP_printk("comm=%s pid=%d delay=%Lu [ns]",
__entry->comm, __entry->pid,
(unsigned long long)__entry->delay)
);
/*
* Tracepoint for accounting wait time (time the task is runnable
* but not actually running due to scheduler contention).
*/
DEFINE_EVENT(sched_stat_template, sched_stat_wait,
TP_PROTO(struct task_struct *tsk, u64 delay),
TP_ARGS(tsk, delay));
/*
* Tracepoint for accounting sleep time (time the task is not runnable,
* including iowait, see below).
*/
DEFINE_EVENT(sched_stat_template, sched_stat_sleep,
TP_PROTO(struct task_struct *tsk, u64 delay),
TP_ARGS(tsk, delay));
/*
* Tracepoint for accounting iowait time (time the task is not runnable
* due to waiting on IO to complete).
*/
DEFINE_EVENT(sched_stat_template, sched_stat_iowait,
TP_PROTO(struct task_struct *tsk, u64 delay),
TP_ARGS(tsk, delay));
/*
* Tracepoint for accounting blocked time (time the task is in uninterruptible).
*/
DEFINE_EVENT(sched_stat_template, sched_stat_blocked,
TP_PROTO(struct task_struct *tsk, u64 delay),
TP_ARGS(tsk, delay));
/*
* Tracepoint for recording the cause of uninterruptible sleep.
*/
TRACE_EVENT(sched_blocked_reason,
TP_PROTO(struct task_struct *tsk),
TP_ARGS(tsk),
TP_STRUCT__entry(
__field( pid_t, pid )
__field( void*, caller )
__field( bool, io_wait )
),
TP_fast_assign(
__entry->pid = tsk->pid;
__entry->caller = (void*)get_wchan(tsk);
__entry->io_wait = tsk->in_iowait;
),
TP_printk("pid=%d iowait=%d caller=%pS", __entry->pid, __entry->io_wait, __entry->caller)
);
/*
* Tracepoint for accounting runtime (time the task is executing
* on a CPU).
*/
DECLARE_EVENT_CLASS(sched_stat_runtime,
TP_PROTO(struct task_struct *tsk, u64 runtime, u64 vruntime),
TP_ARGS(tsk, __perf_count(runtime), vruntime),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( u64, runtime )
__field( u64, vruntime )
),
TP_fast_assign(
memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
__entry->pid = tsk->pid;
__entry->runtime = runtime;
__entry->vruntime = vruntime;
),
TP_printk("comm=%s pid=%d runtime=%Lu [ns] vruntime=%Lu [ns]",
__entry->comm, __entry->pid,
(unsigned long long)__entry->runtime,
(unsigned long long)__entry->vruntime)
);
DEFINE_EVENT(sched_stat_runtime, sched_stat_runtime,
TP_PROTO(struct task_struct *tsk, u64 runtime, u64 vruntime),
TP_ARGS(tsk, runtime, vruntime));
/*
* Tracepoint for showing priority inheritance modifying a tasks
* priority.
*/
TRACE_EVENT(sched_pi_setprio,
TP_PROTO(struct task_struct *tsk, int newprio),
TP_ARGS(tsk, newprio),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( int, oldprio )
__field( int, newprio )
),
TP_fast_assign(
memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
__entry->pid = tsk->pid;
__entry->oldprio = tsk->prio;
__entry->newprio = newprio;
),
TP_printk("comm=%s pid=%d oldprio=%d newprio=%d",
__entry->comm, __entry->pid,
__entry->oldprio, __entry->newprio)
);
#ifdef CONFIG_DETECT_HUNG_TASK
TRACE_EVENT(sched_process_hang,
TP_PROTO(struct task_struct *tsk),
TP_ARGS(tsk),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
),
TP_fast_assign(
memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
__entry->pid = tsk->pid;
),
TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid)
);
#endif /* CONFIG_DETECT_HUNG_TASK */
DECLARE_EVENT_CLASS(sched_move_task_template,
