| /* |
| * Linux Security Module interfaces |
| * |
| * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> |
| * Copyright (C) 2001 Greg Kroah-Hartman <greg@kroah.com> |
| * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> |
| * Copyright (C) 2001 James Morris <jmorris@intercode.com.au> |
| * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group) |
| * Copyright (C) 2015 Intel Corporation. |
| * Copyright (C) 2015 Casey Schaufler <casey@schaufler-ca.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * Due to this file being licensed under the GPL there is controversy over |
| * whether this permits you to write a module that #includes this file |
| * without placing your module under the GPL. Please consult a lawyer for |
| * advice before doing this. |
| * |
| */ |
| |
| #ifndef __LINUX_LSM_HOOKS_H |
| #define __LINUX_LSM_HOOKS_H |
| |
| #include <linux/security.h> |
| #include <linux/init.h> |
| #include <linux/rculist.h> |
| |
| /** |
| * Security hooks for program execution operations. |
| * |
| * @bprm_set_creds: |
| * Save security information in the bprm->security field, typically based |
| * on information about the bprm->file, for later use by the apply_creds |
| * hook. This hook may also optionally check permissions (e.g. for |
| * transitions between security domains). |
| * This hook may be called multiple times during a single execve, e.g. for |
| * interpreters. The hook can tell whether it has already been called by |
| * checking to see if @bprm->security is non-NULL. If so, then the hook |
| * may decide either to retain the security information saved earlier or |
| * to replace it. |
| * @bprm contains the linux_binprm structure. |
| * Return 0 if the hook is successful and permission is granted. |
| * @bprm_check_security: |
| * This hook mediates the point when a search for a binary handler will |
| * begin. It allows a check the @bprm->security value which is set in the |
| * preceding set_creds call. The primary difference from set_creds is |
| * that the argv list and envp list are reliably available in @bprm. This |
| * hook may be called multiple times during a single execve; and in each |
| * pass set_creds is called first. |
| * @bprm contains the linux_binprm structure. |
| * Return 0 if the hook is successful and permission is granted. |
| * @bprm_committing_creds: |
| * Prepare to install the new security attributes of a process being |
| * transformed by an execve operation, based on the old credentials |
| * pointed to by @current->cred and the information set in @bprm->cred by |
| * the bprm_set_creds hook. @bprm points to the linux_binprm structure. |
| * This hook is a good place to perform state changes on the process such |
| * as closing open file descriptors to which access will no longer be |
| * granted when the attributes are changed. This is called immediately |
| * before commit_creds(). |
| * @bprm_committed_creds: |
| * Tidy up after the installation of the new security attributes of a |
| * process being transformed by an execve operation. The new credentials |
| * have, by this point, been set to @current->cred. @bprm points to the |
| * linux_binprm structure. This hook is a good place to perform state |
| * changes on the process such as clearing out non-inheritable signal |
| * state. This is called immediately after commit_creds(). |
| * @bprm_secureexec: |
| * Return a boolean value (0 or 1) indicating whether a "secure exec" |
| * is required. The flag is passed in the auxiliary table |
| * on the initial stack to the ELF interpreter to indicate whether libc |
| * should enable secure mode. |
| * @bprm contains the linux_binprm structure. |
| * |
| * Security hooks for filesystem operations. |
| * |
| * @sb_alloc_security: |
| * Allocate and attach a security structure to the sb->s_security field. |
| * The s_security field is initialized to NULL when the structure is |
| * allocated. |
| * @sb contains the super_block structure to be modified. |
| * Return 0 if operation was successful. |
| * @sb_free_security: |
| * Deallocate and clear the sb->s_security field. |
| * @sb contains the super_block structure to be modified. |
| * @sb_statfs: |
| * Check permission before obtaining filesystem statistics for the @mnt |
| * mountpoint. |
| * @dentry is a handle on the superblock for the filesystem. |
| * Return 0 if permission is granted. |
| * @sb_mount: |
| * Check permission before an object specified by @dev_name is mounted on |
| * the mount point named by @nd. For an ordinary mount, @dev_name |
| * identifies a device if the file system type requires a device. For a |
| * remount (@flags & MS_REMOUNT), @dev_name is irrelevant. For a |
| * loopback/bind mount (@flags & MS_BIND), @dev_name identifies the |
| * pathname of the object being mounted. |
| * @dev_name contains the name for object being mounted. |
| * @path contains the path for mount point object. |
| * @type contains the filesystem type. |
| * @flags contains the mount flags. |
| * @data contains the filesystem-specific data. |
| * Return 0 if permission is granted. |
| * @sb_copy_data: |
| * Allow mount option data to be copied prior to parsing by the filesystem, |
| * so that the security module can extract security-specific mount |
| * options cleanly (a filesystem may modify the data e.g. with strsep()). |
| * This also allows the original mount data to be stripped of security- |
| * specific options to avoid having to make filesystems aware of them. |
| * @type the type of filesystem being mounted. |
| * @orig the original mount data copied from userspace. |
| * @copy copied data which will be passed to the security module. |
| * Returns 0 if the copy was successful. |
| * @sb_remount: |
| * Extracts security system specific mount options and verifies no changes |
| * are being made to those options. |
| * @sb superblock being remounted |
| * @data contains the filesystem-specific data. |
| * Return 0 if permission is granted. |
| * @sb_umount: |
| * Check permission before the @mnt file system is unmounted. |
| * @mnt contains the mounted file system. |
| * @flags contains the unmount flags, e.g. MNT_FORCE. |
| * Return 0 if permission is granted. |
| * @sb_pivotroot: |
| * Check permission before pivoting the root filesystem. |
| * @old_path contains the path for the new location of the |
| * current root (put_old). |
| * @new_path contains the path for the new root (new_root). |
| * Return 0 if permission is granted. |
| * @sb_set_mnt_opts: |
| * Set the security relevant mount options used for a superblock |
| * @sb the superblock to set security mount options for |
| * @opts binary data structure containing all lsm mount data |
| * @sb_clone_mnt_opts: |
| * Copy all security options from a given superblock to another |
| * @oldsb old superblock which contain information to clone |
| * @newsb new superblock which needs filled in |
| * @sb_parse_opts_str: |
| * Parse a string of security data filling in the opts structure |
| * @options string containing all mount options known by the LSM |
| * @opts binary data structure usable by the LSM |
| * @dentry_init_security: |
| * Compute a context for a dentry as the inode is not yet available |
| * since NFSv4 has no label backed by an EA anyway. |
| * @dentry dentry to use in calculating the context. |
| * @mode mode used to determine resource type. |
| * @name name of the last path component used to create file |
| * @ctx pointer to place the pointer to the resulting context in. |
| * @ctxlen point to place the length of the resulting context. |
| * @dentry_create_files_as: |
| * Compute a context for a dentry as the inode is not yet available |
| * and set that context in passed in creds so that new files are |
| * created using that context. Context is calculated using the |
| * passed in creds and not the creds of the caller. |
| * @dentry dentry to use in calculating the context. |
| * @mode mode used to determine resource type. |
| * @name name of the last path component used to create file |
| * @old creds which should be used for context calculation |
| * @new creds to modify |
| * |
| * |
| * Security hooks for inode operations. |
| * |
| * @inode_alloc_security: |
| * Allocate and attach a security structure to @inode->i_security. The |
| * i_security field is initialized to NULL when the inode structure is |
| * allocated. |
| * @inode contains the inode structure. |
| * Return 0 if operation was successful. |
| * @inode_free_security: |
| * @inode contains the inode structure. |
| * Deallocate the inode security structure and set @inode->i_security to |
| * NULL. |
| * @inode_init_security: |
| * Obtain the security attribute name suffix and value to set on a newly |
| * created inode and set up the incore security field for the new inode. |
| * This hook is called by the fs code as part of the inode creation |
| * transaction and provides for atomic labeling of the inode, unlike |
| * the post_create/mkdir/... hooks called by the VFS. The hook function |
| * is expected to allocate the name and value via kmalloc, with the caller |
| * being responsible for calling kfree after using them. |
| * If the security module does not use security attributes or does |
| * not wish to put a security attribute on this particular inode, |
| * then it should return -EOPNOTSUPP to skip this processing. |
| * @inode contains the inode structure of the newly created inode. |
| * @dir contains the inode structure of the parent directory. |
| * @qstr contains the last path component of the new object |
| * @name will be set to the allocated name suffix (e.g. selinux). |
| * @value will be set to the allocated attribute value. |
| * @len will be set to the length of the value. |
| * Returns 0 if @name and @value have been successfully set, |
| * -EOPNOTSUPP if no security attribute is needed, or |
| * -ENOMEM on memory allocation failure. |
| * @inode_create: |
| * Check permission to create a regular file. |
| * @dir contains inode structure of the parent of the new file. |
| * @dentry contains the dentry structure for the file to be created. |
| * @mode contains the file mode of the file to be created. |
| * Return 0 if permission is granted. |
| * @inode_link: |
| * Check permission before creating a new hard link to a file. |
| * @old_dentry contains the dentry structure for an existing |
| * link to the file. |
| * @dir contains the inode structure of the parent directory |
| * of the new link. |
| * @new_dentry contains the dentry structure for the new link. |
| * Return 0 if permission is granted. |
| * @path_link: |
| * Check permission before creating a new hard link to a file. |
| * @old_dentry contains the dentry structure for an existing link |
| * to the file. |
| * @new_dir contains the path structure of the parent directory of |
| * the new link. |
| * @new_dentry contains the dentry structure for the new link. |
| * Return 0 if permission is granted. |
| * @inode_unlink: |
| * Check the permission to remove a hard link to a file. |
| * @dir contains the inode structure of parent directory of the file. |
| * @dentry contains the dentry structure for file to be unlinked. |
| * Return 0 if permission is granted. |
| * @path_unlink: |
| * Check the permission to remove a hard link to a file. |
| * @dir contains the path structure of parent directory of the file. |
