blob: e4af5c33ec6fd040c980e7795bd65b80f3a993de [file] [log] [blame]
/*
* Block driver for media (i.e., flash cards)
*
* Copyright 2002 Hewlett-Packard Company
* Copyright 2005-2008 Pierre Ossman
*
* Use consistent with the GNU GPL is permitted,
* provided that this copyright notice is
* preserved in its entirety in all copies and derived works.
*
* HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
* AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
* FITNESS FOR ANY PARTICULAR PURPOSE.
*
* Many thanks to Alessandro Rubini and Jonathan Corbet!
*
* Author: Andrew Christian
* 28 May 2002
*/
#include <linux/moduleparam.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/hdreg.h>
#include <linux/kdev_t.h>
#include <linux/blkdev.h>
#include <linux/mutex.h>
#include <linux/scatterlist.h>
#include <linux/bitops.h>
#include <linux/string_helpers.h>
#include <linux/delay.h>
#include <linux/capability.h>
#include <linux/compat.h>
#include <linux/pm_runtime.h>
#include <linux/ioprio.h>
#include <linux/idr.h>
#include <linux/mmc/ioctl.h>
#include <linux/mmc/card.h>
#include <linux/mmc/core.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sd.h>
#include <asm/uaccess.h>
#include "queue.h"
#include "block.h"
MODULE_ALIAS("mmc:block");
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "mmcblk."
#define INAND_CMD38_ARG_EXT_CSD 113
#define INAND_CMD38_ARG_ERASE 0x00
#define INAND_CMD38_ARG_TRIM 0x01
#define INAND_CMD38_ARG_SECERASE 0x80
#define INAND_CMD38_ARG_SECTRIM1 0x81
#define INAND_CMD38_ARG_SECTRIM2 0x88
#define MMC_BLK_TIMEOUT_MS (30 * 1000) /* 30 sec timeout */
#define MMC_SANITIZE_REQ_TIMEOUT 240000
#define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
#define MMC_CMDQ_STOP_TIMEOUT_MS 100
#define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
(rq_data_dir(req) == WRITE))
#define PACKED_CMD_VER 0x01
#define PACKED_CMD_WR 0x02
#define PACKED_TRIGGER_MAX_ELEMENTS 5000
#define MMC_BLK_MAX_RETRIES 5 /* max # of retries before aborting a command */
#define MMC_BLK_UPDATE_STOP_REASON(stats, reason) \
do { \
if (stats->enabled) \
stats->pack_stop_reason[reason]++; \
} while (0)
#define MAX_RETRIES 5
#define PCKD_TRGR_INIT_MEAN_POTEN 17
#define PCKD_TRGR_POTEN_LOWER_BOUND 5
#define PCKD_TRGR_URGENT_PENALTY 2
#define PCKD_TRGR_LOWER_BOUND 5
#define PCKD_TRGR_PRECISION_MULTIPLIER 100
static struct mmc_cmdq_req *mmc_cmdq_prep_dcmd(
struct mmc_queue_req *mqrq, struct mmc_queue *mq);
static DEFINE_MUTEX(block_mutex);
/*
* The defaults come from config options but can be overriden by module
* or bootarg options.
*/
static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
/*
* We've only got one major, so number of mmcblk devices is
* limited to (1 << 20) / number of minors per device. It is also
* limited by the MAX_DEVICES below.
*/
static int max_devices;
#define MAX_DEVICES 256
static DEFINE_IDA(mmc_blk_ida);
static DEFINE_SPINLOCK(mmc_blk_lock);
/*
* There is one mmc_blk_data per slot.
*/
struct mmc_blk_data {
spinlock_t lock;
struct device *parent;
struct gendisk *disk;
struct mmc_queue queue;
struct list_head part;
unsigned int flags;
#define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
#define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
#define MMC_BLK_PACKED_CMD (1 << 2) /* MMC packed command support */
#define MMC_BLK_CMD_QUEUE (1 << 3) /* MMC command queue support */
unsigned int usage;
unsigned int read_only;
unsigned int part_type;
unsigned int reset_done;
#define MMC_BLK_READ BIT(0)
#define MMC_BLK_WRITE BIT(1)
#define MMC_BLK_DISCARD BIT(2)
#define MMC_BLK_SECDISCARD BIT(3)
#define MMC_BLK_FLUSH BIT(4)
#define MMC_BLK_PARTSWITCH BIT(5)
/*
* Only set in main mmc_blk_data associated
* with mmc_card with dev_set_drvdata, and keeps
* track of the current selected device partition.
*/
unsigned int part_curr;
struct device_attribute force_ro;
struct device_attribute power_ro_lock;
struct device_attribute num_wr_reqs_to_start_packing;
struct device_attribute no_pack_for_random;
int area_type;
};
static DEFINE_MUTEX(open_lock);
enum {
MMC_PACKED_NR_IDX = -1,
MMC_PACKED_NR_ZERO,
MMC_PACKED_NR_SINGLE,
};
module_param(perdev_minors, int, 0444);
MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
static inline int mmc_blk_part_switch(struct mmc_card *card,
struct mmc_blk_data *md);
static int get_card_status(struct mmc_card *card, u32 *status, int retries);
static int mmc_blk_cmdq_switch(struct mmc_card *card,
struct mmc_blk_data *md, bool enable);
static inline void mmc_blk_clear_packed(struct mmc_queue_req *mqrq)
{
struct mmc_packed *packed = mqrq->packed;
mqrq->cmd_type = MMC_PACKED_NONE;
packed->nr_entries = MMC_PACKED_NR_ZERO;
packed->idx_failure = MMC_PACKED_NR_IDX;
packed->retries = 0;
packed->blocks = 0;
}
static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
{
struct mmc_blk_data *md;
mutex_lock(&open_lock);
md = disk->private_data;
if (md && md->usage == 0)
md = NULL;
if (md)
md->usage++;
mutex_unlock(&open_lock);
return md;
}
static inline int mmc_get_devidx(struct gendisk *disk)
{
int devidx = disk->first_minor / perdev_minors;
return devidx;
}
static void mmc_blk_put(struct mmc_blk_data *md)
{
mutex_lock(&open_lock);
md->usage--;
if (md->usage == 0) {
int devidx = mmc_get_devidx(md->disk);
blk_cleanup_queue(md->queue.queue);
spin_lock(&mmc_blk_lock);
ida_remove(&mmc_blk_ida, devidx);
spin_unlock(&mmc_blk_lock);
put_disk(md->disk);
kfree(md);
}
mutex_unlock(&open_lock);
}
static ssize_t power_ro_lock_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret;
struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
struct mmc_card *card;
int locked = 0;
if (!md)
return -EINVAL;
card = md->queue.card;
if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
locked = 2;
else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
locked = 1;
ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
mmc_blk_put(md);
return ret;
}
static ssize_t power_ro_lock_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int ret;
struct mmc_blk_data *md, *part_md;
struct mmc_card *card;
unsigned long set;
if (kstrtoul(buf, 0, &set))
return -EINVAL;
if (set != 1)
return count;
md = mmc_blk_get(dev_to_disk(dev));
if (!md)
return -EINVAL;
card = md->queue.card;
mmc_get_card(card);
ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
card->ext_csd.boot_ro_lock |
EXT_CSD_BOOT_WP_B_PWR_WP_EN,
card->ext_csd.part_time);
if (ret)
pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret);
else
card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN;
mmc_put_card(card);
if (!ret) {
pr_info("%s: Locking boot partition ro until next power on\n",
md->disk->disk_name);
set_disk_ro(md->disk, 1);
list_for_each_entry(part_md, &md->part, part)
if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
set_disk_ro(part_md->disk, 1);
}
}
mmc_blk_put(md);
return count;
}
static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int ret;
struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
if (!md)
return -EINVAL;
ret = snprintf(buf, PAGE_SIZE, "%d\n",
get_disk_ro(dev_to_disk(dev)) ^
md->read_only);
mmc_blk_put(md);
return ret;
}
static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
char *end;
struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
unsigned long set = simple_strtoul(buf, &end, 0);
if (!md)
return -EINVAL;
if (end == buf) {
ret = -EINVAL;
goto out;
}
set_disk_ro(dev_to_disk(dev), set || md->read_only);
ret = count;
out:
mmc_blk_put(md);
return ret;
}
static ssize_t
no_pack_for_random_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
int ret;
if (!md)
return -EINVAL;
ret = snprintf(buf, PAGE_SIZE, "%d\n", md->queue.no_pack_for_random);
mmc_blk_put(md);
return ret;
}
static ssize_t
no_pack_for_random_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int value;
struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
struct mmc_card *card;
int ret = count;
if (!md)
return -EINVAL;
card = md->queue.card;
if (!card) {
ret = -EINVAL;
goto exit;
}
sscanf(buf, "%d", &value);
if (value < 0) {
pr_err("%s: value %d is not valid. old value remains = %d",
mmc_hostname(card->host), value,
md->queue.no_pack_for_random);
ret = -EINVAL;
goto exit;
}
md->queue.no_pack_for_random = (value > 0) ? true : false;
pr_debug("%s: no_pack_for_random: new value = %d",
mmc_hostname(card->host),
md->queue.no_pack_for_random);
exit:
mmc_blk_put(md);
return ret;
}
static ssize_t
num_wr_reqs_to_start_packing_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
int num_wr_reqs_to_start_packing;
int ret;
if (!md)
return -EINVAL;
num_wr_reqs_to_start_packing = md->queue.num_wr_reqs_to_start_packing;
ret = snprintf(buf, PAGE_SIZE, "%d\n", num_wr_reqs_to_start_packing);
mmc_blk_put(md);
return ret;
}
static ssize_t
num_wr_reqs_to_start_packing_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int value;
struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
struct mmc_card *card;
int ret = count;
if (!md)
return -EINVAL;
card = md->queue.card;
if (!card) {
ret = -EINVAL;
goto exit;
}
sscanf(buf, "%d", &value);
if (value >= 0) {
md->queue.num_wr_reqs_to_start_packing =
min_t(int, value, (int)card->ext_csd.max_packed_writes);
pr_debug("%s: trigger to pack: new value = %d",
mmc_hostname(card->host),
md->queue.num_wr_reqs_to_start_packing);
} else {
pr_err("%s: value %d is not valid. old value remains = %d",
mmc_hostname(card->host), value,
md->queue.num_wr_reqs_to_start_packing);
ret = -EINVAL;
}
exit:
mmc_blk_put(md);
return ret;
}
#ifdef CONFIG_MMC_SIMULATE_MAX_SPEED
static int max_read_speed, max_write_speed, cache_size = 4;
module_param(max_read_speed, int, S_IRUSR | S_IRGRP);
MODULE_PARM_DESC(max_read_speed, "maximum KB/s read speed 0=off");
module_param(max_write_speed, int, S_IRUSR | S_IRGRP);
MODULE_PARM_DESC(max_write_speed, "maximum KB/s write speed 0=off");
module_param(cache_size, int, S_IRUSR | S_IRGRP);
MODULE_PARM_DESC(cache_size, "MB high speed memory or SLC cache");
/*
* helper macros and expectations:
* size - unsigned long number of bytes
* jiffies - unsigned long HZ timestamp difference
* speed - unsigned KB/s transfer rate