TP_PROTO(struct task_struct *tsk, int src_cpu, int dst_cpu),
TP_ARGS(tsk, src_cpu, dst_cpu),
TP_STRUCT__entry(
__field( pid_t, pid )
__field( pid_t, tgid )
__field( pid_t, ngid )
__field( int, src_cpu )
__field( int, src_nid )
__field( int, dst_cpu )
__field( int, dst_nid )
),
TP_fast_assign(
__entry->pid = task_pid_nr(tsk);
__entry->tgid = task_tgid_nr(tsk);
__entry->ngid = task_numa_group_id(tsk);
__entry->src_cpu = src_cpu;
__entry->src_nid = cpu_to_node(src_cpu);
__entry->dst_cpu = dst_cpu;
__entry->dst_nid = cpu_to_node(dst_cpu);
),
TP_printk("pid=%d tgid=%d ngid=%d src_cpu=%d src_nid=%d dst_cpu=%d dst_nid=%d",
__entry->pid, __entry->tgid, __entry->ngid,
__entry->src_cpu, __entry->src_nid,
__entry->dst_cpu, __entry->dst_nid)
);
/*
* Tracks migration of tasks from one runqueue to another. Can be used to
* detect if automatic NUMA balancing is bouncing between nodes
*/
DEFINE_EVENT(sched_move_task_template, sched_move_numa,
TP_PROTO(struct task_struct *tsk, int src_cpu, int dst_cpu),
TP_ARGS(tsk, src_cpu, dst_cpu)
);
DEFINE_EVENT(sched_move_task_template, sched_stick_numa,
TP_PROTO(struct task_struct *tsk, int src_cpu, int dst_cpu),
TP_ARGS(tsk, src_cpu, dst_cpu)
);
TRACE_EVENT(sched_swap_numa,
TP_PROTO(struct task_struct *src_tsk, int src_cpu,
struct task_struct *dst_tsk, int dst_cpu),
TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu),
TP_STRUCT__entry(
__field( pid_t, src_pid )
__field( pid_t, src_tgid )
__field( pid_t, src_ngid )
__field( int, src_cpu )
__field( int, src_nid )
__field( pid_t, dst_pid )
__field( pid_t, dst_tgid )
__field( pid_t, dst_ngid )
__field( int, dst_cpu )
__field( int, dst_nid )
),
TP_fast_assign(
__entry->src_pid = task_pid_nr(src_tsk);
__entry->src_tgid = task_tgid_nr(src_tsk);
__entry->src_ngid = task_numa_group_id(src_tsk);
__entry->src_cpu = src_cpu;
__entry->src_nid = cpu_to_node(src_cpu);
__entry->dst_pid = task_pid_nr(dst_tsk);
__entry->dst_tgid = task_tgid_nr(dst_tsk);
__entry->dst_ngid = task_numa_group_id(dst_tsk);
__entry->dst_cpu = dst_cpu;
__entry->dst_nid = cpu_to_node(dst_cpu);
),
TP_printk("src_pid=%d src_tgid=%d src_ngid=%d src_cpu=%d src_nid=%d dst_pid=%d dst_tgid=%d dst_ngid=%d dst_cpu=%d dst_nid=%d",
__entry->src_pid, __entry->src_tgid, __entry->src_ngid,
__entry->src_cpu, __entry->src_nid,
__entry->dst_pid, __entry->dst_tgid, __entry->dst_ngid,
__entry->dst_cpu, __entry->dst_nid)
);
/*
* Tracepoint for waking a polling cpu without an IPI.
*/
TRACE_EVENT(sched_wake_idle_without_ipi,
TP_PROTO(int cpu),
TP_ARGS(cpu),
TP_STRUCT__entry(
__field( int, cpu )
),
TP_fast_assign(
__entry->cpu = cpu;
),
TP_printk("cpu=%d", __entry->cpu)
);
TRACE_EVENT(sched_contrib_scale_f,
TP_PROTO(int cpu, unsigned long freq_scale_factor,
unsigned long cpu_scale_factor),
TP_ARGS(cpu, freq_scale_factor, cpu_scale_factor),
TP_STRUCT__entry(
__field(int, cpu)
__field(unsigned long, freq_scale_factor)
__field(unsigned long, cpu_scale_factor)
),
TP_fast_assign(
__entry->cpu = cpu;
__entry->freq_scale_factor = freq_scale_factor;
__entry->cpu_scale_factor = cpu_scale_factor;
),
TP_printk("cpu=%d freq_scale_factor=%lu cpu_scale_factor=%lu",
__entry->cpu, __entry->freq_scale_factor,
__entry->cpu_scale_factor)
);
#ifdef CONFIG_SMP
/*
* Tracepoint for accounting sched averages for tasks.
