| |
| #include <linux/sched.h> |
| #include <linux/sched/sysctl.h> |
| #include <linux/sched/rt.h> |
| #include <linux/u64_stats_sync.h> |
| #include <linux/sched/deadline.h> |
| #include <linux/binfmts.h> |
| #include <linux/mutex.h> |
| #include <linux/spinlock.h> |
| #include <linux/stop_machine.h> |
| #include <linux/irq_work.h> |
| #include <linux/tick.h> |
| #include <linux/slab.h> |
| #include <linux/sched_energy.h> |
| |
| #include "cpupri.h" |
| #include "cpudeadline.h" |
| #include "cpuacct.h" |
| |
| #ifdef CONFIG_SCHED_DEBUG |
| #define SCHED_WARN_ON(x) WARN_ONCE(x, #x) |
| #else |
| #define SCHED_WARN_ON(x) ((void)(x)) |
| #endif |
| |
| struct rq; |
| struct cpuidle_state; |
| |
| extern __read_mostly bool sched_predl; |
| extern unsigned int sched_smp_overlap_capacity; |
| |
| #ifdef CONFIG_SCHED_WALT |
| extern unsigned int sched_ravg_window; |
| extern unsigned int walt_cpu_util_freq_divisor; |
| |
| struct walt_sched_stats { |
| int nr_big_tasks; |
| u64 cumulative_runnable_avg; |
| u64 pred_demands_sum; |
| }; |
| |
| struct cpu_cycle { |
| u64 cycles; |
| u64 time; |
| }; |
| |
| struct group_cpu_time { |
| u64 curr_runnable_sum; |
| u64 prev_runnable_sum; |
| u64 nt_curr_runnable_sum; |
| u64 nt_prev_runnable_sum; |
| }; |
| |
| struct load_subtractions { |
| u64 window_start; |
| u64 subs; |
| u64 new_subs; |
| }; |
| |
| #define NUM_TRACKED_WINDOWS 2 |
| #define NUM_LOAD_INDICES 1000 |
| |
| struct sched_cluster { |
| raw_spinlock_t load_lock; |
| struct list_head list; |
| struct cpumask cpus; |
| int id; |
| int max_power_cost; |
| int min_power_cost; |
| int max_possible_capacity; |
| int capacity; |
| int efficiency; /* Differentiate cpus with different IPC capability */ |
| int load_scale_factor; |
| unsigned int exec_scale_factor; |
| /* |
| * max_freq = user maximum |
| * max_mitigated_freq = thermal defined maximum |
| * max_possible_freq = maximum supported by hardware |
| */ |
| unsigned int cur_freq, max_freq, max_mitigated_freq, min_freq; |
| unsigned int max_possible_freq; |
| bool freq_init_done; |
| int dstate, dstate_wakeup_latency, dstate_wakeup_energy; |
| unsigned int static_cluster_pwr_cost; |
| int notifier_sent; |
| bool wake_up_idle; |
| u64 aggr_grp_load; |
| }; |
| |
| extern unsigned int sched_disable_window_stats; |
| |
| extern struct timer_list sched_grp_timer; |
| #endif /* CONFIG_SCHED_WALT */ |
| |
| |
| /* task_struct::on_rq states: */ |
| #define TASK_ON_RQ_QUEUED 1 |
| #define TASK_ON_RQ_MIGRATING 2 |
| |
| extern __read_mostly int scheduler_running; |
| |
| extern unsigned long calc_load_update; |
| extern atomic_long_t calc_load_tasks; |
| |
| extern void calc_global_load_tick(struct rq *this_rq); |
| extern long calc_load_fold_active(struct rq *this_rq, long adjust); |
| |
| #ifdef CONFIG_SMP |
| extern void cpu_load_update_active(struct rq *this_rq); |
| #else |
| static inline void cpu_load_update_active(struct rq *this_rq) { } |
| #endif |
| |
| #ifdef CONFIG_SCHED_SMT |
| extern void update_idle_core(struct rq *rq); |
| #else |
| static inline void update_idle_core(struct rq *rq) { } |
| #endif |
| |
| /* |
| * Helpers for converting nanosecond timing to jiffy resolution |
| */ |
| #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) |
| |
| /* |
| * Increase resolution of nice-level calculations for 64-bit architectures. |
| * The extra resolution improves shares distribution and load balancing of |
| * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup |
| * hierarchies, especially on larger systems. This is not a user-visible change |
| * and does not change the user-interface for setting shares/weights. |
| * |
| * We increase resolution only if we have enough bits to allow this increased |
| * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are |
| * pretty high and the returns do not justify the increased costs. |
| * |
| * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to |
| * increase coverage and consistency always enable it on 64bit platforms. |
| */ |
| #ifdef CONFIG_64BIT |
| # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) |
| # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) |
| # define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT) |
| #else |
| # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) |
| # define scale_load(w) (w) |
| # define scale_load_down(w) (w) |
| #endif |
| |
| /* |
| * Task weight (visible to users) and its load (invisible to users) have |
| * independent resolution, but they should be well calibrated. We use |
| * scale_load() and scale_load_down(w) to convert between them. The |
| * following must be true: |
| * |
| * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD |
| * |
| */ |
| #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) |
| |
| /* |
| * Single value that decides SCHED_DEADLINE internal math precision. |
| * 10 -> just above 1us |
| * 9 -> just above 0.5us |
| */ |
| #define DL_SCALE (10) |
| |
| /* |
| * These are the 'tuning knobs' of the scheduler: |
| */ |
| |
| /* |
| * single value that denotes runtime == period, ie unlimited time. |
| */ |
| #define RUNTIME_INF ((u64)~0ULL) |
| |
| static inline int idle_policy(int policy) |
| { |
| return policy == SCHED_IDLE; |
| } |
| static inline int fair_policy(int policy) |
| { |
| return policy == SCHED_NORMAL || policy == SCHED_BATCH; |
| } |
| |
| static inline int rt_policy(int policy) |
| { |
| return policy == SCHED_FIFO || policy == SCHED_RR; |
| } |
| |
| static inline int dl_policy(int policy) |
| { |
| return policy == SCHED_DEADLINE; |
| } |
| static inline bool valid_policy(int policy) |
| { |
| return idle_policy(policy) || fair_policy(policy) || |
| rt_policy(policy) || dl_policy(policy); |
| } |
| |
| static inline int task_has_rt_policy(struct task_struct *p) |
| { |
| return rt_policy(p->policy); |
| } |
| |
| static inline int task_has_dl_policy(struct task_struct *p) |
| { |
| return dl_policy(p->policy); |
| } |
| |
| /* |
| * Tells if entity @a should preempt entity @b. |
| */ |
| static inline bool |
| dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) |
| { |
| return dl_time_before(a->deadline, b->deadline); |
| } |
| |
| /* |
| * This is the priority-queue data structure of the RT scheduling class: |
| */ |
| struct rt_prio_array { |
| DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ |
| struct list_head queue[MAX_RT_PRIO]; |
| }; |
| |
| struct rt_bandwidth { |
| /* nests inside the rq lock: */ |
| raw_spinlock_t rt_runtime_lock; |
| ktime_t rt_period; |
| u64 rt_runtime; |
| struct hrtimer rt_period_timer; |
| unsigned int rt_period_active; |
| }; |
| |
| void __dl_clear_params(struct task_struct *p); |
| |
| /* |
| * To keep the bandwidth of -deadline tasks and groups under control |
| * we need some place where: |
| * - store the maximum -deadline bandwidth of the system (the group); |
| * - cache the fraction of that bandwidth that is currently allocated. |
| * |
| * This is all done in the data structure below. It is similar to the |
| * one used for RT-throttling (rt_bandwidth), with the main difference |
| * that, since here we are only interested in admission control, we |
| * do not decrease any runtime while the group "executes", neither we |
| * need a timer to replenish it. |
| * |
| * With respect to SMP, the bandwidth is given on a per-CPU basis, |
| * meaning that: |
| * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU; |
| * - dl_total_bw array contains, in the i-eth element, the currently |
| * allocated bandwidth on the i-eth CPU. |
| * Moreover, groups consume bandwidth on each CPU, while tasks only |
| * consume bandwidth on the CPU they're running on. |
| * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw |
| * that will be shown the next time the proc or cgroup controls will |
| * be red. It on its turn can be changed by writing on its own |
| * control. |
| */ |
| struct dl_bandwidth { |
| raw_spinlock_t dl_runtime_lock; |
| u64 dl_runtime; |
| u64 dl_period; |
| }; |
| |
| static inline int dl_bandwidth_enabled(void) |
| { |
| return sysctl_sched_rt_runtime >= 0; |
| } |
| |
| extern struct dl_bw *dl_bw_of(int i); |
| |
| struct dl_bw { |
| raw_spinlock_t lock; |
| u64 bw, total_bw; |
| }; |
| |
| static inline |
| void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw) |
| { |
| dl_b->total_bw -= tsk_bw; |
| } |
| |
| static inline |
| void __dl_add(struct dl_bw *dl_b, u64 tsk_bw) |
| { |
| dl_b->total_bw += tsk_bw; |
| } |
| |
| static inline |
| bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw) |
| { |
| return dl_b->bw != -1 && |
| dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw; |
| } |
| |
| extern struct mutex sched_domains_mutex; |
| |
| #ifdef CONFIG_CGROUP_SCHED |
| |
| #include <linux/cgroup.h> |
| |
| struct cfs_rq; |
| struct rt_rq; |
| |
| extern struct list_head task_groups; |
| |
| struct cfs_bandwidth { |
| #ifdef CONFIG_CFS_BANDWIDTH |
| raw_spinlock_t lock; |
| ktime_t period; |
| u64 quota, runtime; |
| s64 hierarchical_quota; |
| u64 runtime_expires; |
| |
| int idle, period_active; |
| struct hrtimer period_timer, slack_timer; |
| struct list_head throttled_cfs_rq; |
| |
| /* statistics */ |
| int nr_periods, nr_throttled; |
| u64 throttled_time; |
| #endif |
| }; |
| |
| /* task group related information */ |
| struct task_group { |
| struct cgroup_subsys_state css; |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| /* schedulable entities of this group on each cpu */ |
| struct sched_entity **se; |
| /* runqueue "owned" by this group on each cpu */ |
| struct cfs_rq **cfs_rq; |
| unsigned long shares; |
| |
| #ifdef CONFIG_SMP |
| /* |
| * load_avg can be heavily contended at clock tick time, so put |
| * it in its own cacheline separated from the fields above which |
| * will also be accessed at each tick. |
| */ |
| atomic_long_t load_avg ____cacheline_aligned; |
| #endif |
| #endif |
| |
| #ifdef CONFIG_RT_GROUP_SCHED |
| struct sched_rt_entity **rt_se; |
| struct rt_rq **rt_rq; |
| |
| struct rt_bandwidth rt_bandwidth; |
| #endif |
| |
| struct rcu_head rcu; |
| struct list_head list; |
| |
| struct task_group *parent; |
| struct list_head siblings; |
| struct list_head children; |
| |
| #ifdef CONFIG_SCHED_AUTOGROUP |
| struct autogroup *autogroup; |
| #endif |
| |
| struct cfs_bandwidth cfs_bandwidth; |
| }; |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD |
| |
| /* |