*/
#define size_and_speed_to_jiffies(size, speed) \
((size) * HZ / (speed) / 1024UL)
#define jiffies_and_speed_to_size(jiffies, speed) \
(((speed) * (jiffies) * 1024UL) / HZ)
#define jiffies_and_size_to_speed(jiffies, size) \
((size) * HZ / (jiffies) / 1024UL)
/* Limits to report warning */
/* jiffies_and_size_to_speed(10*HZ, queue_max_hw_sectors(q) * 512UL) ~ 25 */
#define MIN_SPEED(q) 250 /* 10 times faster than a floppy disk */
#define MAX_SPEED(q) jiffies_and_size_to_speed(1, queue_max_sectors(q) * 512UL)
#define speed_valid(speed) ((speed) > 0)
static const char off[] = "off\n";
static int max_speed_show(int speed, char *buf)
{
if (speed)
return scnprintf(buf, PAGE_SIZE, "%uKB/s\n", speed);
else
return scnprintf(buf, PAGE_SIZE, off);
}
static int max_speed_store(const char *buf, struct request_queue *q)
{
unsigned int limit, set = 0;
if (!strncasecmp(off, buf, sizeof(off) - 2))
return set;
if (kstrtouint(buf, 0, &set) || (set > INT_MAX))
return -EINVAL;
if (set == 0)
return set;
limit = MAX_SPEED(q);
if (set > limit)
pr_warn("max speed %u ineffective above %u\n", set, limit);
limit = MIN_SPEED(q);
if (set < limit)
pr_warn("max speed %u painful below %u\n", set, limit);
return set;
}
static ssize_t max_write_speed_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
int ret = max_speed_show(atomic_read(&md->queue.max_write_speed), buf);
mmc_blk_put(md);
return ret;
}
static ssize_t max_write_speed_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
int set = max_speed_store(buf, md->queue.queue);
if (set < 0) {
mmc_blk_put(md);
return set;
}
atomic_set(&md->queue.max_write_speed, set);
mmc_blk_put(md);
return count;
}
static const DEVICE_ATTR(max_write_speed, S_IRUGO | S_IWUSR,
max_write_speed_show, max_write_speed_store);
static ssize_t max_read_speed_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
int ret = max_speed_show(atomic_read(&md->queue.max_read_speed), buf);
mmc_blk_put(md);
return ret;
}
static ssize_t max_read_speed_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
int set = max_speed_store(buf, md->queue.queue);
if (set < 0) {
mmc_blk_put(md);
return set;
}
atomic_set(&md->queue.max_read_speed, set);
mmc_blk_put(md);
return count;
}
static const DEVICE_ATTR(max_read_speed, S_IRUGO | S_IWUSR,
max_read_speed_show, max_read_speed_store);
static ssize_t cache_size_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
struct mmc_queue *mq = &md->queue;
int cache_size = atomic_read(&mq->cache_size);
int ret;
if (!cache_size)
ret = scnprintf(buf, PAGE_SIZE, off);
else {
int speed = atomic_read(&mq->max_write_speed);
if (!speed_valid(speed))
ret = scnprintf(buf, PAGE_SIZE, "%uMB\n", cache_size);
else { /* We accept race between cache_jiffies and cache_used */
unsigned long size = jiffies_and_speed_to_size(
jiffies - mq->cache_jiffies, speed);
long used = atomic_long_read(&mq->cache_used);
if (size >= used)
size = 0;
else
size = (used - size) * 100 / cache_size
/ 1024UL / 1024UL;
ret = scnprintf(buf, PAGE_SIZE, "%uMB %lu%% used\n",
cache_size, size);
}
}
mmc_blk_put(md);
return ret;
}
static ssize_t cache_size_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct mmc_blk_data *md;
unsigned int set = 0;
if (strncasecmp(off, buf, sizeof(off) - 2)
&& (kstrtouint(buf, 0, &set) || (set > INT_MAX)))
return -EINVAL;
md = mmc_blk_get(dev_to_disk(dev));
atomic_set(&md->queue.cache_size, set);
mmc_blk_put(md);
return count;
}
static const DEVICE_ATTR(cache_size, S_IRUGO | S_IWUSR,
cache_size_show, cache_size_store);
/* correct for write-back */
static long mmc_blk_cache_used(struct mmc_queue *mq, unsigned long waitfor)
{
long used = 0;
int speed = atomic_read(&mq->max_write_speed);
if (speed_valid(speed)) {
unsigned long size = jiffies_and_speed_to_size(
waitfor - mq->cache_jiffies, speed);
used = atomic_long_read(&mq->cache_used);
if (size >= used)
used = 0;
else
used -= size;
}
atomic_long_set(&mq->cache_used, used);
mq->cache_jiffies = waitfor;
return used;
}
static void mmc_blk_simulate_delay(
struct mmc_queue *mq,
struct request *req,
unsigned long waitfor)
{
int max_speed;
if (!req)
return;
max_speed = (rq_data_dir(req) == READ)
? atomic_read(&mq->max_read_speed)
: atomic_read(&mq->max_write_speed);
if (speed_valid(max_speed)) {
unsigned long bytes = blk_rq_bytes(req);
if (rq_data_dir(req) != READ) {
int cache_size = atomic_read(&mq->cache_size);
if (cache_size) {
unsigned long size = cache_size * 1024L * 1024L;
long used = mmc_blk_cache_used(mq, waitfor);
used += bytes;
atomic_long_set(&mq->cache_used, used);
bytes = 0;
if (used > size)
bytes = used - size;
}
}
waitfor += size_and_speed_to_jiffies(bytes, max_speed);
if (time_is_after_jiffies(waitfor)) {
long msecs = jiffies_to_msecs(waitfor - jiffies);
if (likely(msecs > 0))
msleep(msecs);
}
}
}
#else
#define mmc_blk_simulate_delay(mq, req, waitfor)
#endif
static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
{
struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
int ret = -ENXIO;
mutex_lock(&block_mutex);
if (md) {
if (md->usage == 2)
check_disk_change(bdev);
ret = 0;
if ((mode & FMODE_WRITE) && md->read_only) {
mmc_blk_put(md);
ret = -EROFS;
}
}
mutex_unlock(&block_mutex);
return ret;
}
static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
{
struct mmc_blk_data *md = disk->private_data;
mutex_lock(&block_mutex);
mmc_blk_put(md);
mutex_unlock(&block_mutex);
}
static int
mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
geo->heads = 4;
geo->sectors = 16;
return 0;
}
struct mmc_blk_ioc_data {
struct mmc_ioc_cmd ic;
unsigned char *buf;
u64 buf_bytes;
};
static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
struct mmc_ioc_cmd __user *user)
{
struct mmc_blk_ioc_data *idata;
int err;
idata = kmalloc(sizeof(*idata), GFP_KERNEL);
if (!idata) {
err = -ENOMEM;
goto out;
}
if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
err = -EFAULT;
goto idata_err;
}
idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
err = -EOVERFLOW;
goto idata_err;
}
if (!idata->buf_bytes) {
idata->buf = NULL;
return idata;
}
idata->buf = kmalloc(idata->buf_bytes, GFP_KERNEL);
if (!idata->buf) {
err = -ENOMEM;
goto idata_err;
}
if (copy_from_user(idata->buf, (void __user *)(unsigned long)
idata->ic.data_ptr, idata->buf_bytes)) {
err = -EFAULT;
goto copy_err;
}
return idata;
copy_err:
kfree(idata->buf);
idata_err:
kfree(idata);
out:
return ERR_PTR(err);
}
static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
struct mmc_blk_ioc_data *idata)
{
struct mmc_ioc_cmd *ic = &idata->ic;
if (copy_to_user(&(ic_ptr->response), ic->response,
sizeof(ic->response)))
return -EFAULT;
if (!idata->ic.write_flag) {
if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
idata->buf, idata->buf_bytes))
return -EFAULT;
}
return 0;
}
static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
u32 retries_max)
{
int err;
u32 retry_count = 0;
if (!status || !retries_max)
return -EINVAL;
do {
err = get_card_status(card, status, 5);
if (err)
break;
if (!R1_STATUS(*status) &&
(R1_CURRENT_STATE(*status) != R1_STATE_PRG))
break; /* RPMB programming operation complete */
/*
* Rechedule to give the MMC device a chance to continue
* processing the previous command without being polled too
* frequently.
*/
usleep_range(1000, 5000);
} while (++retry_count < retries_max);
if (retry_count == retries_max)
err = -EPERM;
return err;
}
static int ioctl_do_sanitize(struct mmc_card *card)
{
int err;
if (!mmc_can_sanitize(card) &&
(card->host->caps2 & MMC_CAP2_SANITIZE)) {
pr_warn("%s: %s - SANITIZE is not supported\n",
mmc_hostname(card->host), __func__);
err = -EOPNOTSUPP;
goto out;
}
pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
mmc_hostname(card->host), __func__);
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_SANITIZE_START, 1,
MMC_SANITIZE_REQ_TIMEOUT);
if (err)
pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
mmc_hostname(card->host), __func__, err);
pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
__func__);
out:
return err;
}
static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
struct mmc_blk_ioc_data *idata)
{
struct mmc_command cmd = {0};
struct mmc_data data = {0};
struct mmc_request mrq = {NULL};
struct scatterlist sg;
int err;
if (!card || !md || !idata)
return -EINVAL;
cmd.opcode = idata->ic.opcode;
cmd.arg = idata->ic.arg;
cmd.flags = idata->ic.flags;
if (idata->buf_bytes) {
data.sg = &sg;
data.sg_len = 1;
data.blksz = idata->ic.blksz;
data.blocks = idata->ic.blocks;
sg_init_one(data.sg, idata->buf, idata->buf_bytes);
if (idata->ic.write_flag)
data.flags = MMC_DATA_WRITE;
else
data.flags = MMC_DATA_READ;
/* data.flags must already be set before doing this. */
mmc_set_data_timeout(&data, card);
/* Allow overriding the timeout_ns for empirical tuning. */
if (idata->ic.data_timeout_ns)
data.timeout_ns = idata->ic.data_timeout_ns;
if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
/*
* Pretend this is a data transfer and rely on the
* host driver to compute timeout. When all host
* drivers support cmd.cmd_timeout for R1B, this
* can be changed to:
*
* mrq.data = NULL;
* cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
*/
data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
}
mrq.data = &data;
}
mrq.cmd = &cmd;
if (mmc_card_doing_bkops(card)) {
err = mmc_stop_bkops(card);
if (err) {
dev_err(mmc_dev(card->host),
"%s: stop_bkops failed %d\n", __func__, err);
return err;
}
}
err = mmc_blk_part_switch(card, md);
if (err)
return err;
if (idata->ic.is_acmd) {
err = mmc_app_cmd(card->host, card);
if (err)
return err;
}
if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
(cmd.opcode == MMC_SWITCH)) {
err = ioctl_do_sanitize(card);
if (err)
pr_err("%s: ioctl_do_sanitize() failed. err = %d",
__func__, err);
return err;
}
mmc_wait_for_req(card->host, &mrq);
if (cmd.error) {
dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
__func__, cmd.error);
return cmd.error;
}
if (data.error) {
dev_err(mmc_dev(card->host), "%s: data error %d\n",
__func__, data.error);
return data.error;
}
/*
* According to the SD specs, some commands require a delay after
* issuing the command.
