blob: 32489c043103fda85dda5e9d0a6623117d7d4886 [file] [log] [blame]
/* Copyright (c) 2012-2019, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/kernel.h>
#include <linux/regmap.h>
#include <linux/of.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/types.h>
#include <linux/hwmon.h>
#include <linux/module.h>
#include <linux/debugfs.h>
#include <linux/spmi.h>
#include <linux/platform_device.h>
#include <linux/of_irq.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/hwmon-sysfs.h>
#include <linux/qpnp/qpnp-adc.h>
#include <linux/thermal.h>
#include <linux/platform_device.h>
#include "thermal_core.h"
/* QPNP VADC TM register definition */
#define QPNP_REVISION3 0x2
#define QPNP_PERPH_SUBTYPE 0x5
#define QPNP_PERPH_TYPE2 0x2
#define QPNP_REVISION_EIGHT_CHANNEL_SUPPORT 2
#define QPNP_PERPH_SUBTYPE_TWO_CHANNEL_SUPPORT 0x22
#define QPNP_STATUS1 0x8
#define QPNP_STATUS1_OP_MODE 4
#define QPNP_STATUS1_MEAS_INTERVAL_EN_STS BIT(2)
#define QPNP_STATUS1_REQ_STS BIT(1)
#define QPNP_STATUS1_EOC BIT(0)
#define QPNP_STATUS2 0x9
#define QPNP_STATUS2_CONV_SEQ_STATE 6
#define QPNP_STATUS2_FIFO_NOT_EMPTY_FLAG BIT(1)
#define QPNP_STATUS2_CONV_SEQ_TIMEOUT_STS BIT(0)
#define QPNP_CONV_TIMEOUT_ERR 2
#define QPNP_MODE_CTL 0x40
#define QPNP_OP_MODE_SHIFT 3
#define QPNP_VREF_XO_THM_FORCE BIT(2)
#define QPNP_AMUX_TRIM_EN BIT(1)
#define QPNP_ADC_TRIM_EN BIT(0)
#define QPNP_EN_CTL1 0x46
#define QPNP_ADC_TM_EN BIT(7)
#define QPNP_BTM_CONV_REQ 0x47
#define QPNP_ADC_CONV_REQ_EN BIT(7)
#define QPNP_ADC_DIG_PARAM 0x50
#define QPNP_ADC_DIG_DEC_RATIO_SEL_SHIFT 3
#define QPNP_HW_SETTLE_DELAY 0x51
#define QPNP_CONV_SEQ_CTL 0x54
#define QPNP_CONV_SEQ_HOLDOFF_SHIFT 4
#define QPNP_CONV_SEQ_TRIG_CTL 0x55
#define QPNP_ADC_TM_MEAS_INTERVAL_CTL 0x57
#define QPNP_ADC_TM_MEAS_INTERVAL_TIME_SHIFT 0x3
#define QPNP_ADC_TM_MEAS_INTERVAL_CTL2 0x58
#define QPNP_ADC_TM_MEAS_INTERVAL_CTL2_SHIFT 0x4
#define QPNP_ADC_TM_MEAS_INTERVAL_CTL2_MASK 0xf0
#define QPNP_ADC_TM_MEAS_INTERVAL_CTL3_MASK 0xf
#define QPNP_ADC_MEAS_INTERVAL_OP_CTL 0x59
#define QPNP_ADC_MEAS_INTERVAL_OP BIT(7)
#define QPNP_OP_MODE_SHIFT 3
#define QPNP_CONV_REQ 0x52
#define QPNP_CONV_REQ_SET BIT(7)
#define QPNP_FAST_AVG_CTL 0x5a
#define QPNP_FAST_AVG_EN 0x5b
#define QPNP_FAST_AVG_ENABLED BIT(7)
#define QPNP_M0_LOW_THR_LSB 0x5c
#define QPNP_M0_LOW_THR_MSB 0x5d
#define QPNP_M0_HIGH_THR_LSB 0x5e
#define QPNP_M0_HIGH_THR_MSB 0x5f
#define QPNP_M1_ADC_CH_SEL_CTL 0x68
#define QPNP_M1_LOW_THR_LSB 0x69
#define QPNP_M1_LOW_THR_MSB 0x6a
#define QPNP_M1_HIGH_THR_LSB 0x6b
#define QPNP_M1_HIGH_THR_MSB 0x6c
#define QPNP_M2_ADC_CH_SEL_CTL 0x70
#define QPNP_M2_LOW_THR_LSB 0x71
#define QPNP_M2_LOW_THR_MSB 0x72
#define QPNP_M2_HIGH_THR_LSB 0x73
#define QPNP_M2_HIGH_THR_MSB 0x74
#define QPNP_M3_ADC_CH_SEL_CTL 0x78
#define QPNP_M3_LOW_THR_LSB 0x79
#define QPNP_M3_LOW_THR_MSB 0x7a
#define QPNP_M3_HIGH_THR_LSB 0x7b
#define QPNP_M3_HIGH_THR_MSB 0x7c
#define QPNP_M4_ADC_CH_SEL_CTL 0x80
#define QPNP_M4_LOW_THR_LSB 0x81
#define QPNP_M4_LOW_THR_MSB 0x82
#define QPNP_M4_HIGH_THR_LSB 0x83
#define QPNP_M4_HIGH_THR_MSB 0x84
#define QPNP_M5_ADC_CH_SEL_CTL 0x88
#define QPNP_M5_LOW_THR_LSB 0x89
#define QPNP_M5_LOW_THR_MSB 0x8a
#define QPNP_M5_HIGH_THR_LSB 0x8b
#define QPNP_M5_HIGH_THR_MSB 0x8c
#define QPNP_M6_ADC_CH_SEL_CTL 0x90
#define QPNP_M6_LOW_THR_LSB 0x91
#define QPNP_M6_LOW_THR_MSB 0x92
#define QPNP_M6_HIGH_THR_LSB 0x93
#define QPNP_M6_HIGH_THR_MSB 0x94
#define QPNP_M7_ADC_CH_SEL_CTL 0x98
#define QPNP_M7_LOW_THR_LSB 0x99
#define QPNP_M7_LOW_THR_MSB 0x9a
#define QPNP_M7_HIGH_THR_LSB 0x9b
#define QPNP_M7_HIGH_THR_MSB 0x9c
#define QPNP_ADC_TM_MULTI_MEAS_EN 0x41
#define QPNP_ADC_TM_MULTI_MEAS_EN_M0 BIT(0)
#define QPNP_ADC_TM_MULTI_MEAS_EN_M1 BIT(1)
#define QPNP_ADC_TM_MULTI_MEAS_EN_M2 BIT(2)
#define QPNP_ADC_TM_MULTI_MEAS_EN_M3 BIT(3)
#define QPNP_ADC_TM_MULTI_MEAS_EN_M4 BIT(4)
#define QPNP_ADC_TM_MULTI_MEAS_EN_M5 BIT(5)
#define QPNP_ADC_TM_MULTI_MEAS_EN_M6 BIT(6)
#define QPNP_ADC_TM_MULTI_MEAS_EN_M7 BIT(7)
#define QPNP_ADC_TM_LOW_THR_INT_EN 0x42
#define QPNP_ADC_TM_LOW_THR_INT_EN_M0 BIT(0)
#define QPNP_ADC_TM_LOW_THR_INT_EN_M1 BIT(1)
#define QPNP_ADC_TM_LOW_THR_INT_EN_M2 BIT(2)
#define QPNP_ADC_TM_LOW_THR_INT_EN_M3 BIT(3)
#define QPNP_ADC_TM_LOW_THR_INT_EN_M4 BIT(4)
#define QPNP_ADC_TM_LOW_THR_INT_EN_M5 BIT(5)
#define QPNP_ADC_TM_LOW_THR_INT_EN_M6 BIT(6)
#define QPNP_ADC_TM_LOW_THR_INT_EN_M7 BIT(7)
#define QPNP_ADC_TM_HIGH_THR_INT_EN 0x43
#define QPNP_ADC_TM_HIGH_THR_INT_EN_M0 BIT(0)
#define QPNP_ADC_TM_HIGH_THR_INT_EN_M1 BIT(1)
#define QPNP_ADC_TM_HIGH_THR_INT_EN_M2 BIT(2)
#define QPNP_ADC_TM_HIGH_THR_INT_EN_M3 BIT(3)
#define QPNP_ADC_TM_HIGH_THR_INT_EN_M4 BIT(4)
#define QPNP_ADC_TM_HIGH_THR_INT_EN_M5 BIT(5)
#define QPNP_ADC_TM_HIGH_THR_INT_EN_M6 BIT(6)
#define QPNP_ADC_TM_HIGH_THR_INT_EN_M7 BIT(7)
#define QPNP_ADC_TM_M0_MEAS_INTERVAL_CTL 0x59
#define QPNP_ADC_TM_M1_MEAS_INTERVAL_CTL 0x6d
#define QPNP_ADC_TM_M2_MEAS_INTERVAL_CTL 0x75
#define QPNP_ADC_TM_M3_MEAS_INTERVAL_CTL 0x7d
#define QPNP_ADC_TM_M4_MEAS_INTERVAL_CTL 0x85
#define QPNP_ADC_TM_M5_MEAS_INTERVAL_CTL 0x8d
#define QPNP_ADC_TM_M6_MEAS_INTERVAL_CTL 0x95
#define QPNP_ADC_TM_M7_MEAS_INTERVAL_CTL 0x9d
#define QPNP_ADC_TM_STATUS1 0x8
#define QPNP_ADC_TM_STATUS_LOW 0xa
#define QPNP_ADC_TM_STATUS_HIGH 0xb
#define QPNP_ADC_TM_M0_LOW_THR 0x5d5c
#define QPNP_ADC_TM_M0_HIGH_THR 0x5f5e
#define QPNP_ADC_TM_MEAS_INTERVAL 0x0
#define QPNP_ADC_TM_THR_LSB_MASK(val) (val & 0xff)
#define QPNP_ADC_TM_THR_MSB_MASK(val) ((val & 0xff00) >> 8)
#define QPNP_MIN_TIME 2000
#define QPNP_MAX_TIME 2100
#define QPNP_RETRY 1000
/* QPNP ADC TM HC start */
#define QPNP_BTM_HC_STATUS1 0x08
#define QPNP_BTM_HC_STATUS_LOW 0x0a
#define QPNP_BTM_HC_STATUS_HIGH 0x0b
#define QPNP_BTM_HC_ADC_DIG_PARAM 0x42
#define QPNP_BTM_HC_FAST_AVG_CTL 0x43
#define QPNP_BTM_EN_CTL1 0x46
#define QPNP_BTM_CONV_REQ 0x47
#define QPNP_BTM_MEAS_INTERVAL_CTL 0x50
#define QPNP_BTM_MEAS_INTERVAL_CTL2 0x51
#define QPNP_BTM_MEAS_INTERVAL_CTL_PM5 0x44
#define QPNP_BTM_MEAS_INTERVAL_CTL2_PM5 0x45
#define QPNP_ADC_TM_MEAS_INTERVAL_TIME_SHIFT 0x3
#define QPNP_ADC_TM_MEAS_INTERVAL_CTL2_SHIFT 0x4
#define QPNP_ADC_TM_MEAS_INTERVAL_CTL2_MASK 0xf0
#define QPNP_ADC_TM_MEAS_INTERVAL_CTL3_MASK 0xf
#define QPNP_BTM_Mn_ADC_CH_SEL_CTL(n) ((n * 8) + 0x60)
#define QPNP_BTM_Mn_LOW_THR0(n) ((n * 8) + 0x61)
#define QPNP_BTM_Mn_LOW_THR1(n) ((n * 8) + 0x62)
#define QPNP_BTM_Mn_HIGH_THR0(n) ((n * 8) + 0x63)
#define QPNP_BTM_Mn_HIGH_THR1(n) ((n * 8) + 0x64)
#define QPNP_BTM_Mn_MEAS_INTERVAL_CTL(n) ((n * 8) + 0x65)
#define QPNP_BTM_Mn_CTL(n) ((n * 8) + 0x66)
#define QPNP_BTM_CTL_HW_SETTLE_DELAY_MASK 0xf
#define QPNP_BTM_CTL_CAL_SEL 0x30
#define QPNP_BTM_CTL_CAL_SEL_MASK_SHIFT 4
#define QPNP_BTM_CTL_CAL_VAL 0x40
#define QPNP_BTM_Mn_EN(n) ((n * 8) + 0x67)
#define QPNP_BTM_Mn_MEAS_EN BIT(7)
#define QPNP_BTM_Mn_HIGH_THR_INT_EN BIT(1)
#define QPNP_BTM_Mn_LOW_THR_INT_EN BIT(0)
#define QPNP_BTM_Mn_DATA0(n) ((n * 2) + 0xa0)
#define QPNP_BTM_Mn_DATA1(n) ((n * 2) + 0xa1)
#define QPNP_BTM_CHANNELS 8
#define QPNP_ADC_WAKEUP_SRC_TIMEOUT_MS 2000
/* QPNP ADC TM HC end */
struct qpnp_adc_thr_info {
u8 status_low;
u8 status_high;
u8 qpnp_adc_tm_meas_en;
u8 adc_tm_low_enable;
u8 adc_tm_high_enable;
u8 adc_tm_low_thr_set;
u8 adc_tm_high_thr_set;
spinlock_t adc_tm_low_lock;
spinlock_t adc_tm_high_lock;
};
struct qpnp_adc_thr_client_info {
struct list_head list;
struct qpnp_adc_tm_btm_param *btm_param;
int32_t low_thr_requested;
int32_t high_thr_requested;
enum qpnp_state_request state_requested;
enum qpnp_state_request state_req_copy;
bool low_thr_set;
bool high_thr_set;
bool notify_low_thr;
bool notify_high_thr;
};
struct qpnp_adc_tm_sensor {
struct thermal_zone_device *tz_dev;
struct qpnp_adc_tm_chip *chip;
enum thermal_device_mode mode;
uint32_t sensor_num;
enum qpnp_adc_meas_timer_select timer_select;
uint32_t meas_interval;
uint32_t low_thr;
uint32_t high_thr;
uint32_t btm_channel_num;
uint32_t vadc_channel_num;
struct workqueue_struct *req_wq;
struct work_struct work;
bool thermal_node;
uint32_t scale_type;
struct list_head thr_list;
bool high_thr_triggered;
bool low_thr_triggered;
};
struct qpnp_adc_tm_chip {
struct device *dev;
struct qpnp_adc_drv *adc;
struct list_head list;
bool adc_tm_initialized;
bool adc_tm_recalib_check;
int max_channels_available;
struct qpnp_vadc_chip *vadc_dev;
struct workqueue_struct *high_thr_wq;
struct workqueue_struct *low_thr_wq;
struct workqueue_struct *thr_wq;
struct work_struct trigger_high_thr_work;
struct work_struct trigger_low_thr_work;
struct work_struct trigger_thr_work;
bool adc_vote_enable;
struct qpnp_adc_thr_info th_info;
bool adc_tm_hc;
struct qpnp_adc_tm_sensor sensor[0];
};
LIST_HEAD(qpnp_adc_tm_device_list);
struct qpnp_adc_tm_trip_reg_type {
enum qpnp_adc_tm_channel_select btm_amux_chan;
uint16_t low_thr_lsb_addr;
uint16_t low_thr_msb_addr;
uint16_t high_thr_lsb_addr;
uint16_t high_thr_msb_addr;
u8 multi_meas_en;
u8 low_thr_int_chan_en;
u8 high_thr_int_chan_en;
u8 meas_interval_ctl;
};
static struct qpnp_adc_tm_trip_reg_type adc_tm_data[] = {
[QPNP_ADC_TM_CHAN0] = {QPNP_ADC_TM_M0_ADC_CH_SEL_CTL,
QPNP_M0_LOW_THR_LSB,
QPNP_M0_LOW_THR_MSB, QPNP_M0_HIGH_THR_LSB,
QPNP_M0_HIGH_THR_MSB, QPNP_ADC_TM_MULTI_MEAS_EN_M0,
QPNP_ADC_TM_LOW_THR_INT_EN_M0, QPNP_ADC_TM_HIGH_THR_INT_EN_M0,
QPNP_ADC_TM_M0_MEAS_INTERVAL_CTL},
[QPNP_ADC_TM_CHAN1] = {QPNP_ADC_TM_M1_ADC_CH_SEL_CTL,
QPNP_M1_LOW_THR_LSB,
QPNP_M1_LOW_THR_MSB, QPNP_M1_HIGH_THR_LSB,
QPNP_M1_HIGH_THR_MSB, QPNP_ADC_TM_MULTI_MEAS_EN_M1,
QPNP_ADC_TM_LOW_THR_INT_EN_M1, QPNP_ADC_TM_HIGH_THR_INT_EN_M1,
QPNP_ADC_TM_M1_MEAS_INTERVAL_CTL},
[QPNP_ADC_TM_CHAN2] = {QPNP_ADC_TM_M2_ADC_CH_SEL_CTL,
QPNP_M2_LOW_THR_LSB,
QPNP_M2_LOW_THR_MSB, QPNP_M2_HIGH_THR_LSB,