| * @dentry contains the dentry structure for file to be unlinked. |
| * Return 0 if permission is granted. |
| * @inode_symlink: |
| * Check the permission to create a symbolic link to a file. |
| * @dir contains the inode structure of parent directory of |
| * the symbolic link. |
| * @dentry contains the dentry structure of the symbolic link. |
| * @old_name contains the pathname of file. |
| * Return 0 if permission is granted. |
| * @path_symlink: |
| * Check the permission to create a symbolic link to a file. |
| * @dir contains the path structure of parent directory of |
| * the symbolic link. |
| * @dentry contains the dentry structure of the symbolic link. |
| * @old_name contains the pathname of file. |
| * Return 0 if permission is granted. |
| * @inode_mkdir: |
| * Check permissions to create a new directory in the existing directory |
| * associated with inode structure @dir. |
| * @dir contains the inode structure of parent of the directory |
| * to be created. |
| * @dentry contains the dentry structure of new directory. |
| * @mode contains the mode of new directory. |
| * Return 0 if permission is granted. |
| * @path_mkdir: |
| * Check permissions to create a new directory in the existing directory |
| * associated with path structure @path. |
| * @dir contains the path structure of parent of the directory |
| * to be created. |
| * @dentry contains the dentry structure of new directory. |
| * @mode contains the mode of new directory. |
| * Return 0 if permission is granted. |
| * @inode_rmdir: |
| * Check the permission to remove a directory. |
| * @dir contains the inode structure of parent of the directory |
| * to be removed. |
| * @dentry contains the dentry structure of directory to be removed. |
| * Return 0 if permission is granted. |
| * @path_rmdir: |
| * Check the permission to remove a directory. |
| * @dir contains the path structure of parent of the directory to be |
| * removed. |
| * @dentry contains the dentry structure of directory to be removed. |
| * Return 0 if permission is granted. |
| * @inode_mknod: |
| * Check permissions when creating a special file (or a socket or a fifo |
| * file created via the mknod system call). Note that if mknod operation |
| * is being done for a regular file, then the create hook will be called |
| * and not this hook. |
| * @dir contains the inode structure of parent of the new file. |
| * @dentry contains the dentry structure of the new file. |
| * @mode contains the mode of the new file. |
| * @dev contains the device number. |
| * Return 0 if permission is granted. |
| * @path_mknod: |
| * Check permissions when creating a file. Note that this hook is called |
| * even if mknod operation is being done for a regular file. |
| * @dir contains the path structure of parent of the new file. |
| * @dentry contains the dentry structure of the new file. |
| * @mode contains the mode of the new file. |
| * @dev contains the undecoded device number. Use new_decode_dev() to get |
| * the decoded device number. |
| * Return 0 if permission is granted. |
| * @inode_rename: |
| * Check for permission to rename a file or directory. |
| * @old_dir contains the inode structure for parent of the old link. |
| * @old_dentry contains the dentry structure of the old link. |
| * @new_dir contains the inode structure for parent of the new link. |
| * @new_dentry contains the dentry structure of the new link. |
| * Return 0 if permission is granted. |
| * @path_rename: |
| * Check for permission to rename a file or directory. |
| * @old_dir contains the path structure for parent of the old link. |
| * @old_dentry contains the dentry structure of the old link. |
| * @new_dir contains the path structure for parent of the new link. |
| * @new_dentry contains the dentry structure of the new link. |
| * Return 0 if permission is granted. |
| * @path_chmod: |
| * Check for permission to change DAC's permission of a file or directory. |
| * @dentry contains the dentry structure. |
| * @mnt contains the vfsmnt structure. |
| * @mode contains DAC's mode. |
| * Return 0 if permission is granted. |
| * @path_chown: |
| * Check for permission to change owner/group of a file or directory. |
| * @path contains the path structure. |
| * @uid contains new owner's ID. |
| * @gid contains new group's ID. |
| * Return 0 if permission is granted. |
| * @path_chroot: |
| * Check for permission to change root directory. |
| * @path contains the path structure. |
| * Return 0 if permission is granted. |
| * @inode_readlink: |
| * Check the permission to read the symbolic link. |
| * @dentry contains the dentry structure for the file link. |
| * Return 0 if permission is granted. |
| * @inode_follow_link: |
| * Check permission to follow a symbolic link when looking up a pathname. |
| * @dentry contains the dentry structure for the link. |
| * @inode contains the inode, which itself is not stable in RCU-walk |
| * @rcu indicates whether we are in RCU-walk mode. |
| * Return 0 if permission is granted. |
| * @inode_permission: |
| * Check permission before accessing an inode. This hook is called by the |
| * existing Linux permission function, so a security module can use it to |
| * provide additional checking for existing Linux permission checks. |
| * Notice that this hook is called when a file is opened (as well as many |
| * other operations), whereas the file_security_ops permission hook is |
| * called when the actual read/write operations are performed. |
| * @inode contains the inode structure to check. |
| * @mask contains the permission mask. |
| * Return 0 if permission is granted. |
| * @inode_setattr: |
| * Check permission before setting file attributes. Note that the kernel |
| * call to notify_change is performed from several locations, whenever |
| * file attributes change (such as when a file is truncated, chown/chmod |
| * operations, transferring disk quotas, etc). |
| * @dentry contains the dentry structure for the file. |
| * @attr is the iattr structure containing the new file attributes. |
| * Return 0 if permission is granted. |
| * @path_truncate: |
| * Check permission before truncating a file. |
| * @path contains the path structure for the file. |
| * Return 0 if permission is granted. |
| * @inode_getattr: |
| * Check permission before obtaining file attributes. |
| * @mnt is the vfsmount where the dentry was looked up |
| * @dentry contains the dentry structure for the file. |
| * Return 0 if permission is granted. |
| * @inode_setxattr: |
| * Check permission before setting the extended attributes |
| * @value identified by @name for @dentry. |
| * Return 0 if permission is granted. |
| * @inode_post_setxattr: |
| * Update inode security field after successful setxattr operation. |
| * @value identified by @name for @dentry. |
| * @inode_getxattr: |
| * Check permission before obtaining the extended attributes |
| * identified by @name for @dentry. |
| * Return 0 if permission is granted. |
| * @inode_listxattr: |
| * Check permission before obtaining the list of extended attribute |
| * names for @dentry. |
| * Return 0 if permission is granted. |
| * @inode_removexattr: |
| * Check permission before removing the extended attribute |
| * identified by @name for @dentry. |
| * Return 0 if permission is granted. |
| * @inode_getsecurity: |
| * Retrieve a copy of the extended attribute representation of the |
| * security label associated with @name for @inode via @buffer. Note that |
| * @name is the remainder of the attribute name after the security prefix |
| * has been removed. @alloc is used to specify of the call should return a |
| * value via the buffer or just the value length Return size of buffer on |
| * success. |
| * @inode_setsecurity: |
| * Set the security label associated with @name for @inode from the |
| * extended attribute value @value. @size indicates the size of the |
| * @value in bytes. @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. |
| * Note that @name is the remainder of the attribute name after the |
| * security. prefix has been removed. |
| * Return 0 on success. |
| * @inode_listsecurity: |
| * Copy the extended attribute names for the security labels |
| * associated with @inode into @buffer. The maximum size of @buffer |
| * is specified by @buffer_size. @buffer may be NULL to request |
| * the size of the buffer required. |
| * Returns number of bytes used/required on success. |
| * @inode_need_killpriv: |
| * Called when an inode has been changed. |
| * @dentry is the dentry being changed. |
| * Return <0 on error to abort the inode change operation. |
| * Return 0 if inode_killpriv does not need to be called. |
| * Return >0 if inode_killpriv does need to be called. |
| * @inode_killpriv: |
| * The setuid bit is being removed. Remove similar security labels. |
| * Called with the dentry->d_inode->i_mutex held. |
| * @dentry is the dentry being changed. |
| * Return 0 on success. If error is returned, then the operation |
| * causing setuid bit removal is failed. |
| * @inode_getsecid: |
| * Get the secid associated with the node. |
| * @inode contains a pointer to the inode. |
| * @secid contains a pointer to the location where result will be saved. |
| * In case of failure, @secid will be set to zero. |
| * @inode_copy_up: |
| * A file is about to be copied up from lower layer to upper layer of |
| * overlay filesystem. Security module can prepare a set of new creds |
| * and modify as need be and return new creds. Caller will switch to |
| * new creds temporarily to create new file and release newly allocated |
| * creds. |
| * @src indicates the union dentry of file that is being copied up. |
| * @new pointer to pointer to return newly allocated creds. |
| * Returns 0 on success or a negative error code on error. |
| * @inode_copy_up_xattr: |
| * Filter the xattrs being copied up when a unioned file is copied |
| * up from a lower layer to the union/overlay layer. |
| * @name indicates the name of the xattr. |
| * Returns 0 to accept the xattr, 1 to discard the xattr, -EOPNOTSUPP if |
| * security module does not know about attribute or a negative error code |
| * to abort the copy up. Note that the caller is responsible for reading |
| * and writing the xattrs as this hook is merely a filter. |
| * |
| * Security hooks for file operations |
| * |
| * @file_permission: |
| * Check file permissions before accessing an open file. This hook is |
| * called by various operations that read or write files. A security |
| * module can use this hook to perform additional checking on these |
| * operations, e.g. to revalidate permissions on use to support privilege |
| * bracketing or policy changes. Notice that this hook is used when the |
| * actual read/write operations are performed, whereas the |
| * inode_security_ops hook is called when a file is opened (as well as |
| * many other operations). |
| * Caveat: Although this hook can be used to revalidate permissions for |
| * various system call operations that read or write files, it does not |
| * address the revalidation of permissions for memory-mapped files. |
| * Security modules must handle this separately if they need such |
| * revalidation. |
| * @file contains the file structure being accessed. |
| * @mask contains the requested permissions. |
| * Return 0 if permission is granted. |
| * @file_alloc_security: |
| * Allocate and attach a security structure to the file->f_security field. |