*/
if (idata->ic.postsleep_min_us)
usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
return err;
}
struct mmc_blk_ioc_rpmb_data {
struct mmc_blk_ioc_data *data[MMC_IOC_MAX_RPMB_CMD];
};
static struct mmc_blk_ioc_rpmb_data *mmc_blk_ioctl_rpmb_copy_from_user(
struct mmc_ioc_rpmb __user *user)
{
struct mmc_blk_ioc_rpmb_data *idata;
int err, i;
idata = kzalloc(sizeof(*idata), GFP_KERNEL);
if (!idata) {
err = -ENOMEM;
goto out;
}
for (i = 0; i < MMC_IOC_MAX_RPMB_CMD; i++) {
idata->data[i] = mmc_blk_ioctl_copy_from_user(&(user->cmds[i]));
if (IS_ERR(idata->data[i])) {
err = PTR_ERR(idata->data[i]);
goto copy_err;
}
}
return idata;
copy_err:
while (--i >= 0) {
kfree(idata->data[i]->buf);
kfree(idata->data[i]);
}
kfree(idata);
out:
return ERR_PTR(err);
}
static int mmc_blk_ioctl_rpmb_cmd(struct block_device *bdev,
struct mmc_ioc_rpmb __user *ic_ptr)
{
struct mmc_blk_ioc_rpmb_data *idata;
struct mmc_blk_data *md;
struct mmc_card *card = NULL;
struct mmc_command cmd = {0};
struct mmc_data data = {0};
struct mmc_request mrq = {NULL};
struct scatterlist sg;
int err = 0, i = 0;
u32 status = 0;
/* The caller must have CAP_SYS_RAWIO */
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
md = mmc_blk_get(bdev->bd_disk);
/* make sure this is a rpmb partition */
if ((!md) || (!(md->area_type & MMC_BLK_DATA_AREA_RPMB))) {
err = -EINVAL;
return err;
}
idata = mmc_blk_ioctl_rpmb_copy_from_user(ic_ptr);
if (IS_ERR(idata)) {
err = PTR_ERR(idata);
goto cmd_done;
}
card = md->queue.card;
if (IS_ERR(card)) {
err = PTR_ERR(card);
goto idata_free;
}
mmc_get_card(card);
if (mmc_card_doing_bkops(card)) {
if (mmc_card_cmdq(card)) {
err = mmc_cmdq_halt(card->host, true);
if (err)
goto cmd_rel_host;
}
err = mmc_stop_bkops(card);
if (err) {
dev_err(mmc_dev(card->host),
"%s: stop_bkops failed %d\n", __func__, err);
goto cmd_rel_host;
}
if (mmc_card_cmdq(card)) {
err = mmc_cmdq_halt(card->host, false);
if (err)
goto cmd_rel_host;
}
}
err = mmc_blk_part_switch(card, md);
if (err)
goto cmd_rel_host;
for (i = 0; i < MMC_IOC_MAX_RPMB_CMD; i++) {
struct mmc_blk_ioc_data *curr_data;
struct mmc_ioc_cmd *curr_cmd;
curr_data = idata->data[i];
curr_cmd = &curr_data->ic;
if (!curr_cmd->opcode)
break;
cmd.opcode = curr_cmd->opcode;
cmd.arg = curr_cmd->arg;
cmd.flags = curr_cmd->flags;
if (curr_data->buf_bytes) {
data.sg = &sg;
data.sg_len = 1;
data.blksz = curr_cmd->blksz;
data.blocks = curr_cmd->blocks;
sg_init_one(data.sg, curr_data->buf,
curr_data->buf_bytes);
if (curr_cmd->write_flag)
data.flags = MMC_DATA_WRITE;
else
data.flags = MMC_DATA_READ;
/* data.flags must already be set before doing this. */
mmc_set_data_timeout(&data, card);
/*
* Allow overriding the timeout_ns for empirical tuning.
*/
if (curr_cmd->data_timeout_ns)
data.timeout_ns = curr_cmd->data_timeout_ns;
mrq.data = &data;
}
mrq.cmd = &cmd;
err = mmc_set_blockcount(card, data.blocks,
curr_cmd->write_flag & (1 << 31));
if (err)
goto cmd_rel_host;
mmc_wait_for_req(card->host, &mrq);
if (cmd.error) {
dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
__func__, cmd.error);
err = cmd.error;
goto cmd_rel_host;
}
if (data.error) {
dev_err(mmc_dev(card->host), "%s: data error %d\n",
__func__, data.error);
err = data.error;
goto cmd_rel_host;
}
if (copy_to_user(&(ic_ptr->cmds[i].response), cmd.resp,
sizeof(cmd.resp))) {
err = -EFAULT;
goto cmd_rel_host;
}
if (!curr_cmd->write_flag) {
if (copy_to_user((void __user *)(unsigned long)
curr_cmd->data_ptr,
curr_data->buf,
curr_data->buf_bytes)) {
err = -EFAULT;
goto cmd_rel_host;
}
}
/*
* Ensure RPMB command has completed by polling CMD13
* "Send Status".
*/
err = ioctl_rpmb_card_status_poll(card, &status, 5);
if (err)
dev_err(mmc_dev(card->host),
"%s: Card Status=0x%08X, error %d\n",
__func__, status, err);
}
cmd_rel_host:
mmc_put_card(card);
idata_free:
for (i = 0; i < MMC_IOC_MAX_RPMB_CMD; i++) {
kfree(idata->data[i]->buf);
kfree(idata->data[i]);
}
kfree(idata);
cmd_done:
mmc_blk_put(md);
if (card && card->cmdq_init)
wake_up(&card->host->cmdq_ctx.wait);
return err;
}
static int mmc_blk_ioctl_cmd(struct block_device *bdev,
struct mmc_ioc_cmd __user *ic_ptr)
{
struct mmc_blk_ioc_data *idata;
struct mmc_blk_data *md;
struct mmc_card *card;
int err = 0, ioc_err = 0;
/*
* The caller must have CAP_SYS_RAWIO, and must be calling this on the
* whole block device, not on a partition. This prevents overspray
* between sibling partitions.
*/
if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
return -EPERM;
idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
if (IS_ERR_OR_NULL(idata))
return PTR_ERR(idata);
md = mmc_blk_get(bdev->bd_disk);
if (!md) {
err = -EINVAL;
goto cmd_err;
}
card = md->queue.card;
if (IS_ERR_OR_NULL(card)) {
err = PTR_ERR(card);
goto cmd_done;
}
mmc_get_card(card);
if (mmc_card_cmdq(card)) {
err = mmc_cmdq_halt_on_empty_queue(card->host);
if (err) {
pr_err("%s: halt failed while doing %s err (%d)\n",
mmc_hostname(card->host),
__func__, err);
mmc_put_card(card);
goto cmd_done;
}
}
ioc_err = __mmc_blk_ioctl_cmd(card, md, idata);
/* Always switch back to main area after RPMB access */
if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
mmc_blk_part_switch(card, dev_get_drvdata(&card->dev));
if (mmc_card_cmdq(card)) {
if (mmc_cmdq_halt(card->host, false))
pr_err("%s: %s: cmdq unhalt failed\n",
mmc_hostname(card->host), __func__);
}
mmc_put_card(card);
err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
cmd_done:
mmc_blk_put(md);
cmd_err:
kfree(idata->buf);
kfree(idata);
return ioc_err ? ioc_err : err;
}
static int mmc_blk_ioctl_multi_cmd(struct block_device *bdev,
struct mmc_ioc_multi_cmd __user *user)
{
struct mmc_blk_ioc_data **idata = NULL;
struct mmc_ioc_cmd __user *cmds = user->cmds;
struct mmc_card *card;
struct mmc_blk_data *md;
int i, err = 0, ioc_err = 0;
__u64 num_of_cmds;
/*
* The caller must have CAP_SYS_RAWIO, and must be calling this on the
* whole block device, not on a partition. This prevents overspray
* between sibling partitions.
*/
if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
return -EPERM;
if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
sizeof(num_of_cmds)))
return -EFAULT;
if (num_of_cmds > MMC_IOC_MAX_CMDS)
return -EINVAL;
idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
if (!idata)
return -ENOMEM;
for (i = 0; i < num_of_cmds; i++) {
idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
if (IS_ERR(idata[i])) {
err = PTR_ERR(idata[i]);
num_of_cmds = i;
goto cmd_err;
}
}
md = mmc_blk_get(bdev->bd_disk);
if (!md) {
err = -EINVAL;
goto cmd_err;
}
card = md->queue.card;
if (IS_ERR(card)) {
err = PTR_ERR(card);
goto cmd_done;
}
mmc_get_card(card);
for (i = 0; i < num_of_cmds && !ioc_err; i++)
ioc_err = __mmc_blk_ioctl_cmd(card, md, idata[i]);
/* Always switch back to main area after RPMB access */
if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
mmc_blk_part_switch(card, dev_get_drvdata(&card->dev));
mmc_put_card(card);
/* copy to user if data and response */
for (i = 0; i < num_of_cmds && !err; i++)
err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
cmd_done:
mmc_blk_put(md);
cmd_err:
for (i = 0; i < num_of_cmds; i++) {
kfree(idata[i]->buf);
kfree(idata[i]);
}
kfree(idata);
return ioc_err ? ioc_err : err;
}
static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
switch (cmd) {
case MMC_IOC_CMD:
return mmc_blk_ioctl_cmd(bdev,
(struct mmc_ioc_cmd __user *)arg);
case MMC_IOC_RPMB_CMD:
return mmc_blk_ioctl_rpmb_cmd(bdev,
(struct mmc_ioc_rpmb __user *)arg);
case MMC_IOC_MULTI_CMD:
return mmc_blk_ioctl_multi_cmd(bdev,
(struct mmc_ioc_multi_cmd __user *)arg);
default:
return -EINVAL;
}
}
#ifdef CONFIG_COMPAT
static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
}
#endif
static const struct block_device_operations mmc_bdops = {
.open = mmc_blk_open,
.release = mmc_blk_release,
.getgeo = mmc_blk_getgeo,
.owner = THIS_MODULE,
.ioctl = mmc_blk_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = mmc_blk_compat_ioctl,
#endif
};
static int mmc_blk_cmdq_switch(struct mmc_card *card,
struct mmc_blk_data *md, bool enable)
{
int ret = 0;
bool cmdq_mode = !!mmc_card_cmdq(card);
struct mmc_host *host = card->host;
struct mmc_cmdq_context_info *ctx = &host->cmdq_ctx;
if (!(card->host->caps2 & MMC_CAP2_CMD_QUEUE) ||
!card->ext_csd.cmdq_support ||
(enable && !(md->flags & MMC_BLK_CMD_QUEUE)) ||
(cmdq_mode == enable))
return 0;
if (enable) {
ret = mmc_set_blocklen(card, MMC_CARD_CMDQ_BLK_SIZE);
if (ret) {
pr_err("%s: failed (%d) to set block-size to %d\n",
__func__, ret, MMC_CARD_CMDQ_BLK_SIZE);
goto out;
}
} else {
if (!test_bit(CMDQ_STATE_HALT, &ctx->curr_state)) {
ret = mmc_cmdq_halt(host, true);
if (ret) {
pr_err("%s: halt: failed: %d\n",
mmc_hostname(host), ret);
goto out;
}
}
}
ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_CMDQ, enable,
card->ext_csd.generic_cmd6_time);
if (ret) {
pr_err("%s: cmdq mode %sable failed %d\n",
md->disk->disk_name, enable ? "en" : "dis", ret);
goto out;
}
if (enable)
mmc_card_set_cmdq(card);
else
mmc_card_clr_cmdq(card);
out:
return ret;
}
static inline int mmc_blk_part_switch(struct mmc_card *card,
struct mmc_blk_data *md)
{
int ret;
struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
if ((main_md->part_curr == md->part_type) &&
(card->part_curr == md->part_type))
return 0;
if (mmc_card_mmc(card)) {
u8 part_config = card->ext_csd.part_config;
if (md->part_type) {
/* disable CQ mode for non-user data partitions */
ret = mmc_blk_cmdq_switch(card, md, false);
if (ret)
return ret;
}
if (md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
mmc_retune_pause(card->host);
part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
part_config |= md->part_type;
ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_PART_CONFIG, part_config,
card->ext_csd.part_time);
if (ret) {
pr_err("%s: mmc_blk_part_switch failure, %d -> %d\n",
mmc_hostname(card->host), main_md->part_curr,
md->part_type);
if (md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
mmc_retune_unpause(card->host);
return ret;
}
card->ext_csd.part_config = part_config;
card->part_curr = md->part_type;
if (main_md->part_curr == EXT_CSD_PART_CONFIG_ACC_RPMB)
mmc_retune_unpause(card->host);
}
main_md->part_curr = md->part_type;
return 0;
}
static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
{
int err;
u32 result;
__be32 *blocks;
struct mmc_request mrq = {NULL};
struct mmc_command cmd = {0};
struct mmc_data data = {0};
struct scatterlist sg;
cmd.opcode = MMC_APP_CMD;
cmd.arg = card->rca << 16;
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
err = mmc_wait_for_cmd(card->host, &cmd, 0);
if (err)
return (u32)-1;
if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
return (u32)-1;
memset(&cmd, 0, sizeof(struct mmc_command));
cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
cmd.arg = 0;
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
data.blksz = 4;
data.blocks = 1;
data.flags = MMC_DATA_READ;
data.sg = &sg;
data.sg_len = 1;
mmc_set_data_timeout(&data, card);
mrq.cmd = &cmd;
mrq.data = &data;
blocks = kmalloc(4, GFP_KERNEL);
if (!blocks)
return (u32)-1;
sg_init_one(&sg, blocks, 4);
mmc_wait_for_req(card->host, &mrq);
result = ntohl(*blocks);
kfree(blocks);
if (cmd.error || data.error)
result = (u32)-1;
return result;
}
static int get_card_status(struct mmc_card *card, u32 *status, int retries)
{
struct mmc_command cmd = {0};
int err;
cmd.opcode = MMC_SEND_STATUS;
if (!mmc_host_is_spi(card->host))
cmd.arg = card->rca << 16;
cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
err = mmc_wait_for_cmd(card->host, &cmd, retries);
if (err == 0)
*status = cmd.resp[0];
return err;
}
static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
bool hw_busy_detect, struct request *req, int *gen_err)
{
unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
int err = 0;
u32 status;
do {
err = get_card_status(card, &status, 5);
if (err) {
pr_err("%s: error %d requesting status\n",
req->rq_disk->disk_name, err);
return err;
}
if (status & R1_ERROR) {
pr_err("%s: %s: error sending status cmd, status %#x\n",
req->rq_disk->disk_name, __func__, status);
*gen_err = 1;
}
/* We may rely on the host hw to handle busy detection.*/
if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) &&
hw_busy_detect)
break;
/*
* Timeout if the device never becomes ready for data and never
* leaves the program state.