QPNP_M2_HIGH_THR_MSB, QPNP_ADC_TM_MULTI_MEAS_EN_M2,
QPNP_ADC_TM_LOW_THR_INT_EN_M2, QPNP_ADC_TM_HIGH_THR_INT_EN_M2,
QPNP_ADC_TM_M2_MEAS_INTERVAL_CTL},
[QPNP_ADC_TM_CHAN3] = {QPNP_ADC_TM_M3_ADC_CH_SEL_CTL,
QPNP_M3_LOW_THR_LSB,
QPNP_M3_LOW_THR_MSB, QPNP_M3_HIGH_THR_LSB,
QPNP_M3_HIGH_THR_MSB, QPNP_ADC_TM_MULTI_MEAS_EN_M3,
QPNP_ADC_TM_LOW_THR_INT_EN_M3, QPNP_ADC_TM_HIGH_THR_INT_EN_M3,
QPNP_ADC_TM_M3_MEAS_INTERVAL_CTL},
[QPNP_ADC_TM_CHAN4] = {QPNP_ADC_TM_M4_ADC_CH_SEL_CTL,
QPNP_M4_LOW_THR_LSB,
QPNP_M4_LOW_THR_MSB, QPNP_M4_HIGH_THR_LSB,
QPNP_M4_HIGH_THR_MSB, QPNP_ADC_TM_MULTI_MEAS_EN_M4,
QPNP_ADC_TM_LOW_THR_INT_EN_M4, QPNP_ADC_TM_HIGH_THR_INT_EN_M4,
QPNP_ADC_TM_M4_MEAS_INTERVAL_CTL},
[QPNP_ADC_TM_CHAN5] = {QPNP_ADC_TM_M5_ADC_CH_SEL_CTL,
QPNP_M5_LOW_THR_LSB,
QPNP_M5_LOW_THR_MSB, QPNP_M5_HIGH_THR_LSB,
QPNP_M5_HIGH_THR_MSB, QPNP_ADC_TM_MULTI_MEAS_EN_M5,
QPNP_ADC_TM_LOW_THR_INT_EN_M5, QPNP_ADC_TM_HIGH_THR_INT_EN_M5,
QPNP_ADC_TM_M5_MEAS_INTERVAL_CTL},
[QPNP_ADC_TM_CHAN6] = {QPNP_ADC_TM_M6_ADC_CH_SEL_CTL,
QPNP_M6_LOW_THR_LSB,
QPNP_M6_LOW_THR_MSB, QPNP_M6_HIGH_THR_LSB,
QPNP_M6_HIGH_THR_MSB, QPNP_ADC_TM_MULTI_MEAS_EN_M6,
QPNP_ADC_TM_LOW_THR_INT_EN_M6, QPNP_ADC_TM_HIGH_THR_INT_EN_M6,
QPNP_ADC_TM_M6_MEAS_INTERVAL_CTL},
[QPNP_ADC_TM_CHAN7] = {QPNP_ADC_TM_M7_ADC_CH_SEL_CTL,
QPNP_M7_LOW_THR_LSB,
QPNP_M7_LOW_THR_MSB, QPNP_M7_HIGH_THR_LSB,
QPNP_M7_HIGH_THR_MSB, QPNP_ADC_TM_MULTI_MEAS_EN_M7,
QPNP_ADC_TM_LOW_THR_INT_EN_M7, QPNP_ADC_TM_HIGH_THR_INT_EN_M7,
QPNP_ADC_TM_M7_MEAS_INTERVAL_CTL},
};
static struct qpnp_adc_tm_reverse_scale_fn adc_tm_rscale_fn[] = {
[SCALE_R_VBATT] = {qpnp_adc_vbatt_rscaler},
[SCALE_RBATT_THERM] = {qpnp_adc_btm_scaler},
[SCALE_R_USB_ID] = {qpnp_adc_usb_scaler},
[SCALE_RPMIC_THERM] = {qpnp_adc_scale_millidegc_pmic_voltage_thr},
[SCALE_R_SMB_BATT_THERM] = {qpnp_adc_smb_btm_rscaler},
[SCALE_R_ABSOLUTE] = {qpnp_adc_absolute_rthr},
[SCALE_QRD_SKUH_RBATT_THERM] = {qpnp_adc_qrd_skuh_btm_scaler},
[SCALE_QRD_SKUT1_RBATT_THERM] = {qpnp_adc_qrd_skut1_btm_scaler},
[SCALE_QRD_215_RBATT_THERM] = {qpnp_adc_qrd_215_btm_scaler},
};
static int32_t qpnp_adc_tm_read_reg(struct qpnp_adc_tm_chip *chip,
int16_t reg, u8 *data, int len)
{
int rc = 0;
rc = regmap_bulk_read(chip->adc->regmap, (chip->adc->offset + reg),
data, len);
if (rc < 0)
pr_err("adc-tm read reg %d failed with %d\n", reg, rc);
return rc;
}
static int32_t qpnp_adc_tm_write_reg(struct qpnp_adc_tm_chip *chip,
int16_t reg, u8 data, int len)
{
int rc = 0;
u8 *buf;
buf = &data;
rc = regmap_bulk_write(chip->adc->regmap, (chip->adc->offset + reg),
buf, len);
if (rc < 0)
pr_err("adc-tm write reg %d failed with %d\n", reg, rc);
return rc;
}
static int32_t qpnp_adc_tm_fast_avg_en(struct qpnp_adc_tm_chip *chip,
uint32_t *fast_avg_sample)
{
int rc = 0, version = 0;
u8 fast_avg_en = 0;
version = qpnp_adc_get_revid_version(chip->dev);
if (!((version == QPNP_REV_ID_8916_1_0) ||
(version == QPNP_REV_ID_8916_1_1) ||
(version == QPNP_REV_ID_8916_2_0))) {
pr_debug("fast-avg-en not required for this version\n");
return rc;
}
fast_avg_en = QPNP_FAST_AVG_ENABLED;
rc = qpnp_adc_tm_write_reg(chip, QPNP_FAST_AVG_EN, fast_avg_en, 1);
if (rc < 0) {
pr_err("adc-tm fast-avg enable err\n");
return rc;
}
if (*fast_avg_sample >= 3)
*fast_avg_sample = 2;
return rc;
}
static int qpnp_adc_tm_check_vreg_vote(struct qpnp_adc_tm_chip *chip)
{
int rc = 0;
if (!chip->adc_vote_enable) {
if (chip->adc->hkadc_ldo && chip->adc->hkadc_ldo_ok) {
rc = qpnp_adc_enable_voltage(chip->adc);
if (rc) {
pr_err("failed enabling VADC LDO\n");
return rc;
}
chip->adc_vote_enable = true;
}
}
return rc;
}
static int32_t qpnp_adc_tm_enable(struct qpnp_adc_tm_chip *chip)
{
int rc = 0;
u8 data = 0;
rc = qpnp_adc_tm_check_vreg_vote(chip);
if (rc) {
pr_err("ADC TM VREG enable failed:%d\n", rc);
return rc;
}
data = QPNP_ADC_TM_EN;
rc = qpnp_adc_tm_write_reg(chip, QPNP_EN_CTL1, data, 1);
if (rc < 0) {
pr_err("adc-tm enable failed\n");
return rc;
}
if (chip->adc_tm_hc) {
data = QPNP_ADC_CONV_REQ_EN;
rc = qpnp_adc_tm_write_reg(chip, QPNP_BTM_CONV_REQ, data, 1);
if (rc < 0) {
pr_err("adc-tm enable failed\n");
return rc;
}
}
return rc;
}
static int32_t qpnp_adc_tm_disable(struct qpnp_adc_tm_chip *chip)
{
u8 data = 0;
int rc = 0;
if (!chip->adc_tm_hc) {
rc = qpnp_adc_tm_write_reg(chip, QPNP_EN_CTL1, data, 1);
if (rc < 0) {
pr_err("adc-tm disable failed\n");
return rc;
}
}
return rc;
}
static int qpnp_adc_tm_is_valid(struct qpnp_adc_tm_chip *chip)
{
struct qpnp_adc_tm_chip *adc_tm_chip = NULL;
list_for_each_entry(adc_tm_chip, &qpnp_adc_tm_device_list, list)
if (chip == adc_tm_chip)
return 0;
return -EINVAL;
}
static int32_t qpnp_adc_tm_rc_check_channel_en(struct qpnp_adc_tm_chip *chip)
{
u8 adc_tm_ctl = 0, status_low = 0, status_high = 0;
int rc = 0, i = 0;
bool ldo_en = false;
for (i = 0; i < chip->max_channels_available; i++) {
rc = qpnp_adc_tm_read_reg(chip, QPNP_BTM_Mn_CTL(i),
&adc_tm_ctl, 1);
if (rc) {
pr_err("adc-tm-tm read ctl failed with %d\n", rc);
return rc;
}
adc_tm_ctl &= QPNP_BTM_Mn_MEAS_EN;
status_low = adc_tm_ctl & QPNP_BTM_Mn_LOW_THR_INT_EN;
status_high = adc_tm_ctl & QPNP_BTM_Mn_HIGH_THR_INT_EN;
/* Enable only if there are pending measurement requests */
if ((adc_tm_ctl && status_high) ||
(adc_tm_ctl && status_low)) {
qpnp_adc_tm_enable(chip);
ldo_en = true;
/* Request conversion */
rc = qpnp_adc_tm_write_reg(chip, QPNP_CONV_REQ,
QPNP_CONV_REQ_SET, 1);
if (rc < 0) {
pr_err("adc-tm request conversion failed\n");
return rc;
}
}
break;
}
if (!ldo_en) {
/* disable the vote if applicable */
if (chip->adc_vote_enable && chip->adc->hkadc_ldo &&
chip->adc->hkadc_ldo_ok) {
qpnp_adc_disable_voltage(chip->adc);
chip->adc_vote_enable = false;
}
}
return rc;
}
static int32_t qpnp_adc_tm_enable_if_channel_meas(
struct qpnp_adc_tm_chip *chip)
{
u8 adc_tm_meas_en = 0, status_low = 0, status_high = 0;
int rc = 0;
if (chip->adc_tm_hc) {
rc = qpnp_adc_tm_rc_check_channel_en(chip);
if (rc) {
pr_err("adc_tm channel check failed\n");
return rc;
}
} else {
/* Check if a measurement request is still required */
rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_MULTI_MEAS_EN,
&adc_tm_meas_en, 1);
if (rc) {
pr_err("read status high failed with %d\n", rc);
return rc;
}
rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_LOW_THR_INT_EN,
&status_low, 1);
if (rc) {
pr_err("read status low failed with %d\n", rc);
return rc;
}
rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_HIGH_THR_INT_EN,
&status_high, 1);
if (rc) {
pr_err("read status high failed with %d\n", rc);
return rc;
}
/* Enable only if there are pending measurement requests */
if ((adc_tm_meas_en && status_high) ||
(adc_tm_meas_en && status_low)) {
qpnp_adc_tm_enable(chip);
/* Request conversion */
rc = qpnp_adc_tm_write_reg(chip, QPNP_CONV_REQ,
QPNP_CONV_REQ_SET, 1);
if (rc < 0) {
pr_err("adc-tm request conversion failed\n");
return rc;
}
} else {
/* disable the vote if applicable */
if (chip->adc_vote_enable && chip->adc->hkadc_ldo &&
chip->adc->hkadc_ldo_ok) {
qpnp_adc_disable_voltage(chip->adc);
chip->adc_vote_enable = false;
}
}
}
return rc;
}
static int32_t qpnp_adc_tm_mode_select(struct qpnp_adc_tm_chip *chip,
u8 mode_ctl)
{
int rc;
mode_ctl |= (QPNP_ADC_TRIM_EN | QPNP_AMUX_TRIM_EN);
/* VADC_BTM current sets mode to recurring measurements */
rc = qpnp_adc_tm_write_reg(chip, QPNP_MODE_CTL, mode_ctl, 1);
if (rc < 0)
pr_err("adc-tm write mode selection err\n");
return rc;
}
static int32_t qpnp_adc_tm_req_sts_check(struct qpnp_adc_tm_chip *chip)
{
u8 status1 = 0, mode_ctl = 0;
int rc, count = 0;
/* Re-enable the peripheral */
rc = qpnp_adc_tm_enable(chip);
if (rc) {
pr_err("adc-tm re-enable peripheral failed\n");
return rc;
}
/* The VADC_TM bank needs to be disabled for new conversion request */
rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_STATUS1, &status1, 1);
if (rc) {
pr_err("adc-tm read status1 failed\n");
return rc;
}
/* Disable the bank if a conversion is occurring */
while (status1 & QPNP_STATUS1_REQ_STS) {
if (count > QPNP_RETRY) {
pr_err("retry error=%d with 0x%x\n", count, status1);
break;
}
/*
* Wait time is based on the optimum sampling rate
* and adding enough time buffer to account for ADC conversions
* occurring on different peripheral banks
*/
usleep_range(QPNP_MIN_TIME, QPNP_MAX_TIME);
rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_STATUS1,
&status1, 1);
if (rc < 0) {
pr_err("adc-tm disable failed\n");
return rc;
}
count++;
}
if (!chip->adc_tm_hc) {
/* Change the mode back to recurring measurement mode */
mode_ctl = ADC_OP_MEASUREMENT_INTERVAL << QPNP_OP_MODE_SHIFT;
rc = qpnp_adc_tm_mode_select(chip, mode_ctl);
if (rc < 0) {
pr_err("adc-tm mode change to recurring failed\n");
return rc;
}
}
/* Disable the peripheral */
rc = qpnp_adc_tm_disable(chip);
if (rc < 0) {
pr_err("adc-tm peripheral disable failed\n");
return rc;
}
return rc;
}
static int32_t qpnp_adc_tm_get_btm_idx(struct qpnp_adc_tm_chip *chip,
uint32_t btm_chan, uint32_t *btm_chan_idx)
{
int rc = 0, i;
bool chan_found = false;
if (!chip->adc_tm_hc) {
for (i = 0; i < QPNP_ADC_TM_CHAN_NONE; i++) {
if (adc_tm_data[i].btm_amux_chan == btm_chan) {
*btm_chan_idx = i;
chan_found = true;
}
}
} else {
for (i = 0; i < chip->max_channels_available; i++) {
if (chip->sensor[i].btm_channel_num == btm_chan) {
*btm_chan_idx = i;
chan_found = true;
break;
}
}
}
if (!chan_found)
return -EINVAL;
return rc;
}
static int32_t qpnp_adc_tm_check_revision(struct qpnp_adc_tm_chip *chip,
uint32_t btm_chan_num)
{
u8 rev, perph_subtype;
int rc = 0;
rc = qpnp_adc_tm_read_reg(chip, QPNP_REVISION3, &rev, 1);
if (rc) {
pr_err("adc-tm revision read failed\n");
return rc;
}
rc = qpnp_adc_tm_read_reg(chip, QPNP_PERPH_SUBTYPE, &perph_subtype, 1);
if (rc) {