| * The security field is initialized to NULL when the structure is first |
| * created. |
| * @file contains the file structure to secure. |
| * Return 0 if the hook is successful and permission is granted. |
| * @file_free_security: |
| * Deallocate and free any security structures stored in file->f_security. |
| * @file contains the file structure being modified. |
| * @file_ioctl: |
| * @file contains the file structure. |
| * @cmd contains the operation to perform. |
| * @arg contains the operational arguments. |
| * Check permission for an ioctl operation on @file. Note that @arg |
| * sometimes represents a user space pointer; in other cases, it may be a |
| * simple integer value. When @arg represents a user space pointer, it |
| * should never be used by the security module. |
| * Return 0 if permission is granted. |
| * @mmap_addr : |
| * Check permissions for a mmap operation at @addr. |
| * @addr contains virtual address that will be used for the operation. |
| * Return 0 if permission is granted. |
| * @mmap_file : |
| * Check permissions for a mmap operation. The @file may be NULL, e.g. |
| * if mapping anonymous memory. |
| * @file contains the file structure for file to map (may be NULL). |
| * @reqprot contains the protection requested by the application. |
| * @prot contains the protection that will be applied by the kernel. |
| * @flags contains the operational flags. |
| * Return 0 if permission is granted. |
| * @file_mprotect: |
| * Check permissions before changing memory access permissions. |
| * @vma contains the memory region to modify. |
| * @reqprot contains the protection requested by the application. |
| * @prot contains the protection that will be applied by the kernel. |
| * Return 0 if permission is granted. |
| * @file_lock: |
| * Check permission before performing file locking operations. |
| * Note: this hook mediates both flock and fcntl style locks. |
| * @file contains the file structure. |
| * @cmd contains the posix-translated lock operation to perform |
| * (e.g. F_RDLCK, F_WRLCK). |
| * Return 0 if permission is granted. |
| * @file_fcntl: |
| * Check permission before allowing the file operation specified by @cmd |
| * from being performed on the file @file. Note that @arg sometimes |
| * represents a user space pointer; in other cases, it may be a simple |
| * integer value. When @arg represents a user space pointer, it should |
| * never be used by the security module. |
| * @file contains the file structure. |
| * @cmd contains the operation to be performed. |
| * @arg contains the operational arguments. |
| * Return 0 if permission is granted. |
| * @file_set_fowner: |
| * Save owner security information (typically from current->security) in |
| * file->f_security for later use by the send_sigiotask hook. |
| * @file contains the file structure to update. |
| * Return 0 on success. |
| * @file_send_sigiotask: |
| * Check permission for the file owner @fown to send SIGIO or SIGURG to the |
| * process @tsk. Note that this hook is sometimes called from interrupt. |
| * Note that the fown_struct, @fown, is never outside the context of a |
| * struct file, so the file structure (and associated security information) |
| * can always be obtained: |
| * container_of(fown, struct file, f_owner) |
| * @tsk contains the structure of task receiving signal. |
| * @fown contains the file owner information. |
| * @sig is the signal that will be sent. When 0, kernel sends SIGIO. |
| * Return 0 if permission is granted. |
| * @file_receive: |
| * This hook allows security modules to control the ability of a process |
| * to receive an open file descriptor via socket IPC. |
| * @file contains the file structure being received. |
| * Return 0 if permission is granted. |
| * @file_open |
| * Save open-time permission checking state for later use upon |
| * file_permission, and recheck access if anything has changed |
| * since inode_permission. |
| * |
| * Security hooks for task operations. |
| * |
| * @task_create: |
| * Check permission before creating a child process. See the clone(2) |
| * manual page for definitions of the @clone_flags. |
| * @clone_flags contains the flags indicating what should be shared. |
| * Return 0 if permission is granted. |
| * @task_free: |
| * @task task being freed |
| * Handle release of task-related resources. (Note that this can be called |
| * from interrupt context.) |
| * @cred_alloc_blank: |
| * @cred points to the credentials. |
| * @gfp indicates the atomicity of any memory allocations. |
| * Only allocate sufficient memory and attach to @cred such that |
| * cred_transfer() will not get ENOMEM. |
| * @cred_free: |
| * @cred points to the credentials. |
| * Deallocate and clear the cred->security field in a set of credentials. |
| * @cred_prepare: |
| * @new points to the new credentials. |
| * @old points to the original credentials. |
| * @gfp indicates the atomicity of any memory allocations. |
| * Prepare a new set of credentials by copying the data from the old set. |
| * @cred_transfer: |
| * @new points to the new credentials. |
| * @old points to the original credentials. |
| * Transfer data from original creds to new creds |
| * @kernel_act_as: |
| * Set the credentials for a kernel service to act as (subjective context). |
| * @new points to the credentials to be modified. |
| * @secid specifies the security ID to be set |
| * The current task must be the one that nominated @secid. |
| * Return 0 if successful. |
| * @kernel_create_files_as: |
| * Set the file creation context in a set of credentials to be the same as |
| * the objective context of the specified inode. |
| * @new points to the credentials to be modified. |
| * @inode points to the inode to use as a reference. |
| * The current task must be the one that nominated @inode. |
| * Return 0 if successful. |
| * @kernel_module_request: |
| * Ability to trigger the kernel to automatically upcall to userspace for |
| * userspace to load a kernel module with the given name. |
| * @kmod_name name of the module requested by the kernel |
| * Return 0 if successful. |
| * @kernel_read_file: |
| * Read a file specified by userspace. |
| * @file contains the file structure pointing to the file being read |
| * by the kernel. |
| * @id kernel read file identifier |
| * Return 0 if permission is granted. |
| * @kernel_post_read_file: |
| * Read a file specified by userspace. |
| * @file contains the file structure pointing to the file being read |
| * by the kernel. |
| * @buf pointer to buffer containing the file contents. |
| * @size length of the file contents. |
| * @id kernel read file identifier |
| * Return 0 if permission is granted. |
| * @task_fix_setuid: |
| * Update the module's state after setting one or more of the user |
| * identity attributes of the current process. The @flags parameter |
| * indicates which of the set*uid system calls invoked this hook. If |
| * @new is the set of credentials that will be installed. Modifications |
| * should be made to this rather than to @current->cred. |
| * @old is the set of credentials that are being replaces |
| * @flags contains one of the LSM_SETID_* values. |
| * Return 0 on success. |
| * @task_setpgid: |
| * Check permission before setting the process group identifier of the |
| * process @p to @pgid. |
| * @p contains the task_struct for process being modified. |
| * @pgid contains the new pgid. |
| * Return 0 if permission is granted. |
| * @task_getpgid: |
| * Check permission before getting the process group identifier of the |
| * process @p. |
| * @p contains the task_struct for the process. |
| * Return 0 if permission is granted. |
| * @task_getsid: |
| * Check permission before getting the session identifier of the process |
| * @p. |
| * @p contains the task_struct for the process. |
| * Return 0 if permission is granted. |
| * @task_getsecid: |
| * Retrieve the security identifier of the process @p. |
| * @p contains the task_struct for the process and place is into @secid. |
| * In case of failure, @secid will be set to zero. |
| * |
| * @task_setnice: |
| * Check permission before setting the nice value of @p to @nice. |
| * @p contains the task_struct of process. |
| * @nice contains the new nice value. |
| * Return 0 if permission is granted. |
| * @task_setioprio |
| * Check permission before setting the ioprio value of @p to @ioprio. |
| * @p contains the task_struct of process. |
| * @ioprio contains the new ioprio value |
| * Return 0 if permission is granted. |
| * @task_getioprio |
| * Check permission before getting the ioprio value of @p. |
| * @p contains the task_struct of process. |
| * Return 0 if permission is granted. |
| * @task_setrlimit: |
| * Check permission before setting the resource limits of the current |
| * process for @resource to @new_rlim. The old resource limit values can |
| * be examined by dereferencing (current->signal->rlim + resource). |
| * @resource contains the resource whose limit is being set. |
| * @new_rlim contains the new limits for @resource. |
| * Return 0 if permission is granted. |
| * @task_setscheduler: |
| * Check permission before setting scheduling policy and/or parameters of |
| * process @p based on @policy and @lp. |
| * @p contains the task_struct for process. |
| * @policy contains the scheduling policy. |
| * @lp contains the scheduling parameters. |
| * Return 0 if permission is granted. |
| * @task_getscheduler: |
| * Check permission before obtaining scheduling information for process |
| * @p. |
| * @p contains the task_struct for process. |
| * Return 0 if permission is granted. |
| * @task_movememory |
| * Check permission before moving memory owned by process @p. |
| * @p contains the task_struct for process. |
| * Return 0 if permission is granted. |
| * @task_kill: |
| * Check permission before sending signal @sig to @p. @info can be NULL, |
| * the constant 1, or a pointer to a siginfo structure. If @info is 1 or |
| * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming |
| * from the kernel and should typically be permitted. |
| * SIGIO signals are handled separately by the send_sigiotask hook in |
| * file_security_ops. |
| * @p contains the task_struct for process. |
| * @info contains the signal information. |
| * @sig contains the signal value. |
| * @secid contains the sid of the process where the signal originated |
| * Return 0 if permission is granted. |
| * @task_wait: |
| * Check permission before allowing a process to reap a child process @p |
| * and collect its status information. |
| * @p contains the task_struct for process. |
| * Return 0 if permission is granted. |
| * @task_prctl: |
| * Check permission before performing a process control operation on the |
| * current process. |
| * @option contains the operation. |
| * @arg2 contains a argument. |
| * @arg3 contains a argument. |
| * @arg4 contains a argument. |
| * @arg5 contains a argument. |
| * Return -ENOSYS if no-one wanted to handle this op, any other value to |
| * cause prctl() to return immediately with that value. |
| * @task_to_inode: |
| * Set the security attributes for an inode based on an associated task's |
| * security attributes, e.g. for /proc/pid inodes. |
| * @p contains the task_struct for the task. |
| * @inode contains the inode structure for the inode. |
| * |