*/
if (time_after(jiffies, timeout)) {
pr_err("%s: Card stuck in programming state! %s %s\n",
mmc_hostname(card->host),
req->rq_disk->disk_name, __func__);
return -ETIMEDOUT;
}
/*
* Some cards mishandle the status bits,
* so make sure to check both the busy
* indication and the card state.
*/
} while (!(status & R1_READY_FOR_DATA) ||
(R1_CURRENT_STATE(status) == R1_STATE_PRG));
return err;
}
static int send_stop(struct mmc_card *card, unsigned int timeout_ms,
struct request *req, int *gen_err, u32 *stop_status)
{
struct mmc_host *host = card->host;
struct mmc_command cmd = {0};
int err;
bool use_r1b_resp = rq_data_dir(req) == WRITE;
/*
* Normally we use R1B responses for WRITE, but in cases where the host
* has specified a max_busy_timeout we need to validate it. A failure
* means we need to prevent the host from doing hw busy detection, which
* is done by converting to a R1 response instead.
*/
if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout))
use_r1b_resp = false;
cmd.opcode = MMC_STOP_TRANSMISSION;
if (use_r1b_resp) {
cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
cmd.busy_timeout = timeout_ms;
} else {
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
}
err = mmc_wait_for_cmd(host, &cmd, 5);
if (err)
return err;
*stop_status = cmd.resp[0];
/* No need to check card status in case of READ. */
if (rq_data_dir(req) == READ)
return 0;
if (!mmc_host_is_spi(host) &&
(*stop_status & R1_ERROR)) {
pr_err("%s: %s: general error sending stop command, resp %#x\n",
req->rq_disk->disk_name, __func__, *stop_status);
*gen_err = 1;
}
return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err);
}
#define ERR_NOMEDIUM 3
#define ERR_RETRY 2
#define ERR_ABORT 1
#define ERR_CONTINUE 0
static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
bool status_valid, u32 status)
{
switch (error) {
case -EILSEQ:
/* response crc error, retry the r/w cmd */
pr_err_ratelimited(
"%s: response CRC error sending %s command, card status %#x\n",
req->rq_disk->disk_name,
name, status);
return ERR_RETRY;
case -ETIMEDOUT:
pr_err_ratelimited(
"%s: timed out sending %s command, card status %#x\n",
req->rq_disk->disk_name, name, status);
/* If the status cmd initially failed, retry the r/w cmd */
if (!status_valid) {
pr_err_ratelimited("%s: status not valid, retrying timeout\n",
req->rq_disk->disk_name);
return ERR_RETRY;
}
/*
* If it was a r/w cmd crc error, or illegal command
* (eg, issued in wrong state) then retry - we should
* have corrected the state problem above.
*/
if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND)) {
pr_err_ratelimited(
"%s: command error, retrying timeout\n",
req->rq_disk->disk_name);
return ERR_RETRY;
}
/* Otherwise abort the command */
pr_err_ratelimited(
"%s: not retrying timeout\n",
req->rq_disk->disk_name);
return ERR_ABORT;
default:
/* We don't understand the error code the driver gave us */
pr_err_ratelimited(
"%s: unknown error %d sending read/write command, card status %#x\n",
req->rq_disk->disk_name, error, status);
return ERR_ABORT;
}
}
/*
* Initial r/w and stop cmd error recovery.
* We don't know whether the card received the r/w cmd or not, so try to
* restore things back to a sane state. Essentially, we do this as follows:
* - Obtain card status. If the first attempt to obtain card status fails,
* the status word will reflect the failed status cmd, not the failed
* r/w cmd. If we fail to obtain card status, it suggests we can no
* longer communicate with the card.
* - Check the card state. If the card received the cmd but there was a
* transient problem with the response, it might still be in a data transfer
* mode. Try to send it a stop command. If this fails, we can't recover.
* - If the r/w cmd failed due to a response CRC error, it was probably
* transient, so retry the cmd.
* - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
* - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
* illegal cmd, retry.
* Otherwise we don't understand what happened, so abort.
*/
static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
struct mmc_blk_request *brq, int *ecc_err, int *gen_err)
{
bool prev_cmd_status_valid = true;
u32 status, stop_status = 0;
int err, retry;
if (mmc_card_removed(card))
return ERR_NOMEDIUM;
/*
* Try to get card status which indicates both the card state
* and why there was no response. If the first attempt fails,
* we can't be sure the returned status is for the r/w command.
*/
for (retry = 2; retry >= 0; retry--) {
err = get_card_status(card, &status, 0);
if (!err)
break;
/* Re-tune if needed */
mmc_retune_recheck(card->host);
prev_cmd_status_valid = false;
pr_err("%s: error %d sending status command, %sing\n",
req->rq_disk->disk_name, err, retry ? "retry" : "abort");
}
/* We couldn't get a response from the card. Give up. */
if (err) {
if (card->err_in_sdr104)
return ERR_RETRY;
/* Check if the card is removed */
if (mmc_detect_card_removed(card->host))
return ERR_NOMEDIUM;
return ERR_ABORT;
}
/* Flag ECC errors */
if ((status & R1_CARD_ECC_FAILED) ||
(brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
(brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
*ecc_err = 1;
/* Flag General errors */
if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
if ((status & R1_ERROR) ||
(brq->stop.resp[0] & R1_ERROR)) {
pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
req->rq_disk->disk_name, __func__,
brq->stop.resp[0], status);
*gen_err = 1;
}
/*
* Check the current card state. If it is in some data transfer
* mode, tell it to stop (and hopefully transition back to TRAN.)
*/
if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
R1_CURRENT_STATE(status) == R1_STATE_RCV) {
err = send_stop(card,
DIV_ROUND_UP(brq->data.timeout_ns, 1000000),
req, gen_err, &stop_status);
if (err) {
pr_err("%s: error %d sending stop command\n",
req->rq_disk->disk_name, err);
/*
* If the stop cmd also timed out, the card is probably
* not present, so abort. Other errors are bad news too.
*/
return ERR_ABORT;
}
if (stop_status & R1_CARD_ECC_FAILED)
*ecc_err = 1;
}
/* Check for set block count errors */
if (brq->sbc.error)
return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
prev_cmd_status_valid, status);
/* Check for r/w command errors */
if (brq->cmd.error)
return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
prev_cmd_status_valid, status);
/* Data errors */
if (!brq->stop.error)
return ERR_CONTINUE;
/* Now for stop errors. These aren't fatal to the transfer. */
pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
req->rq_disk->disk_name, brq->stop.error,
brq->cmd.resp[0], status);
/*
* Subsitute in our own stop status as this will give the error
* state which happened during the execution of the r/w command.
*/
if (stop_status) {
brq->stop.resp[0] = stop_status;
brq->stop.error = 0;
}
return ERR_CONTINUE;
}
static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
int type)
{
int err;
if (md->reset_done & type)
return -EEXIST;
md->reset_done |= type;
err = mmc_hw_reset(host);
if (err && err != -EOPNOTSUPP) {
/* We failed to reset so we need to abort the request */
pr_err("%s: %s: failed to reset %d\n", mmc_hostname(host),
__func__, err);
return -ENODEV;
}
/* Ensure we switch back to the correct partition */
if (host->card) {
struct mmc_blk_data *main_md =
dev_get_drvdata(&host->card->dev);
int part_err;
main_md->part_curr = main_md->part_type;
part_err = mmc_blk_part_switch(host->card, md);
if (part_err) {
/*
* We have failed to get back into the correct
* partition, so we need to abort the whole request.
*/
return -ENODEV;
}
}
return err;
}
static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
{
md->reset_done &= ~type;
}
int mmc_access_rpmb(struct mmc_queue *mq)
{
struct mmc_blk_data *md = mq->data;
/*
* If this is a RPMB partition access, return ture
*/
if (md && md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
return true;
return false;
}
static struct mmc_cmdq_req *mmc_blk_cmdq_prep_discard_req(struct mmc_queue *mq,
struct request *req)
{
struct mmc_blk_data *md = mq->data;
struct mmc_card *card = md->queue.card;
struct mmc_host *host = card->host;
struct mmc_cmdq_context_info *ctx_info = &host->cmdq_ctx;
struct mmc_cmdq_req *cmdq_req;
struct mmc_queue_req *active_mqrq;
BUG_ON(req->tag > card->ext_csd.cmdq_depth);
BUG_ON(test_and_set_bit(req->tag, &host->cmdq_ctx.active_reqs));
set_bit(CMDQ_STATE_DCMD_ACTIVE, &ctx_info->curr_state);
active_mqrq = &mq->mqrq_cmdq[req->tag];
active_mqrq->req = req;
cmdq_req = mmc_cmdq_prep_dcmd(active_mqrq, mq);
cmdq_req->cmdq_req_flags |= QBR;
cmdq_req->mrq.cmd = &cmdq_req->cmd;
cmdq_req->tag = req->tag;
return cmdq_req;
}
static int mmc_blk_cmdq_issue_discard_rq(struct mmc_queue *mq,
struct request *req)
{
struct mmc_blk_data *md = mq->data;
struct mmc_card *card = md->queue.card;
struct mmc_cmdq_req *cmdq_req = NULL;
unsigned int from, nr, arg;
int err = 0;
if (!mmc_can_erase(card)) {
err = -EOPNOTSUPP;
blk_end_request(req, err, blk_rq_bytes(req));
goto out;
}
from = blk_rq_pos(req);
nr = blk_rq_sectors(req);
if (mmc_can_discard(card))
arg = MMC_DISCARD_ARG;
else if (mmc_can_trim(card))
arg = MMC_TRIM_ARG;
else
arg = MMC_ERASE_ARG;
cmdq_req = mmc_blk_cmdq_prep_discard_req(mq, req);
if (card->quirks & MMC_QUIRK_INAND_CMD38) {
__mmc_switch_cmdq_mode(cmdq_req->mrq.cmd,
EXT_CSD_CMD_SET_NORMAL,
INAND_CMD38_ARG_EXT_CSD,
arg == MMC_TRIM_ARG ?