| * A weight of 0 or 1 can cause arithmetics problems. |
| * A weight of a cfs_rq is the sum of weights of which entities |
| * are queued on this cfs_rq, so a weight of a entity should not be |
| * too large, so as the shares value of a task group. |
| * (The default weight is 1024 - so there's no practical |
| * limitation from this.) |
| */ |
| #define MIN_SHARES (1UL << 1) |
| #define MAX_SHARES (1UL << 18) |
| #endif |
| |
| typedef int (*tg_visitor)(struct task_group *, void *); |
| |
| extern int walk_tg_tree_from(struct task_group *from, |
| tg_visitor down, tg_visitor up, void *data); |
| |
| /* |
| * Iterate the full tree, calling @down when first entering a node and @up when |
| * leaving it for the final time. |
| * |
| * Caller must hold rcu_lock or sufficient equivalent. |
| */ |
| static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) |
| { |
| return walk_tg_tree_from(&root_task_group, down, up, data); |
| } |
| |
| extern int tg_nop(struct task_group *tg, void *data); |
| |
| extern void free_fair_sched_group(struct task_group *tg); |
| extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); |
| extern void online_fair_sched_group(struct task_group *tg); |
| extern void unregister_fair_sched_group(struct task_group *tg); |
| extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, |
| struct sched_entity *se, int cpu, |
| struct sched_entity *parent); |
| extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); |
| |
| extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); |
| extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); |
| extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); |
| |
| extern void free_rt_sched_group(struct task_group *tg); |
| extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); |
| extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, |
| struct sched_rt_entity *rt_se, int cpu, |
| struct sched_rt_entity *parent); |
| |
| extern struct task_group *sched_create_group(struct task_group *parent); |
| extern void sched_online_group(struct task_group *tg, |
| struct task_group *parent); |
| extern void sched_destroy_group(struct task_group *tg); |
| extern void sched_offline_group(struct task_group *tg); |
| |
| extern void sched_move_task(struct task_struct *tsk); |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); |
| |
| #ifdef CONFIG_SMP |
| extern void set_task_rq_fair(struct sched_entity *se, |
| struct cfs_rq *prev, struct cfs_rq *next); |
| #else /* !CONFIG_SMP */ |
| static inline void set_task_rq_fair(struct sched_entity *se, |
| struct cfs_rq *prev, struct cfs_rq *next) { } |
| #endif /* CONFIG_SMP */ |
| #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| |
| extern struct task_group *css_tg(struct cgroup_subsys_state *css); |
| |
| #else /* CONFIG_CGROUP_SCHED */ |
| |
| struct cfs_bandwidth { }; |
| |
| #endif /* CONFIG_CGROUP_SCHED */ |
| |
| /* CFS-related fields in a runqueue */ |
| struct cfs_rq { |
| struct load_weight load; |
| unsigned int nr_running, h_nr_running; |
| |
| u64 exec_clock; |
| u64 min_vruntime; |
| #ifndef CONFIG_64BIT |
| u64 min_vruntime_copy; |
| #endif |
| |
| struct rb_root tasks_timeline; |
| struct rb_node *rb_leftmost; |
| |
| /* |
| * 'curr' points to currently running entity on this cfs_rq. |
| * It is set to NULL otherwise (i.e when none are currently running). |
| */ |
| struct sched_entity *curr, *next, *last, *skip; |
| |
| #ifdef CONFIG_SCHED_DEBUG |
| unsigned int nr_spread_over; |
| #endif |
| |
| #ifdef CONFIG_SMP |
| /* |
| * CFS load tracking |
| */ |
| struct sched_avg avg; |
| u64 runnable_load_sum; |
| unsigned long runnable_load_avg; |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| unsigned long tg_load_avg_contrib; |
| unsigned long propagate_avg; |
| #endif |
| atomic_long_t removed_load_avg, removed_util_avg; |
| #ifndef CONFIG_64BIT |
| u64 load_last_update_time_copy; |
| #endif |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| /* |
| * h_load = weight * f(tg) |
| * |
| * Where f(tg) is the recursive weight fraction assigned to |
| * this group. |
| */ |
| unsigned long h_load; |
| u64 last_h_load_update; |
| struct sched_entity *h_load_next; |
| #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| #endif /* CONFIG_SMP */ |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ |
| |
| /* |
| * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in |
| * a hierarchy). Non-leaf lrqs hold other higher schedulable entities |
| * (like users, containers etc.) |
| * |
| * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This |
| * list is used during load balance. |
| */ |
| int on_list; |
| struct list_head leaf_cfs_rq_list; |
| struct task_group *tg; /* group that "owns" this runqueue */ |
| |
| #ifdef CONFIG_CFS_BANDWIDTH |
| |
| #ifdef CONFIG_SCHED_WALT |
| struct walt_sched_stats walt_stats; |
| #endif |
| |
| int runtime_enabled; |
| u64 runtime_expires; |
| s64 runtime_remaining; |
| |
| u64 throttled_clock, throttled_clock_task; |
| u64 throttled_clock_task_time; |
| int throttled, throttle_count; |
| struct list_head throttled_list; |
| #endif /* CONFIG_CFS_BANDWIDTH */ |
| #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| }; |
| |
| static inline int rt_bandwidth_enabled(void) |
| { |
| return sysctl_sched_rt_runtime >= 0; |
| } |
| |
| /* RT IPI pull logic requires IRQ_WORK */ |
| #ifdef CONFIG_IRQ_WORK |
| # define HAVE_RT_PUSH_IPI |
| #endif |
| |
| /* Real-Time classes' related field in a runqueue: */ |
| struct rt_rq { |
| struct rt_prio_array active; |
| unsigned int rt_nr_running; |
| unsigned int rr_nr_running; |
| #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
| struct { |
| int curr; /* highest queued rt task prio */ |
| #ifdef CONFIG_SMP |
| int next; /* next highest */ |
| #endif |
| } highest_prio; |
| #endif |
| #ifdef CONFIG_SMP |
| unsigned long rt_nr_migratory; |
| unsigned long rt_nr_total; |
| int overloaded; |
| struct plist_head pushable_tasks; |
| #ifdef HAVE_RT_PUSH_IPI |
| int push_flags; |
| int push_cpu; |
| struct irq_work push_work; |
| raw_spinlock_t push_lock; |
| #endif |
| #endif /* CONFIG_SMP */ |
| int rt_queued; |
| |
| int rt_throttled; |
| u64 rt_time; |
| u64 rt_runtime; |
| /* Nests inside the rq lock: */ |
| raw_spinlock_t rt_runtime_lock; |
| |
| #ifdef CONFIG_RT_GROUP_SCHED |
| unsigned long rt_nr_boosted; |
| |
| struct rq *rq; |
| struct task_group *tg; |
| #endif |
| }; |
| |
| /* Deadline class' related fields in a runqueue */ |
| struct dl_rq { |
| /* runqueue is an rbtree, ordered by deadline */ |
| struct rb_root rb_root; |
| struct rb_node *rb_leftmost; |
| |
| unsigned long dl_nr_running; |
| |
| #ifdef CONFIG_SMP |
| /* |
| * Deadline values of the currently executing and the |
| * earliest ready task on this rq. Caching these facilitates |
| * the decision wether or not a ready but not running task |
| * should migrate somewhere else. |
| */ |
| struct { |
| u64 curr; |
| u64 next; |
| } earliest_dl; |
| |
| unsigned long dl_nr_migratory; |
| int overloaded; |
| |
| /* |
| * Tasks on this rq that can be pushed away. They are kept in |
| * an rb-tree, ordered by tasks' deadlines, with caching |
| * of the leftmost (earliest deadline) element. |
| */ |
| struct rb_root pushable_dl_tasks_root; |
| struct rb_node *pushable_dl_tasks_leftmost; |
| #else |
| struct dl_bw dl_bw; |
| #endif |
| }; |
| |
| #ifdef CONFIG_SMP |
| |
| struct max_cpu_capacity { |
| raw_spinlock_t lock; |
| unsigned long val; |
| int cpu; |
| }; |
| |
| /* |
| * We add the notion of a root-domain which will be used to define per-domain |
| * variables. Each exclusive cpuset essentially defines an island domain by |
| * fully partitioning the member cpus from any other cpuset. Whenever a new |
| * exclusive cpuset is created, we also create and attach a new root-domain |
| * object. |
| * |
| */ |
| struct root_domain { |
| atomic_t refcount; |
| atomic_t rto_count; |
| struct rcu_head rcu; |
| cpumask_var_t span; |
| cpumask_var_t online; |
| |
| /* Indicate more than one runnable task for any CPU */ |
| bool overload; |
| |
| /* Indicate one or more cpus over-utilized (tipping point) */ |
| bool overutilized; |
| |
| /* |
| * The bit corresponding to a CPU gets set here if such CPU has more |
| * than one runnable -deadline task (as it is below for RT tasks). |
| */ |
| cpumask_var_t dlo_mask; |
| atomic_t dlo_count; |
| struct dl_bw dl_bw; |
| struct cpudl cpudl; |
| |
| /* |
| * The "RT overload" flag: it gets set if a CPU has more than |
| * one runnable RT task. |
| */ |
| cpumask_var_t rto_mask; |
| struct cpupri cpupri; |
| |
| /* Maximum cpu capacity in the system. */ |
| struct max_cpu_capacity max_cpu_capacity; |
| |
| /* First cpu with maximum and minimum original capacity */ |
| int max_cap_orig_cpu, min_cap_orig_cpu; |
| }; |
| |
| extern struct root_domain def_root_domain; |
| |
| #endif /* CONFIG_SMP */ |
| |
| /* |
| * This is the main, per-CPU runqueue data structure. |
| * |
| * Locking rule: those places that want to lock multiple runqueues |
| * (such as the load balancing or the thread migration code), lock |
| * acquire operations must be ordered by ascending &runqueue. |
| */ |
| struct rq { |
| /* runqueue lock: */ |
| raw_spinlock_t lock; |
| |
| /* |
| * nr_running and cpu_load should be in the same cacheline because |
| * remote CPUs use both these fields when doing load calculation. |
| */ |
| unsigned int nr_running; |
| #ifdef CONFIG_NUMA_BALANCING |
| unsigned int nr_numa_running; |
| unsigned int nr_preferred_running; |
| #endif |
| #define CPU_LOAD_IDX_MAX 5 |
| unsigned long cpu_load[CPU_LOAD_IDX_MAX]; |
| unsigned int misfit_task; |
| #ifdef CONFIG_NO_HZ_COMMON |
| #ifdef CONFIG_SMP |
| unsigned long last_load_update_tick; |
| #endif /* CONFIG_SMP */ |
| unsigned long nohz_flags; |
| #endif /* CONFIG_NO_HZ_COMMON */ |
| #ifdef CONFIG_NO_HZ_FULL |
| unsigned long last_sched_tick; |
| #endif |
| |
| #ifdef CONFIG_CPU_QUIET |
| /* time-based average load */ |
| u64 nr_last_stamp; |
| u64 nr_running_integral; |
| seqcount_t ave_seqcnt; |
| #endif |
| |
| /* capture load from *all* tasks on this cpu: */ |
| struct load_weight load; |
| unsigned long nr_load_updates; |
| u64 nr_switches; |
| |
| struct cfs_rq cfs; |
| struct rt_rq rt; |
| struct dl_rq dl; |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| /* list of leaf cfs_rq on this cpu: */ |
| struct list_head leaf_cfs_rq_list; |