pr_err("adc-tm perph_subtype read failed\n");
return rc;
}
if (perph_subtype == QPNP_PERPH_TYPE2) {
if ((rev < QPNP_REVISION_EIGHT_CHANNEL_SUPPORT) &&
(btm_chan_num > QPNP_ADC_TM_M4_ADC_CH_SEL_CTL)) {
pr_debug("Version does not support more than 5 channels\n");
return -EINVAL;
}
}
if (perph_subtype == QPNP_PERPH_SUBTYPE_TWO_CHANNEL_SUPPORT) {
if (btm_chan_num > QPNP_ADC_TM_M1_ADC_CH_SEL_CTL) {
pr_debug("Version does not support more than 2 channels\n");
return -EINVAL;
}
}
return rc;
}
static int32_t qpnp_adc_tm_timer_interval_select(
struct qpnp_adc_tm_chip *chip, uint32_t btm_chan,
struct qpnp_vadc_chan_properties *chan_prop)
{
int rc, chan_idx = 0, i = 0;
bool chan_found = false;
u8 meas_interval_timer2 = 0, timer_interval_store = 0;
uint32_t btm_chan_idx = 0;
bool is_pmic_5 = chip->adc->adc_prop->is_pmic_5;
while (i < chip->max_channels_available) {
if (chip->sensor[i].btm_channel_num == btm_chan) {
chan_idx = i;
chan_found = true;
i++;
} else
i++;
}
if (!chan_found) {
pr_err("Channel not found\n");
return -EINVAL;
}
switch (chip->sensor[chan_idx].timer_select) {
case ADC_MEAS_TIMER_SELECT1:
if (!chip->adc_tm_hc)
rc = qpnp_adc_tm_write_reg(chip,
QPNP_ADC_TM_MEAS_INTERVAL_CTL,
chip->sensor[chan_idx].meas_interval, 1);
else {
if (!is_pmic_5)
rc = qpnp_adc_tm_write_reg(chip,
QPNP_BTM_MEAS_INTERVAL_CTL,
chip->sensor[chan_idx].meas_interval,
1);
else
rc = qpnp_adc_tm_write_reg(chip,
QPNP_BTM_MEAS_INTERVAL_CTL_PM5,
chip->sensor[chan_idx].meas_interval,
1);
}
if (rc < 0) {
pr_err("timer1 configure failed\n");
return rc;
}
break;
case ADC_MEAS_TIMER_SELECT2:
/* Thermal channels uses timer2, default to 1 second */
if (!chip->adc_tm_hc)
rc = qpnp_adc_tm_read_reg(chip,
QPNP_ADC_TM_MEAS_INTERVAL_CTL2,
&meas_interval_timer2, 1);
else {
if (!is_pmic_5)
rc = qpnp_adc_tm_read_reg(chip,
QPNP_BTM_MEAS_INTERVAL_CTL2,
&meas_interval_timer2, 1);
else
rc = qpnp_adc_tm_read_reg(chip,
QPNP_BTM_MEAS_INTERVAL_CTL2_PM5,
&meas_interval_timer2, 1);
}
if (rc < 0) {
pr_err("timer2 configure read failed\n");
return rc;
}
timer_interval_store = chip->sensor[chan_idx].meas_interval;
timer_interval_store <<= QPNP_ADC_TM_MEAS_INTERVAL_CTL2_SHIFT;
timer_interval_store &= QPNP_ADC_TM_MEAS_INTERVAL_CTL2_MASK;
meas_interval_timer2 |= timer_interval_store;
if (!chip->adc_tm_hc)
rc = qpnp_adc_tm_write_reg(chip,
QPNP_ADC_TM_MEAS_INTERVAL_CTL2,
meas_interval_timer2, 1);
else {
if (!is_pmic_5)
rc = qpnp_adc_tm_write_reg(chip,
QPNP_BTM_MEAS_INTERVAL_CTL2,
meas_interval_timer2, 1);
else
rc = qpnp_adc_tm_write_reg(chip,
QPNP_BTM_MEAS_INTERVAL_CTL2_PM5,
meas_interval_timer2, 1);
}
if (rc < 0) {
pr_err("timer2 configure failed\n");
return rc;
}
break;
case ADC_MEAS_TIMER_SELECT3:
if (!chip->adc_tm_hc)
rc = qpnp_adc_tm_read_reg(chip,
QPNP_ADC_TM_MEAS_INTERVAL_CTL2,
&meas_interval_timer2, 1);
else {
if (!is_pmic_5)
rc = qpnp_adc_tm_read_reg(chip,
QPNP_BTM_MEAS_INTERVAL_CTL2,
&meas_interval_timer2, 1);
else
rc = qpnp_adc_tm_read_reg(chip,
QPNP_BTM_MEAS_INTERVAL_CTL2_PM5,
&meas_interval_timer2, 1);
}
if (rc < 0) {
pr_err("timer3 read failed\n");
return rc;
}
timer_interval_store = chip->sensor[chan_idx].meas_interval;
timer_interval_store &= QPNP_ADC_TM_MEAS_INTERVAL_CTL3_MASK;
meas_interval_timer2 |= timer_interval_store;
if (!chip->adc_tm_hc)
rc = qpnp_adc_tm_write_reg(chip,
QPNP_ADC_TM_MEAS_INTERVAL_CTL2,
meas_interval_timer2, 1);
else {
if (!is_pmic_5)
rc = qpnp_adc_tm_write_reg(chip,
QPNP_BTM_MEAS_INTERVAL_CTL2,
meas_interval_timer2, 1);
else
rc = qpnp_adc_tm_write_reg(chip,
QPNP_BTM_MEAS_INTERVAL_CTL2_PM5,
meas_interval_timer2, 1);
}
if (rc < 0) {
pr_err("timer3 configure failed\n");
return rc;
}
break;
default:
pr_err("Invalid timer selection\n");
return -EINVAL;
}
/* Select the timer to use for the corresponding channel */
rc = qpnp_adc_tm_get_btm_idx(chip, btm_chan, &btm_chan_idx);
if (rc < 0) {
pr_err("Invalid btm channel idx\n");
return rc;
}
if (!chip->adc_tm_hc)
rc = qpnp_adc_tm_write_reg(chip,
adc_tm_data[btm_chan_idx].meas_interval_ctl,
chip->sensor[chan_idx].timer_select, 1);
else
rc = qpnp_adc_tm_write_reg(chip,
QPNP_BTM_Mn_MEAS_INTERVAL_CTL(btm_chan_idx),
chip->sensor[chan_idx].timer_select, 1);
if (rc < 0) {
pr_err("TM channel timer configure failed\n");
return rc;
}
pr_debug("timer select:%d, timer_value_within_select:%d, channel:%x\n",
chip->sensor[chan_idx].timer_select,
chip->sensor[chan_idx].meas_interval,
btm_chan);
return rc;
}
static int32_t qpnp_adc_tm_add_to_list(struct qpnp_adc_tm_chip *chip,
uint32_t dt_index,
struct qpnp_adc_tm_btm_param *param,
struct qpnp_vadc_chan_properties *chan_prop)
{
struct qpnp_adc_thr_client_info *client_info = NULL;
bool client_info_exists = false;
list_for_each_entry(client_info,
&chip->sensor[dt_index].thr_list, list) {
if (client_info->btm_param == param) {
client_info->low_thr_requested = chan_prop->low_thr;
client_info->high_thr_requested = chan_prop->high_thr;
client_info->state_requested = param->state_request;
client_info->state_req_copy = param->state_request;
client_info->notify_low_thr = false;
client_info->notify_high_thr = false;
client_info_exists = true;
pr_debug("client found\n");
}
}
if (!client_info_exists) {
client_info = devm_kzalloc(chip->dev,
sizeof(struct qpnp_adc_thr_client_info), GFP_KERNEL);
if (!client_info)
return -ENOMEM;
pr_debug("new client\n");
client_info->btm_param = param;
client_info->low_thr_requested = chan_prop->low_thr;
client_info->high_thr_requested = chan_prop->high_thr;
client_info->state_requested = param->state_request;
client_info->state_req_copy = param->state_request;
list_add_tail(&client_info->list,
&chip->sensor[dt_index].thr_list);
}
return 0;
}
static int32_t qpnp_adc_tm_reg_update(struct qpnp_adc_tm_chip *chip,
uint16_t addr, u8 mask, bool state)
{
u8 reg_value = 0;
int rc = 0;
rc = qpnp_adc_tm_read_reg(chip, addr, &reg_value, 1);
if (rc < 0) {
pr_err("read failed for addr:0x%x\n", addr);
return rc;
}
reg_value = reg_value & ~mask;
if (state)
reg_value |= mask;
pr_debug("state:%d, reg:0x%x with bits:0x%x and mask:0x%x\n",
state, addr, reg_value, ~mask);
rc = qpnp_adc_tm_write_reg(chip, addr, reg_value, 1);
if (rc < 0) {
pr_err("write failed for addr:%x\n", addr);
return rc;
}
return rc;
}
static int32_t qpnp_adc_tm_read_thr_value(struct qpnp_adc_tm_chip *chip,
uint32_t btm_chan)
{
int rc = 0;
u8 data_lsb = 0, data_msb = 0;
uint32_t btm_chan_idx = 0;
int32_t low_thr = 0, high_thr = 0;
if (!chip->adc_tm_hc) {
pr_err("Not applicable for VADC HC peripheral\n");
return -EINVAL;
}
rc = qpnp_adc_tm_get_btm_idx(chip, btm_chan, &btm_chan_idx);
if (rc < 0) {
pr_err("Invalid btm channel idx\n");
return rc;
}
rc = qpnp_adc_tm_read_reg(chip,
adc_tm_data[btm_chan_idx].low_thr_lsb_addr,
&data_lsb, 1);
if (rc < 0) {
pr_err("low threshold lsb setting failed\n");
return rc;
}
rc = qpnp_adc_tm_read_reg(chip,
adc_tm_data[btm_chan_idx].low_thr_msb_addr,
&data_msb, 1);
if (rc < 0) {
pr_err("low threshold msb setting failed\n");
return rc;
}
low_thr = (data_msb << 8) | data_lsb;
rc = qpnp_adc_tm_read_reg(chip,
adc_tm_data[btm_chan_idx].high_thr_lsb_addr,
&data_lsb, 1);
if (rc < 0) {
pr_err("high threshold lsb setting failed\n");
return rc;
}
rc = qpnp_adc_tm_read_reg(chip,
adc_tm_data[btm_chan_idx].high_thr_msb_addr,
&data_msb, 1);
if (rc < 0) {
pr_err("high threshold msb setting failed\n");
return rc;
}
high_thr = (data_msb << 8) | data_lsb;
pr_debug("configured thresholds high:0x%x and low:0x%x\n",
high_thr, low_thr);
return rc;
}
static int32_t qpnp_adc_tm_thr_update(struct qpnp_adc_tm_chip *chip,
uint32_t btm_chan, int32_t high_thr, int32_t low_thr)
{
int rc = 0;
uint32_t btm_chan_idx = 0;
rc = qpnp_adc_tm_get_btm_idx(chip, btm_chan, &btm_chan_idx);
if (rc < 0) {
pr_err("Invalid btm channel idx\n");
return rc;
}
if (!chip->adc_tm_hc) {
rc = qpnp_adc_tm_write_reg(chip,
adc_tm_data[btm_chan_idx].low_thr_lsb_addr,
QPNP_ADC_TM_THR_LSB_MASK(low_thr), 1);
if (rc < 0) {
pr_err("low threshold lsb setting failed\n");
return rc;
}
rc = qpnp_adc_tm_write_reg(chip,
adc_tm_data[btm_chan_idx].low_thr_msb_addr,
QPNP_ADC_TM_THR_MSB_MASK(low_thr), 1);
if (rc < 0) {
pr_err("low threshold msb setting failed\n");
return rc;
}
rc = qpnp_adc_tm_write_reg(chip,
adc_tm_data[btm_chan_idx].high_thr_lsb_addr,
QPNP_ADC_TM_THR_LSB_MASK(high_thr), 1);
if (rc < 0) {
pr_err("high threshold lsb setting failed\n");
return rc;
}
rc = qpnp_adc_tm_write_reg(chip,
adc_tm_data[btm_chan_idx].high_thr_msb_addr,
QPNP_ADC_TM_THR_MSB_MASK(high_thr), 1);
if (rc < 0)
pr_err("high threshold msb setting failed\n");
} else {
rc = qpnp_adc_tm_write_reg(chip,
QPNP_BTM_Mn_LOW_THR0(btm_chan_idx),
QPNP_ADC_TM_THR_LSB_MASK(low_thr), 1);
if (rc < 0) {
pr_err("low threshold lsb setting failed\n");
return rc;
}
rc = qpnp_adc_tm_write_reg(chip,
QPNP_BTM_Mn_LOW_THR1(btm_chan_idx),
QPNP_ADC_TM_THR_MSB_MASK(low_thr), 1);
if (rc < 0) {
pr_err("low threshold msb setting failed\n");
return rc;
}
rc = qpnp_adc_tm_write_reg(chip,
QPNP_BTM_Mn_HIGH_THR0(btm_chan_idx),
QPNP_ADC_TM_THR_LSB_MASK(high_thr), 1);
if (rc < 0) {
pr_err("high threshold lsb setting failed\n");
return rc;
}
rc = qpnp_adc_tm_write_reg(chip,
QPNP_BTM_Mn_HIGH_THR1(btm_chan_idx),
QPNP_ADC_TM_THR_MSB_MASK(high_thr), 1);
if (rc < 0)
pr_err("high threshold msb setting failed\n");
}
pr_debug("client requested high:%d and low:%d\n",
high_thr, low_thr);
return rc;
}
static int32_t qpnp_adc_tm_manage_thresholds(struct qpnp_adc_tm_chip *chip,
uint32_t dt_index, uint32_t btm_chan)
{
struct qpnp_adc_thr_client_info *client_info = NULL;
struct list_head *thr_list;
int high_thr = 0, low_thr = 0, rc = 0;
/*
* high_thr/low_thr starting point and reset the high_thr_set and
* low_thr_set back to reset since the thresholds will be
* recomputed.