| * Security hooks for Netlink messaging. |
| * |
| * @netlink_send: |
| * Save security information for a netlink message so that permission |
| * checking can be performed when the message is processed. The security |
| * information can be saved using the eff_cap field of the |
| * netlink_skb_parms structure. Also may be used to provide fine |
| * grained control over message transmission. |
| * @sk associated sock of task sending the message. |
| * @skb contains the sk_buff structure for the netlink message. |
| * Return 0 if the information was successfully saved and message |
| * is allowed to be transmitted. |
| * |
| * Security hooks for Unix domain networking. |
| * |
| * @unix_stream_connect: |
| * Check permissions before establishing a Unix domain stream connection |
| * between @sock and @other. |
| * @sock contains the sock structure. |
| * @other contains the peer sock structure. |
| * @newsk contains the new sock structure. |
| * Return 0 if permission is granted. |
| * @unix_may_send: |
| * Check permissions before connecting or sending datagrams from @sock to |
| * @other. |
| * @sock contains the socket structure. |
| * @other contains the peer socket structure. |
| * Return 0 if permission is granted. |
| * |
| * The @unix_stream_connect and @unix_may_send hooks were necessary because |
| * Linux provides an alternative to the conventional file name space for Unix |
| * domain sockets. Whereas binding and connecting to sockets in the file name |
| * space is mediated by the typical file permissions (and caught by the mknod |
| * and permission hooks in inode_security_ops), binding and connecting to |
| * sockets in the abstract name space is completely unmediated. Sufficient |
| * control of Unix domain sockets in the abstract name space isn't possible |
| * using only the socket layer hooks, since we need to know the actual target |
| * socket, which is not looked up until we are inside the af_unix code. |
| * |
| * Security hooks for socket operations. |
| * |
| * @socket_create: |
| * Check permissions prior to creating a new socket. |
| * @family contains the requested protocol family. |
| * @type contains the requested communications type. |
| * @protocol contains the requested protocol. |
| * @kern set to 1 if a kernel socket. |
| * Return 0 if permission is granted. |
| * @socket_post_create: |
| * This hook allows a module to update or allocate a per-socket security |
| * structure. Note that the security field was not added directly to the |
| * socket structure, but rather, the socket security information is stored |
| * in the associated inode. Typically, the inode alloc_security hook will |
| * allocate and and attach security information to |
| * sock->inode->i_security. This hook may be used to update the |
| * sock->inode->i_security field with additional information that wasn't |
| * available when the inode was allocated. |
| * @sock contains the newly created socket structure. |
| * @family contains the requested protocol family. |
| * @type contains the requested communications type. |
| * @protocol contains the requested protocol. |
| * @kern set to 1 if a kernel socket. |
| * @socket_bind: |
| * Check permission before socket protocol layer bind operation is |
| * performed and the socket @sock is bound to the address specified in the |
| * @address parameter. |
| * @sock contains the socket structure. |
| * @address contains the address to bind to. |
| * @addrlen contains the length of address. |
| * Return 0 if permission is granted. |
| * @socket_connect: |
| * Check permission before socket protocol layer connect operation |
| * attempts to connect socket @sock to a remote address, @address. |
| * @sock contains the socket structure. |
| * @address contains the address of remote endpoint. |
| * @addrlen contains the length of address. |
| * Return 0 if permission is granted. |
| * @socket_listen: |
| * Check permission before socket protocol layer listen operation. |
| * @sock contains the socket structure. |
| * @backlog contains the maximum length for the pending connection queue. |
| * Return 0 if permission is granted. |
| * @socket_accept: |
| * Check permission before accepting a new connection. Note that the new |
| * socket, @newsock, has been created and some information copied to it, |
| * but the accept operation has not actually been performed. |
| * @sock contains the listening socket structure. |
| * @newsock contains the newly created server socket for connection. |
| * Return 0 if permission is granted. |
| * @socket_sendmsg: |
| * Check permission before transmitting a message to another socket. |
| * @sock contains the socket structure. |
| * @msg contains the message to be transmitted. |
| * @size contains the size of message. |
| * Return 0 if permission is granted. |
| * @socket_recvmsg: |
| * Check permission before receiving a message from a socket. |
| * @sock contains the socket structure. |
| * @msg contains the message structure. |
| * @size contains the size of message structure. |
| * @flags contains the operational flags. |
| * Return 0 if permission is granted. |
| * @socket_getsockname: |
| * Check permission before the local address (name) of the socket object |
| * @sock is retrieved. |
| * @sock contains the socket structure. |
| * Return 0 if permission is granted. |
| * @socket_getpeername: |
| * Check permission before the remote address (name) of a socket object |
| * @sock is retrieved. |
| * @sock contains the socket structure. |
| * Return 0 if permission is granted. |
| * @socket_getsockopt: |
| * Check permissions before retrieving the options associated with socket |
| * @sock. |
| * @sock contains the socket structure. |
| * @level contains the protocol level to retrieve option from. |
| * @optname contains the name of option to retrieve. |
| * Return 0 if permission is granted. |
| * @socket_setsockopt: |
| * Check permissions before setting the options associated with socket |
| * @sock. |
| * @sock contains the socket structure. |
| * @level contains the protocol level to set options for. |
| * @optname contains the name of the option to set. |
| * Return 0 if permission is granted. |
| * @socket_shutdown: |
| * Checks permission before all or part of a connection on the socket |
| * @sock is shut down. |
| * @sock contains the socket structure. |
| * @how contains the flag indicating how future sends and receives |
| * are handled. |
| * Return 0 if permission is granted. |
| * @socket_sock_rcv_skb: |
| * Check permissions on incoming network packets. This hook is distinct |
| * from Netfilter's IP input hooks since it is the first time that the |
| * incoming sk_buff @skb has been associated with a particular socket, @sk. |
| * Must not sleep inside this hook because some callers hold spinlocks. |
| * @sk contains the sock (not socket) associated with the incoming sk_buff. |
| * @skb contains the incoming network data. |
| * @socket_getpeersec_stream: |
| * This hook allows the security module to provide peer socket security |
| * state for unix or connected tcp sockets to userspace via getsockopt |
| * SO_GETPEERSEC. For tcp sockets this can be meaningful if the |
| * socket is associated with an ipsec SA. |
| * @sock is the local socket. |
| * @optval userspace memory where the security state is to be copied. |
| * @optlen userspace int where the module should copy the actual length |
| * of the security state. |
| * @len as input is the maximum length to copy to userspace provided |
| * by the caller. |
| * Return 0 if all is well, otherwise, typical getsockopt return |
| * values. |
| * @socket_getpeersec_dgram: |
| * This hook allows the security module to provide peer socket security |
| * state for udp sockets on a per-packet basis to userspace via |
| * getsockopt SO_GETPEERSEC. The application must first have indicated |
| * the IP_PASSSEC option via getsockopt. It can then retrieve the |
| * security state returned by this hook for a packet via the SCM_SECURITY |
| * ancillary message type. |
| * @skb is the skbuff for the packet being queried |
| * @secdata is a pointer to a buffer in which to copy the security data |
| * @seclen is the maximum length for @secdata |
| * Return 0 on success, error on failure. |
| * @sk_alloc_security: |
| * Allocate and attach a security structure to the sk->sk_security field, |
| * which is used to copy security attributes between local stream sockets. |
| * @sk_free_security: |
| * Deallocate security structure. |
| * @sk_clone_security: |
| * Clone/copy security structure. |
| * @sk_getsecid: |
| * Retrieve the LSM-specific secid for the sock to enable caching |
| * of network authorizations. |
| * @sock_graft: |
| * Sets the socket's isec sid to the sock's sid. |
| * @inet_conn_request: |
| * Sets the openreq's sid to socket's sid with MLS portion taken |
| * from peer sid. |
| * @inet_csk_clone: |
| * Sets the new child socket's sid to the openreq sid. |
| * @inet_conn_established: |
| * Sets the connection's peersid to the secmark on skb. |
| * @secmark_relabel_packet: |
| * check if the process should be allowed to relabel packets to |
| * the given secid |
| * @security_secmark_refcount_inc |
| * tells the LSM to increment the number of secmark labeling rules loaded |
| * @security_secmark_refcount_dec |
| * tells the LSM to decrement the number of secmark labeling rules loaded |
| * @req_classify_flow: |
| * Sets the flow's sid to the openreq sid. |
| * @tun_dev_alloc_security: |
| * This hook allows a module to allocate a security structure for a TUN |
| * device. |
| * @security pointer to a security structure pointer. |
| * Returns a zero on success, negative values on failure. |
| * @tun_dev_free_security: |
| * This hook allows a module to free the security structure for a TUN |
| * device. |
| * @security pointer to the TUN device's security structure |
| * @tun_dev_create: |
| * Check permissions prior to creating a new TUN device. |
| * @tun_dev_attach_queue: |
| * Check permissions prior to attaching to a TUN device queue. |
| * @security pointer to the TUN device's security structure. |
| * @tun_dev_attach: |
| * This hook can be used by the module to update any security state |
| * associated with the TUN device's sock structure. |
| * @sk contains the existing sock structure. |
| * @security pointer to the TUN device's security structure. |
| * @tun_dev_open: |
| * This hook can be used by the module to update any security state |
| * associated with the TUN device's security structure. |
| * @security pointer to the TUN devices's security structure. |
| * |
| * Security hooks for XFRM operations. |
| * |
| * @xfrm_policy_alloc_security: |
| * @ctxp is a pointer to the xfrm_sec_ctx being added to Security Policy |
| * Database used by the XFRM system. |
| * @sec_ctx contains the security context information being provided by |
| * the user-level policy update program (e.g., setkey). |
| * Allocate a security structure to the xp->security field; the security |
| * field is initialized to NULL when the xfrm_policy is allocated. |
| * Return 0 if operation was successful (memory to allocate, legal context) |
| * @gfp is to specify the context for the allocation |
| * @xfrm_policy_clone_security: |
| * @old_ctx contains an existing xfrm_sec_ctx. |
| * @new_ctxp contains a new xfrm_sec_ctx being cloned from old. |