*/
TRACE_EVENT(sched_load_avg_task,
TP_PROTO(struct task_struct *tsk, struct sched_avg *avg),
TP_ARGS(tsk, avg),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( int, cpu )
__field( unsigned long, load_avg )
__field( unsigned long, util_avg )
__field( u64, load_sum )
__field( u32, util_sum )
__field( u32, period_contrib )
),
TP_fast_assign(
memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
__entry->pid = tsk->pid;
__entry->cpu = task_cpu(tsk);
__entry->load_avg = avg->load_avg;
__entry->util_avg = avg->util_avg;
__entry->load_sum = avg->load_sum;
__entry->util_sum = avg->util_sum;
__entry->period_contrib = avg->period_contrib;
),
TP_printk("comm=%s pid=%d cpu=%d load_avg=%lu util_avg=%lu load_sum=%llu"
" util_sum=%u period_contrib=%u",
__entry->comm,
__entry->pid,
__entry->cpu,
__entry->load_avg,
__entry->util_avg,
(u64)__entry->load_sum,
(u32)__entry->util_sum,
(u32)__entry->period_contrib)
);
/*
* Tracepoint for accounting sched averages for cpus.
*/
TRACE_EVENT(sched_load_avg_cpu,
TP_PROTO(int cpu, struct cfs_rq *cfs_rq),
TP_ARGS(cpu, cfs_rq),
TP_STRUCT__entry(
__field( int, cpu )
__field( unsigned long, load_avg )
__field( unsigned long, util_avg )
),
TP_fast_assign(
__entry->cpu = cpu;
__entry->load_avg = cfs_rq->avg.load_avg;
__entry->util_avg = cfs_rq->avg.util_avg;
),
TP_printk("cpu=%d load_avg=%lu util_avg=%lu",
__entry->cpu, __entry->load_avg, __entry->util_avg)
);
/*
* Tracepoint for sched_tune_config settings
*/
TRACE_EVENT(sched_tune_config,
TP_PROTO(int boost),
TP_ARGS(boost),
TP_STRUCT__entry(
__field( int, boost )
),
TP_fast_assign(
__entry->boost = boost;
),
TP_printk("boost=%d ", __entry->boost)
);
/*
* Tracepoint for accounting CPU boosted utilization
*/
TRACE_EVENT(sched_boost_cpu,
TP_PROTO(int cpu, unsigned long util, long margin),
TP_ARGS(cpu, util, margin),
TP_STRUCT__entry(
__field( int, cpu )
__field( unsigned long, util )
__field(long, margin )
),
TP_fast_assign(
__entry->cpu = cpu;
__entry->util = util;
__entry->margin = margin;
),
TP_printk("cpu=%d util=%lu margin=%ld",
__entry->cpu,
__entry->util,
__entry->margin)
);
/*
* Tracepoint for schedtune_tasks_update
*/
TRACE_EVENT(sched_tune_tasks_update,
TP_PROTO(struct task_struct *tsk, int cpu, int tasks, int idx,
int boost, int max_boost),
TP_ARGS(tsk, cpu, tasks, idx, boost, max_boost),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( int, cpu )
__field( int, tasks )
__field( int, idx )
__field( int, boost )
__field( int, max_boost )
),
TP_fast_assign(
memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
__entry->pid = tsk->pid;
__entry->cpu = cpu;
__entry->tasks = tasks;
__entry->idx = idx;
__entry->boost = boost;
__entry->max_boost = max_boost;
),
TP_printk("pid=%d comm=%s "
"cpu=%d tasks=%d idx=%d boost=%d max_boost=%d",
__entry->pid, __entry->comm,
__entry->cpu, __entry->tasks, __entry->idx,
__entry->boost, __entry->max_boost)
);
/*
* Tracepoint for schedtune_boostgroup_update
*/
TRACE_EVENT(sched_tune_boostgroup_update,
TP_PROTO(int cpu, int variation, int max_boost),
TP_ARGS(cpu, variation, max_boost),
TP_STRUCT__entry(
__field( int, cpu )
__field( int, variation )
__field( int, max_boost )
),
TP_fast_assign(
__entry->cpu = cpu;
__entry->variation = variation;
__entry->max_boost = max_boost;
),
TP_printk("cpu=%d variation=%d max_boost=%d",
__entry->cpu, __entry->variation, __entry->max_boost)
);
/*
* Tracepoint for accounting task boosted utilization
*/
TRACE_EVENT(sched_boost_task,
TP_PROTO(struct task_struct *tsk, unsigned long util, long margin),