*/
list_for_each(thr_list,
&chip->sensor[dt_index].thr_list) {
client_info = list_entry(thr_list,
struct qpnp_adc_thr_client_info, list);
high_thr = client_info->high_thr_requested;
low_thr = client_info->low_thr_requested;
client_info->high_thr_set = false;
client_info->low_thr_set = false;
}
pr_debug("init threshold is high:%d and low:%d\n", high_thr, low_thr);
/* Find the min of high_thr and max of low_thr */
list_for_each(thr_list,
&chip->sensor[dt_index].thr_list) {
client_info = list_entry(thr_list,
struct qpnp_adc_thr_client_info, list);
if ((client_info->state_req_copy == ADC_TM_HIGH_THR_ENABLE) ||
(client_info->state_req_copy ==
ADC_TM_HIGH_LOW_THR_ENABLE))
if (client_info->high_thr_requested < high_thr)
high_thr = client_info->high_thr_requested;
if ((client_info->state_req_copy == ADC_TM_LOW_THR_ENABLE) ||
(client_info->state_req_copy ==
ADC_TM_HIGH_LOW_THR_ENABLE))
if (client_info->low_thr_requested > low_thr)
low_thr = client_info->low_thr_requested;
pr_debug("threshold compared is high:%d and low:%d\n",
client_info->high_thr_requested,
client_info->low_thr_requested);
pr_debug("current threshold is high:%d and low:%d\n",
high_thr, low_thr);
}
/* Check which of the high_thr and low_thr got set */
list_for_each(thr_list,
&chip->sensor[dt_index].thr_list) {
client_info = list_entry(thr_list,
struct qpnp_adc_thr_client_info, list);
if ((client_info->state_req_copy == ADC_TM_HIGH_THR_ENABLE) ||
(client_info->state_req_copy ==
ADC_TM_HIGH_LOW_THR_ENABLE))
if (high_thr == client_info->high_thr_requested)
client_info->high_thr_set = true;
if ((client_info->state_req_copy == ADC_TM_LOW_THR_ENABLE) ||
(client_info->state_req_copy ==
ADC_TM_HIGH_LOW_THR_ENABLE))
if (low_thr == client_info->low_thr_requested)
client_info->low_thr_set = true;
}
rc = qpnp_adc_tm_thr_update(chip, btm_chan, high_thr, low_thr);
if (rc < 0)
pr_err("setting chan:%d threshold failed\n", btm_chan);
pr_debug("threshold written is high:%d and low:%d\n",
high_thr, low_thr);
return 0;
}
static int32_t qpnp_adc_tm_channel_configure(struct qpnp_adc_tm_chip *chip,
uint32_t btm_chan,
struct qpnp_vadc_chan_properties *chan_prop,
uint32_t amux_channel)
{
int rc = 0, i = 0, chan_idx = 0;
bool chan_found = false, high_thr_set = false, low_thr_set = false;
u8 sensor_mask = 0;
struct qpnp_adc_thr_client_info *client_info = NULL;
uint32_t btm_chan_idx = 0;
while (i < chip->max_channels_available) {
if (chip->sensor[i].btm_channel_num == btm_chan) {
chan_idx = i;
chan_found = true;
i++;
} else
i++;
}
if (!chan_found) {
pr_err("Channel not found\n");
return -EINVAL;
}
rc = qpnp_adc_tm_get_btm_idx(chip, btm_chan, &btm_chan_idx);
if (rc < 0) {
pr_err("Invalid btm channel idx\n");
return rc;
}
sensor_mask = 1 << chan_idx;
if (!chip->sensor[chan_idx].thermal_node) {
/* Update low and high notification thresholds */
rc = qpnp_adc_tm_manage_thresholds(chip, chan_idx,
btm_chan);
if (rc < 0) {
pr_err("setting chan:%d threshold failed\n", btm_chan);
return rc;
}
list_for_each_entry(client_info,
&chip->sensor[chan_idx].thr_list, list) {
if (client_info->high_thr_set == true)
high_thr_set = true;
if (client_info->low_thr_set == true)
low_thr_set = true;
}
if (low_thr_set) {
pr_debug("low sensor mask:%x with state:%d\n",
sensor_mask, chan_prop->state_request);
/* Enable low threshold's interrupt */
if (!chip->adc_tm_hc)
rc = qpnp_adc_tm_reg_update(chip,
QPNP_ADC_TM_LOW_THR_INT_EN,
sensor_mask, true);
else
rc = qpnp_adc_tm_reg_update(chip,
QPNP_BTM_Mn_EN(btm_chan_idx),
QPNP_BTM_Mn_LOW_THR_INT_EN, true);
if (rc < 0) {
pr_err("low thr enable err:%d\n", btm_chan);
return rc;
}
}
if (high_thr_set) {
/* Enable high threshold's interrupt */
pr_debug("high sensor mask:%x\n", sensor_mask);
if (!chip->adc_tm_hc)
rc = qpnp_adc_tm_reg_update(chip,
QPNP_ADC_TM_HIGH_THR_INT_EN,
sensor_mask, true);
else
rc = qpnp_adc_tm_reg_update(chip,
QPNP_BTM_Mn_EN(btm_chan_idx),
QPNP_BTM_Mn_HIGH_THR_INT_EN, true);
if (rc < 0) {
pr_err("high thr enable err:%d\n", btm_chan);
return rc;
}
}
}
/* Enable corresponding BTM channel measurement */
if (!chip->adc_tm_hc)
rc = qpnp_adc_tm_reg_update(chip,
QPNP_ADC_TM_MULTI_MEAS_EN, sensor_mask, true);
else
rc = qpnp_adc_tm_reg_update(chip, QPNP_BTM_Mn_EN(btm_chan_idx),
QPNP_BTM_Mn_MEAS_EN, true);
if (rc < 0) {
pr_err("multi measurement en failed\n");
return rc;
}
return rc;
}
static int32_t qpnp_adc_tm_hc_configure(struct qpnp_adc_tm_chip *chip,
struct qpnp_adc_amux_properties *chan_prop)
{
u8 decimation = 0, fast_avg_ctl = 0;
u8 buf[8];
int rc = 0;
uint32_t btm_chan = 0, cal_type = 0, btm_chan_idx = 0;
/* Disable bank */
rc = qpnp_adc_tm_disable(chip);
if (rc)
return rc;
/* Decimation setup */
decimation = chan_prop->decimation;
rc = qpnp_adc_tm_write_reg(chip, QPNP_BTM_HC_ADC_DIG_PARAM,
decimation, 1);
if (rc < 0) {
pr_err("adc-tm digital parameter setup err\n");
return rc;
}
/* Fast averaging setup/enable */
rc = qpnp_adc_tm_read_reg(chip, QPNP_BTM_HC_FAST_AVG_CTL,
&fast_avg_ctl, 1);
if (rc < 0) {
pr_err("adc-tm fast-avg enable read err\n");
return rc;
}
fast_avg_ctl |= chan_prop->fast_avg_setup;
rc = qpnp_adc_tm_write_reg(chip, QPNP_BTM_HC_FAST_AVG_CTL,
fast_avg_ctl, 1);
if (rc < 0) {
pr_err("adc-tm fast-avg enable write err\n");
return rc;
}
/* Read block registers for respective BTM channel */
btm_chan = chan_prop->chan_prop->tm_channel_select;
rc = qpnp_adc_tm_get_btm_idx(chip, btm_chan, &btm_chan_idx);
if (rc < 0) {
pr_err("Invalid btm channel idx\n");
return rc;
}
rc = qpnp_adc_tm_read_reg(chip,
QPNP_BTM_Mn_ADC_CH_SEL_CTL(btm_chan_idx), buf, 8);
if (rc < 0) {
pr_err("qpnp adc configure block read failed\n");
return rc;
}
/* Update ADC channel sel */
rc = qpnp_adc_tm_write_reg(chip,
QPNP_BTM_Mn_ADC_CH_SEL_CTL(btm_chan_idx),
chan_prop->amux_channel, 1);
if (rc < 0) {
pr_err("adc-tm channel amux select failed\n");
return rc;
}
/* Manage thresholds */
rc = qpnp_adc_tm_channel_configure(chip, btm_chan,
chan_prop->chan_prop, chan_prop->amux_channel);
if (rc < 0) {
pr_err("adc-tm channel threshold configure failed\n");
return rc;
}
/* Measurement interval setup */
rc = qpnp_adc_tm_timer_interval_select(chip, btm_chan,
chan_prop->chan_prop);
if (rc < 0) {
pr_err("adc-tm timer select failed\n");
return rc;
}
/* Set calibration select, hw_settle delay */
cal_type |= (chan_prop->calib_type << QPNP_BTM_CTL_CAL_SEL_MASK_SHIFT);
buf[6] &= ~QPNP_BTM_CTL_HW_SETTLE_DELAY_MASK;
buf[6] |= chan_prop->hw_settle_time;
buf[6] &= ~QPNP_BTM_CTL_CAL_SEL;
buf[6] |= cal_type;
rc = qpnp_adc_tm_write_reg(chip, QPNP_BTM_Mn_CTL(btm_chan_idx),
buf[6], 1);
if (rc < 0) {
pr_err("adc-tm hw-settle, calib sel failed\n");
return rc;
}
/* Enable bank */
rc = qpnp_adc_tm_enable(chip);
if (rc)
return rc;
/* Request conversion */
rc = qpnp_adc_tm_write_reg(chip, QPNP_CONV_REQ, QPNP_CONV_REQ_SET, 1);
if (rc < 0) {
pr_err("adc-tm request conversion failed\n");
return rc;
}
return 0;
}
static int32_t qpnp_adc_tm_configure(struct qpnp_adc_tm_chip *chip,
struct qpnp_adc_amux_properties *chan_prop)
{
u8 decimation = 0, op_cntrl = 0, mode_ctl = 0;
int rc = 0;
uint32_t btm_chan = 0;
/* Set measurement in single measurement mode */
mode_ctl = ADC_OP_NORMAL_MODE << QPNP_OP_MODE_SHIFT;
rc = qpnp_adc_tm_mode_select(chip, mode_ctl);
if (rc < 0) {
pr_err("adc-tm single mode select failed\n");
return rc;
}
/* Disable bank */
rc = qpnp_adc_tm_disable(chip);
if (rc)
return rc;
/* Check if a conversion is in progress */
rc = qpnp_adc_tm_req_sts_check(chip);
if (rc < 0) {
pr_err("adc-tm req_sts check failed\n");
return rc;
}
/* Configure AMUX channel select for the corresponding BTM channel*/
btm_chan = chan_prop->chan_prop->tm_channel_select;
rc = qpnp_adc_tm_write_reg(chip, btm_chan, chan_prop->amux_channel, 1);
if (rc < 0) {
pr_err("adc-tm channel selection err\n");
return rc;
}
/* Digital parameter setup */
decimation |= chan_prop->decimation <<
QPNP_ADC_DIG_DEC_RATIO_SEL_SHIFT;
rc = qpnp_adc_tm_write_reg(chip, QPNP_ADC_DIG_PARAM, decimation, 1);
if (rc < 0) {
pr_err("adc-tm digital parameter setup err\n");
return rc;
}
/* Hardware setting time */
rc = qpnp_adc_tm_write_reg(chip, QPNP_HW_SETTLE_DELAY,
chan_prop->hw_settle_time, 1);
if (rc < 0) {
pr_err("adc-tm hw settling time setup err\n");
return rc;
}
/* Fast averaging setup/enable */
rc = qpnp_adc_tm_fast_avg_en(chip, &chan_prop->fast_avg_setup);
if (rc < 0) {
pr_err("adc-tm fast-avg enable err\n");
return rc;
}
rc = qpnp_adc_tm_write_reg(chip, QPNP_FAST_AVG_CTL,
chan_prop->fast_avg_setup, 1);
if (rc < 0) {
pr_err("adc-tm fast-avg setup err\n");
return rc;
}
/* Measurement interval setup */
rc = qpnp_adc_tm_timer_interval_select(chip, btm_chan,
chan_prop->chan_prop);
if (rc < 0) {
pr_err("adc-tm timer select failed\n");
return rc;
}
/* Channel configuration setup */
rc = qpnp_adc_tm_channel_configure(chip, btm_chan,
chan_prop->chan_prop, chan_prop->amux_channel);
if (rc < 0) {
pr_err("adc-tm channel configure failed\n");
return rc;
}
/* Recurring interval measurement enable */
rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_MEAS_INTERVAL_OP_CTL,
&op_cntrl, 1);
op_cntrl |= QPNP_ADC_MEAS_INTERVAL_OP;
rc = qpnp_adc_tm_reg_update(chip, QPNP_ADC_MEAS_INTERVAL_OP_CTL,
op_cntrl, true);
if (rc < 0) {
pr_err("adc-tm meas interval op configure failed\n");
return rc;
}
/* Enable bank */
rc = qpnp_adc_tm_enable(chip);
if (rc)
return rc;
/* Request conversion */
rc = qpnp_adc_tm_write_reg(chip, QPNP_CONV_REQ, QPNP_CONV_REQ_SET, 1);
if (rc < 0) {
pr_err("adc-tm request conversion failed\n");
return rc;
}
return 0;
}
static int qpnp_adc_tm_set_mode(struct qpnp_adc_tm_sensor *adc_tm,
enum thermal_device_mode mode)
{
struct qpnp_adc_tm_chip *chip = adc_tm->chip;
int rc = 0, channel;
u8 sensor_mask = 0, mode_ctl = 0;
uint32_t btm_chan_idx = 0, btm_chan = 0;
if (qpnp_adc_tm_is_valid(chip)) {
pr_err("invalid device\n");
return -ENODEV;
}
if (qpnp_adc_tm_check_revision(chip, adc_tm->btm_channel_num))
return -EINVAL;
mutex_lock(&chip->adc->adc_lock);
btm_chan = adc_tm->btm_channel_num;
rc = qpnp_adc_tm_get_btm_idx(chip, btm_chan, &btm_chan_idx);
if (rc < 0) {
pr_err("Invalid btm channel idx\n");
goto fail;
}
if (mode == THERMAL_DEVICE_ENABLED) {
chip->adc->amux_prop->amux_channel =
adc_tm->vadc_channel_num;
channel = adc_tm->sensor_num;
chip->adc->amux_prop->decimation =
chip->adc->adc_channels[channel].adc_decimation;
chip->adc->amux_prop->hw_settle_time =
chip->adc->adc_channels[channel].hw_settle_time;
chip->adc->amux_prop->fast_avg_setup =
chip->adc->adc_channels[channel].fast_avg_setup;
chip->adc->amux_prop->mode_sel =
ADC_OP_MEASUREMENT_INTERVAL << QPNP_OP_MODE_SHIFT;
chip->adc->amux_prop->chan_prop->low_thr = adc_tm->low_thr;
chip->adc->amux_prop->chan_prop->high_thr = adc_tm->high_thr;
chip->adc->amux_prop->chan_prop->tm_channel_select =
adc_tm->btm_channel_num;
chip->adc->amux_prop->calib_type =
chip->adc->adc_channels[channel].calib_type;
if (!chip->adc_tm_hc) {
rc = qpnp_adc_tm_configure(chip, chip->adc->amux_prop);
if (rc) {
pr_err("adc-tm configure failed with %d\n", rc);
goto fail;
}
} else {
rc = qpnp_adc_tm_hc_configure(chip,
chip->adc->amux_prop);
if (rc) {
pr_err("hc configure failed with %d\n", rc);
goto fail;
}
}
} else if (mode == THERMAL_DEVICE_DISABLED) {
sensor_mask = 1 << adc_tm->sensor_num;