| * Allocate a security structure in new_ctxp that contains the |
| * information from the old_ctx structure. |
| * Return 0 if operation was successful (memory to allocate). |
| * @xfrm_policy_free_security: |
| * @ctx contains the xfrm_sec_ctx |
| * Deallocate xp->security. |
| * @xfrm_policy_delete_security: |
| * @ctx contains the xfrm_sec_ctx. |
| * Authorize deletion of xp->security. |
| * @xfrm_state_alloc: |
| * @x contains the xfrm_state being added to the Security Association |
| * Database by the XFRM system. |
| * @sec_ctx contains the security context information being provided by |
| * the user-level SA generation program (e.g., setkey or racoon). |
| * Allocate a security structure to the x->security field; the security |
| * field is initialized to NULL when the xfrm_state is allocated. Set the |
| * context to correspond to sec_ctx. Return 0 if operation was successful |
| * (memory to allocate, legal context). |
| * @xfrm_state_alloc_acquire: |
| * @x contains the xfrm_state being added to the Security Association |
| * Database by the XFRM system. |
| * @polsec contains the policy's security context. |
| * @secid contains the secid from which to take the mls portion of the |
| * context. |
| * Allocate a security structure to the x->security field; the security |
| * field is initialized to NULL when the xfrm_state is allocated. Set the |
| * context to correspond to secid. Return 0 if operation was successful |
| * (memory to allocate, legal context). |
| * @xfrm_state_free_security: |
| * @x contains the xfrm_state. |
| * Deallocate x->security. |
| * @xfrm_state_delete_security: |
| * @x contains the xfrm_state. |
| * Authorize deletion of x->security. |
| * @xfrm_policy_lookup: |
| * @ctx contains the xfrm_sec_ctx for which the access control is being |
| * checked. |
| * @fl_secid contains the flow security label that is used to authorize |
| * access to the policy xp. |
| * @dir contains the direction of the flow (input or output). |
| * Check permission when a flow selects a xfrm_policy for processing |
| * XFRMs on a packet. The hook is called when selecting either a |
| * per-socket policy or a generic xfrm policy. |
| * Return 0 if permission is granted, -ESRCH otherwise, or -errno |
| * on other errors. |
| * @xfrm_state_pol_flow_match: |
| * @x contains the state to match. |
| * @xp contains the policy to check for a match. |
| * @fl contains the flow to check for a match. |
| * Return 1 if there is a match. |
| * @xfrm_decode_session: |
| * @skb points to skb to decode. |
| * @secid points to the flow key secid to set. |
| * @ckall says if all xfrms used should be checked for same secid. |
| * Return 0 if ckall is zero or all xfrms used have the same secid. |
| * |
| * Security hooks affecting all Key Management operations |
| * |
| * @key_alloc: |
| * Permit allocation of a key and assign security data. Note that key does |
| * not have a serial number assigned at this point. |
| * @key points to the key. |
| * @flags is the allocation flags |
| * Return 0 if permission is granted, -ve error otherwise. |
| * @key_free: |
| * Notification of destruction; free security data. |
| * @key points to the key. |
| * No return value. |
| * @key_permission: |
| * See whether a specific operational right is granted to a process on a |
| * key. |
| * @key_ref refers to the key (key pointer + possession attribute bit). |
| * @cred points to the credentials to provide the context against which to |
| * evaluate the security data on the key. |
| * @perm describes the combination of permissions required of this key. |
| * Return 0 if permission is granted, -ve error otherwise. |
| * @key_getsecurity: |
| * Get a textual representation of the security context attached to a key |
| * for the purposes of honouring KEYCTL_GETSECURITY. This function |
| * allocates the storage for the NUL-terminated string and the caller |
| * should free it. |
| * @key points to the key to be queried. |
| * @_buffer points to a pointer that should be set to point to the |
| * resulting string (if no label or an error occurs). |
| * Return the length of the string (including terminating NUL) or -ve if |
| * an error. |
| * May also return 0 (and a NULL buffer pointer) if there is no label. |
| * |
| * Security hooks affecting all System V IPC operations. |
| * |
| * @ipc_permission: |
| * Check permissions for access to IPC |
| * @ipcp contains the kernel IPC permission structure |
| * @flag contains the desired (requested) permission set |
| * Return 0 if permission is granted. |
| * @ipc_getsecid: |
| * Get the secid associated with the ipc object. |
| * @ipcp contains the kernel IPC permission structure. |
| * @secid contains a pointer to the location where result will be saved. |
| * In case of failure, @secid will be set to zero. |
| * |
| * Security hooks for individual messages held in System V IPC message queues |
| * @msg_msg_alloc_security: |
| * Allocate and attach a security structure to the msg->security field. |
| * The security field is initialized to NULL when the structure is first |
| * created. |
| * @msg contains the message structure to be modified. |
| * Return 0 if operation was successful and permission is granted. |
| * @msg_msg_free_security: |
| * Deallocate the security structure for this message. |
| * @msg contains the message structure to be modified. |
| * |
| * Security hooks for System V IPC Message Queues |
| * |
| * @msg_queue_alloc_security: |
| * Allocate and attach a security structure to the |
| * msq->q_perm.security field. The security field is initialized to |
| * NULL when the structure is first created. |
| * @msq contains the message queue structure to be modified. |
| * Return 0 if operation was successful and permission is granted. |
| * @msg_queue_free_security: |
| * Deallocate security structure for this message queue. |
| * @msq contains the message queue structure to be modified. |
| * @msg_queue_associate: |
| * Check permission when a message queue is requested through the |
| * msgget system call. This hook is only called when returning the |
| * message queue identifier for an existing message queue, not when a |
| * new message queue is created. |
| * @msq contains the message queue to act upon. |
| * @msqflg contains the operation control flags. |
| * Return 0 if permission is granted. |
| * @msg_queue_msgctl: |
| * Check permission when a message control operation specified by @cmd |
| * is to be performed on the message queue @msq. |
| * The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO. |
| * @msq contains the message queue to act upon. May be NULL. |
| * @cmd contains the operation to be performed. |
| * Return 0 if permission is granted. |
| * @msg_queue_msgsnd: |
| * Check permission before a message, @msg, is enqueued on the message |
| * queue, @msq. |
| * @msq contains the message queue to send message to. |
| * @msg contains the message to be enqueued. |
| * @msqflg contains operational flags. |
| * Return 0 if permission is granted. |
| * @msg_queue_msgrcv: |
| * Check permission before a message, @msg, is removed from the message |
| * queue, @msq. The @target task structure contains a pointer to the |
| * process that will be receiving the message (not equal to the current |
| * process when inline receives are being performed). |
| * @msq contains the message queue to retrieve message from. |
| * @msg contains the message destination. |
| * @target contains the task structure for recipient process. |
| * @type contains the type of message requested. |
| * @mode contains the operational flags. |
| * Return 0 if permission is granted. |
| * |
| * Security hooks for System V Shared Memory Segments |
| * |
| * @shm_alloc_security: |
| * Allocate and attach a security structure to the shp->shm_perm.security |
| * field. The security field is initialized to NULL when the structure is |
| * first created. |
| * @shp contains the shared memory structure to be modified. |
| * Return 0 if operation was successful and permission is granted. |
| * @shm_free_security: |
| * Deallocate the security struct for this memory segment. |
| * @shp contains the shared memory structure to be modified. |
| * @shm_associate: |
| * Check permission when a shared memory region is requested through the |
| * shmget system call. This hook is only called when returning the shared |
| * memory region identifier for an existing region, not when a new shared |
| * memory region is created. |
| * @shp contains the shared memory structure to be modified. |
| * @shmflg contains the operation control flags. |
| * Return 0 if permission is granted. |
| * @shm_shmctl: |
| * Check permission when a shared memory control operation specified by |
| * @cmd is to be performed on the shared memory region @shp. |
| * The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO. |
| * @shp contains shared memory structure to be modified. |
| * @cmd contains the operation to be performed. |
| * Return 0 if permission is granted. |
| * @shm_shmat: |
| * Check permissions prior to allowing the shmat system call to attach the |
| * shared memory segment @shp to the data segment of the calling process. |
| * The attaching address is specified by @shmaddr. |
| * @shp contains the shared memory structure to be modified. |
| * @shmaddr contains the address to attach memory region to. |
| * @shmflg contains the operational flags. |
| * Return 0 if permission is granted. |
| * |
| * Security hooks for System V Semaphores |
| * |
| * @sem_alloc_security: |
| * Allocate and attach a security structure to the sma->sem_perm.security |
| * field. The security field is initialized to NULL when the structure is |
| * first created. |
| * @sma contains the semaphore structure |
| * Return 0 if operation was successful and permission is granted. |
| * @sem_free_security: |
| * deallocate security struct for this semaphore |
| * @sma contains the semaphore structure. |
| * @sem_associate: |
| * Check permission when a semaphore is requested through the semget |
| * system call. This hook is only called when returning the semaphore |
| * identifier for an existing semaphore, not when a new one must be |
| * created. |
| * @sma contains the semaphore structure. |
| * @semflg contains the operation control flags. |
| * Return 0 if permission is granted. |
| * @sem_semctl: |
| * Check permission when a semaphore operation specified by @cmd is to be |
| * performed on the semaphore @sma. The @sma may be NULL, e.g. for |
| * IPC_INFO or SEM_INFO. |
| * @sma contains the semaphore structure. May be NULL. |
| * @cmd contains the operation to be performed. |
| * Return 0 if permission is granted. |
| * @sem_semop |
| * Check permissions before performing operations on members of the |
| * semaphore set @sma. If the @alter flag is nonzero, the semaphore set |
| * may be modified. |
| * @sma contains the semaphore structure. |
| * @sops contains the operations to perform. |
| * @nsops contains the number of operations to perform. |
| * @alter contains the flag indicating whether changes are to be made. |
| * Return 0 if permission is granted. |
| * |
| * @binder_set_context_mgr |
| * Check whether @mgr is allowed to be the binder context manager. |
| * @mgr contains the task_struct for the task being registered. |
| * Return 0 if permission is granted. |
| * @binder_transaction |
| * Check whether @from is allowed to invoke a binder transaction call |