INAND_CMD38_ARG_TRIM :
INAND_CMD38_ARG_ERASE,
0, true, false);
err = mmc_cmdq_wait_for_dcmd(card->host, cmdq_req);
if (err)
goto clear_dcmd;
}
err = mmc_cmdq_erase(cmdq_req, card, from, nr, arg);
clear_dcmd:
mmc_host_clk_hold(card->host);
blk_complete_request(req);
out:
return err ? 1 : 0;
}
static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
{
struct mmc_blk_data *md = mq->data;
struct mmc_card *card = md->queue.card;
unsigned int from, nr, arg;
int err = 0, type = MMC_BLK_DISCARD;
if (!mmc_can_erase(card)) {
err = -EOPNOTSUPP;
goto out;
}
from = blk_rq_pos(req);
nr = blk_rq_sectors(req);
if (mmc_can_discard(card))
arg = MMC_DISCARD_ARG;
else if (mmc_can_trim(card))
arg = MMC_TRIM_ARG;
else
arg = MMC_ERASE_ARG;
retry:
if (card->quirks & MMC_QUIRK_INAND_CMD38) {
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
INAND_CMD38_ARG_EXT_CSD,
arg == MMC_TRIM_ARG ?
INAND_CMD38_ARG_TRIM :
INAND_CMD38_ARG_ERASE,
0);
if (err)
goto out;
}
err = mmc_erase(card, from, nr, arg);
out:
if (err == -EIO && !mmc_blk_reset(md, card->host, type))
goto retry;
if (!err)
mmc_blk_reset_success(md, type);
blk_end_request(req, err, blk_rq_bytes(req));
return err ? 0 : 1;
}
static int mmc_blk_cmdq_issue_secdiscard_rq(struct mmc_queue *mq,
struct request *req)
{
struct mmc_blk_data *md = mq->data;
struct mmc_card *card = md->queue.card;
struct mmc_cmdq_req *cmdq_req = NULL;
unsigned int from, nr, arg;
int err = 0;
if (!(mmc_can_secure_erase_trim(card))) {
err = -EOPNOTSUPP;
blk_end_request(req, err, blk_rq_bytes(req));
goto out;
}
from = blk_rq_pos(req);
nr = blk_rq_sectors(req);
if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
arg = MMC_SECURE_TRIM1_ARG;
else
arg = MMC_SECURE_ERASE_ARG;
cmdq_req = mmc_blk_cmdq_prep_discard_req(mq, req);
if (card->quirks & MMC_QUIRK_INAND_CMD38) {
__mmc_switch_cmdq_mode(cmdq_req->mrq.cmd,
EXT_CSD_CMD_SET_NORMAL,
INAND_CMD38_ARG_EXT_CSD,
arg == MMC_SECURE_TRIM1_ARG ?
INAND_CMD38_ARG_SECTRIM1 :
INAND_CMD38_ARG_SECERASE,
0, true, false);
err = mmc_cmdq_wait_for_dcmd(card->host, cmdq_req);
if (err)
goto clear_dcmd;
}
err = mmc_cmdq_erase(cmdq_req, card, from, nr, arg);
if (err)
goto clear_dcmd;
if (arg == MMC_SECURE_TRIM1_ARG) {
if (card->quirks & MMC_QUIRK_INAND_CMD38) {
__mmc_switch_cmdq_mode(cmdq_req->mrq.cmd,
EXT_CSD_CMD_SET_NORMAL,
INAND_CMD38_ARG_EXT_CSD,
INAND_CMD38_ARG_SECTRIM2,
0, true, false);
err = mmc_cmdq_wait_for_dcmd(card->host, cmdq_req);
if (err)
goto clear_dcmd;
}
err = mmc_cmdq_erase(cmdq_req, card, from, nr,
MMC_SECURE_TRIM2_ARG);
}
clear_dcmd:
mmc_host_clk_hold(card->host);
blk_complete_request(req);
out:
return err ? 1 : 0;
}
static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
struct request *req)
{
struct mmc_blk_data *md = mq->data;
struct mmc_card *card = md->queue.card;
unsigned int from, nr, arg;
int err = 0, type = MMC_BLK_SECDISCARD;
if (!(mmc_can_secure_erase_trim(card))) {
err = -EOPNOTSUPP;
goto out;
}
from = blk_rq_pos(req);
nr = blk_rq_sectors(req);
if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
arg = MMC_SECURE_TRIM1_ARG;
else
arg = MMC_SECURE_ERASE_ARG;
retry:
if (card->quirks & MMC_QUIRK_INAND_CMD38) {
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
INAND_CMD38_ARG_EXT_CSD,
arg == MMC_SECURE_TRIM1_ARG ?
INAND_CMD38_ARG_SECTRIM1 :
INAND_CMD38_ARG_SECERASE,
0);
if (err)
goto out_retry;
}
err = mmc_erase(card, from, nr, arg);
if (err == -EIO)
goto out_retry;
if (err)
goto out;
if (arg == MMC_SECURE_TRIM1_ARG) {
if (card->quirks & MMC_QUIRK_INAND_CMD38) {
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
INAND_CMD38_ARG_EXT_CSD,
INAND_CMD38_ARG_SECTRIM2,
0);
if (err)
goto out_retry;
}
err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
if (err == -EIO)
goto out_retry;
if (err)
goto out;
}
out_retry:
if (err && !mmc_blk_reset(md, card->host, type))
goto retry;
if (!err)
mmc_blk_reset_success(md, type);
out:
blk_end_request(req, err, blk_rq_bytes(req));
return err ? 0 : 1;
}
static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
{
struct mmc_blk_data *md = mq->data;
struct mmc_card *card = md->queue.card;
int ret = 0;
if (!req)
return 0;
if (req->cmd_flags & REQ_BARRIER) {
/*
* If eMMC cache flush policy is set to 1, then the device
* shall flush the requests in First-In-First-Out (FIFO) order.
* In this case, as per spec, the host must not send any cache
* barrier requests as they are redundant and add unnecessary
* overhead to both device and host.
*/
if (card->ext_csd.cache_flush_policy & 1)
goto end_req;
/*
* In case barrier is not supported or enabled in the device,
* use flush as a fallback option.
*/
ret = mmc_cache_barrier(card);
if (ret)
ret = mmc_flush_cache(card);
} else if (req_op(req) == REQ_OP_FLUSH) {
ret = mmc_flush_cache(card);
}
if (ret == -ENODEV) {
pr_err("%s: %s: restart mmc card",
req->rq_disk->disk_name, __func__);
if (mmc_blk_reset(md, card->host, MMC_BLK_FLUSH))
pr_err("%s: %s: fail to restart mmc",
req->rq_disk->disk_name, __func__);
else
mmc_blk_reset_success(md, MMC_BLK_FLUSH);
}
if (ret) {
pr_err("%s: %s: notify flush error to upper layers",
req->rq_disk->disk_name, __func__);
ret = -EIO;
}
#ifdef CONFIG_MMC_SIMULATE_MAX_SPEED
else if (atomic_read(&mq->cache_size)) {
long used = mmc_blk_cache_used(mq, jiffies);
if (used) {
int speed = atomic_read(&mq->max_write_speed);
if (speed_valid(speed)) {
unsigned long msecs = jiffies_to_msecs(
size_and_speed_to_jiffies(
used, speed));
if (msecs)
msleep(msecs);
}
}
}
#endif
end_req:
blk_end_request_all(req, ret);
return ret ? 0 : 1;
}
/*
* Reformat current write as a reliable write, supporting
* both legacy and the enhanced reliable write MMC cards.
* In each transfer we'll handle only as much as a single
* reliable write can handle, thus finish the request in
* partial completions.
*/
static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
struct mmc_card *card,
struct request *req)
{
if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
/* Legacy mode imposes restrictions on transfers. */
if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
brq->data.blocks = 1;
if (brq->data.blocks > card->ext_csd.rel_sectors)
brq->data.blocks = card->ext_csd.rel_sectors;
else if (brq->data.blocks < card->ext_csd.rel_sectors)
brq->data.blocks = 1;
}
}
#define CMD_ERRORS \
(R1_OUT_OF_RANGE | /* Command argument out of range */ \
R1_ADDRESS_ERROR | /* Misaligned address */ \
R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
R1_WP_VIOLATION | /* Tried to write to protected block */ \
R1_CC_ERROR | /* Card controller error */ \
R1_ERROR) /* General/unknown error */
static int mmc_blk_err_check(struct mmc_card *card,
struct mmc_async_req *areq)
{
struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
mmc_active);
struct mmc_blk_request *brq = &mq_mrq->brq;
struct request *req = mq_mrq->req;
int need_retune = card->host->need_retune;
int ecc_err = 0, gen_err = 0;
if (card->host->sdr104_wa && mmc_card_sd(card) &&
(card->host->ios.timing == MMC_TIMING_UHS_SDR104) &&
!card->sdr104_blocked &&
(brq->data.error == -EILSEQ ||
brq->data.error == -EIO ||
brq->data.error == -ETIMEDOUT ||
brq->cmd.error == -EILSEQ ||
brq->cmd.error == -EIO ||
brq->cmd.error == -ETIMEDOUT ||
brq->sbc.error))
card->err_in_sdr104 = true;
/*
* sbc.error indicates a problem with the set block count
* command. No data will have been transferred.
*
* cmd.error indicates a problem with the r/w command. No
* data will have been transferred.
*
* stop.error indicates a problem with the stop command. Data
* may have been transferred, or may still be transferring.
*/
if (brq->sbc.error || brq->cmd.error || brq->stop.error ||
brq->data.error) {
switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
case ERR_RETRY:
return MMC_BLK_RETRY;
case ERR_ABORT:
return MMC_BLK_ABORT;
case ERR_NOMEDIUM:
return MMC_BLK_NOMEDIUM;
case ERR_CONTINUE:
break;
}
}
/*
* Check for errors relating to the execution of the
* initial command - such as address errors. No data
* has been transferred.
*/
if (brq->cmd.resp[0] & CMD_ERRORS) {
pr_err("%s: r/w command failed, status = %#x\n",
req->rq_disk->disk_name, brq->cmd.resp[0]);
return MMC_BLK_ABORT;
}
/*
* Everything else is either success, or a data error of some
* kind. If it was a write, we may have transitioned to
* program mode, which we have to wait for it to complete.