| struct list_head *tmp_alone_branch; |
| #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| |
| /* |
| * This is part of a global counter where only the total sum |
| * over all CPUs matters. A task can increase this counter on |
| * one CPU and if it got migrated afterwards it may decrease |
| * it on another CPU. Always updated under the runqueue lock: |
| */ |
| unsigned long nr_uninterruptible; |
| |
| struct task_struct *curr, *idle, *stop; |
| unsigned long next_balance; |
| struct mm_struct *prev_mm; |
| |
| unsigned int clock_skip_update; |
| u64 clock; |
| u64 clock_task; |
| |
| atomic_t nr_iowait; |
| |
| #ifdef CONFIG_SMP |
| struct root_domain *rd; |
| struct sched_domain *sd; |
| |
| unsigned long cpu_capacity; |
| unsigned long cpu_capacity_orig; |
| |
| struct callback_head *balance_callback; |
| |
| unsigned char idle_balance; |
| /* For active balancing */ |
| int active_balance; |
| int push_cpu; |
| struct task_struct *push_task; |
| struct cpu_stop_work active_balance_work; |
| /* cpu of this runqueue: */ |
| int cpu; |
| int online; |
| |
| struct list_head cfs_tasks; |
| |
| u64 rt_avg; |
| u64 age_stamp; |
| u64 idle_stamp; |
| u64 avg_idle; |
| |
| /* This is used to determine avg_idle's max value */ |
| u64 max_idle_balance_cost; |
| #endif |
| |
| #ifdef CONFIG_SCHED_WALT |
| struct sched_cluster *cluster; |
| struct cpumask freq_domain_cpumask; |
| struct walt_sched_stats walt_stats; |
| |
| int cstate, wakeup_latency, wakeup_energy; |
| u64 window_start; |
| s64 cum_window_start; |
| u64 load_reported_window; |
| unsigned long walt_flags; |
| |
| u64 cur_irqload; |
| u64 avg_irqload; |
| u64 irqload_ts; |
| unsigned int static_cpu_pwr_cost; |
| struct task_struct *ed_task; |
| struct cpu_cycle cc; |
| u64 old_busy_time, old_busy_time_group; |
| u64 old_estimated_time; |
| u64 curr_runnable_sum; |
| u64 prev_runnable_sum; |
| u64 nt_curr_runnable_sum; |
| u64 nt_prev_runnable_sum; |
| u64 cum_window_demand; |
| struct group_cpu_time grp_time; |
| struct load_subtractions load_subs[NUM_TRACKED_WINDOWS]; |
| DECLARE_BITMAP_ARRAY(top_tasks_bitmap, |
| NUM_TRACKED_WINDOWS, NUM_LOAD_INDICES); |
| u8 *top_tasks[NUM_TRACKED_WINDOWS]; |
| u8 curr_table; |
| int prev_top; |
| int curr_top; |
| #endif |
| |
| #ifdef CONFIG_IRQ_TIME_ACCOUNTING |
| u64 prev_irq_time; |
| #endif |
| #ifdef CONFIG_PARAVIRT |
| u64 prev_steal_time; |
| #endif |
| #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING |
| u64 prev_steal_time_rq; |
| #endif |
| |
| /* calc_load related fields */ |
| unsigned long calc_load_update; |
| long calc_load_active; |
| |
| #ifdef CONFIG_SCHED_HRTICK |
| #ifdef CONFIG_SMP |
| int hrtick_csd_pending; |
| struct call_single_data hrtick_csd; |
| #endif |
| struct hrtimer hrtick_timer; |
| #endif |
| |
| #ifdef CONFIG_SCHEDSTATS |
| /* latency stats */ |
| struct sched_info rq_sched_info; |
| unsigned long long rq_cpu_time; |
| /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ |
| |
| /* sys_sched_yield() stats */ |
| unsigned int yld_count; |
| |
| /* schedule() stats */ |
| unsigned int sched_count; |
| unsigned int sched_goidle; |
| |
| /* try_to_wake_up() stats */ |
| unsigned int ttwu_count; |
| unsigned int ttwu_local; |
| #ifdef CONFIG_SMP |
| struct eas_stats eas_stats; |
| #endif |
| #endif |
| |
| #ifdef CONFIG_SMP |
| struct llist_head wake_list; |
| #endif |
| |
| #ifdef CONFIG_CPU_IDLE |
| /* Must be inspected within a rcu lock section */ |
| struct cpuidle_state *idle_state; |
| int idle_state_idx; |
| #endif |
| }; |
| |
| static inline int cpu_of(struct rq *rq) |
| { |
| #ifdef CONFIG_SMP |
| return rq->cpu; |
| #else |
| return 0; |
| #endif |
| } |
| |
| DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); |
| |
| #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) |
| #define this_rq() this_cpu_ptr(&runqueues) |
| #define task_rq(p) cpu_rq(task_cpu(p)) |
| #define cpu_curr(cpu) (cpu_rq(cpu)->curr) |
| #define raw_rq() raw_cpu_ptr(&runqueues) |
| |
| static inline u64 __rq_clock_broken(struct rq *rq) |
| { |
| return READ_ONCE(rq->clock); |
| } |
| |
| static inline u64 rq_clock(struct rq *rq) |
| { |
| lockdep_assert_held(&rq->lock); |
| return rq->clock; |
| } |
| |
| static inline u64 rq_clock_task(struct rq *rq) |
| { |
| lockdep_assert_held(&rq->lock); |
| return rq->clock_task; |
| } |
| |
| #define RQCF_REQ_SKIP 0x01 |
| #define RQCF_ACT_SKIP 0x02 |
| |
| static inline void rq_clock_skip_update(struct rq *rq, bool skip) |
| { |
| lockdep_assert_held(&rq->lock); |
| if (skip) |
| rq->clock_skip_update |= RQCF_REQ_SKIP; |
| else |
| rq->clock_skip_update &= ~RQCF_REQ_SKIP; |
| } |
| |
| #ifdef CONFIG_NUMA |
| enum numa_topology_type { |
| NUMA_DIRECT, |
| NUMA_GLUELESS_MESH, |
| NUMA_BACKPLANE, |
| }; |
| extern enum numa_topology_type sched_numa_topology_type; |
| extern int sched_max_numa_distance; |
| extern bool find_numa_distance(int distance); |
| #endif |
| |
| #ifdef CONFIG_NUMA_BALANCING |
| /* The regions in numa_faults array from task_struct */ |
| enum numa_faults_stats { |
| NUMA_MEM = 0, |
| NUMA_CPU, |
| NUMA_MEMBUF, |
| NUMA_CPUBUF |
| }; |
| extern void sched_setnuma(struct task_struct *p, int node); |
| extern int migrate_task_to(struct task_struct *p, int cpu); |
| extern int migrate_swap(struct task_struct *, struct task_struct *); |
| #endif /* CONFIG_NUMA_BALANCING */ |
| |
| #ifdef CONFIG_SMP |
| |
| static inline void |
| queue_balance_callback(struct rq *rq, |
| struct callback_head *head, |
| void (*func)(struct rq *rq)) |
| { |
| lockdep_assert_held(&rq->lock); |
| |
| if (unlikely(head->next)) |
| return; |
| |
| head->func = (void (*)(struct callback_head *))func; |
| head->next = rq->balance_callback; |
| rq->balance_callback = head; |
| } |
| |
| extern void sched_ttwu_pending(void); |
| |
| #define rcu_dereference_check_sched_domain(p) \ |
| rcu_dereference_check((p), \ |
| lockdep_is_held(&sched_domains_mutex)) |
| |
| /* |
| * The domain tree (rq->sd) is protected by RCU's quiescent state transition. |
| * See detach_destroy_domains: synchronize_sched for details. |
| * |
| * The domain tree of any CPU may only be accessed from within |
| * preempt-disabled sections. |
| */ |
| #define for_each_domain(cpu, __sd) \ |
| for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ |
| __sd; __sd = __sd->parent) |
| |
| #define for_each_lower_domain(sd) for (; sd; sd = sd->child) |
| |
| /** |
| * highest_flag_domain - Return highest sched_domain containing flag. |
| * @cpu: The cpu whose highest level of sched domain is to |
| * be returned. |
| * @flag: The flag to check for the highest sched_domain |
| * for the given cpu. |
| * |
| * Returns the highest sched_domain of a cpu which contains the given flag. |
| */ |
| static inline struct sched_domain *highest_flag_domain(int cpu, int flag) |
| { |
| struct sched_domain *sd, *hsd = NULL; |
| |
| for_each_domain(cpu, sd) { |
| if (!(sd->flags & flag)) |
| break; |
| hsd = sd; |
| } |
| |
| return hsd; |
| } |
| |
| static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) |
| { |
| struct sched_domain *sd; |
| |
| for_each_domain(cpu, sd) { |
| if (sd->flags & flag) |
| break; |
| } |
| |
| return sd; |
| } |
| |
| DECLARE_PER_CPU(struct sched_domain *, sd_llc); |
| DECLARE_PER_CPU(int, sd_llc_size); |
| DECLARE_PER_CPU(int, sd_llc_id); |
| DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared); |
| DECLARE_PER_CPU(struct sched_domain *, sd_numa); |
| DECLARE_PER_CPU(struct sched_domain *, sd_asym); |
| DECLARE_PER_CPU(struct sched_domain *, sd_ea); |
| DECLARE_PER_CPU(struct sched_domain *, sd_scs); |
| |
| struct sched_group_capacity { |
| atomic_t ref; |
| /* |
| * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity |
| * for a single CPU. |
| */ |
| unsigned long capacity; |
| unsigned long max_capacity; /* Max per-cpu capacity in group */ |
| unsigned long min_capacity; /* Min per-CPU capacity in group */ |
| unsigned long next_update; |
| int imbalance; /* XXX unrelated to capacity but shared group state */ |
| |
| unsigned long cpumask[0]; /* iteration mask */ |
| }; |
| |
| struct sched_group { |
| struct sched_group *next; /* Must be a circular list */ |
| atomic_t ref; |
| |
| unsigned int group_weight; |
| struct sched_group_capacity *sgc; |
| const struct sched_group_energy *sge; |
| |
| /* |
| * The CPUs this group covers. |
| * |
| * NOTE: this field is variable length. (Allocated dynamically |
| * by attaching extra space to the end of the structure, |
| * depending on how many CPUs the kernel has booted up with) |
| */ |
| unsigned long cpumask[0]; |
| }; |
| |
| static inline struct cpumask *sched_group_cpus(struct sched_group *sg) |
| { |
| return to_cpumask(sg->cpumask); |
| } |
| |
| /* |
| * cpumask masking which cpus in the group are allowed to iterate up the domain |
| * tree. |
| */ |
| static inline struct cpumask *sched_group_mask(struct sched_group *sg) |
| { |
| return to_cpumask(sg->sgc->cpumask); |
| } |
| |
| /** |
| * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. |
| * @group: The group whose first cpu is to be returned. |
| */ |
| static inline unsigned int group_first_cpu(struct sched_group *group) |
| { |
| return cpumask_first(sched_group_cpus(group)); |
| } |
| |
| extern int group_balance_cpu(struct sched_group *sg); |
| |
| #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) |
| void register_sched_domain_sysctl(void); |
| void unregister_sched_domain_sysctl(void); |
| #else |
| static inline void register_sched_domain_sysctl(void) |
| { |
| } |
| static inline void unregister_sched_domain_sysctl(void) |
| { |
| } |
| #endif |
| |
| #else |
| |
| static inline void sched_ttwu_pending(void) { } |
| |
| #endif /* CONFIG_SMP */ |
| |
| #include "stats.h" |
| #include "auto_group.h" |
| |
| enum sched_boost_policy { |
| SCHED_BOOST_NONE, |
| SCHED_BOOST_ON_BIG, |
| SCHED_BOOST_ON_ALL, |
| }; |
| |
| /* |
| * Returns the rq capacity of any rq in a group. This does not play |
| * well with groups where rq capacity can change independently. |
| */ |
| #define group_rq_capacity(group) cpu_capacity(group_first_cpu(group)) |
| |
| #ifdef CONFIG_CGROUP_SCHED |
| |
| /* |
| * Return the group to which this tasks belongs. |
| * |
| * We cannot use task_css() and friends because the cgroup subsystem |
| * changes that value before the cgroup_subsys::attach() method is called, |
| * therefore we cannot pin it and might observe the wrong value. |