if (!chip->adc_tm_hc) {
mode_ctl = ADC_OP_NORMAL_MODE << QPNP_OP_MODE_SHIFT;
rc = qpnp_adc_tm_mode_select(chip, mode_ctl);
if (rc < 0) {
pr_err("adc-tm single mode select failed\n");
goto fail;
}
}
/* Disable bank */
rc = qpnp_adc_tm_disable(chip);
if (rc < 0) {
pr_err("adc-tm disable failed\n");
goto fail;
}
if (!chip->adc_tm_hc) {
/* Check if a conversion is in progress */
rc = qpnp_adc_tm_req_sts_check(chip);
if (rc < 0) {
pr_err("adc-tm req_sts check failed\n");
goto fail;
}
rc = qpnp_adc_tm_reg_update(chip,
QPNP_ADC_TM_MULTI_MEAS_EN,
sensor_mask, false);
if (rc < 0) {
pr_err("multi measurement update failed\n");
goto fail;
}
} else {
rc = qpnp_adc_tm_reg_update(chip,
QPNP_BTM_Mn_EN(btm_chan_idx),
QPNP_BTM_Mn_MEAS_EN, false);
if (rc < 0) {
pr_err("multi measurement disable failed\n");
goto fail;
}
}
rc = qpnp_adc_tm_enable_if_channel_meas(chip);
if (rc < 0) {
pr_err("re-enabling measurement failed\n");
goto fail;
}
}
adc_tm->mode = mode;
fail:
mutex_unlock(&chip->adc->adc_lock);
return 0;
}
static int qpnp_adc_tm_activate_trip_type(struct qpnp_adc_tm_sensor *adc_tm,
int trip, enum thermal_trip_activation_mode mode)
{
struct qpnp_adc_tm_chip *chip = adc_tm->chip;
int rc = 0, sensor_mask = 0;
u8 thr_int_en = 0;
bool state = false;
uint32_t btm_chan_idx = 0, btm_chan = 0;
if (qpnp_adc_tm_is_valid(chip))
return -ENODEV;
if (qpnp_adc_tm_check_revision(chip, adc_tm->btm_channel_num))
return -EINVAL;
if (mode == THERMAL_TRIP_ACTIVATION_ENABLED)
state = true;
sensor_mask = 1 << adc_tm->sensor_num;
pr_debug("Sensor number:%x with state:%d\n",
adc_tm->sensor_num, state);
btm_chan = adc_tm->btm_channel_num;
rc = qpnp_adc_tm_get_btm_idx(chip, btm_chan, &btm_chan_idx);
if (rc < 0) {
pr_err("Invalid btm channel idx\n");
return rc;
}
switch (trip) {
case ADC_TM_TRIP_HIGH_WARM:
/* low_thr (lower voltage) for higher temp */
thr_int_en = adc_tm_data[btm_chan_idx].low_thr_int_chan_en;
if (!chip->adc_tm_hc)
rc = qpnp_adc_tm_reg_update(chip,
QPNP_ADC_TM_LOW_THR_INT_EN,
sensor_mask, state);
else
rc = qpnp_adc_tm_reg_update(chip,
QPNP_BTM_Mn_EN(btm_chan_idx),
QPNP_BTM_Mn_LOW_THR_INT_EN, state);
if (rc)
pr_err("channel:%x failed\n", btm_chan);
break;
case ADC_TM_TRIP_LOW_COOL:
/* high_thr (higher voltage) for cooler temp */
thr_int_en = adc_tm_data[btm_chan_idx].high_thr_int_chan_en;
if (!chip->adc_tm_hc)
rc = qpnp_adc_tm_reg_update(chip,
QPNP_ADC_TM_HIGH_THR_INT_EN,
sensor_mask, state);
else
rc = qpnp_adc_tm_reg_update(chip,
QPNP_BTM_Mn_EN(btm_chan_idx),
QPNP_BTM_Mn_HIGH_THR_INT_EN, state);
if (rc)
pr_err("channel:%x failed\n", btm_chan);
break;
default:
return -EINVAL;
}
return rc;
}
static int qpnp_adc_tm_set_trip_temp(void *data, int low_temp, int high_temp)
{
struct qpnp_adc_tm_sensor *adc_tm = data;
struct qpnp_adc_tm_chip *chip = adc_tm->chip;
struct qpnp_adc_tm_config tm_config;
u8 trip_cool_thr0, trip_cool_thr1, trip_warm_thr0, trip_warm_thr1;
uint16_t reg_low_thr_lsb, reg_low_thr_msb;
uint16_t reg_high_thr_lsb, reg_high_thr_msb;
int rc = 0;
uint32_t btm_chan = 0, btm_chan_idx = 0;
if (qpnp_adc_tm_is_valid(chip))
return -ENODEV;
if (qpnp_adc_tm_check_revision(chip, adc_tm->btm_channel_num))
return -EINVAL;
tm_config.channel = adc_tm->vadc_channel_num;
tm_config.high_thr_temp = tm_config.low_thr_temp = 0;
if (high_temp != INT_MAX)
tm_config.high_thr_temp = high_temp;
if (low_temp != INT_MIN)
tm_config.low_thr_temp = low_temp;
if ((high_temp == INT_MAX) && (low_temp == INT_MIN)) {
pr_err("No trips to set\n");
return -EINVAL;
}
pr_debug("requested a high - %d and low - %d\n",
tm_config.high_thr_temp, tm_config.low_thr_temp);
rc = qpnp_adc_tm_scale_therm_voltage_pu2(chip->vadc_dev,
chip->adc->adc_prop, &tm_config);
if (rc < 0) {
pr_err("Failed to lookup the adc-tm thresholds\n");
return rc;
}
trip_warm_thr0 = ((tm_config.low_thr_voltage << 24) >> 24);
trip_warm_thr1 = ((tm_config.low_thr_voltage << 16) >> 24);
trip_cool_thr0 = ((tm_config.high_thr_voltage << 24) >> 24);
trip_cool_thr1 = ((tm_config.high_thr_voltage << 16) >> 24);
pr_debug("low_thr:0x%llx, high_thr:0x%llx\n", tm_config.low_thr_voltage,
tm_config.high_thr_voltage);
btm_chan = adc_tm->btm_channel_num;
rc = qpnp_adc_tm_get_btm_idx(chip, btm_chan, &btm_chan_idx);
if (rc < 0) {
pr_err("Invalid btm channel idx\n");
return rc;
}
if (!chip->adc_tm_hc) {
reg_low_thr_lsb = adc_tm_data[btm_chan_idx].low_thr_lsb_addr;
reg_low_thr_msb = adc_tm_data[btm_chan_idx].low_thr_msb_addr;
reg_high_thr_lsb = adc_tm_data[btm_chan_idx].high_thr_lsb_addr;
reg_high_thr_msb = adc_tm_data[btm_chan_idx].high_thr_msb_addr;
} else {
reg_low_thr_lsb = QPNP_BTM_Mn_LOW_THR0(btm_chan_idx);
reg_low_thr_msb = QPNP_BTM_Mn_LOW_THR1(btm_chan_idx);
reg_high_thr_lsb = QPNP_BTM_Mn_HIGH_THR0(btm_chan_idx);
reg_high_thr_msb = QPNP_BTM_Mn_HIGH_THR1(btm_chan_idx);
}
if (high_temp != INT_MAX) {
rc = qpnp_adc_tm_write_reg(chip, reg_low_thr_lsb,
trip_cool_thr0, 1);
if (rc) {
pr_err("adc-tm_tm read threshold err\n");
return rc;
}
rc = qpnp_adc_tm_write_reg(chip, reg_low_thr_msb,
trip_cool_thr1, 1);
if (rc) {
pr_err("adc-tm_tm read threshold err\n");
return rc;
}
adc_tm->low_thr = tm_config.high_thr_voltage;
rc = qpnp_adc_tm_activate_trip_type(adc_tm,
ADC_TM_TRIP_HIGH_WARM,
THERMAL_TRIP_ACTIVATION_ENABLED);
if (rc) {
pr_err("adc-tm warm activation failed\n");
return rc;
}
} else {
rc = qpnp_adc_tm_activate_trip_type(adc_tm,
ADC_TM_TRIP_HIGH_WARM,
THERMAL_TRIP_ACTIVATION_DISABLED);
if (rc) {
pr_err("adc-tm warm deactivation failed\n");
return rc;
}
}
if (low_temp != INT_MIN) {
rc = qpnp_adc_tm_write_reg(chip, reg_high_thr_lsb,
trip_warm_thr0, 1);
if (rc) {
pr_err("adc-tm_tm read threshold err\n");
return rc;
}
rc = qpnp_adc_tm_write_reg(chip, reg_high_thr_msb,
trip_warm_thr1, 1);
if (rc) {
pr_err("adc-tm_tm read threshold err\n");
return rc;
}
adc_tm->high_thr = tm_config.low_thr_voltage;
rc = qpnp_adc_tm_activate_trip_type(adc_tm,
ADC_TM_TRIP_LOW_COOL,
THERMAL_TRIP_ACTIVATION_ENABLED);
if (rc) {
pr_err("adc-tm cool activation failed\n");
return rc;
}
} else {
rc = qpnp_adc_tm_activate_trip_type(adc_tm,
ADC_TM_TRIP_LOW_COOL,
THERMAL_TRIP_ACTIVATION_DISABLED);
if (rc) {
pr_err("adc-tm cool deactivation failed\n");
return rc;
}
}
if ((high_temp != INT_MAX) || (low_temp != INT_MIN)) {
rc = qpnp_adc_tm_set_mode(adc_tm, THERMAL_DEVICE_ENABLED);
if (rc) {
pr_err("sensor enabled failed\n");
return rc;
}
} else {
rc = qpnp_adc_tm_set_mode(adc_tm, THERMAL_DEVICE_DISABLED);
if (rc) {
pr_err("sensor disable failed\n");
return rc;
}
}
return 0;
}
static void notify_battery_therm(struct qpnp_adc_tm_sensor *adc_tm)
{
struct qpnp_adc_thr_client_info *client_info = NULL;
list_for_each_entry(client_info,
&adc_tm->thr_list, list) {
/* Batt therm's warm temperature translates to low voltage */
if (client_info->notify_low_thr) {
/* HIGH_STATE = WARM_TEMP for battery client */
client_info->btm_param->threshold_notification(
ADC_TM_WARM_STATE, client_info->btm_param->btm_ctx);
client_info->notify_low_thr = false;
}
/* Batt therm's cool temperature translates to high voltage */
if (client_info->notify_high_thr) {
/* LOW_STATE = COOL_TEMP for battery client */
client_info->btm_param->threshold_notification(
ADC_TM_COOL_STATE, client_info->btm_param->btm_ctx);
client_info->notify_high_thr = false;
}
}
}
static void notify_clients(struct qpnp_adc_tm_sensor *adc_tm)
{
struct qpnp_adc_thr_client_info *client_info = NULL;
list_for_each_entry(client_info,
&adc_tm->thr_list, list) {
/* For non batt therm clients */
if (client_info->notify_low_thr) {
if (client_info->btm_param->threshold_notification
!= NULL) {
pr_debug("notify kernel with low state\n");
client_info->btm_param->threshold_notification(
ADC_TM_LOW_STATE,
client_info->btm_param->btm_ctx);
client_info->notify_low_thr = false;
}
}
if (client_info->notify_high_thr) {
if (client_info->btm_param->threshold_notification
!= NULL) {
pr_debug("notify kernel with high state\n");
client_info->btm_param->threshold_notification(
ADC_TM_HIGH_STATE,
client_info->btm_param->btm_ctx);
client_info->notify_high_thr = false;
}
}
}
}
static void notify_adc_tm_fn(struct work_struct *work)
{
struct qpnp_adc_tm_sensor *adc_tm = container_of(work,
struct qpnp_adc_tm_sensor, work);
if (adc_tm->thermal_node) {
pr_debug("notifying uspace client\n");
of_thermal_handle_trip(adc_tm->tz_dev);
} else {
if (adc_tm->scale_type == SCALE_RBATT_THERM)
notify_battery_therm(adc_tm);
else
notify_clients(adc_tm);
}
}
static int qpnp_adc_tm_recalib_request_check(struct qpnp_adc_tm_chip *chip,
int sensor_num, u8 status_high, u8 *notify_check)
{
int rc = 0;
u8 sensor_mask = 0, mode_ctl = 0;
int32_t old_thr = 0, new_thr = 0;
uint32_t channel, btm_chan_num, scale_type;
struct qpnp_vadc_result result;
struct qpnp_adc_thr_client_info *client_info = NULL;
struct list_head *thr_list;
bool status = false;
if (!chip->adc_tm_recalib_check) {
*notify_check = 1;
return rc;
}
list_for_each(thr_list, &chip->sensor[sensor_num].thr_list) {
client_info = list_entry(thr_list,
struct qpnp_adc_thr_client_info, list);
channel = client_info->btm_param->channel;
btm_chan_num = chip->sensor[sensor_num].btm_channel_num;
sensor_mask = 1 << sensor_num;
rc = qpnp_vadc_read(chip->vadc_dev, channel, &result);
if (rc < 0) {
pr_err("failure to read vadc channel=%d\n",
client_info->btm_param->channel);
goto fail;
}
new_thr = result.physical;
if (status_high)
old_thr = client_info->btm_param->high_thr;
else
old_thr = client_info->btm_param->low_thr;
if (new_thr > old_thr)
status = (status_high) ? true : false;
else
status = (status_high) ? false : true;
pr_debug(
"recalib:sen=%d, new_thr=%d, new_thr_adc_code=0x%x, old_thr=%d status=%d valid_status=%d\n",
sensor_num, new_thr, result.adc_code,
old_thr, status_high, status);
rc = qpnp_adc_tm_read_thr_value(chip, btm_chan_num);
if (rc < 0) {
pr_err("adc-tm thresholds read failed\n");
goto fail;
}
if (status) {
*notify_check = 1;
pr_debug("Client can be notify\n");
return rc;
}
pr_debug("Client can not be notify, restart measurement\n");
/* Set measurement in single measurement mode */
mode_ctl = ADC_OP_NORMAL_MODE << QPNP_OP_MODE_SHIFT;
rc = qpnp_adc_tm_mode_select(chip, mode_ctl);
if (rc < 0) {
pr_err("adc-tm single mode select failed\n");
goto fail;
}
/* Disable bank */
rc = qpnp_adc_tm_disable(chip);
if (rc < 0) {
pr_err("adc-tm disable failed\n");
goto fail;
}
/* Check if a conversion is in progress */
rc = qpnp_adc_tm_req_sts_check(chip);
if (rc < 0) {
pr_err("adc-tm req_sts check failed\n");
goto fail;
}
rc = qpnp_adc_tm_reg_update(chip, QPNP_ADC_TM_LOW_THR_INT_EN,
sensor_mask, false);
if (rc < 0) {
pr_err("low threshold int write failed\n");
goto fail;
}
rc = qpnp_adc_tm_reg_update(chip, QPNP_ADC_TM_HIGH_THR_INT_EN,
sensor_mask, false);
if (rc < 0) {
pr_err("high threshold int enable failed\n");
goto fail;
}
rc = qpnp_adc_tm_reg_update(chip, QPNP_ADC_TM_MULTI_MEAS_EN,
sensor_mask, false);
if (rc < 0) {
pr_err("multi measurement en failed\n");
goto fail;
}
/* restart measurement */
scale_type = chip->sensor[sensor_num].scale_type;
chip->adc->amux_prop->amux_channel = channel;
chip->adc->amux_prop->decimation =
chip->adc->adc_channels[sensor_num].adc_decimation;
chip->adc->amux_prop->hw_settle_time =
chip->adc->adc_channels[sensor_num].hw_settle_time;