TP_ARGS(tsk, util, margin),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( unsigned long, util )
__field( long, margin )
),
TP_fast_assign(
memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
__entry->pid = tsk->pid;
__entry->util = util;
__entry->margin = margin;
),
TP_printk("comm=%s pid=%d util=%lu margin=%ld",
__entry->comm, __entry->pid,
__entry->util,
__entry->margin)
);
/*
* Tracepoint for accounting sched group energy
*/
TRACE_EVENT(sched_energy_diff,
TP_PROTO(struct task_struct *tsk, int scpu, int dcpu, int udelta,
int nrgb, int nrga, int nrgd, int capb, int capa, int capd,
int nrgn, int nrgp),
TP_ARGS(tsk, scpu, dcpu, udelta,
nrgb, nrga, nrgd, capb, capa, capd,
nrgn, nrgp),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( int, scpu )
__field( int, dcpu )
__field( int, udelta )
__field( int, nrgb )
__field( int, nrga )
__field( int, nrgd )
__field( int, capb )
__field( int, capa )
__field( int, capd )
__field( int, nrgn )
__field( int, nrgp )
),
TP_fast_assign(
memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
__entry->pid = tsk->pid;
__entry->scpu = scpu;
__entry->dcpu = dcpu;
__entry->udelta = udelta;
__entry->nrgb = nrgb;
__entry->nrga = nrga;
__entry->nrgd = nrgd;
__entry->capb = capb;
__entry->capa = capa;
__entry->capd = capd;
__entry->nrgn = nrgn;
__entry->nrgp = nrgp;
),
TP_printk("pid=%d comm=%s "
"src_cpu=%d dst_cpu=%d usage_delta=%d "
"nrg_before=%d nrg_after=%d nrg_diff=%d "
"cap_before=%d cap_after=%d cap_delta=%d "
"nrg_delta=%d nrg_payoff=%d",
__entry->pid, __entry->comm,
__entry->scpu, __entry->dcpu, __entry->udelta,
__entry->nrgb, __entry->nrga, __entry->nrgd,
__entry->capb, __entry->capa, __entry->capd,
__entry->nrgn, __entry->nrgp)
);
TRACE_EVENT(sched_group_energy,
TP_PROTO(int cpu, long group_util, u64 total_nrg,
int busy_nrg, int idle_nrg, int grp_idle_idx,
int new_capacity),
TP_ARGS(cpu, group_util, total_nrg,
busy_nrg, idle_nrg, grp_idle_idx,
new_capacity),
TP_STRUCT__entry(
__field(int, cpu)
__field(long, group_util)
__field(u64, total_nrg)
__field(int, busy_nrg)
__field(int, idle_nrg)
__field(int, grp_idle_idx)
__field(int, new_capacity)
),
TP_fast_assign(
__entry->cpu = cpu;
__entry->group_util = group_util;
__entry->total_nrg = total_nrg;
__entry->busy_nrg = busy_nrg;
__entry->idle_nrg = idle_nrg;
__entry->grp_idle_idx = grp_idle_idx;
__entry->new_capacity = new_capacity;
),
TP_printk("cpu=%d group_util=%ld total_nrg=%llu busy_nrg=%d idle_nrg=%d grp_idle_idx=%d new_capacity=%d",
__entry->cpu, __entry->group_util,
__entry->total_nrg, __entry->busy_nrg, __entry->idle_nrg,
__entry->grp_idle_idx, __entry->new_capacity)
);
/*
* Tracepoint for schedtune_tasks_update
*/
TRACE_EVENT(sched_tune_filter,
TP_PROTO(int nrg_delta, int cap_delta,
int nrg_gain, int cap_gain,
int payoff, int region),
TP_ARGS(nrg_delta, cap_delta, nrg_gain, cap_gain, payoff, region),
TP_STRUCT__entry(
__field( int, nrg_delta )
__field( int, cap_delta )
__field( int, nrg_gain )
__field( int, cap_gain )
__field( int, payoff )
__field( int, region )
),
TP_fast_assign(
__entry->nrg_delta = nrg_delta;
__entry->cap_delta = cap_delta;
__entry->nrg_gain = nrg_gain;
__entry->cap_gain = cap_gain;
__entry->payoff = payoff;
__entry->region = region;
),
TP_printk("nrg_delta=%d cap_delta=%d nrg_gain=%d cap_gain=%d payoff=%d region=%d",
__entry->nrg_delta, __entry->cap_delta,
__entry->nrg_gain, __entry->cap_gain,
__entry->payoff, __entry->region)
);
/*
* Tracepoint for system overutilized flag