| * |
| * The same is true for autogroup's p->signal->autogroup->tg, the autogroup |
| * core changes this before calling sched_move_task(). |
| * |
| * Instead we use a 'copy' which is updated from sched_move_task() while |
| * holding both task_struct::pi_lock and rq::lock. |
| */ |
| static inline struct task_group *task_group(struct task_struct *p) |
| { |
| return p->sched_task_group; |
| } |
| |
| /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ |
| static inline void set_task_rq(struct task_struct *p, unsigned int cpu) |
| { |
| #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) |
| struct task_group *tg = task_group(p); |
| #endif |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); |
| p->se.cfs_rq = tg->cfs_rq[cpu]; |
| p->se.parent = tg->se[cpu]; |
| #endif |
| |
| #ifdef CONFIG_RT_GROUP_SCHED |
| p->rt.rt_rq = tg->rt_rq[cpu]; |
| p->rt.parent = tg->rt_se[cpu]; |
| #endif |
| } |
| |
| #else /* CONFIG_CGROUP_SCHED */ |
| |
| static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } |
| static inline struct task_group *task_group(struct task_struct *p) |
| { |
| return NULL; |
| } |
| |
| #endif /* CONFIG_CGROUP_SCHED */ |
| |
| static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) |
| { |
| set_task_rq(p, cpu); |
| #ifdef CONFIG_SMP |
| /* |
| * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be |
| * successfuly executed on another CPU. We must ensure that updates of |
| * per-task data have been completed by this moment. |
| */ |
| smp_wmb(); |
| #ifdef CONFIG_THREAD_INFO_IN_TASK |
| p->cpu = cpu; |
| #else |
| task_thread_info(p)->cpu = cpu; |
| #endif |
| p->wake_cpu = cpu; |
| #endif |
| } |
| |
| /* |
| * Tunables that become constants when CONFIG_SCHED_DEBUG is off: |
| */ |
| #ifdef CONFIG_SCHED_DEBUG |
| # include <linux/static_key.h> |
| # define const_debug __read_mostly |
| #else |
| # define const_debug const |
| #endif |
| |
| extern const_debug unsigned int sysctl_sched_features; |
| |
| #define SCHED_FEAT(name, enabled) \ |
| __SCHED_FEAT_##name , |
| |
| enum { |
| #include "features.h" |
| __SCHED_FEAT_NR, |
| }; |
| |
| #undef SCHED_FEAT |
| |
| #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) |
| #define SCHED_FEAT(name, enabled) \ |
| static __always_inline bool static_branch_##name(struct static_key *key) \ |
| { \ |
| return static_key_##enabled(key); \ |
| } |
| |
| #include "features.h" |
| |
| #undef SCHED_FEAT |
| |
| extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; |
| #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) |
| #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */ |
| #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) |
| #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */ |
| |
| extern struct static_key_false sched_numa_balancing; |
| extern struct static_key_false sched_schedstats; |
| |
| static inline u64 global_rt_period(void) |
| { |
| return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; |
| } |
| |
| static inline u64 global_rt_runtime(void) |
| { |
| if (sysctl_sched_rt_runtime < 0) |
| return RUNTIME_INF; |
| |
| return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; |
| } |
| |
| static inline int task_current(struct rq *rq, struct task_struct *p) |
| { |
| return rq->curr == p; |
| } |
| |
| static inline int task_running(struct rq *rq, struct task_struct *p) |
| { |
| #ifdef CONFIG_SMP |
| return p->on_cpu; |
| #else |
| return task_current(rq, p); |
| #endif |
| } |
| |
| static inline int task_on_rq_queued(struct task_struct *p) |
| { |
| return p->on_rq == TASK_ON_RQ_QUEUED; |
| } |
| |
| static inline int task_on_rq_migrating(struct task_struct *p) |
| { |
| return p->on_rq == TASK_ON_RQ_MIGRATING; |
| } |
| |
| #ifndef prepare_arch_switch |
| # define prepare_arch_switch(next) do { } while (0) |
| #endif |
| #ifndef finish_arch_post_lock_switch |
| # define finish_arch_post_lock_switch() do { } while (0) |
| #endif |
| |
| static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) |
| { |
| #ifdef CONFIG_SMP |
| /* |
| * We can optimise this out completely for !SMP, because the |
| * SMP rebalancing from interrupt is the only thing that cares |
| * here. |
| */ |
| next->on_cpu = 1; |
| #endif |
| } |
| |
| static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) |
| { |
| #ifdef CONFIG_SMP |
| /* |
| * After ->on_cpu is cleared, the task can be moved to a different CPU. |
| * We must ensure this doesn't happen until the switch is completely |
| * finished. |
| * |
| * In particular, the load of prev->state in finish_task_switch() must |
| * happen before this. |
| * |
| * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). |
| */ |
| smp_store_release(&prev->on_cpu, 0); |
| #endif |
| #ifdef CONFIG_DEBUG_SPINLOCK |
| /* this is a valid case when another task releases the spinlock */ |
| rq->lock.owner = current; |
| #endif |
| /* |
| * If we are tracking spinlock dependencies then we have to |
| * fix up the runqueue lock - which gets 'carried over' from |
| * prev into current: |
| */ |
| spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); |
| |
| raw_spin_unlock_irq(&rq->lock); |
| } |
| |
| /* |
| * wake flags |
| */ |
| #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */ |
| #define WF_FORK 0x02 /* child wakeup after fork */ |
| #define WF_MIGRATED 0x4 /* internal use, task got migrated */ |
| |
| /* |
| * To aid in avoiding the subversion of "niceness" due to uneven distribution |
| * of tasks with abnormal "nice" values across CPUs the contribution that |
| * each task makes to its run queue's load is weighted according to its |
| * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a |
| * scaled version of the new time slice allocation that they receive on time |
| * slice expiry etc. |
| */ |
| |
| #define WEIGHT_IDLEPRIO 3 |
| #define WMULT_IDLEPRIO 1431655765 |
| |
| extern const int sched_prio_to_weight[40]; |
| extern const u32 sched_prio_to_wmult[40]; |
| |
| /* |
| * {de,en}queue flags: |
| * |
| * DEQUEUE_SLEEP - task is no longer runnable |
| * ENQUEUE_WAKEUP - task just became runnable |
| * |
| * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks |
| * are in a known state which allows modification. Such pairs |
| * should preserve as much state as possible. |
| * |
| * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location |
| * in the runqueue. |
| * |
| * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) |
| * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) |
| * ENQUEUE_MIGRATED - the task was migrated during wakeup |
| * |
| */ |
| |
| #define DEQUEUE_SLEEP 0x01 |
| #define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */ |
| #define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */ |
| |
| #define ENQUEUE_WAKEUP 0x01 |
| #define ENQUEUE_RESTORE 0x02 |
| #define ENQUEUE_MOVE 0x04 |
| |
| #define ENQUEUE_HEAD 0x08 |
| #define ENQUEUE_REPLENISH 0x10 |
| #ifdef CONFIG_SMP |
| #define ENQUEUE_MIGRATED 0x20 |
| #else |
| #define ENQUEUE_MIGRATED 0x00 |
| #endif |
| #define ENQUEUE_WAKEUP_NEW 0x40 |
| |
| #define RETRY_TASK ((void *)-1UL) |
| |
| struct sched_class { |
| const struct sched_class *next; |
| |
| void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); |
| void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); |
| void (*yield_task) (struct rq *rq); |
| bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); |
| |
| void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); |
| |
| /* |
| * It is the responsibility of the pick_next_task() method that will |
| * return the next task to call put_prev_task() on the @prev task or |
| * something equivalent. |
| * |
| * May return RETRY_TASK when it finds a higher prio class has runnable |
| * tasks. |
| */ |
| struct task_struct * (*pick_next_task) (struct rq *rq, |
| struct task_struct *prev, |
| struct pin_cookie cookie); |
| void (*put_prev_task) (struct rq *rq, struct task_struct *p); |
| |
| #ifdef CONFIG_SMP |
| int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags); |
| void (*migrate_task_rq)(struct task_struct *p); |
| |
| void (*task_woken) (struct rq *this_rq, struct task_struct *task); |
| |
| void (*set_cpus_allowed)(struct task_struct *p, |
| const struct cpumask *newmask); |
| |
| void (*rq_online)(struct rq *rq); |
| void (*rq_offline)(struct rq *rq); |
| #endif |
| |
| void (*set_curr_task) (struct rq *rq); |
| void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); |
| void (*task_fork) (struct task_struct *p); |
| void (*task_dead) (struct task_struct *p); |
| |
| /* |
| * The switched_from() call is allowed to drop rq->lock, therefore we |
| * cannot assume the switched_from/switched_to pair is serliazed by |
| * rq->lock. They are however serialized by p->pi_lock. |
| */ |
| void (*switched_from) (struct rq *this_rq, struct task_struct *task); |
| void (*switched_to) (struct rq *this_rq, struct task_struct *task); |
| void (*prio_changed) (struct rq *this_rq, struct task_struct *task, |
| int oldprio); |
| |
| unsigned int (*get_rr_interval) (struct rq *rq, |
| struct task_struct *task); |
| |
| void (*update_curr) (struct rq *rq); |
| |
| #define TASK_SET_GROUP 0 |
| #define TASK_MOVE_GROUP 1 |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| void (*task_change_group) (struct task_struct *p, int type); |
| #endif |
| #ifdef CONFIG_SCHED_WALT |
| void (*fixup_walt_sched_stats)(struct rq *rq, struct task_struct *p, |
| u32 new_task_load, u32 new_pred_demand); |
| #endif |
| }; |
| |
| static inline void put_prev_task(struct rq *rq, struct task_struct *prev) |
| { |
| prev->sched_class->put_prev_task(rq, prev); |
| } |
| |
| static inline void set_curr_task(struct rq *rq, struct task_struct *curr) |
| { |
| curr->sched_class->set_curr_task(rq); |
| } |
| |
| #define sched_class_highest (&stop_sched_class) |
| #define for_each_class(class) \ |
| for (class = sched_class_highest; class; class = class->next) |
| |
| extern const struct sched_class stop_sched_class; |
| extern const struct sched_class dl_sched_class; |
| extern const struct sched_class rt_sched_class; |
| extern const struct sched_class fair_sched_class; |
| extern const struct sched_class idle_sched_class; |
| |
| |
| #ifdef CONFIG_SMP |
| |
| extern void init_max_cpu_capacity(struct max_cpu_capacity *mcc); |
| extern void update_group_capacity(struct sched_domain *sd, int cpu); |
| |
| extern void trigger_load_balance(struct rq *rq); |