chip->adc->amux_prop->fast_avg_setup =
chip->adc->adc_channels[sensor_num].fast_avg_setup;
chip->adc->amux_prop->mode_sel =
ADC_OP_MEASUREMENT_INTERVAL << QPNP_OP_MODE_SHIFT;
adc_tm_rscale_fn[scale_type].chan(chip->vadc_dev,
client_info->btm_param,
&chip->adc->amux_prop->chan_prop->low_thr,
&chip->adc->amux_prop->chan_prop->high_thr);
qpnp_adc_tm_add_to_list(chip, sensor_num,
client_info->btm_param,
chip->adc->amux_prop->chan_prop);
chip->adc->amux_prop->chan_prop->tm_channel_select =
chip->sensor[sensor_num].btm_channel_num;
chip->adc->amux_prop->chan_prop->state_request =
client_info->btm_param->state_request;
rc = qpnp_adc_tm_configure(chip, chip->adc->amux_prop);
if (rc) {
pr_err("adc-tm configure failed with %d\n", rc);
goto fail;
}
*notify_check = 0;
pr_debug("BTM channel reconfigured for measuremnt\n");
}
fail:
return rc;
}
static int qpnp_adc_tm_disable_rearm_high_thresholds(
struct qpnp_adc_tm_chip *chip, int sensor_num)
{
struct qpnp_adc_thr_client_info *client_info = NULL;
struct list_head *thr_list;
uint32_t btm_chan_num = 0, btm_chan_idx = 0;
u8 sensor_mask = 0, notify_check = 0;
int rc = 0;
btm_chan_num = chip->sensor[sensor_num].btm_channel_num;
rc = qpnp_adc_tm_get_btm_idx(chip, btm_chan_num, &btm_chan_idx);
if (rc < 0) {
pr_err("Invalid btm channel idx\n");
return rc;
}
pr_debug("high:sen:%d, hs:0x%x, ls:0x%x, meas_en:0x%x\n",
sensor_num, chip->th_info.adc_tm_high_enable,
chip->th_info.adc_tm_low_enable,
chip->th_info.qpnp_adc_tm_meas_en);
if (!chip->sensor[sensor_num].thermal_node) {
/*
* For non thermal registered clients such as usb_id,
* vbatt, pmic_therm
*/
sensor_mask = 1 << sensor_num;
pr_debug("non thermal node - mask:%x\n", sensor_mask);
if (!chip->adc_tm_hc) {
rc = qpnp_adc_tm_recalib_request_check(chip,
sensor_num, true, &notify_check);
if (rc < 0 || !notify_check) {
pr_debug("Calib recheck re-armed rc=%d\n", rc);
chip->th_info.adc_tm_high_enable = 0;
return rc;
}
} else {
rc = qpnp_adc_tm_reg_update(chip,
QPNP_BTM_Mn_EN(btm_chan_idx),
QPNP_BTM_Mn_HIGH_THR_INT_EN, false);
if (rc < 0) {
pr_err("high threshold int update failed\n");
return rc;
}
}
} else {
/*
* Uses the thermal sysfs registered device to disable
* the corresponding high voltage threshold which
* is triggered by low temp
*/
sensor_mask = 1 << sensor_num;
pr_debug("thermal node with mask:%x\n", sensor_mask);
rc = qpnp_adc_tm_activate_trip_type(
&chip->sensor[sensor_num],
ADC_TM_TRIP_LOW_COOL,
THERMAL_TRIP_ACTIVATION_DISABLED);
if (rc < 0) {
pr_err("notify error:%d\n", sensor_num);
return rc;
}
}
list_for_each(thr_list, &chip->sensor[sensor_num].thr_list) {
client_info = list_entry(thr_list,
struct qpnp_adc_thr_client_info, list);
if (client_info->high_thr_set) {
client_info->high_thr_set = false;
client_info->notify_high_thr = true;
if (client_info->state_req_copy ==
ADC_TM_HIGH_LOW_THR_ENABLE)
client_info->state_req_copy =
ADC_TM_LOW_THR_ENABLE;
else
client_info->state_req_copy =
ADC_TM_HIGH_THR_DISABLE;
}
}
qpnp_adc_tm_manage_thresholds(chip, sensor_num, btm_chan_num);
if (!chip->adc_tm_hc) {
rc = qpnp_adc_tm_reg_update(chip,
QPNP_ADC_TM_MULTI_MEAS_EN,
sensor_mask, false);
if (rc < 0) {
pr_err("multi meas disable failed\n");
return rc;
}
} else {
rc = qpnp_adc_tm_reg_update(chip,
QPNP_BTM_Mn_EN(sensor_num),
QPNP_BTM_Mn_MEAS_EN, false);
if (rc < 0) {
pr_err("multi meas disable failed\n");
return rc;
}
}
rc = qpnp_adc_tm_enable_if_channel_meas(chip);
if (rc < 0) {
pr_err("re-enabling measurement failed\n");
return rc;
}
queue_work(chip->sensor[sensor_num].req_wq,
&chip->sensor[sensor_num].work);
return rc;
}
static int qpnp_adc_tm_disable_rearm_low_thresholds(
struct qpnp_adc_tm_chip *chip, int sensor_num)
{
struct qpnp_adc_thr_client_info *client_info = NULL;
struct list_head *thr_list;
uint32_t btm_chan_num = 0, btm_chan_idx = 0;
u8 sensor_mask = 0, notify_check = 0;
int rc = 0;
btm_chan_num = chip->sensor[sensor_num].btm_channel_num;
rc = qpnp_adc_tm_get_btm_idx(chip, btm_chan_num, &btm_chan_idx);
if (rc < 0) {
pr_err("Invalid btm channel idx\n");
return rc;
}
pr_debug("low:sen:%d, hs:0x%x, ls:0x%x, meas_en:0x%x\n",
sensor_num, chip->th_info.adc_tm_high_enable,
chip->th_info.adc_tm_low_enable,
chip->th_info.qpnp_adc_tm_meas_en);
if (!chip->sensor[sensor_num].thermal_node) {
/*
* For non thermal registered clients such as usb_id,
* vbatt, pmic_therm
*/
sensor_mask = 1 << sensor_num;
pr_debug("non thermal node - mask:%x\n", sensor_mask);
if (!chip->adc_tm_hc) {
rc = qpnp_adc_tm_recalib_request_check(chip,
sensor_num, false, &notify_check);
if (rc < 0 || !notify_check) {
pr_debug("Calib recheck re-armed rc=%d\n", rc);
chip->th_info.adc_tm_low_enable = 0;
return rc;
}
} else {
rc = qpnp_adc_tm_reg_update(chip,
QPNP_BTM_Mn_EN(btm_chan_idx),
QPNP_BTM_Mn_LOW_THR_INT_EN, false);
if (rc < 0) {
pr_err("low threshold int update failed\n");
return rc;
}
}
} else {
/*
* Uses the thermal sysfs registered device to disable
* the corresponding high voltage threshold which
* is triggered by low temp
*/
sensor_mask = 1 << sensor_num;
pr_debug("thermal node with mask:%x\n", sensor_mask);
rc = qpnp_adc_tm_activate_trip_type(
&chip->sensor[sensor_num],
ADC_TM_TRIP_HIGH_WARM,
THERMAL_TRIP_ACTIVATION_DISABLED);
if (rc < 0) {
pr_err("notify error:%d\n", sensor_num);
return rc;
}
}
list_for_each(thr_list, &chip->sensor[sensor_num].thr_list) {
client_info = list_entry(thr_list,
struct qpnp_adc_thr_client_info, list);
if (client_info->low_thr_set) {
client_info->low_thr_set = false;
client_info->notify_low_thr = true;
if (client_info->state_req_copy ==
ADC_TM_HIGH_LOW_THR_ENABLE)
client_info->state_req_copy =
ADC_TM_HIGH_THR_ENABLE;
else
client_info->state_req_copy =
ADC_TM_LOW_THR_DISABLE;
}
}
qpnp_adc_tm_manage_thresholds(chip, sensor_num, btm_chan_num);
if (!chip->adc_tm_hc) {
rc = qpnp_adc_tm_reg_update(chip,
QPNP_ADC_TM_MULTI_MEAS_EN,
sensor_mask, false);
if (rc < 0) {
pr_err("multi meas disable failed\n");
return rc;
}
} else {
rc = qpnp_adc_tm_reg_update(chip,
QPNP_BTM_Mn_EN(sensor_num),
QPNP_BTM_Mn_MEAS_EN, false);
if (rc < 0) {
pr_err("multi meas disable failed\n");
return rc;
}
}
rc = qpnp_adc_tm_enable_if_channel_meas(chip);
if (rc < 0) {
pr_err("re-enabling measurement failed\n");
return rc;
}
queue_work(chip->sensor[sensor_num].req_wq,
&chip->sensor[sensor_num].work);
return rc;
}
static int qpnp_adc_tm_read_status(struct qpnp_adc_tm_chip *chip)
{
int rc = 0, sensor_notify_num = 0, i = 0, sensor_num = 0;
unsigned long flags;
if (qpnp_adc_tm_is_valid(chip))
return -ENODEV;
mutex_lock(&chip->adc->adc_lock);
rc = qpnp_adc_tm_req_sts_check(chip);
if (rc) {
pr_err("adc-tm-tm req sts check failed with %d\n", rc);
goto fail;
}
if (chip->th_info.adc_tm_high_enable) {
spin_lock_irqsave(&chip->th_info.adc_tm_high_lock, flags);
sensor_notify_num = chip->th_info.adc_tm_high_enable;
chip->th_info.adc_tm_high_enable = 0;
spin_unlock_irqrestore(&chip->th_info.adc_tm_high_lock, flags);
while (i < chip->max_channels_available) {
if ((sensor_notify_num & 0x1) == 1) {
sensor_num = i;
rc = qpnp_adc_tm_disable_rearm_high_thresholds(
chip, sensor_num);
if (rc < 0) {
pr_err("rearm threshold failed\n");
goto fail;
}
}
sensor_notify_num >>= 1;
i++;
}
}
if (chip->th_info.adc_tm_low_enable) {
spin_lock_irqsave(&chip->th_info.adc_tm_low_lock, flags);
sensor_notify_num = chip->th_info.adc_tm_low_enable;
chip->th_info.adc_tm_low_enable = 0;
spin_unlock_irqrestore(&chip->th_info.adc_tm_low_lock, flags);
i = 0;
while (i < chip->max_channels_available) {
if ((sensor_notify_num & 0x1) == 1) {
sensor_num = i;
rc = qpnp_adc_tm_disable_rearm_low_thresholds(
chip, sensor_num);
if (rc < 0) {
pr_err("rearm threshold failed\n");
goto fail;
}
}
sensor_notify_num >>= 1;
i++;
}
}
fail:
mutex_unlock(&chip->adc->adc_lock);
return rc;
}
static int qpnp_adc_tm_hc_read_status(struct qpnp_adc_tm_chip *chip)
{
int rc = 0, sensor_num = 0;
if (qpnp_adc_tm_is_valid(chip))
return -ENODEV;
pr_debug("%s\n", __func__);
mutex_lock(&chip->adc->adc_lock);
if (!chip->adc_tm_hc) {
rc = qpnp_adc_tm_req_sts_check(chip);
if (rc) {
pr_err("adc-tm-tm req sts check failed with %d\n", rc);
goto fail;
}
}
while (sensor_num < chip->max_channels_available) {
if (chip->sensor[sensor_num].high_thr_triggered) {
rc = qpnp_adc_tm_disable_rearm_high_thresholds(
chip, sensor_num);
if (rc) {
pr_err("rearm threshold failed\n");
goto fail;
}
chip->sensor[sensor_num].high_thr_triggered = false;
}
sensor_num++;
}
sensor_num = 0;
while (sensor_num < chip->max_channels_available) {
if (chip->sensor[sensor_num].low_thr_triggered) {
rc = qpnp_adc_tm_disable_rearm_low_thresholds(
chip, sensor_num);
if (rc) {
pr_err("rearm threshold failed\n");
goto fail;
}
chip->sensor[sensor_num].low_thr_triggered = false;
}
sensor_num++;
}
fail:
mutex_unlock(&chip->adc->adc_lock);
return rc;
}
static void qpnp_adc_tm_high_thr_work(struct work_struct *work)
{
struct qpnp_adc_tm_chip *chip = container_of(work,
struct qpnp_adc_tm_chip, trigger_high_thr_work);
int rc;
/* disable the vote if applicable */
if (chip->adc_vote_enable && chip->adc->hkadc_ldo &&
chip->adc->hkadc_ldo_ok) {
qpnp_adc_disable_voltage(chip->adc);
chip->adc_vote_enable = false;
}
pr_debug("thr:0x%x\n", chip->th_info.adc_tm_high_enable);
if (!chip->adc_tm_hc) {
rc = qpnp_adc_tm_read_status(chip);
if (rc < 0)
pr_err("adc-tm high thr work failed\n");
} else {
rc = qpnp_adc_tm_hc_read_status(chip);
if (rc < 0)
pr_err("adc-tm-hc high thr work failed\n");
}
}
static irqreturn_t qpnp_adc_tm_high_thr_isr(int irq, void *data)
{
struct qpnp_adc_tm_chip *chip = data;
u8 mode_ctl = 0, status1 = 0, sensor_mask = 0;
int rc = 0, sensor_notify_num = 0, i = 0, sensor_num = 0;
mode_ctl = ADC_OP_NORMAL_MODE << QPNP_OP_MODE_SHIFT;
/* Set measurement in single measurement mode */
qpnp_adc_tm_mode_select(chip, mode_ctl);
qpnp_adc_tm_disable(chip);
rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_STATUS1, &status1, 1);
if (rc) {
pr_err("adc-tm read status1 failed\n");
return IRQ_HANDLED;
}
rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_STATUS_HIGH,
&chip->th_info.status_high, 1);
if (rc) {
pr_err("adc-tm-tm read status high failed with %d\n", rc);
return IRQ_HANDLED;
}
rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_HIGH_THR_INT_EN,
&chip->th_info.adc_tm_high_thr_set, 1);
if (rc) {
pr_err("adc-tm-tm read high thr failed with %d\n", rc);
return IRQ_HANDLED;
}
/* Check which interrupt threshold is lower and measure against the
* enabled channel
*/
rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_MULTI_MEAS_EN,
&chip->th_info.qpnp_adc_tm_meas_en, 1);
if (rc) {
pr_err("adc-tm-tm read status high failed with %d\n", rc);
return IRQ_HANDLED;
}
chip->th_info.adc_tm_high_enable = chip->th_info.qpnp_adc_tm_meas_en &
chip->th_info.status_high;
chip->th_info.adc_tm_high_enable &= chip->th_info.adc_tm_high_thr_set;
sensor_notify_num = chip->th_info.adc_tm_high_enable;
while (i < chip->max_channels_available) {
if ((sensor_notify_num & 0x1) == 1)
sensor_num = i;
sensor_notify_num >>= 1;
i++;
}
if (!chip->sensor[sensor_num].thermal_node) {
sensor_mask = 1 << sensor_num;
rc = qpnp_adc_tm_reg_update(chip,
QPNP_ADC_TM_HIGH_THR_INT_EN,
sensor_mask, false);
if (rc < 0) {
pr_err("high threshold int read failed\n");
return IRQ_HANDLED;