*/
TRACE_EVENT(sched_overutilized,
TP_PROTO(bool overutilized),
TP_ARGS(overutilized),
TP_STRUCT__entry(
__field( bool, overutilized )
),
TP_fast_assign(
__entry->overutilized = overutilized;
),
TP_printk("overutilized=%d",
__entry->overutilized ? 1 : 0)
);
#endif
TRACE_EVENT(sched_get_nr_running_avg,
TP_PROTO(int avg, int big_avg, int iowait_avg,
unsigned int max_nr, unsigned int big_max_nr),
TP_ARGS(avg, big_avg, iowait_avg, max_nr, big_max_nr),
TP_STRUCT__entry(
__field( int, avg )
__field( int, big_avg )
__field( int, iowait_avg )
__field( unsigned int, max_nr )
__field( unsigned int, big_max_nr )
),
TP_fast_assign(
__entry->avg = avg;
__entry->big_avg = big_avg;
__entry->iowait_avg = iowait_avg;
__entry->max_nr = max_nr;
__entry->big_max_nr = big_max_nr;
),
TP_printk("avg=%d big_avg=%d iowait_avg=%d max_nr=%u big_max_nr=%u",
__entry->avg, __entry->big_avg, __entry->iowait_avg,
__entry->max_nr, __entry->big_max_nr)
);
TRACE_EVENT(core_ctl_eval_need,
TP_PROTO(unsigned int cpu, unsigned int old_need,
unsigned int new_need, unsigned int updated),
TP_ARGS(cpu, old_need, new_need, updated),
TP_STRUCT__entry(
__field(u32, cpu)
__field(u32, old_need)
__field(u32, new_need)
__field(u32, updated)
),
TP_fast_assign(
__entry->cpu = cpu;
__entry->old_need = old_need;
__entry->new_need = new_need;
__entry->updated = updated;
),
TP_printk("cpu=%u, old_need=%u, new_need=%u, updated=%u", __entry->cpu,
__entry->old_need, __entry->new_need, __entry->updated)
);
TRACE_EVENT(core_ctl_set_busy,
TP_PROTO(unsigned int cpu, unsigned int busy,
unsigned int old_is_busy, unsigned int is_busy),
TP_ARGS(cpu, busy, old_is_busy, is_busy),
TP_STRUCT__entry(
__field(u32, cpu)
__field(u32, busy)
__field(u32, old_is_busy)
__field(u32, is_busy)
__field(bool, high_irqload)
),
TP_fast_assign(
__entry->cpu = cpu;
__entry->busy = busy;
__entry->old_is_busy = old_is_busy;
__entry->is_busy = is_busy;
__entry->high_irqload = sched_cpu_high_irqload(cpu);
),
TP_printk("cpu=%u, busy=%u, old_is_busy=%u, new_is_busy=%u high_irqload=%d",
__entry->cpu, __entry->busy, __entry->old_is_busy,
__entry->is_busy, __entry->high_irqload)
);
TRACE_EVENT(core_ctl_set_boost,
TP_PROTO(u32 refcount, s32 ret),
TP_ARGS(refcount, ret),
TP_STRUCT__entry(
__field(u32, refcount)
__field(s32, ret)
),
TP_fast_assign(
__entry->refcount = refcount;
__entry->ret = ret;
),
TP_printk("refcount=%u, ret=%d", __entry->refcount, __entry->ret)
);
/*
* sched_isolate - called when cores are isolated/unisolated
*
* @acutal_mask: mask of cores actually isolated/unisolated
* @req_mask: mask of cores requested isolated/unisolated
* @online_mask: cpu online mask
* @time: amount of time in us it took to isolate/unisolate
* @isolate: 1 if isolating, 0 if unisolating
*
*/
TRACE_EVENT(sched_isolate,
TP_PROTO(unsigned int requested_cpu, unsigned int isolated_cpus,
u64 start_time, unsigned char isolate),
TP_ARGS(requested_cpu, isolated_cpus, start_time, isolate),
TP_STRUCT__entry(
__field(u32, requested_cpu)
__field(u32, isolated_cpus)
__field(u32, time)
__field(unsigned char, isolate)
),
TP_fast_assign(
__entry->requested_cpu = requested_cpu;
__entry->isolated_cpus = isolated_cpus;
__entry->time = div64_u64(sched_clock() - start_time, 1000);
__entry->isolate = isolate;
),
TP_printk("iso cpu=%u cpus=0x%x time=%u us isolated=%d",
__entry->requested_cpu, __entry->isolated_cpus,
__entry->time, __entry->isolate)
);
#endif /* _TRACE_SCHED_H */
/* This part must be outside protection */
#include <trace/define_trace.h>