| |
| extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask); |
| |
| bool __cpu_overutilized(int cpu, unsigned long util); |
| bool cpu_overutilized(int cpu); |
| |
| #endif |
| |
| #ifdef CONFIG_CPU_IDLE |
| static inline void idle_set_state(struct rq *rq, |
| struct cpuidle_state *idle_state) |
| { |
| rq->idle_state = idle_state; |
| } |
| |
| static inline struct cpuidle_state *idle_get_state(struct rq *rq) |
| { |
| SCHED_WARN_ON(!rcu_read_lock_held()); |
| return rq->idle_state; |
| } |
| |
| static inline void idle_set_state_idx(struct rq *rq, int idle_state_idx) |
| { |
| rq->idle_state_idx = idle_state_idx; |
| } |
| |
| static inline int idle_get_state_idx(struct rq *rq) |
| { |
| WARN_ON(!rcu_read_lock_held()); |
| |
| if (rq->nr_running || cpu_of(rq) == raw_smp_processor_id()) |
| return -1; |
| |
| return rq->idle_state_idx; |
| } |
| #else |
| static inline void idle_set_state(struct rq *rq, |
| struct cpuidle_state *idle_state) |
| { |
| } |
| |
| static inline struct cpuidle_state *idle_get_state(struct rq *rq) |
| { |
| return NULL; |
| } |
| |
| static inline void idle_set_state_idx(struct rq *rq, int idle_state_idx) |
| { |
| } |
| |
| static inline int idle_get_state_idx(struct rq *rq) |
| { |
| return -1; |
| } |
| #endif |
| |
| extern void sysrq_sched_debug_show(void); |
| extern void sched_init_granularity(void); |
| extern void update_max_interval(void); |
| |
| extern void init_sched_dl_class(void); |
| extern void init_sched_rt_class(void); |
| extern void init_sched_fair_class(void); |
| |
| extern void resched_curr(struct rq *rq); |
| extern void resched_cpu(int cpu); |
| |
| extern struct rt_bandwidth def_rt_bandwidth; |
| extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); |
| |
| extern struct dl_bandwidth def_dl_bandwidth; |
| extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); |
| extern void init_dl_task_timer(struct sched_dl_entity *dl_se); |
| |
| unsigned long to_ratio(u64 period, u64 runtime); |
| |
| extern void init_entity_runnable_average(struct sched_entity *se); |
| extern void post_init_entity_util_avg(struct sched_entity *se); |
| |
| #ifdef CONFIG_NO_HZ_FULL |
| extern bool sched_can_stop_tick(struct rq *rq); |
| |
| /* |
| * Tick may be needed by tasks in the runqueue depending on their policy and |
| * requirements. If tick is needed, lets send the target an IPI to kick it out of |
| * nohz mode if necessary. |
| */ |
| static inline void sched_update_tick_dependency(struct rq *rq) |
| { |
| int cpu; |
| |
| if (!tick_nohz_full_enabled()) |
| return; |
| |
| cpu = cpu_of(rq); |
| |
| if (!tick_nohz_full_cpu(cpu)) |
| return; |
| |
| if (sched_can_stop_tick(rq)) |
| tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); |
| else |
| tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); |
| } |
| #else |
| static inline void sched_update_tick_dependency(struct rq *rq) { } |
| #endif |
| |
| static inline void __add_nr_running(struct rq *rq, unsigned count) |
| { |
| unsigned prev_nr = rq->nr_running; |
| |
| sched_update_nr_prod(cpu_of(rq), count, true); |
| rq->nr_running = prev_nr + count; |
| |
| if (prev_nr < 2 && rq->nr_running >= 2) { |
| #ifdef CONFIG_SMP |
| if (!rq->rd->overload) |
| rq->rd->overload = true; |
| #endif |
| } |
| |
| sched_update_tick_dependency(rq); |
| } |
| |
| static inline void __sub_nr_running(struct rq *rq, unsigned count) |
| { |
| sched_update_nr_prod(cpu_of(rq), count, false); |
| rq->nr_running -= count; |
| /* Check if we still need preemption */ |
| sched_update_tick_dependency(rq); |
| } |
| |
| #ifdef CONFIG_CPU_QUIET |
| #define NR_AVE_SCALE(x) ((x) << FSHIFT) |
| static inline u64 do_nr_running_integral(struct rq *rq) |
| { |
| s64 nr, deltax; |
| u64 nr_running_integral = rq->nr_running_integral; |
| |
| deltax = rq->clock_task - rq->nr_last_stamp; |
| nr = NR_AVE_SCALE(rq->nr_running); |
| |
| nr_running_integral += nr * deltax; |
| |
| return nr_running_integral; |
| } |
| |
| static inline void add_nr_running(struct rq *rq, unsigned count) |
| { |
| write_seqcount_begin(&rq->ave_seqcnt); |
| rq->nr_running_integral = do_nr_running_integral(rq); |
| rq->nr_last_stamp = rq->clock_task; |
| __add_nr_running(rq, count); |
| write_seqcount_end(&rq->ave_seqcnt); |
| } |
| |
| static inline void sub_nr_running(struct rq *rq, unsigned count) |
| { |
| write_seqcount_begin(&rq->ave_seqcnt); |
| rq->nr_running_integral = do_nr_running_integral(rq); |
| rq->nr_last_stamp = rq->clock_task; |
| __sub_nr_running(rq, count); |
| write_seqcount_end(&rq->ave_seqcnt); |
| } |
| #else |
| #define add_nr_running __add_nr_running |
| #define sub_nr_running __sub_nr_running |
| #endif |
| |
| static inline void rq_last_tick_reset(struct rq *rq) |
| { |
| #ifdef CONFIG_NO_HZ_FULL |
| rq->last_sched_tick = jiffies; |
| #endif |
| } |
| |
| extern void update_rq_clock(struct rq *rq); |
| |
| extern void activate_task(struct rq *rq, struct task_struct *p, int flags); |
| extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); |
| |
| extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); |
| |
| extern const_debug unsigned int sysctl_sched_time_avg; |
| extern const_debug unsigned int sysctl_sched_nr_migrate; |
| extern const_debug unsigned int sysctl_sched_migration_cost; |
| |
| static inline u64 sched_avg_period(void) |
| { |
| return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; |
| } |
| |
| #ifdef CONFIG_SCHED_HRTICK |
| |
| /* |
| * Use hrtick when: |
| * - enabled by features |
| * - hrtimer is actually high res |
| */ |
| static inline int hrtick_enabled(struct rq *rq) |
| { |
| if (!sched_feat(HRTICK)) |
| return 0; |
| if (!cpu_active(cpu_of(rq))) |
| return 0; |
| return hrtimer_is_hres_active(&rq->hrtick_timer); |
| } |
| |
| void hrtick_start(struct rq *rq, u64 delay); |
| |
| #else |
| |
| static inline int hrtick_enabled(struct rq *rq) |
| { |
| return 0; |
| } |
| |
| #endif /* CONFIG_SCHED_HRTICK */ |
| |
| #ifdef CONFIG_SMP |
| extern void sched_avg_update(struct rq *rq); |
| |
| #ifndef arch_scale_freq_capacity |
| static __always_inline |
| unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu) |
| { |
| return SCHED_CAPACITY_SCALE; |
| } |
| #endif |
| |
| #ifndef arch_scale_cpu_capacity |
| static __always_inline |
| unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu) |
| { |
| if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1)) |
| return sd->smt_gain / sd->span_weight; |
| |
| return SCHED_CAPACITY_SCALE; |
| } |
| #endif |
| |
| #ifndef arch_update_cpu_capacity |
| static __always_inline |
| void arch_update_cpu_capacity(int cpu) |
| { |
| } |
| #endif |
| |
| #ifdef CONFIG_SMP |
| static inline unsigned long capacity_of(int cpu) |
| { |
| return cpu_rq(cpu)->cpu_capacity; |
| } |
| |
| static inline unsigned long capacity_orig_of(int cpu) |
| { |
| return cpu_rq(cpu)->cpu_capacity_orig; |
| } |
| |
| extern unsigned int walt_disabled; |
| |
| static inline unsigned long task_util(struct task_struct *p) |
| { |
| #ifdef CONFIG_SCHED_WALT |
| if (!walt_disabled && sysctl_sched_use_walt_task_util) |
| return p->ravg.demand / |
| (sched_ravg_window >> SCHED_CAPACITY_SHIFT); |
| #endif |
| return p->se.avg.util_avg; |
| } |
| |
| /* |
| * cpu_util returns the amount of capacity of a CPU that is used by CFS |
| * tasks. The unit of the return value must be the one of capacity so we can |
| * compare the utilization with the capacity of the CPU that is available for |
| * CFS task (ie cpu_capacity). |
| * |
| * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the |
| * recent utilization of currently non-runnable tasks on a CPU. It represents |
| * the amount of utilization of a CPU in the range [0..capacity_orig] where |
| * capacity_orig is the cpu_capacity available at the highest frequency |
| * (arch_scale_freq_capacity()). |
| * The utilization of a CPU converges towards a sum equal to or less than the |
| * current capacity (capacity_curr <= capacity_orig) of the CPU because it is |
| * the running time on this CPU scaled by capacity_curr. |
| * |
| * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even |
| * higher than capacity_orig because of unfortunate rounding in |
| * cfs.avg.util_avg or just after migrating tasks and new task wakeups until |
| * the average stabilizes with the new running time. We need to check that the |
| * utilization stays within the range of [0..capacity_orig] and cap it if |
| * necessary. Without utilization capping, a group could be seen as overloaded |
| * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of |
| * available capacity. We allow utilization to overshoot capacity_curr (but not |
| * capacity_orig) as it useful for predicting the capacity required after task |
| * migrations (scheduler-driven DVFS). |
| */ |
| static inline unsigned long __cpu_util(int cpu, int delta) |
| { |
| u64 util = cpu_rq(cpu)->cfs.avg.util_avg; |
| unsigned long capacity = capacity_orig_of(cpu); |
| |
| #ifdef CONFIG_SCHED_WALT |
| if (!walt_disabled && sysctl_sched_use_walt_cpu_util) { |
| util = cpu_rq(cpu)->walt_stats.cumulative_runnable_avg; |
| util = div64_u64(util, |
| sched_ravg_window >> SCHED_CAPACITY_SHIFT); |
| } |
| #endif |
| delta += util; |
| if (delta < 0) |
| return 0; |
| |
| return (delta >= capacity) ? capacity : delta; |
| } |
| |
| static inline unsigned long cpu_util(int cpu) |
| { |
| return __cpu_util(cpu, 0); |
| } |
| |
| struct sched_walt_cpu_load { |
| unsigned long prev_window_util; |
| unsigned long nl; |
| unsigned long pl; |
| u64 ws; |
| }; |
| |
| static inline unsigned long cpu_util_cum(int cpu, int delta) |
| { |
| u64 util = cpu_rq(cpu)->cfs.avg.util_avg; |
| unsigned long capacity = capacity_orig_of(cpu); |
| |
| #ifdef CONFIG_SCHED_WALT |
| if (!walt_disabled && sysctl_sched_use_walt_cpu_util) { |
| util = cpu_rq(cpu)->cum_window_demand; |
| util = div64_u64(util, |
| sched_ravg_window >> SCHED_CAPACITY_SHIFT); |
| } |
| #endif |
| delta += util; |
| if (delta < 0) |
| return 0; |
| |
| return (delta >= capacity) ? capacity : delta; |
| } |
| |
| #ifdef CONFIG_SCHED_WALT |
| u64 freq_policy_load(struct rq *rq); |
| #endif |
| |
| static inline unsigned long |
| cpu_util_freq_pelt(int cpu) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| u64 util = rq->cfs.avg.util_avg; |
| unsigned long capacity = capacity_orig_of(cpu); |
| |
| util *= (100 + per_cpu(sched_load_boost, cpu)); |
| do_div(util, 100); |