*/
if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
int err;
/* Check stop command response */
if (brq->stop.resp[0] & R1_ERROR) {
pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
req->rq_disk->disk_name, __func__,
brq->stop.resp[0]);
gen_err = 1;
}
err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req,
&gen_err);
if (err)
return MMC_BLK_CMD_ERR;
}
/* if general error occurs, retry the write operation. */
if (gen_err) {
pr_warn("%s: retrying write for general error\n",
req->rq_disk->disk_name);
return MMC_BLK_RETRY;
}
if (brq->data.error) {
if (need_retune && !brq->retune_retry_done) {
pr_debug("%s: retrying because a re-tune was needed\n",
req->rq_disk->disk_name);
brq->retune_retry_done = 1;
return MMC_BLK_RETRY;
}
pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
req->rq_disk->disk_name, brq->data.error,
(unsigned)blk_rq_pos(req),
(unsigned)blk_rq_sectors(req),
brq->cmd.resp[0], brq->stop.resp[0]);
if (rq_data_dir(req) == READ) {
if (ecc_err)
return MMC_BLK_ECC_ERR;
return MMC_BLK_DATA_ERR;
} else {
return MMC_BLK_CMD_ERR;
}
}
if (!brq->data.bytes_xfered)
return MMC_BLK_RETRY;
if (mmc_packed_cmd(mq_mrq->cmd_type)) {
if (unlikely(brq->data.blocks << 9 != brq->data.bytes_xfered))
return MMC_BLK_PARTIAL;
else
return MMC_BLK_SUCCESS;
}
if (blk_rq_bytes(req) != brq->data.bytes_xfered)
return MMC_BLK_PARTIAL;
return MMC_BLK_SUCCESS;
}
static int mmc_blk_packed_err_check(struct mmc_card *card,
struct mmc_async_req *areq)
{
struct mmc_queue_req *mq_rq = container_of(areq, struct mmc_queue_req,
mmc_active);
struct request *req = mq_rq->req;
struct mmc_packed *packed = mq_rq->packed;
int err, check, status;
u8 *ext_csd;
packed->retries--;
check = mmc_blk_err_check(card, areq);
err = get_card_status(card, &status, 0);
if (err) {
pr_err("%s: error %d sending status command\n",
req->rq_disk->disk_name, err);
return MMC_BLK_ABORT;
}
if (status & R1_EXCEPTION_EVENT) {
err = mmc_get_ext_csd(card, &ext_csd);
if (err) {
pr_err("%s: error %d sending ext_csd\n",
req->rq_disk->disk_name, err);
return MMC_BLK_ABORT;
}
if ((ext_csd[EXT_CSD_EXP_EVENTS_STATUS] &
EXT_CSD_PACKED_FAILURE) &&
(ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
EXT_CSD_PACKED_GENERIC_ERROR)) {
if (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
EXT_CSD_PACKED_INDEXED_ERROR) {
packed->idx_failure =
ext_csd[EXT_CSD_PACKED_FAILURE_INDEX] - 1;
check = MMC_BLK_PARTIAL;
}
pr_err("%s: packed cmd failed, nr %u, sectors %u, "
"failure index: %d\n",
req->rq_disk->disk_name, packed->nr_entries,
packed->blocks, packed->idx_failure);
}
kfree(ext_csd);
}
return check;
}
static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
struct mmc_card *card,
int disable_multi,
struct mmc_queue *mq)
{
u32 readcmd, writecmd;
struct mmc_blk_request *brq = &mqrq->brq;
struct request *req = mqrq->req;
struct mmc_blk_data *md = mq->data;
bool do_data_tag;
/*
* Reliable writes are used to implement Forced Unit Access and
* are supported only on MMCs.
*/
bool do_rel_wr = (req->cmd_flags & REQ_FUA) &&
(rq_data_dir(req) == WRITE) &&
(md->flags & MMC_BLK_REL_WR);
memset(brq, 0, sizeof(struct mmc_blk_request));
brq->mrq.cmd = &brq->cmd;
brq->mrq.data = &brq->data;
brq->cmd.arg = blk_rq_pos(req);
if (!mmc_card_blockaddr(card))
brq->cmd.arg <<= 9;
brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
brq->data.blksz = 512;
brq->stop.opcode = MMC_STOP_TRANSMISSION;
brq->stop.arg = 0;
brq->data.blocks = blk_rq_sectors(req);
brq->data.fault_injected = false;
/*
* The block layer doesn't support all sector count
* restrictions, so we need to be prepared for too big
* requests.
*/
if (brq->data.blocks > card->host->max_blk_count)
brq->data.blocks = card->host->max_blk_count;
if (brq->data.blocks > 1) {
/*
* After a read error, we redo the request one sector
* at a time in order to accurately determine which
* sectors can be read successfully.
*/
if (disable_multi)
brq->data.blocks = 1;
/*
* Some controllers have HW issues while operating
* in multiple I/O mode
*/
if (card->host->ops->multi_io_quirk)
brq->data.blocks = card->host->ops->multi_io_quirk(card,
(rq_data_dir(req) == READ) ?
MMC_DATA_READ : MMC_DATA_WRITE,
brq->data.blocks);
}
if (brq->data.blocks > 1 || do_rel_wr) {
/* SPI multiblock writes terminate using a special
* token, not a STOP_TRANSMISSION request.
*/
if (!mmc_host_is_spi(card->host) ||
rq_data_dir(req) == READ)
brq->mrq.stop = &brq->stop;
readcmd = MMC_READ_MULTIPLE_BLOCK;
writecmd = MMC_WRITE_MULTIPLE_BLOCK;
} else {
brq->mrq.stop = NULL;
readcmd = MMC_READ_SINGLE_BLOCK;
writecmd = MMC_WRITE_BLOCK;
}
if (rq_data_dir(req) == READ) {
brq->cmd.opcode = readcmd;
brq->data.flags = MMC_DATA_READ;
if (brq->mrq.stop)
brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 |
MMC_CMD_AC;
} else {
brq->cmd.opcode = writecmd;
brq->data.flags = MMC_DATA_WRITE;
if (brq->mrq.stop)
brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B |
MMC_CMD_AC;
}
if (do_rel_wr)
mmc_apply_rel_rw(brq, card, req);
/*
* Data tag is used only during writing meta data to speed
* up write and any subsequent read of this meta data
*/
do_data_tag = (card->ext_csd.data_tag_unit_size) &&
(req->cmd_flags & REQ_META) &&
(rq_data_dir(req) == WRITE) &&
((brq->data.blocks * brq->data.blksz) >=
card->ext_csd.data_tag_unit_size);
/*
* Pre-defined multi-block transfers are preferable to
* open ended-ones (and necessary for reliable writes).
* However, it is not sufficient to just send CMD23,
* and avoid the final CMD12, as on an error condition
* CMD12 (stop) needs to be sent anyway. This, coupled
* with Auto-CMD23 enhancements provided by some
* hosts, means that the complexity of dealing
* with this is best left to the host. If CMD23 is
* supported by card and host, we'll fill sbc in and let
* the host deal with handling it correctly. This means
* that for hosts that don't expose MMC_CAP_CMD23, no
* change of behavior will be observed.
*
* N.B: Some MMC cards experience perf degradation.
* We'll avoid using CMD23-bounded multiblock writes for
* these, while retaining features like reliable writes.
*/
if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
(do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
do_data_tag)) {
brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
brq->sbc.arg = brq->data.blocks |
(do_rel_wr ? (1 << 31) : 0) |
(do_data_tag ? (1 << 29) : 0);
brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
brq->mrq.sbc = &brq->sbc;
}
mmc_set_data_timeout(&brq->data, card);
brq->data.sg = mqrq->sg;
brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
/*
* Adjust the sg list so it is the same size as the
* request.
*/
if (brq->data.blocks != blk_rq_sectors(req)) {
int i, data_size = brq->data.blocks << 9;
struct scatterlist *sg;
for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
data_size -= sg->length;
if (data_size <= 0) {
sg->length += data_size;
i++;
break;
}
}
brq->data.sg_len = i;
}
mqrq->mmc_active.mrq = &brq->mrq;
mqrq->mmc_active.mrq->req = mqrq->req;
mqrq->mmc_active.err_check = mmc_blk_err_check;
mmc_queue_bounce_pre(mqrq);
}
static inline u8 mmc_calc_packed_hdr_segs(struct request_queue *q,
struct mmc_card *card)
{
unsigned int hdr_sz = mmc_large_sector(card) ? 4096 : 512;
unsigned int max_seg_sz = queue_max_segment_size(q);
unsigned int len, nr_segs = 0;
do {
len = min(hdr_sz, max_seg_sz);
hdr_sz -= len;
nr_segs++;
} while (hdr_sz);
return nr_segs;
}
/**
* mmc_blk_disable_wr_packing() - disables packing mode
* @mq: MMC queue.
*
*/
void mmc_blk_disable_wr_packing(struct mmc_queue *mq)
{
if (mq) {
mq->wr_packing_enabled = false;
mq->num_of_potential_packed_wr_reqs = 0;
}
}
EXPORT_SYMBOL(mmc_blk_disable_wr_packing);
static int get_packed_trigger(int potential, struct mmc_card *card,
struct request *req, int curr_trigger)
{
static int num_mean_elements = 1;
static unsigned long mean_potential = PCKD_TRGR_INIT_MEAN_POTEN;
unsigned int trigger = curr_trigger;
unsigned int pckd_trgr_upper_bound = card->ext_csd.max_packed_writes;
/* scale down the upper bound to 75% */
pckd_trgr_upper_bound = (pckd_trgr_upper_bound * 3) / 4;
/*
* since the most common calls for this function are with small
* potential write values and since we don't want these calls to affect
* the packed trigger, set a lower bound and ignore calls with
* potential lower than that bound
*/
if (potential <= PCKD_TRGR_POTEN_LOWER_BOUND)
return trigger;
/*
* this is to prevent integer overflow in the following calculation:
* once every PACKED_TRIGGER_MAX_ELEMENTS reset the algorithm
*/
if (num_mean_elements > PACKED_TRIGGER_MAX_ELEMENTS) {
num_mean_elements = 1;
mean_potential = PCKD_TRGR_INIT_MEAN_POTEN;
}
/*
* get next mean value based on previous mean value and current
* potential packed writes. Calculation is as follows:
* mean_pot[i+1] =
* ((mean_pot[i] * num_mean_elem) + potential)/(num_mean_elem + 1)
*/
mean_potential *= num_mean_elements;
/*
* add num_mean_elements so that the division of two integers doesn't
* lower mean_potential too much
*/
if (potential > mean_potential)
mean_potential += num_mean_elements;
mean_potential += potential;
/* this is for gaining more precision when dividing two integers */
mean_potential *= PCKD_TRGR_PRECISION_MULTIPLIER;
/* this completes the mean calculation */
mean_potential /= ++num_mean_elements;
mean_potential /= PCKD_TRGR_PRECISION_MULTIPLIER;
/*
* if current potential packed writes is greater than the mean potential
* then the heuristic is that the following workload will contain many
* write requests, therefore we lower the packed trigger. In the
* opposite case we want to increase the trigger in order to get less
* packing events.
*/
if (potential >= mean_potential)
trigger = (trigger <= PCKD_TRGR_LOWER_BOUND) ?