}
} else {
/*
* Uses the thermal sysfs registered device to disable
* the corresponding high voltage threshold which
* is triggered by low temp
*/
pr_debug("thermal node with mask:%x\n", sensor_mask);
rc = qpnp_adc_tm_activate_trip_type(
&chip->sensor[sensor_num],
ADC_TM_TRIP_LOW_COOL,
THERMAL_TRIP_ACTIVATION_DISABLED);
if (rc < 0) {
pr_err("notify error:%d\n", sensor_num);
return IRQ_HANDLED;
}
}
queue_work(chip->high_thr_wq, &chip->trigger_high_thr_work);
return IRQ_HANDLED;
}
static void qpnp_adc_tm_low_thr_work(struct work_struct *work)
{
struct qpnp_adc_tm_chip *chip = container_of(work,
struct qpnp_adc_tm_chip, trigger_low_thr_work);
int rc;
/* disable the vote if applicable */
if (chip->adc_vote_enable && chip->adc->hkadc_ldo &&
chip->adc->hkadc_ldo_ok) {
qpnp_adc_disable_voltage(chip->adc);
chip->adc_vote_enable = false;
}
pr_debug("thr:0x%x\n", chip->th_info.adc_tm_low_enable);
if (!chip->adc_tm_hc) {
rc = qpnp_adc_tm_read_status(chip);
if (rc < 0)
pr_err("adc-tm low thr work failed\n");
} else {
rc = qpnp_adc_tm_hc_read_status(chip);
if (rc < 0)
pr_err("adc-tm-hc low thr work failed\n");
}
}
static irqreturn_t qpnp_adc_tm_low_thr_isr(int irq, void *data)
{
struct qpnp_adc_tm_chip *chip = data;
u8 mode_ctl = 0, status1 = 0, sensor_mask = 0;
int rc = 0, sensor_notify_num = 0, i = 0, sensor_num = 0;
mode_ctl = ADC_OP_NORMAL_MODE << QPNP_OP_MODE_SHIFT;
/* Set measurement in single measurement mode */
qpnp_adc_tm_mode_select(chip, mode_ctl);
qpnp_adc_tm_disable(chip);
rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_STATUS1, &status1, 1);
if (rc) {
pr_err("adc-tm read status1 failed\n");
return IRQ_HANDLED;
}
rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_STATUS_LOW,
&chip->th_info.status_low, 1);
if (rc) {
pr_err("adc-tm-tm read status low failed with %d\n", rc);
return IRQ_HANDLED;
}
rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_LOW_THR_INT_EN,
&chip->th_info.adc_tm_low_thr_set, 1);
if (rc) {
pr_err("adc-tm-tm read low thr failed with %d\n", rc);
return IRQ_HANDLED;
}
rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_MULTI_MEAS_EN,
&chip->th_info.qpnp_adc_tm_meas_en, 1);
if (rc) {
pr_err("adc-tm-tm read status high failed with %d\n", rc);
return IRQ_HANDLED;
}
chip->th_info.adc_tm_low_enable = chip->th_info.qpnp_adc_tm_meas_en &
chip->th_info.status_low;
chip->th_info.adc_tm_low_enable &= chip->th_info.adc_tm_low_thr_set;
sensor_notify_num = chip->th_info.adc_tm_low_enable;
while (i < chip->max_channels_available) {
if ((sensor_notify_num & 0x1) == 1)
sensor_num = i;
sensor_notify_num >>= 1;
i++;
}
if (!chip->sensor[sensor_num].thermal_node) {
sensor_mask = 1 << sensor_num;
rc = qpnp_adc_tm_reg_update(chip,
QPNP_ADC_TM_LOW_THR_INT_EN,
sensor_mask, false);
if (rc < 0) {
pr_err("low threshold int read failed\n");
return IRQ_HANDLED;
}
} else {
/*
* Uses the thermal sysfs registered device to disable
* the corresponding low voltage threshold which
* is triggered by high temp
*/
pr_debug("thermal node with mask:%x\n", sensor_mask);
rc = qpnp_adc_tm_activate_trip_type(
&chip->sensor[sensor_num],
ADC_TM_TRIP_HIGH_WARM,
THERMAL_TRIP_ACTIVATION_DISABLED);
if (rc < 0) {
pr_err("notify error:%d\n", sensor_num);
return IRQ_HANDLED;
}
}
queue_work(chip->low_thr_wq, &chip->trigger_low_thr_work);
return IRQ_HANDLED;
}
static int qpnp_adc_tm_rc_check_sensor_trip(struct qpnp_adc_tm_chip *chip,
u8 status_low, u8 status_high, int i,
int *sensor_low_notify_num, int *sensor_high_notify_num)
{
int rc = 0;
u8 ctl = 0, sensor_mask = 0;
if (((status_low & 0x1) == 1) || ((status_high & 0x1) == 1)) {
rc = qpnp_adc_tm_read_reg(chip,
QPNP_BTM_Mn_EN(i), &ctl, 1);
if (rc) {
pr_err("ctl read failed with %d\n", rc);
return IRQ_HANDLED;
}
if ((status_low & 0x1) && (ctl & QPNP_BTM_Mn_MEAS_EN)
&& (ctl & QPNP_BTM_Mn_LOW_THR_INT_EN)) {
/* Mask the corresponding low threshold interrupt en */
if (!chip->sensor[i].thermal_node) {
rc = qpnp_adc_tm_reg_update(chip,
QPNP_BTM_Mn_EN(i),
QPNP_BTM_Mn_LOW_THR_INT_EN, false);
if (rc < 0) {
pr_err("low thr_int en failed\n");
return IRQ_HANDLED;
}
} else {
/*
* Uses the thermal sysfs registered device to disable
* the corresponding low voltage threshold which
* is triggered by high temp
*/
pr_debug("thermal node with mask:%x\n", sensor_mask);
rc = qpnp_adc_tm_activate_trip_type(
&chip->sensor[i],
ADC_TM_TRIP_HIGH_WARM,
THERMAL_TRIP_ACTIVATION_DISABLED);
if (rc < 0) {
pr_err("notify error:%d\n", i);
return IRQ_HANDLED;
}
}
*sensor_low_notify_num |= (status_low & 0x1);
chip->sensor[i].low_thr_triggered = true;
}
if ((status_high & 0x1) && (ctl & QPNP_BTM_Mn_MEAS_EN) &&
(ctl & QPNP_BTM_Mn_HIGH_THR_INT_EN)) {
/* Mask the corresponding high threshold interrupt en */
if (!chip->sensor[i].thermal_node) {
rc = qpnp_adc_tm_reg_update(chip,
QPNP_BTM_Mn_EN(i),
QPNP_BTM_Mn_HIGH_THR_INT_EN, false);
if (rc < 0) {
pr_err("high thr_int en failed\n");
return IRQ_HANDLED;
}
} else {
/*
* Uses the thermal sysfs registered device to disable
* the corresponding high voltage threshold which
* is triggered by low temp
*/
pr_debug("thermal node with mask:%x\n", i);
rc = qpnp_adc_tm_activate_trip_type(
&chip->sensor[i],
ADC_TM_TRIP_LOW_COOL,
THERMAL_TRIP_ACTIVATION_DISABLED);
if (rc < 0) {
pr_err("notify error:%d\n", i);
return IRQ_HANDLED;
}
}
*sensor_high_notify_num |= (status_high & 0x1);
chip->sensor[i].high_thr_triggered = true;
}
}
return rc;
}
static irqreturn_t qpnp_adc_tm_rc_thr_isr(int irq, void *data)
{
struct qpnp_adc_tm_chip *chip = data;
u8 status_low = 0, status_high = 0;
int rc = 0, sensor_low_notify_num = 0, i = 0;
int sensor_high_notify_num = 0;
rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_STATUS_LOW,
&status_low, 1);
if (rc) {
pr_err("adc-tm-tm read status low failed with %d\n", rc);
return IRQ_HANDLED;
}
if (status_low)
chip->th_info.adc_tm_low_enable = status_low;
rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_STATUS_HIGH,
&status_high, 1);
if (rc) {
pr_err("adc-tm-tm read status high failed with %d\n", rc);
return IRQ_HANDLED;
}
if (status_high)
chip->th_info.adc_tm_high_enable = status_high;
while (i < chip->max_channels_available) {
rc = qpnp_adc_tm_rc_check_sensor_trip(chip,
status_low, status_high, i,
&sensor_low_notify_num,
&sensor_high_notify_num);
if (rc) {
pr_err("Sensor trip read failed\n");
return IRQ_HANDLED;
}
status_low >>= 1;
status_high >>= 1;
i++;
}
if (sensor_low_notify_num) {
pm_wakeup_event(chip->dev,
QPNP_ADC_WAKEUP_SRC_TIMEOUT_MS);
queue_work(chip->low_thr_wq, &chip->trigger_low_thr_work);
}
if (sensor_high_notify_num) {
pm_wakeup_event(chip->dev,
QPNP_ADC_WAKEUP_SRC_TIMEOUT_MS);
queue_work(chip->high_thr_wq,
&chip->trigger_high_thr_work);
}
return IRQ_HANDLED;
}
static int qpnp_adc_read_temp(void *data, int *temp)
{
struct qpnp_adc_tm_sensor *adc_tm_sensor = data;
struct qpnp_adc_tm_chip *chip = adc_tm_sensor->chip;
struct qpnp_vadc_result result;
int rc = 0;
rc = qpnp_vadc_read(chip->vadc_dev,
adc_tm_sensor->vadc_channel_num, &result);
if (rc)
return rc;
*temp = result.physical;
return rc;
}
static struct thermal_zone_of_device_ops qpnp_adc_tm_thermal_ops = {
.get_temp = qpnp_adc_read_temp,
.set_trips = qpnp_adc_tm_set_trip_temp,
};
int32_t qpnp_adc_tm_channel_measure(struct qpnp_adc_tm_chip *chip,
struct qpnp_adc_tm_btm_param *param)
{
uint32_t channel, amux_prescaling, dt_index = 0, scale_type = 0;
int rc = 0, i = 0, version = 0;
bool chan_found = false;
if (qpnp_adc_tm_is_valid(chip)) {
pr_err("chip not valid\n");
return -ENODEV;
}
if (param->threshold_notification == NULL) {
pr_debug("No notification for high/low temp??\n");
return -EINVAL;
}
mutex_lock(&chip->adc->adc_lock);
channel = param->channel;
if (channel == VSYS) {
version = qpnp_adc_get_revid_version(chip->dev);
if (version == QPNP_REV_ID_PM8950_1_0) {
pr_debug("Channel not supported\n");
rc = -EINVAL;
goto fail_unlock;
}
}
while (i < chip->max_channels_available) {
if (chip->adc->adc_channels[i].channel_num ==
channel) {
dt_index = i;
chan_found = true;
i++;
} else
i++;
}
if (!chan_found) {
pr_err("not a valid ADC_TM channel\n");
rc = -EINVAL;
goto fail_unlock;
}
rc = qpnp_adc_tm_check_revision(chip,
chip->sensor[dt_index].btm_channel_num);
if (rc < 0)
goto fail_unlock;
scale_type = chip->adc->adc_channels[dt_index].adc_scale_fn;
if (scale_type >= SCALE_RSCALE_NONE) {
rc = -EBADF;
goto fail_unlock;
}
amux_prescaling =
chip->adc->adc_channels[dt_index].chan_path_prescaling;
if (amux_prescaling >= PATH_SCALING_NONE) {
rc = -EINVAL;
goto fail_unlock;
}
pr_debug("channel:%d, scale_type:%d, dt_idx:%d",
channel, scale_type, dt_index);
param->gain_num = qpnp_vadc_amux_scaling_ratio[amux_prescaling].num;
param->gain_den = qpnp_vadc_amux_scaling_ratio[amux_prescaling].den;
param->adc_tm_hc = chip->adc_tm_hc;
param->full_scale_code = chip->adc->adc_prop->full_scale_code;
chip->adc->amux_prop->amux_channel = channel;
chip->adc->amux_prop->decimation =
chip->adc->adc_channels[dt_index].adc_decimation;
chip->adc->amux_prop->hw_settle_time =
chip->adc->adc_channels[dt_index].hw_settle_time;
chip->adc->amux_prop->fast_avg_setup =
chip->adc->adc_channels[dt_index].fast_avg_setup;
chip->adc->amux_prop->mode_sel =
ADC_OP_MEASUREMENT_INTERVAL << QPNP_OP_MODE_SHIFT;
adc_tm_rscale_fn[scale_type].chan(chip->vadc_dev, param,
&chip->adc->amux_prop->chan_prop->low_thr,
&chip->adc->amux_prop->chan_prop->high_thr);
qpnp_adc_tm_add_to_list(chip, dt_index, param,
chip->adc->amux_prop->chan_prop);
chip->adc->amux_prop->chan_prop->tm_channel_select =
chip->sensor[dt_index].btm_channel_num;
chip->adc->amux_prop->chan_prop->state_request =
param->state_request;
chip->adc->amux_prop->calib_type =
chip->adc->adc_channels[dt_index].calib_type;
if (!chip->adc_tm_hc) {
rc = qpnp_adc_tm_configure(chip, chip->adc->amux_prop);
if (rc) {
pr_err("adc-tm configure failed with %d\n", rc);
goto fail_unlock;
}
} else {
rc = qpnp_adc_tm_hc_configure(chip, chip->adc->amux_prop);
if (rc) {
pr_err("adc-tm hc configure failed with %d\n", rc);
goto fail_unlock;
}
}
chip->sensor[dt_index].scale_type = scale_type;
fail_unlock:
mutex_unlock(&chip->adc->adc_lock);
return rc;
}
EXPORT_SYMBOL(qpnp_adc_tm_channel_measure);
int32_t qpnp_adc_tm_disable_chan_meas(struct qpnp_adc_tm_chip *chip,
struct qpnp_adc_tm_btm_param *param)
{
uint32_t channel, dt_index = 0, btm_chan_num;
u8 sensor_mask = 0, mode_ctl = 0;
int rc = 0;
if (qpnp_adc_tm_is_valid(chip))
return -ENODEV;
mutex_lock(&chip->adc->adc_lock);
if (!chip->adc_tm_hc) {
/* Set measurement in single measurement mode */
mode_ctl = ADC_OP_NORMAL_MODE << QPNP_OP_MODE_SHIFT;
rc = qpnp_adc_tm_mode_select(chip, mode_ctl);
if (rc < 0) {
pr_err("adc-tm single mode select failed\n");
goto fail;
}
}
/* Disable bank */
rc = qpnp_adc_tm_disable(chip);
if (rc < 0) {
pr_err("adc-tm disable failed\n");
goto fail;
}
if (!chip->adc_tm_hc) {
/* Check if a conversion is in progress */
rc = qpnp_adc_tm_req_sts_check(chip);
if (rc < 0) {
pr_err("adc-tm req_sts check failed\n");
goto fail;
}
}
channel = param->channel;
while ((chip->adc->adc_channels[dt_index].channel_num
!= channel) && (dt_index < chip->max_channels_available))
dt_index++;
if (dt_index >= chip->max_channels_available) {
pr_err("not a valid ADC_TMN channel\n");
rc = -EINVAL;
goto fail;