| |
| return (util >= capacity) ? capacity : util; |
| } |
| |
| #ifdef CONFIG_SCHED_WALT |
| static inline unsigned long |
| cpu_util_freq_walt(int cpu, struct sched_walt_cpu_load *walt_load) |
| { |
| u64 util, util_unboosted; |
| struct rq *rq = cpu_rq(cpu); |
| unsigned long capacity = capacity_orig_of(cpu); |
| int boost; |
| |
| if (walt_disabled || !sysctl_sched_use_walt_cpu_util) |
| return cpu_util_freq_pelt(cpu); |
| |
| boost = per_cpu(sched_load_boost, cpu); |
| util_unboosted = util = freq_policy_load(rq); |
| util = div64_u64(util * (100 + boost), |
| walt_cpu_util_freq_divisor); |
| |
| if (walt_load) { |
| u64 nl = cpu_rq(cpu)->nt_prev_runnable_sum + |
| rq->grp_time.nt_prev_runnable_sum; |
| u64 pl = rq->walt_stats.pred_demands_sum; |
| |
| /* do_pl_notif() needs unboosted signals */ |
| rq->old_busy_time = div64_u64(util_unboosted, |
| sched_ravg_window >> |
| SCHED_CAPACITY_SHIFT); |
| rq->old_estimated_time = div64_u64(pl, sched_ravg_window >> |
| SCHED_CAPACITY_SHIFT); |
| |
| nl = div64_u64(nl * (100 + boost), |
| walt_cpu_util_freq_divisor); |
| pl = div64_u64(pl * (100 + boost), |
| walt_cpu_util_freq_divisor); |
| |
| walt_load->prev_window_util = util; |
| walt_load->nl = nl; |
| walt_load->pl = pl; |
| walt_load->ws = rq->window_start; |
| } |
| |
| return (util >= capacity) ? capacity : util; |
| } |
| |
| static inline unsigned long |
| cpu_util_freq(int cpu, struct sched_walt_cpu_load *walt_load) |
| { |
| return cpu_util_freq_walt(cpu, walt_load); |
| } |
| |
| #else |
| |
| static inline unsigned long |
| cpu_util_freq(int cpu, struct sched_walt_cpu_load *walt_load) |
| { |
| return cpu_util_freq_pelt(cpu); |
| } |
| |
| #endif /* CONFIG_SCHED_WALT */ |
| |
| #endif |
| |
| extern unsigned int capacity_margin_freq; |
| |
| static inline unsigned long |
| add_capacity_margin(unsigned long cpu_capacity, int cpu) |
| { |
| cpu_capacity = cpu_capacity * capacity_margin_freq * |
| (100 + per_cpu(sched_load_boost, cpu)); |
| cpu_capacity /= 100; |
| cpu_capacity /= SCHED_CAPACITY_SCALE; |
| return cpu_capacity; |
| } |
| |
| #ifdef CONFIG_CPU_FREQ_GOV_SCHED |
| #define capacity_max SCHED_CAPACITY_SCALE |
| extern struct static_key __sched_freq; |
| |
| static inline bool sched_freq(void) |
| { |
| return static_key_false(&__sched_freq); |
| } |
| |
| DECLARE_PER_CPU(struct sched_capacity_reqs, cpu_sched_capacity_reqs); |
| void update_cpu_capacity_request(int cpu, bool request); |
| |
| static inline void set_cfs_cpu_capacity(int cpu, bool request, |
| unsigned long capacity) |
| { |
| struct sched_capacity_reqs *scr = &per_cpu(cpu_sched_capacity_reqs, cpu); |
| |
| #ifdef CONFIG_SCHED_WALT |
| if (!walt_disabled && sysctl_sched_use_walt_cpu_util) { |
| int rtdl = scr->rt + scr->dl; |
| /* |
| * WALT tracks the utilization of a CPU considering the load |
| * generated by all the scheduling classes. |
| * Since the following call to: |
| * update_cpu_capacity |
| * is already adding the RT and DL utilizations let's remove |
| * these contributions from the WALT signal. |
| */ |
| if (capacity > rtdl) |
| capacity -= rtdl; |
| else |
| capacity = 0; |
| } |
| #endif |
| if (scr->cfs != capacity) { |
| scr->cfs = capacity; |
| update_cpu_capacity_request(cpu, request); |
| } |
| } |
| |
| static inline void set_rt_cpu_capacity(int cpu, bool request, |
| unsigned long capacity) |
| { |
| if (per_cpu(cpu_sched_capacity_reqs, cpu).rt != capacity) { |
| per_cpu(cpu_sched_capacity_reqs, cpu).rt = capacity; |
| update_cpu_capacity_request(cpu, request); |
| } |
| } |
| |
| static inline void set_dl_cpu_capacity(int cpu, bool request, |
| unsigned long capacity) |
| { |
| if (per_cpu(cpu_sched_capacity_reqs, cpu).dl != capacity) { |
| per_cpu(cpu_sched_capacity_reqs, cpu).dl = capacity; |
| update_cpu_capacity_request(cpu, request); |
| } |
| } |
| #else |
| static inline bool sched_freq(void) { return false; } |
| static inline void set_cfs_cpu_capacity(int cpu, bool request, |
| unsigned long capacity) |
| { } |
| static inline void set_rt_cpu_capacity(int cpu, bool request, |
| unsigned long capacity) |
| { } |
| static inline void set_dl_cpu_capacity(int cpu, bool request, |
| unsigned long capacity) |
| { } |
| #endif |
| |
| static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) |
| { |
| rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq)); |
| } |
| #else |
| static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { } |
| static inline void sched_avg_update(struct rq *rq) { } |
| #endif |
| |
| struct rq_flags { |
| unsigned long flags; |
| struct pin_cookie cookie; |
| }; |
| |
| struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) |
| __acquires(rq->lock); |
| struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) |
| __acquires(p->pi_lock) |
| __acquires(rq->lock); |
| |
| static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) |
| __releases(rq->lock) |
| { |
| lockdep_unpin_lock(&rq->lock, rf->cookie); |
| raw_spin_unlock(&rq->lock); |
| } |
| |
| static inline void |
| task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) |
| __releases(rq->lock) |
| __releases(p->pi_lock) |
| { |
| lockdep_unpin_lock(&rq->lock, rf->cookie); |
| raw_spin_unlock(&rq->lock); |
| raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); |
| } |
| |
| extern struct rq *lock_rq_of(struct task_struct *p, struct rq_flags *flags); |
| extern void unlock_rq_of(struct rq *rq, struct task_struct *p, struct rq_flags *flags); |
| |
| #ifdef CONFIG_SMP |
| #ifdef CONFIG_PREEMPT |
| |
| static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); |
| |
| /* |
| * fair double_lock_balance: Safely acquires both rq->locks in a fair |
| * way at the expense of forcing extra atomic operations in all |
| * invocations. This assures that the double_lock is acquired using the |
| * same underlying policy as the spinlock_t on this architecture, which |
| * reduces latency compared to the unfair variant below. However, it |
| * also adds more overhead and therefore may reduce throughput. |
| */ |
| static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) |
| __releases(this_rq->lock) |
| __acquires(busiest->lock) |
| __acquires(this_rq->lock) |
| { |
| raw_spin_unlock(&this_rq->lock); |
| double_rq_lock(this_rq, busiest); |
| |
| return 1; |
| } |
| |
| #else |
| /* |
| * Unfair double_lock_balance: Optimizes throughput at the expense of |
| * latency by eliminating extra atomic operations when the locks are |
| * already in proper order on entry. This favors lower cpu-ids and will |
| * grant the double lock to lower cpus over higher ids under contention, |
| * regardless of entry order into the function. |
| */ |
| static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) |
| __releases(this_rq->lock) |
| __acquires(busiest->lock) |
| __acquires(this_rq->lock) |
| { |
| int ret = 0; |
| |
| if (unlikely(!raw_spin_trylock(&busiest->lock))) { |
| if (busiest < this_rq) { |
| raw_spin_unlock(&this_rq->lock); |
| raw_spin_lock(&busiest->lock); |
| raw_spin_lock_nested(&this_rq->lock, |
| SINGLE_DEPTH_NESTING); |
| ret = 1; |
| } else |
| raw_spin_lock_nested(&busiest->lock, |
| SINGLE_DEPTH_NESTING); |
| } |
| return ret; |
| } |
| |
| #endif /* CONFIG_PREEMPT */ |
| |
| /* |
| * double_lock_balance - lock the busiest runqueue, this_rq is locked already. |
| */ |
| static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) |
| { |
| if (unlikely(!irqs_disabled())) { |
| /* printk() doesn't work good under rq->lock */ |
| raw_spin_unlock(&this_rq->lock); |
| BUG_ON(1); |
| } |
| |
| return _double_lock_balance(this_rq, busiest); |
| } |
| |
| static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) |
| __releases(busiest->lock) |
| { |
| if (this_rq != busiest) |
| raw_spin_unlock(&busiest->lock); |
| lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); |
| } |
| |
| static inline void double_lock(spinlock_t *l1, spinlock_t *l2) |
| { |
| if (l1 > l2) |
| swap(l1, l2); |
| |
| spin_lock(l1); |
| spin_lock_nested(l2, SINGLE_DEPTH_NESTING); |
| } |
| |
| static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) |
| { |
| if (l1 > l2) |
| swap(l1, l2); |
| |
| spin_lock_irq(l1); |
| spin_lock_nested(l2, SINGLE_DEPTH_NESTING); |
| } |
| |
| static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) |
| { |
| if (l1 > l2) |
| swap(l1, l2); |
| |
| raw_spin_lock(l1); |
| raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); |
| } |
| |
| /* |
| * double_rq_lock - safely lock two runqueues |
| * |
| * Note this does not disable interrupts like task_rq_lock, |
| * you need to do so manually before calling. |
| */ |
| static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) |
| __acquires(rq1->lock) |
| __acquires(rq2->lock) |
| { |
| BUG_ON(!irqs_disabled()); |
| if (rq1 == rq2) { |
| raw_spin_lock(&rq1->lock); |
| __acquire(rq2->lock); /* Fake it out ;) */ |
| } else { |
| if (rq1 < rq2) { |
| raw_spin_lock(&rq1->lock); |
| raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); |
| } else { |
| raw_spin_lock(&rq2->lock); |
| raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); |
| } |
| } |
| } |
| |
| /* |
| * double_rq_unlock - safely unlock two runqueues |
| * |
| * Note this does not restore interrupts like task_rq_unlock, |
| * you need to do so manually after calling. |
| */ |
| static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) |
| __releases(rq1->lock) |
| __releases(rq2->lock) |
| { |
| raw_spin_unlock(&rq1->lock); |
| if (rq1 != rq2) |
| raw_spin_unlock(&rq2->lock); |
| else |
| __release(rq2->lock); |
| } |
| |
| /* |
| * task_may_not_preempt - check whether a task may not be preemptible soon |
| */ |
| extern bool task_may_not_preempt(struct task_struct *task, int cpu); |
| |
| #else /* CONFIG_SMP */ |
| |
| /* |
| * double_rq_lock - safely lock two runqueues |
| * |
| * Note this does not disable interrupts like task_rq_lock, |
| * you need to do so manually before calling. |
| */ |
| static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) |
| __acquires(rq1->lock) |
| __acquires(rq2->lock) |
| { |
| BUG_ON(!irqs_disabled()); |
| BUG_ON(rq1 != rq2); |
| raw_spin_lock(&rq1->lock); |
| __acquire(rq2->lock); /* Fake it out ;) */ |
| } |
| |
| /* |
| * double_rq_unlock - safely unlock two runqueues |
| * |
| * Note this does not restore interrupts like task_rq_unlock, |
| * you need to do so manually after calling. |
| */ |