| * to @to. |
| * @from contains the task_struct for the sending task. |
| * @to contains the task_struct for the receiving task. |
| * @binder_transfer_binder |
| * Check whether @from is allowed to transfer a binder reference to @to. |
| * @from contains the task_struct for the sending task. |
| * @to contains the task_struct for the receiving task. |
| * @binder_transfer_file |
| * Check whether @from is allowed to transfer @file to @to. |
| * @from contains the task_struct for the sending task. |
| * @file contains the struct file being transferred. |
| * @to contains the task_struct for the receiving task. |
| * |
| * @ptrace_access_check: |
| * Check permission before allowing the current process to trace the |
| * @child process. |
| * Security modules may also want to perform a process tracing check |
| * during an execve in the set_security or apply_creds hooks of |
| * tracing check during an execve in the bprm_set_creds hook of |
| * binprm_security_ops if the process is being traced and its security |
| * attributes would be changed by the execve. |
| * @child contains the task_struct structure for the target process. |
| * @mode contains the PTRACE_MODE flags indicating the form of access. |
| * Return 0 if permission is granted. |
| * @ptrace_traceme: |
| * Check that the @parent process has sufficient permission to trace the |
| * current process before allowing the current process to present itself |
| * to the @parent process for tracing. |
| * @parent contains the task_struct structure for debugger process. |
| * Return 0 if permission is granted. |
| * @capget: |
| * Get the @effective, @inheritable, and @permitted capability sets for |
| * the @target process. The hook may also perform permission checking to |
| * determine if the current process is allowed to see the capability sets |
| * of the @target process. |
| * @target contains the task_struct structure for target process. |
| * @effective contains the effective capability set. |
| * @inheritable contains the inheritable capability set. |
| * @permitted contains the permitted capability set. |
| * Return 0 if the capability sets were successfully obtained. |
| * @capset: |
| * Set the @effective, @inheritable, and @permitted capability sets for |
| * the current process. |
| * @new contains the new credentials structure for target process. |
| * @old contains the current credentials structure for target process. |
| * @effective contains the effective capability set. |
| * @inheritable contains the inheritable capability set. |
| * @permitted contains the permitted capability set. |
| * Return 0 and update @new if permission is granted. |
| * @capable: |
| * Check whether the @tsk process has the @cap capability in the indicated |
| * credentials. |
| * @cred contains the credentials to use. |
| * @ns contains the user namespace we want the capability in |
| * @cap contains the capability <include/linux/capability.h>. |
| * @audit: Whether to write an audit message or not |
| * Return 0 if the capability is granted for @tsk. |
| * @syslog: |
| * Check permission before accessing the kernel message ring or changing |
| * logging to the console. |
| * See the syslog(2) manual page for an explanation of the @type values. |
| * @type contains the type of action. |
| * @from_file indicates the context of action (if it came from /proc). |
| * Return 0 if permission is granted. |
| * @settime: |
| * Check permission to change the system time. |
| * struct timespec64 is defined in include/linux/time64.h and timezone |
| * is defined in include/linux/time.h |
| * @ts contains new time |
| * @tz contains new timezone |
| * Return 0 if permission is granted. |
| * @vm_enough_memory: |
| * Check permissions for allocating a new virtual mapping. |
| * @mm contains the mm struct it is being added to. |
| * @pages contains the number of pages. |
| * Return 0 if permission is granted. |
| * |
| * @ismaclabel: |
| * Check if the extended attribute specified by @name |
| * represents a MAC label. Returns 1 if name is a MAC |
| * attribute otherwise returns 0. |
| * @name full extended attribute name to check against |
| * LSM as a MAC label. |
| * |
| * @secid_to_secctx: |
| * Convert secid to security context. If secdata is NULL the length of |
| * the result will be returned in seclen, but no secdata will be returned. |
| * This does mean that the length could change between calls to check the |
| * length and the next call which actually allocates and returns the |
| * secdata. |
| * @secid contains the security ID. |
| * @secdata contains the pointer that stores the converted security |
| * context. |
| * @seclen pointer which contains the length of the data |
| * @secctx_to_secid: |
| * Convert security context to secid. |
| * @secid contains the pointer to the generated security ID. |
| * @secdata contains the security context. |
| * |
| * @release_secctx: |
| * Release the security context. |
| * @secdata contains the security context. |
| * @seclen contains the length of the security context. |
| * |
| * Security hooks for Audit |
| * |
| * @audit_rule_init: |
| * Allocate and initialize an LSM audit rule structure. |
| * @field contains the required Audit action. |
| * Fields flags are defined in include/linux/audit.h |
| * @op contains the operator the rule uses. |
| * @rulestr contains the context where the rule will be applied to. |
| * @lsmrule contains a pointer to receive the result. |
| * Return 0 if @lsmrule has been successfully set, |
| * -EINVAL in case of an invalid rule. |
| * |
| * @audit_rule_known: |
| * Specifies whether given @rule contains any fields related to |
| * current LSM. |
| * @rule contains the audit rule of interest. |
| * Return 1 in case of relation found, 0 otherwise. |
| * |
| * @audit_rule_match: |
| * Determine if given @secid matches a rule previously approved |
| * by @audit_rule_known. |
| * @secid contains the security id in question. |
| * @field contains the field which relates to current LSM. |
| * @op contains the operator that will be used for matching. |
| * @rule points to the audit rule that will be checked against. |
| * @actx points to the audit context associated with the check. |
| * Return 1 if secid matches the rule, 0 if it does not, -ERRNO on failure. |
| * |
| * @audit_rule_free: |
| * Deallocate the LSM audit rule structure previously allocated by |
| * audit_rule_init. |
| * @rule contains the allocated rule |
| * |
| * @inode_invalidate_secctx: |
| * Notify the security module that it must revalidate the security context |
| * of an inode. |
| * |
| * @inode_notifysecctx: |
| * Notify the security module of what the security context of an inode |
| * should be. Initializes the incore security context managed by the |
| * security module for this inode. Example usage: NFS client invokes |
| * this hook to initialize the security context in its incore inode to the |
| * value provided by the server for the file when the server returned the |
| * file's attributes to the client. |
| * |
| * Must be called with inode->i_mutex locked. |
| * |
| * @inode we wish to set the security context of. |
| * @ctx contains the string which we wish to set in the inode. |
| * @ctxlen contains the length of @ctx. |
| * |
| * @inode_setsecctx: |
| * Change the security context of an inode. Updates the |
| * incore security context managed by the security module and invokes the |
| * fs code as needed (via __vfs_setxattr_noperm) to update any backing |
| * xattrs that represent the context. Example usage: NFS server invokes |
| * this hook to change the security context in its incore inode and on the |
| * backing filesystem to a value provided by the client on a SETATTR |
| * operation. |
| * |
| * Must be called with inode->i_mutex locked. |
| * |
| * @dentry contains the inode we wish to set the security context of. |
| * @ctx contains the string which we wish to set in the inode. |
| * @ctxlen contains the length of @ctx. |
| * |
| * @inode_getsecctx: |
| * On success, returns 0 and fills out @ctx and @ctxlen with the security |
| * context for the given @inode. |
| * |
| * @inode we wish to get the security context of. |
| * @ctx is a pointer in which to place the allocated security context. |
| * @ctxlen points to the place to put the length of @ctx. |
| * This is the main security structure. |
| */ |
| |
| union security_list_options { |
| int (*binder_set_context_mgr)(struct task_struct *mgr); |
| int (*binder_transaction)(struct task_struct *from, |
| struct task_struct *to); |
| int (*binder_transfer_binder)(struct task_struct *from, |
| struct task_struct *to); |
| int (*binder_transfer_file)(struct task_struct *from, |
| struct task_struct *to, |
| struct file *file); |
| |
| int (*ptrace_access_check)(struct task_struct *child, |
| unsigned int mode); |
| int (*ptrace_traceme)(struct task_struct *parent); |
| int (*capget)(struct task_struct *target, kernel_cap_t *effective, |
| kernel_cap_t *inheritable, kernel_cap_t *permitted); |
| int (*capset)(struct cred *new, const struct cred *old, |
| const kernel_cap_t *effective, |
| const kernel_cap_t *inheritable, |
| const kernel_cap_t *permitted); |
| int (*capable)(const struct cred *cred, struct user_namespace *ns, |
| int cap, int audit); |
| int (*quotactl)(int cmds, int type, int id, struct super_block *sb); |
| int (*quota_on)(struct dentry *dentry); |
| int (*syslog)(int type); |
| int (*settime)(const struct timespec64 *ts, const struct timezone *tz); |
| int (*vm_enough_memory)(struct mm_struct *mm, long pages); |
| |
| int (*bprm_set_creds)(struct linux_binprm *bprm); |
| int (*bprm_check_security)(struct linux_binprm *bprm); |
| int (*bprm_secureexec)(struct linux_binprm *bprm); |
| void (*bprm_committing_creds)(struct linux_binprm *bprm); |
| void (*bprm_committed_creds)(struct linux_binprm *bprm); |
| |
| int (*sb_alloc_security)(struct super_block *sb); |
| void (*sb_free_security)(struct super_block *sb); |
| int (*sb_copy_data)(char *orig, char *copy); |
| int (*sb_remount)(struct super_block *sb, void *data); |
| int (*sb_kern_mount)(struct super_block *sb, int flags, void *data); |
| int (*sb_show_options)(struct seq_file *m, struct super_block *sb); |
| int (*sb_statfs)(struct dentry *dentry); |
| int (*sb_mount)(const char *dev_name, const struct path *path, |
| const char *type, unsigned long flags, void *data); |
| int (*sb_umount)(struct vfsmount *mnt, int flags); |
| int (*sb_pivotroot)(const struct path *old_path, const struct path *new_path); |
| int (*sb_set_mnt_opts)(struct super_block *sb, |
| struct security_mnt_opts *opts, |
| unsigned long kern_flags, |
| unsigned long *set_kern_flags); |
| int (*sb_clone_mnt_opts)(const struct super_block *oldsb, |
| struct super_block *newsb); |
| int (*sb_parse_opts_str)(char *options, struct security_mnt_opts *opts); |
| int (*dentry_init_security)(struct dentry *dentry, int mode, |
| const struct qstr *name, void **ctx, |
| u32 *ctxlen); |
| int (*dentry_create_files_as)(struct dentry *dentry, int mode, |
| struct qstr *name, |
| const struct cred *old, |
| struct cred *new); |
| |
| |
| #ifdef CONFIG_SECURITY_PATH |
| int (*path_unlink)(const struct path *dir, struct dentry *dentry); |
| int (*path_mkdir)(const struct path *dir, struct dentry *dentry, |
| umode_t mode); |
| int (*path_rmdir)(const struct path *dir, struct dentry *dentry); |