PCKD_TRGR_LOWER_BOUND : trigger - 1;
else
trigger = (trigger >= pckd_trgr_upper_bound) ?
pckd_trgr_upper_bound : trigger + 1;
/*
* an urgent read request indicates a packed list being interrupted
* by this read, therefore we aim for less packing, hence the trigger
* gets increased
*/
if (req && (req->cmd_flags & REQ_URGENT) && (rq_data_dir(req) == READ))
trigger += PCKD_TRGR_URGENT_PENALTY;
return trigger;
}
static void mmc_blk_write_packing_control(struct mmc_queue *mq,
struct request *req)
{
struct mmc_host *host = mq->card->host;
int data_dir;
if (!(host->caps2 & MMC_CAP2_PACKED_WR))
return;
/* Support for the write packing on eMMC 4.5 or later */
if (mq->card->ext_csd.rev <= 5)
return;
/*
* In case the packing control is not supported by the host, it should
* not have an effect on the write packing. Therefore we have to enable
* the write packing
*/
if (!(host->caps2 & MMC_CAP2_PACKED_WR_CONTROL)) {
mq->wr_packing_enabled = true;
return;
}
if (!req || (req && (req->cmd_flags & REQ_PREFLUSH))) {
if (mq->num_of_potential_packed_wr_reqs >
mq->num_wr_reqs_to_start_packing)
mq->wr_packing_enabled = true;
mq->num_wr_reqs_to_start_packing =
get_packed_trigger(mq->num_of_potential_packed_wr_reqs,
mq->card, req,
mq->num_wr_reqs_to_start_packing);
mq->num_of_potential_packed_wr_reqs = 0;
return;
}
data_dir = rq_data_dir(req);
if (data_dir == READ) {
mmc_blk_disable_wr_packing(mq);
mq->num_wr_reqs_to_start_packing =
get_packed_trigger(mq->num_of_potential_packed_wr_reqs,
mq->card, req,
mq->num_wr_reqs_to_start_packing);
mq->num_of_potential_packed_wr_reqs = 0;
mq->wr_packing_enabled = false;
return;
} else if (data_dir == WRITE) {
mq->num_of_potential_packed_wr_reqs++;
}
if (mq->num_of_potential_packed_wr_reqs >
mq->num_wr_reqs_to_start_packing)
mq->wr_packing_enabled = true;
}
struct mmc_wr_pack_stats *mmc_blk_get_packed_statistics(struct mmc_card *card)
{
if (!card)
return NULL;
return &card->wr_pack_stats;
}
EXPORT_SYMBOL(mmc_blk_get_packed_statistics);
void mmc_blk_init_packed_statistics(struct mmc_card *card)
{
int max_num_of_packed_reqs = 0;
if (!card || !card->wr_pack_stats.packing_events)
return;
max_num_of_packed_reqs = card->ext_csd.max_packed_writes;
spin_lock(&card->wr_pack_stats.lock);
memset(card->wr_pack_stats.packing_events, 0,
(max_num_of_packed_reqs + 1) *
sizeof(*card->wr_pack_stats.packing_events));
memset(&card->wr_pack_stats.pack_stop_reason, 0,
sizeof(card->wr_pack_stats.pack_stop_reason));
card->wr_pack_stats.enabled = true;
spin_unlock(&card->wr_pack_stats.lock);
}
EXPORT_SYMBOL(mmc_blk_init_packed_statistics);
static u8 mmc_blk_prep_packed_list(struct mmc_queue *mq, struct request *req)
{
struct request_queue *q = mq->queue;
struct mmc_card *card = mq->card;
struct request *cur = req, *next = NULL;
struct mmc_blk_data *md = mq->data;
struct mmc_queue_req *mqrq = mq->mqrq_cur;
bool en_rel_wr = card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN;
unsigned int req_sectors = 0, phys_segments = 0;
unsigned int max_blk_count, max_phys_segs;
bool put_back = true;
u8 max_packed_rw = 0;
u8 reqs = 0;
struct mmc_wr_pack_stats *stats = &card->wr_pack_stats;
/*
* We don't need to check packed for any further
* operation of packed stuff as we set MMC_PACKED_NONE
* and return zero for reqs if geting null packed. Also
* we clean the flag of MMC_BLK_PACKED_CMD to avoid doing
* it again when removing blk req.
*/
if (!mqrq->packed) {
md->flags &= (~MMC_BLK_PACKED_CMD);
goto no_packed;
}
if (!(md->flags & MMC_BLK_PACKED_CMD))
goto no_packed;
if (!mq->wr_packing_enabled)
goto no_packed;
if ((rq_data_dir(cur) == WRITE) &&
mmc_host_packed_wr(card->host))
max_packed_rw = card->ext_csd.max_packed_writes;
if (max_packed_rw == 0)
goto no_packed;
if (mmc_req_rel_wr(cur) &&
(md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
goto no_packed;
if (mmc_large_sector(card) &&
!IS_ALIGNED(blk_rq_sectors(cur), 8))
goto no_packed;
if (cur->cmd_flags & REQ_FUA)
goto no_packed;
mmc_blk_clear_packed(mqrq);
max_blk_count = min(card->host->max_blk_count,
card->host->max_req_size >> 9);
if (unlikely(max_blk_count > 0xffff))
max_blk_count = 0xffff;
max_phys_segs = queue_max_segments(q);
req_sectors += blk_rq_sectors(cur);
phys_segments += cur->nr_phys_segments;
if (rq_data_dir(cur) == WRITE) {
req_sectors += mmc_large_sector(card) ? 8 : 1;
phys_segments += mmc_calc_packed_hdr_segs(q, card);
}
spin_lock(&stats->lock);
do {
if (reqs >= max_packed_rw - 1) {
put_back = false;
break;
}
spin_lock_irq(q->queue_lock);
next = blk_fetch_request(q);
spin_unlock_irq(q->queue_lock);
if (!next) {
MMC_BLK_UPDATE_STOP_REASON(stats, EMPTY_QUEUE);
put_back = false;
break;
}
if (mmc_large_sector(card) &&
!IS_ALIGNED(blk_rq_sectors(next), 8)) {
MMC_BLK_UPDATE_STOP_REASON(stats, LARGE_SEC_ALIGN);
break;
}
if (req_op(next) == REQ_OP_DISCARD ||
req_op(next) == REQ_OP_SECURE_ERASE ||
req_op(next) == REQ_OP_FLUSH) {
if (req_op(next) != REQ_OP_SECURE_ERASE)
MMC_BLK_UPDATE_STOP_REASON(stats, FLUSH_OR_DISCARD);
break;
}
if (next->cmd_flags & REQ_FUA) {
MMC_BLK_UPDATE_STOP_REASON(stats, FUA);
break;
}
if (rq_data_dir(cur) != rq_data_dir(next)) {
MMC_BLK_UPDATE_STOP_REASON(stats, WRONG_DATA_DIR);
break;
}
if (mmc_req_rel_wr(next) &&
(md->flags & MMC_BLK_REL_WR) && !en_rel_wr) {
MMC_BLK_UPDATE_STOP_REASON(stats, REL_WRITE);
break;
}
req_sectors += blk_rq_sectors(next);
if (req_sectors > max_blk_count) {
if (stats->enabled)
stats->pack_stop_reason[EXCEEDS_SECTORS]++;
break;
}
phys_segments += next->nr_phys_segments;
if (phys_segments > max_phys_segs) {
MMC_BLK_UPDATE_STOP_REASON(stats, EXCEEDS_SEGMENTS);
break;
}
if (mq->no_pack_for_random) {
if ((blk_rq_pos(cur) + blk_rq_sectors(cur)) !=
blk_rq_pos(next)) {
MMC_BLK_UPDATE_STOP_REASON(stats, RANDOM);
put_back = 1;
break;
}
}
if (rq_data_dir(next) == WRITE)
mq->num_of_potential_packed_wr_reqs++;
list_add_tail(&next->queuelist, &mqrq->packed->list);
cur = next;
reqs++;
} while (1);
if (put_back) {
spin_lock_irq(q->queue_lock);
blk_requeue_request(q, next);
spin_unlock_irq(q->queue_lock);
}
if (stats->enabled) {
if (reqs + 1 <= card->ext_csd.max_packed_writes)
stats->packing_events[reqs + 1]++;
if (reqs + 1 == max_packed_rw)
MMC_BLK_UPDATE_STOP_REASON(stats, THRESHOLD);
}
spin_unlock(&stats->lock);
if (reqs > 0) {
list_add(&req->queuelist, &mqrq->packed->list);
mqrq->packed->nr_entries = ++reqs;
mqrq->packed->retries = reqs;
return reqs;
}
no_packed:
mqrq->cmd_type = MMC_PACKED_NONE;
return 0;
}
static void mmc_blk_packed_hdr_wrq_prep(struct mmc_queue_req *mqrq,
struct mmc_card *card,
struct mmc_queue *mq)
{
struct mmc_blk_request *brq = &mqrq->brq;
struct request *req = mqrq->req;
struct request *prq;
struct mmc_blk_data *md = mq->data;
struct mmc_packed *packed = mqrq->packed;
bool do_rel_wr, do_data_tag;
__le32 *packed_cmd_hdr;
u8 hdr_blocks;
u8 i = 1;
mqrq->cmd_type = MMC_PACKED_WRITE;
packed->blocks = 0;
packed->idx_failure = MMC_PACKED_NR_IDX;
packed_cmd_hdr = packed->cmd_hdr;
memset(packed_cmd_hdr, 0, sizeof(packed->cmd_hdr));
packed_cmd_hdr[0] = cpu_to_le32((packed->nr_entries << 16) |
(PACKED_CMD_WR << 8) | PACKED_CMD_VER);
hdr_blocks = mmc_large_sector(card) ? 8 : 1;
/*
* Argument for each entry of packed group
*/
list_for_each_entry(prq, &packed->list, queuelist) {
do_rel_wr = mmc_req_rel_wr(prq) && (md->flags & MMC_BLK_REL_WR);
do_data_tag = (card->ext_csd.data_tag_unit_size) &&
(prq->cmd_flags & REQ_META) &&
(rq_data_dir(prq) == WRITE) &&
blk_rq_bytes(prq) >= card->ext_csd.data_tag_unit_size;
/* Argument of CMD23 */
packed_cmd_hdr[(i * 2)] = cpu_to_le32(
(do_rel_wr ? MMC_CMD23_ARG_REL_WR : 0) |
(do_data_tag ? MMC_CMD23_ARG_TAG_REQ : 0) |
blk_rq_sectors(prq));
/* Argument of CMD18 or CMD25 */
packed_cmd_hdr[((i * 2)) + 1] = cpu_to_le32(
mmc_card_blockaddr(card) ?
blk_rq_pos(prq) : blk_rq_pos(prq) << 9);
packed->blocks += blk_rq_sectors(prq);
i++;
}
memset(brq, 0, sizeof(struct mmc_blk_request));
brq->mrq.cmd = &brq->cmd;
brq->mrq.data = &brq->data;
brq->mrq.sbc = &brq->sbc;
brq->mrq.stop = &brq->stop;
brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
brq->sbc.arg = MMC_CMD23_ARG_PACKED | (packed->blocks + hdr_blocks);
brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
brq->cmd.opcode = MMC_WRITE_MULTIPLE_BLOCK;
brq->cmd.arg = blk_rq_pos(req);
if (!mmc_card_blockaddr(card))
brq->cmd.arg <<= 9;
brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
brq->data.blksz = 512;
brq->data.blocks = packed->blocks + hdr_blocks;
brq->data.flags = MMC_DATA_WRITE;
brq->data.fault_injected = false;
brq->stop.opcode = MMC_STOP_TRANSMISSION;
brq->stop.arg = 0;
brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
mmc_set_data_timeout(&brq->data, card);
brq->data.sg = mqrq->sg;
brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
mqrq->mmc_active.mrq = &brq->mrq;
/*
* This is intended for packed commands tests usage - in case these
* functions are not in use the respective pointers are NULL
*/
if (mq->err_check_fn)
mqrq->mmc_active.err_check = mq->err_check_fn;
else
mqrq->mmc_active.err_check = mmc_blk_packed_err_check;
if (mq->packed_test_fn)
mq->packed_test_fn(mq->queue, mqrq);
mmc_queue_bounce_pre(mqrq);
}
static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
struct mmc_blk_request *brq, struct request *req,
int ret)
{
struct mmc_queue_req *mq_rq;
mq_rq = container_of(brq, struct mmc_queue_req, brq);
/*
* If this is an SD card and we're writing, we can first
* mark the known good sectors as ok.
*
* If the card is not SD, we can still ok written sectors
* as reported by the controller (which might be less than
* the real number of written sectors, but never more).