| static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) |
| __releases(rq1->lock) |
| __releases(rq2->lock) |
| { |
| BUG_ON(rq1 != rq2); |
| raw_spin_unlock(&rq1->lock); |
| __release(rq2->lock); |
| } |
| |
| #endif |
| |
| extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); |
| extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); |
| |
| #ifdef CONFIG_SCHED_DEBUG |
| extern void print_cfs_stats(struct seq_file *m, int cpu); |
| extern void print_rt_stats(struct seq_file *m, int cpu); |
| extern void print_dl_stats(struct seq_file *m, int cpu); |
| extern void |
| print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); |
| |
| #ifdef CONFIG_NUMA_BALANCING |
| extern void |
| show_numa_stats(struct task_struct *p, struct seq_file *m); |
| extern void |
| print_numa_stats(struct seq_file *m, int node, unsigned long tsf, |
| unsigned long tpf, unsigned long gsf, unsigned long gpf); |
| #endif /* CONFIG_NUMA_BALANCING */ |
| #endif /* CONFIG_SCHED_DEBUG */ |
| |
| extern void init_cfs_rq(struct cfs_rq *cfs_rq); |
| extern void init_rt_rq(struct rt_rq *rt_rq); |
| extern void init_dl_rq(struct dl_rq *dl_rq); |
| |
| extern void cfs_bandwidth_usage_inc(void); |
| extern void cfs_bandwidth_usage_dec(void); |
| |
| #ifdef CONFIG_NO_HZ_COMMON |
| enum rq_nohz_flag_bits { |
| NOHZ_TICK_STOPPED, |
| NOHZ_BALANCE_KICK, |
| }; |
| |
| #define NOHZ_KICK_ANY 0 |
| #define NOHZ_KICK_RESTRICT 1 |
| |
| #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) |
| |
| extern void nohz_balance_exit_idle(unsigned int cpu); |
| #else |
| static inline void nohz_balance_exit_idle(unsigned int cpu) { } |
| #endif |
| |
| #ifdef CONFIG_IRQ_TIME_ACCOUNTING |
| struct irqtime { |
| u64 hardirq_time; |
| u64 softirq_time; |
| u64 irq_start_time; |
| struct u64_stats_sync sync; |
| }; |
| |
| DECLARE_PER_CPU(struct irqtime, cpu_irqtime); |
| |
| static inline u64 irq_time_read(int cpu) |
| { |
| struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); |
| unsigned int seq; |
| u64 total; |
| |
| do { |
| seq = __u64_stats_fetch_begin(&irqtime->sync); |
| total = irqtime->softirq_time + irqtime->hardirq_time; |
| } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); |
| |
| return total; |
| } |
| #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ |
| |
| #ifdef CONFIG_SCHED_WALT |
| void note_task_waking(struct task_struct *p, u64 wallclock); |
| #else /* CONFIG_SCHED_WALT */ |
| static inline void note_task_waking(struct task_struct *p, u64 wallclock) { } |
| #endif /* CONFIG_SCHED_WALT */ |
| |
| #ifdef CONFIG_CPU_FREQ |
| DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data); |
| |
| /** |
| * cpufreq_update_util - Take a note about CPU utilization changes. |
| * @rq: Runqueue to carry out the update for. |
| * @flags: Update reason flags. |
| * |
| * This function is called by the scheduler on the CPU whose utilization is |
| * being updated. |
| * |
| * It can only be called from RCU-sched read-side critical sections. |
| * |
| * The way cpufreq is currently arranged requires it to evaluate the CPU |
| * performance state (frequency/voltage) on a regular basis to prevent it from |
| * being stuck in a completely inadequate performance level for too long. |
| * That is not guaranteed to happen if the updates are only triggered from CFS, |
| * though, because they may not be coming in if RT or deadline tasks are active |
| * all the time (or there are RT and DL tasks only). |
| * |
| * As a workaround for that issue, this function is called by the RT and DL |
| * sched classes to trigger extra cpufreq updates to prevent it from stalling, |
| * but that really is a band-aid. Going forward it should be replaced with |
| * solutions targeted more specifically at RT and DL tasks. |
| */ |
| static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) |
| { |
| struct update_util_data *data; |
| |
| #ifdef CONFIG_SCHED_WALT |
| unsigned int exception_flags = SCHED_CPUFREQ_INTERCLUSTER_MIG | |
| SCHED_CPUFREQ_PL | SCHED_CPUFREQ_EARLY_DET; |
| |
| /* |
| * Skip if we've already reported, but not if this is an inter-cluster |
| * migration. Also only allow WALT update sites. |
| */ |
| if (!(flags & SCHED_CPUFREQ_WALT)) |
| return; |
| if (!sched_disable_window_stats && |
| (rq->load_reported_window == rq->window_start) && |
| !(flags & exception_flags)) |
| return; |
| rq->load_reported_window = rq->window_start; |
| #endif |
| |
| data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, |
| cpu_of(rq))); |
| if (data) |
| data->func(data, ktime_get_ns(), flags); |
| } |
| |
| static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags) |
| { |
| if (cpu_of(rq) == smp_processor_id()) |
| cpufreq_update_util(rq, flags); |
| } |
| #else |
| static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {} |
| static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags) {} |
| #endif /* CONFIG_CPU_FREQ */ |
| |
| #ifdef arch_scale_freq_capacity |
| #ifndef arch_scale_freq_invariant |
| #define arch_scale_freq_invariant() (true) |
| #endif |
| #else /* arch_scale_freq_capacity */ |
| #define arch_scale_freq_invariant() (false) |
| #endif |
| |
| #ifdef CONFIG_SCHED_WALT |
| |
| static inline int cluster_first_cpu(struct sched_cluster *cluster) |
| { |
| return cpumask_first(&cluster->cpus); |
| } |
| |
| struct related_thread_group { |
| int id; |
| raw_spinlock_t lock; |
| struct list_head tasks; |
| struct list_head list; |
| struct sched_cluster *preferred_cluster; |
| struct rcu_head rcu; |
| u64 last_update; |
| }; |
| |
| extern struct list_head cluster_head; |
| extern struct sched_cluster *sched_cluster[NR_CPUS]; |
| |
| #define for_each_sched_cluster(cluster) \ |
| list_for_each_entry_rcu(cluster, &cluster_head, list) |
| |
| #define WINDOW_STATS_RECENT 0 |
| #define WINDOW_STATS_MAX 1 |
| #define WINDOW_STATS_MAX_RECENT_AVG 2 |
| #define WINDOW_STATS_AVG 3 |
| #define WINDOW_STATS_INVALID_POLICY 4 |
| |
| #define SCHED_UPMIGRATE_MIN_NICE 15 |
| #define EXITING_TASK_MARKER 0xdeaddead |
| |
| #define UP_MIGRATION 1 |
| #define DOWN_MIGRATION 2 |
| #define IRQLOAD_MIGRATION 3 |
| |
| extern struct mutex policy_mutex; |
| extern unsigned int sched_disable_window_stats; |
| extern unsigned int max_possible_freq; |
| extern unsigned int min_max_freq; |
| extern unsigned int max_possible_efficiency; |
| extern unsigned int min_possible_efficiency; |
| extern unsigned int max_capacity; |
| extern unsigned int min_capacity; |
| extern unsigned int max_load_scale_factor; |
| extern unsigned int max_possible_capacity; |
| extern unsigned int min_max_possible_capacity; |
| extern unsigned int max_power_cost; |
| extern unsigned int sched_init_task_load_windows; |
| extern unsigned int up_down_migrate_scale_factor; |
| extern unsigned int sysctl_sched_restrict_cluster_spill; |
| extern unsigned int sched_pred_alert_load; |
| extern struct sched_cluster init_cluster; |
| extern unsigned int __read_mostly sched_short_sleep_task_threshold; |
| extern unsigned int __read_mostly sched_long_cpu_selection_threshold; |
| extern unsigned int __read_mostly sched_big_waker_task_load; |
| extern unsigned int __read_mostly sched_small_wakee_task_load; |
| extern unsigned int __read_mostly sched_spill_load; |
| extern unsigned int __read_mostly sched_upmigrate; |
| extern unsigned int __read_mostly sched_downmigrate; |
| extern unsigned int __read_mostly sysctl_sched_spill_nr_run; |
| extern unsigned int __read_mostly sched_load_granule; |
| |
| extern int register_cpu_cycle_counter_cb(struct cpu_cycle_counter_cb *cb); |
| extern int update_preferred_cluster(struct related_thread_group *grp, |
| struct task_struct *p, u32 old_load); |
| extern void set_preferred_cluster(struct related_thread_group *grp); |
| extern void add_new_task_to_grp(struct task_struct *new); |
| extern unsigned int update_freq_aggregate_threshold(unsigned int threshold); |
| |
| #define NO_BOOST 0 |
| #define FULL_THROTTLE_BOOST 1 |
| #define CONSERVATIVE_BOOST 2 |
| #define RESTRAINED_BOOST 3 |
| |
| static inline int cpu_capacity(int cpu) |
| { |
| return cpu_rq(cpu)->cluster->capacity; |
| } |
| |
| static inline int cpu_max_possible_capacity(int cpu) |
| { |
| return cpu_rq(cpu)->cluster->max_possible_capacity; |
| } |
| |
| static inline int cpu_load_scale_factor(int cpu) |
| { |
| return cpu_rq(cpu)->cluster->load_scale_factor; |
| } |
| |
| static inline int cpu_efficiency(int cpu) |
| { |
| return cpu_rq(cpu)->cluster->efficiency; |
| } |
| |
| static inline unsigned int cpu_min_freq(int cpu) |
| { |
| return cpu_rq(cpu)->cluster->min_freq; |
| } |
| |
| static inline unsigned int cluster_max_freq(struct sched_cluster *cluster) |
| { |
| /* |
| * Governor and thermal driver don't know the other party's mitigation |
| * voting. So struct cluster saves both and return min() for current |
| * cluster fmax. |
| */ |
| return min(cluster->max_mitigated_freq, cluster->max_freq); |
| } |
| |
| static inline unsigned int cpu_max_freq(int cpu) |
| { |
| return cluster_max_freq(cpu_rq(cpu)->cluster); |
| } |
| |
| static inline unsigned int cpu_max_possible_freq(int cpu) |
| { |
| return cpu_rq(cpu)->cluster->max_possible_freq; |
| } |
| |
| /* Keep track of max/min capacity possible across CPUs "currently" */ |
| static inline void __update_min_max_capacity(void) |
| { |
| int i; |
| int max_cap = 0, min_cap = INT_MAX; |
| |
| for_each_online_cpu(i) { |
| max_cap = max(max_cap, cpu_capacity(i)); |
| min_cap = min(min_cap, cpu_capacity(i)); |
| } |
| |
| max_capacity = max_cap; |
| min_capacity = min_cap; |
| } |
| |
| /* |
| * Return load_scale_factor of a cpu in reference to "most" efficient cpu, so |
| * that "most" efficient cpu gets a load_scale_factor of 1 |
| */ |
| static inline unsigned long |
| load_scale_cpu_efficiency(struct sched_cluster *cluster) |
| { |
| return DIV_ROUND_UP(1024 * max_possible_efficiency, |
| cluster->efficiency); |
| } |
| |
| /* |
| * Return load_scale_factor of a cpu in reference to cpu with best max_freq |
| * (max_possible_freq), so that one with best max_freq gets a load_scale_factor |
| * of 1. |
| */ |
| static inline unsigned long load_scale_cpu_freq(struct sched_cluster *cluster) |
| { |
| return DIV_ROUND_UP(1024 * max_possible_freq, |
| cluster_max_freq(cluster)); |
| } |
| |
| static inline int compute_load_scale_factor(struct sched_cluster *cluster) |
| { |
| int load_scale = 1024; |
| |
| /* |
| * load_scale_factor accounts for the fact that task load |