| int (*path_mknod)(const struct path *dir, struct dentry *dentry, |
| umode_t mode, unsigned int dev); |
| int (*path_truncate)(const struct path *path); |
| int (*path_symlink)(const struct path *dir, struct dentry *dentry, |
| const char *old_name); |
| int (*path_link)(struct dentry *old_dentry, const struct path *new_dir, |
| struct dentry *new_dentry); |
| int (*path_rename)(const struct path *old_dir, struct dentry *old_dentry, |
| const struct path *new_dir, |
| struct dentry *new_dentry); |
| int (*path_chmod)(const struct path *path, umode_t mode); |
| int (*path_chown)(const struct path *path, kuid_t uid, kgid_t gid); |
| int (*path_chroot)(const struct path *path); |
| #endif |
| |
| int (*inode_alloc_security)(struct inode *inode); |
| void (*inode_free_security)(struct inode *inode); |
| int (*inode_init_security)(struct inode *inode, struct inode *dir, |
| const struct qstr *qstr, |
| const char **name, void **value, |
| size_t *len); |
| int (*inode_create)(struct inode *dir, struct dentry *dentry, |
| umode_t mode); |
| int (*inode_post_create)(struct inode *dir, struct dentry *dentry, |
| umode_t mode); |
| int (*inode_link)(struct dentry *old_dentry, struct inode *dir, |
| struct dentry *new_dentry); |
| int (*inode_unlink)(struct inode *dir, struct dentry *dentry); |
| int (*inode_symlink)(struct inode *dir, struct dentry *dentry, |
| const char *old_name); |
| int (*inode_mkdir)(struct inode *dir, struct dentry *dentry, |
| umode_t mode); |
| int (*inode_rmdir)(struct inode *dir, struct dentry *dentry); |
| int (*inode_mknod)(struct inode *dir, struct dentry *dentry, |
| umode_t mode, dev_t dev); |
| int (*inode_rename)(struct inode *old_dir, struct dentry *old_dentry, |
| struct inode *new_dir, |
| struct dentry *new_dentry); |
| int (*inode_readlink)(struct dentry *dentry); |
| int (*inode_follow_link)(struct dentry *dentry, struct inode *inode, |
| bool rcu); |
| int (*inode_permission)(struct inode *inode, int mask); |
| int (*inode_setattr)(struct dentry *dentry, struct iattr *attr); |
| int (*inode_getattr)(const struct path *path); |
| int (*inode_setxattr)(struct dentry *dentry, const char *name, |
| const void *value, size_t size, int flags); |
| void (*inode_post_setxattr)(struct dentry *dentry, const char *name, |
| const void *value, size_t size, |
| int flags); |
| int (*inode_getxattr)(struct dentry *dentry, const char *name); |
| int (*inode_listxattr)(struct dentry *dentry); |
| int (*inode_removexattr)(struct dentry *dentry, const char *name); |
| int (*inode_need_killpriv)(struct dentry *dentry); |
| int (*inode_killpriv)(struct dentry *dentry); |
| int (*inode_getsecurity)(struct inode *inode, const char *name, |
| void **buffer, bool alloc); |
| int (*inode_setsecurity)(struct inode *inode, const char *name, |
| const void *value, size_t size, |
| int flags); |
| int (*inode_listsecurity)(struct inode *inode, char *buffer, |
| size_t buffer_size); |
| void (*inode_getsecid)(struct inode *inode, u32 *secid); |
| int (*inode_copy_up)(struct dentry *src, struct cred **new); |
| int (*inode_copy_up_xattr)(const char *name); |
| |
| int (*file_permission)(struct file *file, int mask); |
| int (*file_alloc_security)(struct file *file); |
| void (*file_free_security)(struct file *file); |
| int (*file_ioctl)(struct file *file, unsigned int cmd, |
| unsigned long arg); |
| int (*mmap_addr)(unsigned long addr); |
| int (*mmap_file)(struct file *file, unsigned long reqprot, |
| unsigned long prot, unsigned long flags); |
| int (*file_mprotect)(struct vm_area_struct *vma, unsigned long reqprot, |
| unsigned long prot); |
| int (*file_lock)(struct file *file, unsigned int cmd); |
| int (*file_fcntl)(struct file *file, unsigned int cmd, |
| unsigned long arg); |
| void (*file_set_fowner)(struct file *file); |
| int (*file_send_sigiotask)(struct task_struct *tsk, |
| struct fown_struct *fown, int sig); |
| int (*file_receive)(struct file *file); |
| int (*file_open)(struct file *file, const struct cred *cred); |
| |
| int (*task_create)(unsigned long clone_flags); |
| void (*task_free)(struct task_struct *task); |
| int (*cred_alloc_blank)(struct cred *cred, gfp_t gfp); |
| void (*cred_free)(struct cred *cred); |
| int (*cred_prepare)(struct cred *new, const struct cred *old, |
| gfp_t gfp); |
| void (*cred_transfer)(struct cred *new, const struct cred *old); |
| int (*kernel_act_as)(struct cred *new, u32 secid); |
| int (*kernel_create_files_as)(struct cred *new, struct inode *inode); |
| int (*kernel_module_request)(char *kmod_name); |
| int (*kernel_read_file)(struct file *file, enum kernel_read_file_id id); |
| int (*kernel_post_read_file)(struct file *file, char *buf, loff_t size, |
| enum kernel_read_file_id id); |
| int (*task_fix_setuid)(struct cred *new, const struct cred *old, |
| int flags); |
| int (*task_setpgid)(struct task_struct *p, pid_t pgid); |
| int (*task_getpgid)(struct task_struct *p); |
| int (*task_getsid)(struct task_struct *p); |
| void (*task_getsecid)(struct task_struct *p, u32 *secid); |
| int (*task_setnice)(struct task_struct *p, int nice); |
| int (*task_setioprio)(struct task_struct *p, int ioprio); |
| int (*task_getioprio)(struct task_struct *p); |
| int (*task_setrlimit)(struct task_struct *p, unsigned int resource, |
| struct rlimit *new_rlim); |
| int (*task_setscheduler)(struct task_struct *p); |
| int (*task_getscheduler)(struct task_struct *p); |
| int (*task_movememory)(struct task_struct *p); |
| int (*task_kill)(struct task_struct *p, struct siginfo *info, |
| int sig, u32 secid); |
| int (*task_wait)(struct task_struct *p); |
| int (*task_prctl)(int option, unsigned long arg2, unsigned long arg3, |
| unsigned long arg4, unsigned long arg5); |
| void (*task_to_inode)(struct task_struct *p, struct inode *inode); |
| |
| int (*ipc_permission)(struct kern_ipc_perm *ipcp, short flag); |
| void (*ipc_getsecid)(struct kern_ipc_perm *ipcp, u32 *secid); |
| |
| int (*msg_msg_alloc_security)(struct msg_msg *msg); |
| void (*msg_msg_free_security)(struct msg_msg *msg); |
| |
| int (*msg_queue_alloc_security)(struct msg_queue *msq); |
| void (*msg_queue_free_security)(struct msg_queue *msq); |
| int (*msg_queue_associate)(struct msg_queue *msq, int msqflg); |
| int (*msg_queue_msgctl)(struct msg_queue *msq, int cmd); |
| int (*msg_queue_msgsnd)(struct msg_queue *msq, struct msg_msg *msg, |
| int msqflg); |
| int (*msg_queue_msgrcv)(struct msg_queue *msq, struct msg_msg *msg, |
| struct task_struct *target, long type, |
| int mode); |
| |
| int (*shm_alloc_security)(struct shmid_kernel *shp); |
| void (*shm_free_security)(struct shmid_kernel *shp); |
| int (*shm_associate)(struct shmid_kernel *shp, int shmflg); |
| int (*shm_shmctl)(struct shmid_kernel *shp, int cmd); |
| int (*shm_shmat)(struct shmid_kernel *shp, char __user *shmaddr, |
| int shmflg); |
| |
| int (*sem_alloc_security)(struct sem_array *sma); |
| void (*sem_free_security)(struct sem_array *sma); |
| int (*sem_associate)(struct sem_array *sma, int semflg); |
| int (*sem_semctl)(struct sem_array *sma, int cmd); |
| int (*sem_semop)(struct sem_array *sma, struct sembuf *sops, |
| unsigned nsops, int alter); |
| |
| int (*netlink_send)(struct sock *sk, struct sk_buff *skb); |
| |
| void (*d_instantiate)(struct dentry *dentry, struct inode *inode); |
| |
| int (*getprocattr)(struct task_struct *p, char *name, char **value); |
| int (*setprocattr)(struct task_struct *p, char *name, void *value, |
| size_t size); |
| int (*ismaclabel)(const char *name); |
| int (*secid_to_secctx)(u32 secid, char **secdata, u32 *seclen); |
| int (*secctx_to_secid)(const char *secdata, u32 seclen, u32 *secid); |
| void (*release_secctx)(char *secdata, u32 seclen); |
| |
| void (*inode_invalidate_secctx)(struct inode *inode); |
| int (*inode_notifysecctx)(struct inode *inode, void *ctx, u32 ctxlen); |
| int (*inode_setsecctx)(struct dentry *dentry, void *ctx, u32 ctxlen); |
| int (*inode_getsecctx)(struct inode *inode, void **ctx, u32 *ctxlen); |
| |
| #ifdef CONFIG_SECURITY_NETWORK |
| int (*unix_stream_connect)(struct sock *sock, struct sock *other, |
| struct sock *newsk); |
| int (*unix_may_send)(struct socket *sock, struct socket *other); |
| |
| int (*socket_create)(int family, int type, int protocol, int kern); |
| int (*socket_post_create)(struct socket *sock, int family, int type, |
| int protocol, int kern); |
| int (*socket_bind)(struct socket *sock, struct sockaddr *address, |
| int addrlen); |
| int (*socket_connect)(struct socket *sock, struct sockaddr *address, |
| int addrlen); |
| int (*socket_listen)(struct socket *sock, int backlog); |
| int (*socket_accept)(struct socket *sock, struct socket *newsock); |
| int (*socket_sendmsg)(struct socket *sock, struct msghdr *msg, |
| int size); |
| int (*socket_recvmsg)(struct socket *sock, struct msghdr *msg, |
| int size, int flags); |
| int (*socket_getsockname)(struct socket *sock); |
| int (*socket_getpeername)(struct socket *sock); |
| int (*socket_getsockopt)(struct socket *sock, int level, int optname); |
| int (*socket_setsockopt)(struct socket *sock, int level, int optname); |
| int (*socket_shutdown)(struct socket *sock, int how); |
| int (*socket_sock_rcv_skb)(struct sock *sk, struct sk_buff *skb); |
| int (*socket_getpeersec_stream)(struct socket *sock, |
| char __user *optval, |
| int __user *optlen, unsigned len); |
| int (*socket_getpeersec_dgram)(struct socket *sock, |
| struct sk_buff *skb, u32 *secid); |
| int (*sk_alloc_security)(struct sock *sk, int family, gfp_t priority); |
| void (*sk_free_security)(struct sock *sk); |
| void (*sk_clone_security)(const struct sock *sk, struct sock *newsk); |
| void (*sk_getsecid)(struct sock *sk, u32 *secid); |
| void (*sock_graft)(struct sock *sk, struct socket *parent); |
| int (*inet_conn_request)(struct sock *sk, struct sk_buff *skb, |
| struct request_sock *req); |
| void (*inet_csk_clone)(struct sock *newsk, |
| const struct request_sock *req); |
| void (*inet_conn_established)(struct sock *sk, struct sk_buff *skb); |
| int (*secmark_relabel_packet)(u32 secid); |
| void (*secmark_refcount_inc)(void); |
| void (*secmark_refcount_dec)(void); |
| void (*req_classify_flow)(const struct request_sock *req, |
| struct flowi *fl); |
| int (*tun_dev_alloc_security)(void **security); |
| void (*tun_dev_free_security)(void *security); |
| int (*tun_dev_create)(void); |
| int (*tun_dev_attach_queue)(void *security); |
| int (*tun_dev_attach)(struct sock *sk, void *security); |
| int (*tun_dev_open)(void *security); |
| #endif /* CONFIG_SECURITY_NETWORK */ |
| |
| #ifdef CONFIG_SECURITY_NETWORK_XFRM |
| int (*xfrm_policy_alloc_security)(struct xfrm_sec_ctx **ctxp, |
| struct xfrm_user_sec_ctx *sec_ctx, |
| gfp_t gfp); |
| int (*xfrm_policy_clone_security)(struct xfrm_sec_ctx *old_ctx, |
| struct xfrm_sec_ctx **new_ctx); |
| void (*xfrm_policy_free_security)(struct xfrm_sec_ctx *ctx); |
| int (*xfrm_policy_delete_security)(struct xfrm_sec_ctx *ctx); |
| int (*xfrm_state_alloc)(struct xfrm_state *x, |
| struct xfrm_user_sec_ctx *sec_ctx); |
| int (*xfrm_state_alloc_acquire)(struct xfrm_state *x, |
| struct xfrm_sec_ctx *polsec, |
| u32 secid); |
| void (*xfrm_state_free_security)(struct xfrm_state *x); |
| int (*xfrm_state_delete_security)(struct xfrm_state *x); |
| int (*xfrm_policy_lookup)(struct xfrm_sec_ctx *ctx, u32 fl_secid, |
| u8 dir); |