}
btm_chan_num = chip->sensor[dt_index].btm_channel_num;
if (!chip->adc_tm_hc) {
sensor_mask = 1 << chip->sensor[dt_index].sensor_num;
rc = qpnp_adc_tm_reg_update(chip, QPNP_ADC_TM_LOW_THR_INT_EN,
sensor_mask, false);
if (rc < 0) {
pr_err("high threshold int enable failed\n");
goto fail;
}
rc = qpnp_adc_tm_reg_update(chip, QPNP_ADC_TM_MULTI_MEAS_EN,
sensor_mask, false);
if (rc < 0) {
pr_err("multi measurement en failed\n");
goto fail;
}
} else {
rc = qpnp_adc_tm_reg_update(chip, QPNP_BTM_Mn_EN(btm_chan_num),
QPNP_BTM_Mn_HIGH_THR_INT_EN, false);
if (rc < 0) {
pr_err("high thr disable err:%d\n", btm_chan_num);
goto fail;
}
rc = qpnp_adc_tm_reg_update(chip, QPNP_BTM_Mn_EN(btm_chan_num),
QPNP_BTM_Mn_LOW_THR_INT_EN, false);
if (rc < 0) {
pr_err("low thr disable err:%d\n", btm_chan_num);
goto fail;
}
rc = qpnp_adc_tm_reg_update(chip, QPNP_BTM_Mn_EN(btm_chan_num),
QPNP_BTM_Mn_MEAS_EN, false);
if (rc < 0) {
pr_err("multi measurement disable failed\n");
goto fail;
}
}
rc = qpnp_adc_tm_enable_if_channel_meas(chip);
if (rc < 0)
pr_err("re-enabling measurement failed\n");
fail:
mutex_unlock(&chip->adc->adc_lock);
return rc;
}
EXPORT_SYMBOL(qpnp_adc_tm_disable_chan_meas);
struct qpnp_adc_tm_chip *qpnp_get_adc_tm(struct device *dev, const char *name)
{
struct qpnp_adc_tm_chip *chip;
struct device_node *node = NULL;
char prop_name[QPNP_MAX_PROP_NAME_LEN];
snprintf(prop_name, QPNP_MAX_PROP_NAME_LEN, "qcom,%s-adc_tm", name);
node = of_parse_phandle(dev->of_node, prop_name, 0);
if (node == NULL)
return ERR_PTR(-ENODEV);
list_for_each_entry(chip, &qpnp_adc_tm_device_list, list)
if (chip->adc->pdev->dev.of_node == node)
return chip;
return ERR_PTR(-EPROBE_DEFER);
}
EXPORT_SYMBOL(qpnp_get_adc_tm);
static int qpnp_adc_tm_initial_setup(struct qpnp_adc_tm_chip *chip)
{
u8 thr_init = 0;
int rc = 0;
rc = qpnp_adc_tm_write_reg(chip, QPNP_ADC_TM_HIGH_THR_INT_EN,
thr_init, 1);
if (rc < 0) {
pr_err("high thr init failed\n");
return rc;
}
rc = qpnp_adc_tm_write_reg(chip, QPNP_ADC_TM_LOW_THR_INT_EN,
thr_init, 1);
if (rc < 0) {
pr_err("low thr init failed\n");
return rc;
}
rc = qpnp_adc_tm_write_reg(chip, QPNP_ADC_TM_MULTI_MEAS_EN,
thr_init, 1);
if (rc < 0) {
pr_err("multi meas en failed\n");
return rc;
}
return rc;
}
static const struct of_device_id qpnp_adc_tm_match_table[] = {
{ .compatible = "qcom,qpnp-adc-tm" },
{ .compatible = "qcom,qpnp-adc-tm-hc" },
{ .compatible = "qcom,qpnp-adc-tm-hc-pm5" },
{}
};
static int qpnp_adc_tm_probe(struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node, *child;
struct qpnp_adc_tm_chip *chip;
struct qpnp_adc_drv *adc_qpnp;
int32_t count_adc_channel_list = 0, rc, sen_idx = 0, i = 0;
bool thermal_node = false;
const struct of_device_id *id;
for_each_child_of_node(node, child)
count_adc_channel_list++;
if (!count_adc_channel_list) {
pr_err("No channel listing\n");
return -EINVAL;
}
id = of_match_node(qpnp_adc_tm_match_table, node);
if (id == NULL) {
pr_err("qpnp_adc_tm_match of_node prop not present\n");
return -ENODEV;
}
chip = devm_kzalloc(&pdev->dev, sizeof(struct qpnp_adc_tm_chip) +
(count_adc_channel_list *
sizeof(struct qpnp_adc_tm_sensor)),
GFP_KERNEL);
if (!chip)
return -ENOMEM;
list_add(&chip->list, &qpnp_adc_tm_device_list);
chip->max_channels_available = count_adc_channel_list;
adc_qpnp = devm_kzalloc(&pdev->dev, sizeof(struct qpnp_adc_drv),
GFP_KERNEL);
if (!adc_qpnp) {
rc = -ENOMEM;
goto fail;
}
chip->dev = &(pdev->dev);
chip->adc = adc_qpnp;
chip->adc->regmap = dev_get_regmap(pdev->dev.parent, NULL);
if (!chip->adc->regmap) {
dev_err(&pdev->dev, "Couldn't get parent's regmap\n");
rc = -EINVAL;
goto fail;
}
if (of_device_is_compatible(node, "qcom,qpnp-adc-tm-hc")) {
chip->adc_tm_hc = true;
chip->adc->adc_hc = true;
}
rc = qpnp_adc_get_devicetree_data(pdev, chip->adc);
if (rc) {
dev_err(&pdev->dev, "failed to read device tree\n");
goto fail;
}
mutex_init(&chip->adc->adc_lock);
/* Register the ADC peripheral interrupt */
if (!chip->adc_tm_hc) {
chip->adc->adc_high_thr_irq = platform_get_irq_byname(pdev,
"high-thr-en-set");
if (chip->adc->adc_high_thr_irq < 0) {
pr_err("Invalid irq\n");
rc = -ENXIO;
goto fail;
}
chip->adc->adc_low_thr_irq = platform_get_irq_byname(pdev,
"low-thr-en-set");
if (chip->adc->adc_low_thr_irq < 0) {
pr_err("Invalid irq\n");
rc = -ENXIO;
goto fail;
}
}
chip->vadc_dev = qpnp_get_vadc(&pdev->dev, "adc_tm");
if (IS_ERR(chip->vadc_dev)) {
rc = PTR_ERR(chip->vadc_dev);
if (rc != -EPROBE_DEFER)
pr_err("vadc property missing, rc=%d\n", rc);
goto fail;
}
chip->adc_tm_recalib_check = of_property_read_bool(node,
"qcom,adc-tm-recalib-check");
for_each_child_of_node(node, child) {
char name[25];
int btm_channel_num, timer_select = 0;
rc = of_property_read_u32(child,
"qcom,btm-channel-number", &btm_channel_num);
if (rc) {
pr_err("Invalid btm channel number\n");
goto fail;
}
rc = of_property_read_u32(child,
"qcom,meas-interval-timer-idx", &timer_select);
if (rc) {
pr_debug("Default to timer2 with interval of 1 sec\n");
chip->sensor[sen_idx].timer_select =
ADC_MEAS_TIMER_SELECT2;
chip->sensor[sen_idx].meas_interval =
ADC_MEAS2_INTERVAL_1S;
} else {
if (timer_select >= ADC_MEAS_TIMER_NUM) {
pr_err("Invalid timer selection number\n");
goto fail;
}
chip->sensor[sen_idx].timer_select = timer_select;
if (timer_select == ADC_MEAS_TIMER_SELECT1)
chip->sensor[sen_idx].meas_interval =
ADC_MEAS1_INTERVAL_3P9MS;
else if (timer_select == ADC_MEAS_TIMER_SELECT3)
chip->sensor[sen_idx].meas_interval =
ADC_MEAS3_INTERVAL_4S;
else if (timer_select == ADC_MEAS_TIMER_SELECT2)
chip->sensor[sen_idx].meas_interval =
ADC_MEAS2_INTERVAL_1S;
}
chip->sensor[sen_idx].btm_channel_num = btm_channel_num;
chip->sensor[sen_idx].vadc_channel_num =
chip->adc->adc_channels[sen_idx].channel_num;
chip->sensor[sen_idx].sensor_num = sen_idx;
chip->sensor[sen_idx].chip = chip;
pr_debug("btm_chan:%x, vadc_chan:%x\n", btm_channel_num,
chip->adc->adc_channels[sen_idx].channel_num);
thermal_node = of_property_read_bool(child,
"qcom,thermal-node");
if (thermal_node) {
/* Register with the thermal zone */
pr_debug("thermal node%x\n", btm_channel_num);
chip->sensor[sen_idx].mode = THERMAL_DEVICE_DISABLED;
chip->sensor[sen_idx].thermal_node = true;
snprintf(name, sizeof(name), "%s",
chip->adc->adc_channels[sen_idx].name);
chip->sensor[sen_idx].low_thr =
QPNP_ADC_TM_M0_LOW_THR;
chip->sensor[sen_idx].high_thr =
QPNP_ADC_TM_M0_HIGH_THR;
chip->sensor[sen_idx].tz_dev =
devm_thermal_zone_of_sensor_register(
chip->dev,
chip->sensor[sen_idx].vadc_channel_num,
&chip->sensor[sen_idx],
&qpnp_adc_tm_thermal_ops);
if (IS_ERR(chip->sensor[sen_idx].tz_dev))
pr_err("thermal device register failed.\n");
}
chip->sensor[sen_idx].req_wq = alloc_workqueue(
"qpnp_adc_notify_wq", WQ_HIGHPRI, 0);
if (!chip->sensor[sen_idx].req_wq) {
pr_err("Requesting priority wq failed\n");
goto fail;
}
INIT_WORK(&chip->sensor[sen_idx].work, notify_adc_tm_fn);
INIT_LIST_HEAD(&chip->sensor[sen_idx].thr_list);
sen_idx++;
}
chip->high_thr_wq = alloc_workqueue("qpnp_adc_tm_high_thr_wq",
WQ_HIGHPRI, 0);
if (!chip->high_thr_wq) {
pr_err("Requesting high thr priority wq failed\n");
goto fail;
}
chip->low_thr_wq = alloc_workqueue("qpnp_adc_tm_low_thr_wq",
WQ_HIGHPRI, 0);
if (!chip->low_thr_wq) {
pr_err("Requesting low thr priority wq failed\n");
goto fail;
}
chip->thr_wq = alloc_workqueue("qpnp_adc_tm_thr_wq",
WQ_HIGHPRI, 0);
if (!chip->thr_wq) {
pr_err("Requesting thr priority wq failed\n");
goto fail;
}
INIT_WORK(&chip->trigger_high_thr_work, qpnp_adc_tm_high_thr_work);
INIT_WORK(&chip->trigger_low_thr_work, qpnp_adc_tm_low_thr_work);
if (!chip->adc_tm_hc) {
rc = qpnp_adc_tm_initial_setup(chip);
if (rc)
goto fail;
rc = devm_request_irq(&pdev->dev, chip->adc->adc_high_thr_irq,
qpnp_adc_tm_high_thr_isr,
IRQF_TRIGGER_RISING, "qpnp_adc_tm_high_interrupt", chip);
if (rc) {
dev_err(&pdev->dev, "failed to request adc irq\n");
goto fail;
} else {
enable_irq_wake(chip->adc->adc_high_thr_irq);
}
rc = devm_request_irq(&pdev->dev, chip->adc->adc_low_thr_irq,
qpnp_adc_tm_low_thr_isr,
IRQF_TRIGGER_RISING,
"qpnp_adc_tm_low_interrupt", chip);
if (rc) {
dev_err(&pdev->dev, "failed to request adc irq\n");
goto fail;
} else {
enable_irq_wake(chip->adc->adc_low_thr_irq);
}
} else {
rc = devm_request_irq(&pdev->dev, chip->adc->adc_irq_eoc,
qpnp_adc_tm_rc_thr_isr,
IRQF_TRIGGER_RISING, "qpnp_adc_tm_interrupt", chip);
if (rc)
dev_err(&pdev->dev, "failed to request adc irq\n");
else
enable_irq_wake(chip->adc->adc_irq_eoc);
}
chip->adc_vote_enable = false;
dev_set_drvdata(&pdev->dev, chip);
spin_lock_init(&chip->th_info.adc_tm_low_lock);
spin_lock_init(&chip->th_info.adc_tm_high_lock);
pr_debug("OK\n");
return 0;
fail:
for_each_child_of_node(node, child) {
thermal_node = of_property_read_bool(child,
"qcom,thermal-node");
if (thermal_node) {
thermal_zone_device_unregister(chip->sensor[i].tz_dev);
if (chip->sensor[i].req_wq)
destroy_workqueue(chip->sensor[sen_idx].req_wq);
}
}
if (chip->high_thr_wq)
destroy_workqueue(chip->high_thr_wq);
if (chip->low_thr_wq)
destroy_workqueue(chip->low_thr_wq);
list_del(&chip->list);
dev_set_drvdata(&pdev->dev, NULL);
return rc;
}
static int qpnp_adc_tm_remove(struct platform_device *pdev)
{
struct qpnp_adc_tm_chip *chip = dev_get_drvdata(&pdev->dev);
struct device_node *node = pdev->dev.of_node, *child;
int i = 0;
for_each_child_of_node(node, child) {
if (chip->sensor[i].req_wq)
destroy_workqueue(chip->sensor[i].req_wq);
i++;
}
if (chip->high_thr_wq)
destroy_workqueue(chip->high_thr_wq);
if (chip->low_thr_wq)
destroy_workqueue(chip->low_thr_wq);
if (chip->adc->hkadc_ldo && chip->adc->hkadc_ldo_ok)
qpnp_adc_free_voltage_resource(chip->adc);
dev_set_drvdata(&pdev->dev, NULL);
return 0;
}
static void qpnp_adc_tm_shutdown(struct platform_device *pdev)
{
struct qpnp_adc_tm_chip *chip = dev_get_drvdata(&pdev->dev);
int rc = 0, i = 0;
/* Disable bank */
rc = qpnp_adc_tm_disable(chip);
if (rc < 0)
pr_err("adc-tm disable failed\n");
for (i = 0; i < QPNP_BTM_CHANNELS; i++) {
rc = qpnp_adc_tm_reg_update(chip,
QPNP_BTM_Mn_EN(i),
QPNP_BTM_Mn_MEAS_EN, false);
if (rc < 0)
pr_err("multi measurement disable failed\n");
}
}
static int qpnp_adc_tm_suspend_noirq(struct device *dev)
{
struct qpnp_adc_tm_chip *chip = dev_get_drvdata(dev);
struct device_node *node = dev->of_node, *child;
int i = 0;
flush_workqueue(chip->high_thr_wq);
flush_workqueue(chip->low_thr_wq);
for_each_child_of_node(node, child) {
if (chip->sensor[i].req_wq) {
pr_debug("flushing queue for sensor %d\n", i);
flush_workqueue(chip->sensor[i].req_wq);
}
i++;
}
return 0;
}
static const struct dev_pm_ops qpnp_adc_tm_pm_ops = {
.suspend_noirq = qpnp_adc_tm_suspend_noirq,
};
static struct platform_driver qpnp_adc_tm_driver = {
.driver = {
.name = "qcom,qpnp-adc-tm",
.of_match_table = qpnp_adc_tm_match_table,
.pm = &qpnp_adc_tm_pm_ops,
},
.probe = qpnp_adc_tm_probe,
.remove = qpnp_adc_tm_remove,
.shutdown = qpnp_adc_tm_shutdown,
};
static int __init qpnp_adc_tm_init(void)
{
return platform_driver_register(&qpnp_adc_tm_driver);
}
module_init(qpnp_adc_tm_init);
static void __exit qpnp_adc_tm_exit(void)
{
platform_driver_unregister(&qpnp_adc_tm_driver);
}
module_exit(qpnp_adc_tm_exit);
MODULE_DESCRIPTION("QPNP PMIC ADC Threshold Monitoring driver");
MODULE_LICENSE("GPL v2");