| * is in reference to "best" performing cpu. Task's load will need to be |
| * scaled (up) by a factor to determine suitability to be placed on a |
| * (little) cpu. |
| */ |
| load_scale *= load_scale_cpu_efficiency(cluster); |
| load_scale >>= 10; |
| |
| load_scale *= load_scale_cpu_freq(cluster); |
| load_scale >>= 10; |
| |
| return load_scale; |
| } |
| |
| static inline int cpu_max_power_cost(int cpu) |
| { |
| return cpu_rq(cpu)->cluster->max_power_cost; |
| } |
| |
| static inline int cpu_min_power_cost(int cpu) |
| { |
| return cpu_rq(cpu)->cluster->min_power_cost; |
| } |
| |
| static inline bool hmp_capable(void) |
| { |
| return max_possible_capacity != min_max_possible_capacity; |
| } |
| |
| static inline bool is_max_capacity_cpu(int cpu) |
| { |
| return cpu_max_possible_capacity(cpu) == max_possible_capacity; |
| } |
| |
| static inline bool is_min_capacity_cpu(int cpu) |
| { |
| return cpu_max_possible_capacity(cpu) == min_max_possible_capacity; |
| } |
| |
| /* |
| * 'load' is in reference to "best cpu" at its best frequency. |
| * Scale that in reference to a given cpu, accounting for how bad it is |
| * in reference to "best cpu". |
| */ |
| static inline u64 scale_load_to_cpu(u64 task_load, int cpu) |
| { |
| u64 lsf = cpu_load_scale_factor(cpu); |
| |
| if (lsf != 1024) { |
| task_load *= lsf; |
| task_load /= 1024; |
| } |
| |
| return task_load; |
| } |
| |
| /* |
| * Return 'capacity' of a cpu in reference to "least" efficient cpu, such that |
| * least efficient cpu gets capacity of 1024 |
| */ |
| static unsigned long |
| capacity_scale_cpu_efficiency(struct sched_cluster *cluster) |
| { |
| return (1024 * cluster->efficiency) / min_possible_efficiency; |
| } |
| |
| /* |
| * Return 'capacity' of a cpu in reference to cpu with lowest max_freq |
| * (min_max_freq), such that one with lowest max_freq gets capacity of 1024. |
| */ |
| static unsigned long capacity_scale_cpu_freq(struct sched_cluster *cluster) |
| { |
| return (1024 * cluster_max_freq(cluster)) / min_max_freq; |
| } |
| |
| static inline int compute_capacity(struct sched_cluster *cluster) |
| { |
| int capacity = 1024; |
| |
| capacity *= capacity_scale_cpu_efficiency(cluster); |
| capacity >>= 10; |
| |
| capacity *= capacity_scale_cpu_freq(cluster); |
| capacity >>= 10; |
| |
| return capacity; |
| } |
| |
| static inline unsigned int task_load(struct task_struct *p) |
| { |
| return p->ravg.demand; |
| } |
| |
| static inline unsigned int task_pl(struct task_struct *p) |
| { |
| return p->ravg.pred_demand; |
| } |
| |
| #define pct_to_real(tunable) \ |
| (div64_u64((u64)tunable * (u64)max_task_load(), 100)) |
| |
| #define real_to_pct(tunable) \ |
| (div64_u64((u64)tunable * (u64)100, (u64)max_task_load())) |
| |
| static inline bool task_in_related_thread_group(struct task_struct *p) |
| { |
| return !!(rcu_access_pointer(p->grp) != NULL); |
| } |
| |
| static inline |
| struct related_thread_group *task_related_thread_group(struct task_struct *p) |
| { |
| return rcu_dereference(p->grp); |
| } |
| |
| #define PRED_DEMAND_DELTA ((s64)new_pred_demand - p->ravg.pred_demand) |
| |
| /* Is frequency of two cpus synchronized with each other? */ |
| static inline int same_freq_domain(int src_cpu, int dst_cpu) |
| { |
| struct rq *rq = cpu_rq(src_cpu); |
| |
| if (src_cpu == dst_cpu) |
| return 1; |
| |
| return cpumask_test_cpu(dst_cpu, &rq->freq_domain_cpumask); |
| } |
| |
| #define BOOST_KICK 0 |
| #define CPU_RESERVED 1 |
| |
| extern int sched_boost(void); |
| extern int preferred_cluster(struct sched_cluster *cluster, |
| struct task_struct *p); |
| extern struct sched_cluster *rq_cluster(struct rq *rq); |
| extern void reset_task_stats(struct task_struct *p); |
| extern void clear_top_tasks_bitmap(unsigned long *bitmap); |
| |
| #if defined(CONFIG_SCHED_TUNE) && defined(CONFIG_CGROUP_SCHEDTUNE) |
| extern bool task_sched_boost(struct task_struct *p); |
| extern int sync_cgroup_colocation(struct task_struct *p, bool insert); |
| extern bool same_schedtune(struct task_struct *tsk1, struct task_struct *tsk2); |
| extern void update_cgroup_boost_settings(void); |
| extern void restore_cgroup_boost_settings(void); |
| |
| #else |
| static inline bool |
| same_schedtune(struct task_struct *tsk1, struct task_struct *tsk2) |
| { |
| return true; |
| } |
| |
| static inline bool task_sched_boost(struct task_struct *p) |
| { |
| return true; |
| } |
| |
| static inline void update_cgroup_boost_settings(void) { } |
| static inline void restore_cgroup_boost_settings(void) { } |
| #endif |
| |
| extern int alloc_related_thread_groups(void); |
| |
| extern unsigned long all_cluster_ids[]; |
| |
| extern void check_for_migration(struct rq *rq, struct task_struct *p); |
| |
| static inline int is_reserved(int cpu) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| |
| return test_bit(CPU_RESERVED, &rq->walt_flags); |
| } |
| |
| static inline int mark_reserved(int cpu) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| |
| return test_and_set_bit(CPU_RESERVED, &rq->walt_flags); |
| } |
| |
| static inline void clear_reserved(int cpu) |
| { |
| struct rq *rq = cpu_rq(cpu); |
| |
| clear_bit(CPU_RESERVED, &rq->walt_flags); |
| } |
| |
| static inline bool |
| task_in_cum_window_demand(struct rq *rq, struct task_struct *p) |
| { |
| return cpu_of(rq) == task_cpu(p) && (p->on_rq || p->last_sleep_ts >= |
| rq->window_start); |
| } |
| |
| static inline void walt_fixup_cum_window_demand(struct rq *rq, s64 delta) |
| { |
| rq->cum_window_demand += delta; |
| if (unlikely((s64)rq->cum_window_demand < 0)) |
| rq->cum_window_demand = 0; |
| } |
| |
| extern void update_cpu_cluster_capacity(const cpumask_t *cpus); |
| |
| extern unsigned long thermal_cap(int cpu); |
| |
| extern void clear_walt_request(int cpu); |
| |
| extern int got_boost_kick(void); |
| extern void clear_boost_kick(int cpu); |
| extern enum sched_boost_policy sched_boost_policy(void); |
| extern void sched_boost_parse_dt(void); |
| extern void clear_ed_task(struct task_struct *p, struct rq *rq); |
| extern bool early_detection_notify(struct rq *rq, u64 wallclock); |
| |
| static inline unsigned int power_cost(int cpu, bool max) |
| { |
| struct sched_group_energy *sge = sge_array[cpu][SD_LEVEL1]; |
| |
| if (!sge || !sge->nr_cap_states) |
| return cpu_max_possible_capacity(cpu); |
| |
| if (max) |
| return sge->cap_states[sge->nr_cap_states - 1].power; |
| else |
| return sge->cap_states[0].power; |
| } |
| |
| extern void walt_sched_energy_populated_callback(void); |
| |
| #else /* CONFIG_SCHED_WALT */ |
| |
| struct walt_sched_stats; |
| struct related_thread_group; |
| struct sched_cluster; |
| |
| static inline bool task_sched_boost(struct task_struct *p) |
| { |
| return true; |
| } |
| |
| static inline void check_for_migration(struct rq *rq, struct task_struct *p) { } |
| |
| static inline int sched_boost(void) |
| { |
| return 0; |
| } |
| |
| static inline bool hmp_capable(void) { return false; } |
| static inline bool is_max_capacity_cpu(int cpu) { return true; } |
| static inline bool is_min_capacity_cpu(int cpu) { return true; } |
| |
| static inline int |
| preferred_cluster(struct sched_cluster *cluster, struct task_struct *p) |
| { |
| return 1; |
| } |
| |
| static inline struct sched_cluster *rq_cluster(struct rq *rq) |
| { |
| return NULL; |
| } |
| |
| static inline u64 scale_load_to_cpu(u64 load, int cpu) |
| { |
| return load; |
| } |
| |
| static inline int cpu_capacity(int cpu) |
| { |
| return SCHED_CAPACITY_SCALE; |
| } |
| |
| static inline void set_preferred_cluster(struct related_thread_group *grp) { } |
| |
| static inline bool task_in_related_thread_group(struct task_struct *p) |
| { |
| return false; |
| } |
| |
| static inline |
| struct related_thread_group *task_related_thread_group(struct task_struct *p) |
| { |
| return NULL; |
| } |
| |
| static inline u32 task_load(struct task_struct *p) { return 0; } |
| static inline u32 task_pl(struct task_struct *p) { return 0; } |
| |
| static inline int update_preferred_cluster(struct related_thread_group *grp, |
| struct task_struct *p, u32 old_load) |
| { |
| return 0; |
| } |
| |
| static inline void add_new_task_to_grp(struct task_struct *new) {} |
| |
| #define PRED_DEMAND_DELTA (0) |
| |
| static inline int same_freq_domain(int src_cpu, int dst_cpu) |
| { |
| return 1; |
| } |
| |
| static inline void clear_reserved(int cpu) { } |
| static inline int alloc_related_thread_groups(void) { return 0; } |
| |
| #define trace_sched_cpu_load(...) |
| #define trace_sched_cpu_load_lb(...) |
| #define trace_sched_cpu_load_cgroup(...) |
| #define trace_sched_cpu_load_wakeup(...) |
| |
| static inline void walt_fixup_cum_window_demand(struct rq *rq, s64 delta) { } |
| |
| static inline void update_cpu_cluster_capacity(const cpumask_t *cpus) { } |
| |
| #ifdef CONFIG_SMP |
| static inline unsigned long thermal_cap(int cpu) |
| { |
| return cpu_rq(cpu)->cpu_capacity_orig; |
| } |
| |
| static inline int cpu_max_power_cost(int cpu) |
| { |
| return capacity_orig_of(cpu); |
| } |
| #endif |
| |
| static inline void clear_walt_request(int cpu) { } |
| |
| static inline int got_boost_kick(void) |
| { |
| return 0; |
| } |
| |
| static inline void clear_boost_kick(int cpu) { } |
| |
| static inline enum sched_boost_policy sched_boost_policy(void) |
| { |
| return SCHED_BOOST_NONE; |
| } |
| |
| static inline void sched_boost_parse_dt(void) { } |
| |
| static inline void clear_ed_task(struct task_struct *p, struct rq *rq) { } |
| |
| static inline bool early_detection_notify(struct rq *rq, u64 wallclock) |
| { |
| return 0; |
| } |
| |
| static inline unsigned int power_cost(int cpu, bool max) |
| { |
| return SCHED_CAPACITY_SCALE; |
| } |
| |
| static inline void walt_sched_energy_populated_callback(void) { } |
| |
| #endif /* CONFIG_SCHED_WALT */ |
| |
| static inline bool energy_aware(void) |
| { |
| return sched_feat(ENERGY_AWARE); |
| } |
| |
| #ifdef CONFIG_SCHED_CORE_ROTATE |
| struct find_first_cpu_bit_env { |
| unsigned long *avoid_prev_cpu_last; |
| int *rotate_cpu_start; |
| int interval; |
| spinlock_t *rotate_lock; |
| }; |
| |
| int |
| find_first_cpu_bit(struct task_struct *p, const cpumask_t *search_cpus, |
| struct sched_group *sg_target, bool *avoid_prev_cpu, |
| bool *do_rotate, struct find_first_cpu_bit_env *env); |
| #else |
| #define find_first_cpu_bit(...) -1 |
| #endif |