| int (*xfrm_state_pol_flow_match)(struct xfrm_state *x, |
| struct xfrm_policy *xp, |
| const struct flowi *fl); |
| int (*xfrm_decode_session)(struct sk_buff *skb, u32 *secid, int ckall); |
| #endif /* CONFIG_SECURITY_NETWORK_XFRM */ |
| |
| /* key management security hooks */ |
| #ifdef CONFIG_KEYS |
| int (*key_alloc)(struct key *key, const struct cred *cred, |
| unsigned long flags); |
| void (*key_free)(struct key *key); |
| int (*key_permission)(key_ref_t key_ref, const struct cred *cred, |
| unsigned perm); |
| int (*key_getsecurity)(struct key *key, char **_buffer); |
| #endif /* CONFIG_KEYS */ |
| |
| #ifdef CONFIG_AUDIT |
| int (*audit_rule_init)(u32 field, u32 op, char *rulestr, |
| void **lsmrule); |
| int (*audit_rule_known)(struct audit_krule *krule); |
| int (*audit_rule_match)(u32 secid, u32 field, u32 op, void *lsmrule, |
| struct audit_context *actx); |
| void (*audit_rule_free)(void *lsmrule); |
| #endif /* CONFIG_AUDIT */ |
| }; |
| |
| struct security_hook_heads { |
| struct list_head binder_set_context_mgr; |
| struct list_head binder_transaction; |
| struct list_head binder_transfer_binder; |
| struct list_head binder_transfer_file; |
| struct list_head ptrace_access_check; |
| struct list_head ptrace_traceme; |
| struct list_head capget; |
| struct list_head capset; |
| struct list_head capable; |
| struct list_head quotactl; |
| struct list_head quota_on; |
| struct list_head syslog; |
| struct list_head settime; |
| struct list_head vm_enough_memory; |
| struct list_head bprm_set_creds; |
| struct list_head bprm_check_security; |
| struct list_head bprm_secureexec; |
| struct list_head bprm_committing_creds; |
| struct list_head bprm_committed_creds; |
| struct list_head sb_alloc_security; |
| struct list_head sb_free_security; |
| struct list_head sb_copy_data; |
| struct list_head sb_remount; |
| struct list_head sb_kern_mount; |
| struct list_head sb_show_options; |
| struct list_head sb_statfs; |
| struct list_head sb_mount; |
| struct list_head sb_umount; |
| struct list_head sb_pivotroot; |
| struct list_head sb_set_mnt_opts; |
| struct list_head sb_clone_mnt_opts; |
| struct list_head sb_parse_opts_str; |
| struct list_head dentry_init_security; |
| struct list_head dentry_create_files_as; |
| #ifdef CONFIG_SECURITY_PATH |
| struct list_head path_unlink; |
| struct list_head path_mkdir; |
| struct list_head path_rmdir; |
| struct list_head path_mknod; |
| struct list_head path_truncate; |
| struct list_head path_symlink; |
| struct list_head path_link; |
| struct list_head path_rename; |
| struct list_head path_chmod; |
| struct list_head path_chown; |
| struct list_head path_chroot; |
| #endif |
| struct list_head inode_alloc_security; |
| struct list_head inode_free_security; |
| struct list_head inode_init_security; |
| struct list_head inode_create; |
| struct list_head inode_post_create; |
| struct list_head inode_link; |
| struct list_head inode_unlink; |
| struct list_head inode_symlink; |
| struct list_head inode_mkdir; |
| struct list_head inode_rmdir; |
| struct list_head inode_mknod; |
| struct list_head inode_rename; |
| struct list_head inode_readlink; |
| struct list_head inode_follow_link; |
| struct list_head inode_permission; |
| struct list_head inode_setattr; |
| struct list_head inode_getattr; |
| struct list_head inode_setxattr; |
| struct list_head inode_post_setxattr; |
| struct list_head inode_getxattr; |
| struct list_head inode_listxattr; |
| struct list_head inode_removexattr; |
| struct list_head inode_need_killpriv; |
| struct list_head inode_killpriv; |
| struct list_head inode_getsecurity; |
| struct list_head inode_setsecurity; |
| struct list_head inode_listsecurity; |
| struct list_head inode_getsecid; |
| struct list_head inode_copy_up; |
| struct list_head inode_copy_up_xattr; |
| struct list_head file_permission; |
| struct list_head file_alloc_security; |
| struct list_head file_free_security; |
| struct list_head file_ioctl; |
| struct list_head mmap_addr; |
| struct list_head mmap_file; |
| struct list_head file_mprotect; |
| struct list_head file_lock; |
| struct list_head file_fcntl; |
| struct list_head file_set_fowner; |
| struct list_head file_send_sigiotask; |
| struct list_head file_receive; |
| struct list_head file_open; |
| struct list_head task_create; |
| struct list_head task_free; |
| struct list_head cred_alloc_blank; |
| struct list_head cred_free; |
| struct list_head cred_prepare; |
| struct list_head cred_transfer; |
| struct list_head kernel_act_as; |
| struct list_head kernel_create_files_as; |
| struct list_head kernel_read_file; |
| struct list_head kernel_post_read_file; |
| struct list_head kernel_module_request; |
| struct list_head task_fix_setuid; |
| struct list_head task_setpgid; |
| struct list_head task_getpgid; |
| struct list_head task_getsid; |
| struct list_head task_getsecid; |
| struct list_head task_setnice; |
| struct list_head task_setioprio; |
| struct list_head task_getioprio; |
| struct list_head task_setrlimit; |
| struct list_head task_setscheduler; |
| struct list_head task_getscheduler; |
| struct list_head task_movememory; |
| struct list_head task_kill; |
| struct list_head task_wait; |
| struct list_head task_prctl; |
| struct list_head task_to_inode; |
| struct list_head ipc_permission; |
| struct list_head ipc_getsecid; |
| struct list_head msg_msg_alloc_security; |
| struct list_head msg_msg_free_security; |
| struct list_head msg_queue_alloc_security; |
| struct list_head msg_queue_free_security; |
| struct list_head msg_queue_associate; |
| struct list_head msg_queue_msgctl; |
| struct list_head msg_queue_msgsnd; |
| struct list_head msg_queue_msgrcv; |
| struct list_head shm_alloc_security; |
| struct list_head shm_free_security; |
| struct list_head shm_associate; |
| struct list_head shm_shmctl; |
| struct list_head shm_shmat; |
| struct list_head sem_alloc_security; |
| struct list_head sem_free_security; |
| struct list_head sem_associate; |
| struct list_head sem_semctl; |
| struct list_head sem_semop; |
| struct list_head netlink_send; |
| struct list_head d_instantiate; |
| struct list_head getprocattr; |
| struct list_head setprocattr; |
| struct list_head ismaclabel; |
| struct list_head secid_to_secctx; |
| struct list_head secctx_to_secid; |
| struct list_head release_secctx; |
| struct list_head inode_invalidate_secctx; |
| struct list_head inode_notifysecctx; |
| struct list_head inode_setsecctx; |
| struct list_head inode_getsecctx; |
| #ifdef CONFIG_SECURITY_NETWORK |
| struct list_head unix_stream_connect; |
| struct list_head unix_may_send; |
| struct list_head socket_create; |
| struct list_head socket_post_create; |
| struct list_head socket_bind; |
| struct list_head socket_connect; |
| struct list_head socket_listen; |
| struct list_head socket_accept; |
| struct list_head socket_sendmsg; |
| struct list_head socket_recvmsg; |
| struct list_head socket_getsockname; |
| struct list_head socket_getpeername; |
| struct list_head socket_getsockopt; |
| struct list_head socket_setsockopt; |
| struct list_head socket_shutdown; |
| struct list_head socket_sock_rcv_skb; |
| struct list_head socket_getpeersec_stream; |
| struct list_head socket_getpeersec_dgram; |
| struct list_head sk_alloc_security; |
| struct list_head sk_free_security; |
| struct list_head sk_clone_security; |
| struct list_head sk_getsecid; |
| struct list_head sock_graft; |
| struct list_head inet_conn_request; |
| struct list_head inet_csk_clone; |
| struct list_head inet_conn_established; |
| struct list_head secmark_relabel_packet; |
| struct list_head secmark_refcount_inc; |
| struct list_head secmark_refcount_dec; |
| struct list_head req_classify_flow; |
| struct list_head tun_dev_alloc_security; |
| struct list_head tun_dev_free_security; |
| struct list_head tun_dev_create; |
| struct list_head tun_dev_attach_queue; |
| struct list_head tun_dev_attach; |
| struct list_head tun_dev_open; |
| #endif /* CONFIG_SECURITY_NETWORK */ |
| #ifdef CONFIG_SECURITY_NETWORK_XFRM |
| struct list_head xfrm_policy_alloc_security; |
| struct list_head xfrm_policy_clone_security; |
| struct list_head xfrm_policy_free_security; |
| struct list_head xfrm_policy_delete_security; |
| struct list_head xfrm_state_alloc; |
| struct list_head xfrm_state_alloc_acquire; |
| struct list_head xfrm_state_free_security; |
| struct list_head xfrm_state_delete_security; |
| struct list_head xfrm_policy_lookup; |
| struct list_head xfrm_state_pol_flow_match; |
| struct list_head xfrm_decode_session; |
| #endif /* CONFIG_SECURITY_NETWORK_XFRM */ |
| #ifdef CONFIG_KEYS |
| struct list_head key_alloc; |
| struct list_head key_free; |
| struct list_head key_permission; |
| struct list_head key_getsecurity; |
| #endif /* CONFIG_KEYS */ |
| #ifdef CONFIG_AUDIT |
| struct list_head audit_rule_init; |
| struct list_head audit_rule_known; |
| struct list_head audit_rule_match; |
| struct list_head audit_rule_free; |
| #endif /* CONFIG_AUDIT */ |
| }; |
| |
| /* |
| * Security module hook list structure. |
| * For use with generic list macros for common operations. |
| */ |
| struct security_hook_list { |
| struct list_head list; |
| struct list_head *head; |
| union security_list_options hook; |
| }; |
| |
| /* |
| * Initializing a security_hook_list structure takes |
| * up a lot of space in a source file. This macro takes |
| * care of the common case and reduces the amount of |
| * text involved. |
| */ |
| #define LSM_HOOK_INIT(HEAD, HOOK) \ |
| { .head = &security_hook_heads.HEAD, .hook = { .HEAD = HOOK } } |
| |
| extern struct security_hook_heads security_hook_heads; |
| |
| static inline void security_add_hooks(struct security_hook_list *hooks, |
| int count) |
| { |
| int i; |
| |
| for (i = 0; i < count; i++) |
| list_add_tail_rcu(&hooks[i].list, hooks[i].head); |
| } |
| |
| #ifdef CONFIG_SECURITY_SELINUX_DISABLE |
| /* |
| * Assuring the safety of deleting a security module is up to |
| * the security module involved. This may entail ordering the |
| * module's hook list in a particular way, refusing to disable |
| * the module once a policy is loaded or any number of other |
| * actions better imagined than described. |
| * |
| * The name of the configuration option reflects the only module |
| * that currently uses the mechanism. Any developer who thinks |
| * disabling their module is a good idea needs to be at least as |
| * careful as the SELinux team. |
| */ |
| static inline void security_delete_hooks(struct security_hook_list *hooks, |
| int count) |
| { |
| int i; |
| |
| for (i = 0; i < count; i++) |
| list_del_rcu(&hooks[i].list); |
| } |
| #endif /* CONFIG_SECURITY_SELINUX_DISABLE */ |
| |
| /* Currently required to handle SELinux runtime hook disable. */ |
| #ifdef CONFIG_SECURITY_WRITABLE_HOOKS |
| #define __lsm_ro_after_init |
| #else |
| #define __lsm_ro_after_init __ro_after_init |
| #endif /* CONFIG_SECURITY_WRITABLE_HOOKS */ |
| |
| extern int __init security_module_enable(const char *module); |
| extern void __init capability_add_hooks(void); |
| #ifdef CONFIG_SECURITY_YAMA |
| extern void __init yama_add_hooks(void); |
| #else |
| static inline void __init yama_add_hooks(void) { } |
| #endif |
| #ifdef CONFIG_SECURITY_LOADPIN |
| void __init loadpin_add_hooks(void); |
| #else |
| static inline void loadpin_add_hooks(void) { }; |
| #endif |
| |
| #endif /* ! __LINUX_LSM_HOOKS_H */ |