*/
if (mmc_card_sd(card)) {
u32 blocks;
if (!brq->data.fault_injected) {
blocks = mmc_sd_num_wr_blocks(card);
if (blocks != (u32)-1)
ret = blk_end_request(req, 0, blocks << 9);
} else
ret = blk_end_request(req, 0, brq->data.bytes_xfered);
} else {
if (!mmc_packed_cmd(mq_rq->cmd_type))
ret = blk_end_request(req, 0, brq->data.bytes_xfered);
}
return ret;
}
static int mmc_blk_end_packed_req(struct mmc_queue_req *mq_rq)
{
struct request *prq;
struct mmc_packed *packed = mq_rq->packed;
int idx = packed->idx_failure, i = 0;
int ret = 0;
while (!list_empty(&packed->list)) {
prq = list_entry_rq(packed->list.next);
if (idx == i) {
/* retry from error index */
packed->nr_entries -= idx;
mq_rq->req = prq;
ret = 1;
if (packed->nr_entries == MMC_PACKED_NR_SINGLE) {
list_del_init(&prq->queuelist);
mmc_blk_clear_packed(mq_rq);
}
return ret;
}
list_del_init(&prq->queuelist);
blk_end_request(prq, 0, blk_rq_bytes(prq));
i++;
}
mmc_blk_clear_packed(mq_rq);
return ret;
}
static void mmc_blk_abort_packed_req(struct mmc_queue_req *mq_rq)
{
struct request *prq;
struct mmc_packed *packed = mq_rq->packed;
while (!list_empty(&packed->list)) {
prq = list_entry_rq(packed->list.next);
list_del_init(&prq->queuelist);
blk_end_request(prq, -EIO, blk_rq_bytes(prq));
}
mmc_blk_clear_packed(mq_rq);
}
static void mmc_blk_revert_packed_req(struct mmc_queue *mq,
struct mmc_queue_req *mq_rq)
{
struct request *prq;
struct request_queue *q = mq->queue;
struct mmc_packed *packed = mq_rq->packed;
while (!list_empty(&packed->list)) {
prq = list_entry_rq(packed->list.prev);
if (prq->queuelist.prev != &packed->list) {
list_del_init(&prq->queuelist);
spin_lock_irq(q->queue_lock);
blk_requeue_request(mq->queue, prq);
spin_unlock_irq(q->queue_lock);
} else {
list_del_init(&prq->queuelist);
}
}
mmc_blk_clear_packed(mq_rq);
}
static int mmc_blk_cmdq_start_req(struct mmc_host *host,
struct mmc_cmdq_req *cmdq_req)
{
struct mmc_request *mrq = &cmdq_req->mrq;
mrq->done = mmc_blk_cmdq_req_done;
return mmc_cmdq_start_req(host, cmdq_req);
}
/* prepare for non-data commands */
static struct mmc_cmdq_req *mmc_cmdq_prep_dcmd(
struct mmc_queue_req *mqrq, struct mmc_queue *mq)
{
struct request *req = mqrq->req;
struct mmc_cmdq_req *cmdq_req = &mqrq->cmdq_req;
memset(&mqrq->cmdq_req, 0, sizeof(struct mmc_cmdq_req));
cmdq_req->mrq.data = NULL;
cmdq_req->cmd_flags = req->cmd_flags;
cmdq_req->mrq.req = mqrq->req;
req->special = mqrq;
cmdq_req->cmdq_req_flags |= DCMD;
cmdq_req->mrq.cmdq_req = cmdq_req;
return &mqrq->cmdq_req;
}
#define IS_RT_CLASS_REQ(x) \
(IOPRIO_PRIO_CLASS(req_get_ioprio(x)) == IOPRIO_CLASS_RT)
static struct mmc_cmdq_req *mmc_blk_cmdq_rw_prep(
struct mmc_queue_req *mqrq, struct mmc_queue *mq)
{
struct mmc_card *card = mq->card;
struct request *req = mqrq->req;
struct mmc_blk_data *md = mq->data;
bool do_rel_wr = mmc_req_rel_wr(req) && (md->flags & MMC_BLK_REL_WR);
bool do_data_tag;
bool read_dir = (rq_data_dir(req) == READ);
bool prio = IS_RT_CLASS_REQ(req);
struct mmc_cmdq_req *cmdq_rq = &mqrq->cmdq_req;
memset(&mqrq->cmdq_req, 0, sizeof(struct mmc_cmdq_req));
cmdq_rq->tag = req->tag;
if (read_dir) {
cmdq_rq->cmdq_req_flags |= DIR;
cmdq_rq->data.flags = MMC_DATA_READ;
} else {
cmdq_rq->data.flags = MMC_DATA_WRITE;
}
if (prio)
cmdq_rq->cmdq_req_flags |= PRIO;
if (do_rel_wr)
cmdq_rq->cmdq_req_flags |= REL_WR;
cmdq_rq->data.blocks = blk_rq_sectors(req);
cmdq_rq->blk_addr = blk_rq_pos(req);
cmdq_rq->data.blksz = MMC_CARD_CMDQ_BLK_SIZE;
mmc_set_data_timeout(&cmdq_rq->data, card);
do_data_tag = (card->ext_csd.data_tag_unit_size) &&
(req->cmd_flags & REQ_META) &&
(rq_data_dir(req) == WRITE) &&
((cmdq_rq->data.blocks * cmdq_rq->data.blksz) >=
card->ext_csd.data_tag_unit_size);
if (do_data_tag)
cmdq_rq->cmdq_req_flags |= DAT_TAG;
cmdq_rq->data.sg = mqrq->sg;
cmdq_rq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
/*
* Adjust the sg list so it is the same size as the
* request.
*/
if (cmdq_rq->data.blocks > card->host->max_blk_count)
cmdq_rq->data.blocks = card->host->max_blk_count;
if (cmdq_rq->data.blocks != blk_rq_sectors(req)) {
int i, data_size = cmdq_rq->data.blocks << 9;
struct scatterlist *sg;
for_each_sg(cmdq_rq->data.sg, sg, cmdq_rq->data.sg_len, i) {
data_size -= sg->length;
if (data_size <= 0) {
sg->length += data_size;
i++;
break;
}
}
cmdq_rq->data.sg_len = i;
}
mqrq->cmdq_req.cmd_flags = req->cmd_flags;
mqrq->cmdq_req.mrq.req = mqrq->req;
mqrq->cmdq_req.mrq.cmdq_req = &mqrq->cmdq_req;
mqrq->cmdq_req.mrq.data = &mqrq->cmdq_req.data;
mqrq->req->special = mqrq;
pr_debug("%s: %s: mrq: 0x%p req: 0x%p mqrq: 0x%p bytes to xf: %d mmc_cmdq_req: 0x%p card-addr: 0x%08x dir(r-1/w-0): %d\n",
mmc_hostname(card->host), __func__, &mqrq->cmdq_req.mrq,
mqrq->req, mqrq, (cmdq_rq->data.blocks * cmdq_rq->data.blksz),
cmdq_rq, cmdq_rq->blk_addr,
(cmdq_rq->cmdq_req_flags & DIR) ? 1 : 0);
return &mqrq->cmdq_req;
}
static void mmc_blk_cmdq_requeue_rw_rq(struct mmc_queue *mq,
struct request *req)
{
struct mmc_card *card = mq->card;
struct mmc_host *host = card->host;
blk_requeue_request(req->q, req);
mmc_put_card(host->card);
}
static int mmc_blk_cmdq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
{
struct mmc_queue_req *active_mqrq;
struct mmc_card *card = mq->card;
struct mmc_host *host = card->host;
struct mmc_cmdq_context_info *ctx = &host->cmdq_ctx;
struct mmc_cmdq_req *mc_rq;
u8 active_small_sector_read = 0;
int ret = 0;
mmc_deferred_scaling(host);
mmc_cmdq_clk_scaling_start_busy(host, true);
BUG_ON((req->tag < 0) || (req->tag > card->ext_csd.cmdq_depth));
BUG_ON(test_and_set_bit(req->tag, &host->cmdq_ctx.data_active_reqs));
BUG_ON(test_and_set_bit(req->tag, &host->cmdq_ctx.active_reqs));
active_mqrq = &mq->mqrq_cmdq[req->tag];
active_mqrq->req = req;
mc_rq = mmc_blk_cmdq_rw_prep(active_mqrq, mq);
if (card->quirks & MMC_QUIRK_CMDQ_EMPTY_BEFORE_DCMD) {
unsigned int sectors = blk_rq_sectors(req);
if (((sectors > 0) && (sectors < 8))
&& (rq_data_dir(req) == READ))
active_small_sector_read = 1;
}
ret = mmc_blk_cmdq_start_req(card->host, mc_rq);
if (!ret && active_small_sector_read)
host->cmdq_ctx.active_small_sector_read_reqs++;
/*
* When in SVS2 on low load scenario and there are lots of requests
* queued for CMDQ we need to wait till the queue is empty to scale
* back up to Nominal even if there is a sudden increase in load.
* This impacts performance where lots of IO get executed in SVS2
* frequency since the queue is full. As SVS2 is a low load use case
* we can serialize the requests and not queue them in parallel
* without impacting other use cases. This makes sure the queue gets
* empty faster and we will be able to scale up to Nominal frequency
* when needed.
*/
if (!ret && (host->clk_scaling.state == MMC_LOAD_LOW))
wait_event_interruptible(ctx->queue_empty_wq,
(!ctx->active_reqs));
if (ret) {
/* clear pending request */
WARN_ON(!test_and_clear_bit(req->tag,
&host->cmdq_ctx.data_active_reqs));
WARN_ON(!test_and_clear_bit(req->tag,
&host->cmdq_ctx.active_reqs));
mmc_cmdq_clk_scaling_stop_busy(host, true, false);
}
return ret;
}
/*
* Issues a flush (dcmd) request
*/
int mmc_blk_cmdq_issue_flush_rq(struct mmc_queue *mq, struct request *req)
{
int err;
struct mmc_queue_req *active_mqrq;
struct mmc_card *card = mq->card;
struct mmc_host *host;
struct mmc_cmdq_req *cmdq_req;
struct mmc_cmdq_context_info *ctx_info;
BUG_ON(!card);
host = card->host;
BUG_ON(!host);
BUG_ON(req->tag > card->ext_csd.cmdq_depth);
BUG_ON(test_and_set_bit(req->tag, &host->cmdq_ctx.active_reqs));
ctx_info = &host->cmdq_ctx;
set_bit(CMDQ_STATE_DCMD_ACTIVE, &ctx_info->curr_state);
active_mqrq = &mq->mqrq_cmdq[req->tag];
active_mqrq->req = req;
cmdq_req = mmc_cmdq_prep_dcmd(active_mqrq, mq);
cmdq_req->cmdq_req_flags |= QBR;
cmdq_req->mrq.cmd = &cmdq_req->cmd;
cmdq_req->tag = req->tag;
err = mmc_cmdq_prepare_flush(cmdq_req->mrq.cmd);
if (err) {
pr_err("%s: failed (%d) preparing flush req\n",
mmc_hostname(host), err);
return err;
}
err = mmc_blk_cmdq_start_req(card->host, cmdq_req);
return err;
}
EXPORT_SYMBOL(mmc_blk_cmdq_issue_flush_rq);
static void mmc_blk_cmdq_reset(struct mmc_host *host, bool clear_all)
{
int err = 0;
if (mmc_cmdq_halt(host, true)) {
pr_err("%s: halt failed\n", mmc_hostname(host));
goto reset;
}
if (clear_all)
mmc_cmdq_discard_queue(host, 0);
reset:
mmc_host_clk_hold(host);
host->cmdq_ops->disable(host, true);
mmc_host_clk_release(host);
err = mmc_cmdq_hw_reset(host);
if (err && err != -EOPNOTSUPP) {
pr_err("%s: failed to cmdq_hw_reset err = %d\n",
mmc_hostname(host), err);
mmc_host_clk_hold(host);
host->cmdq_ops->enable(host);
mmc_host_clk_release(host);
mmc_cmdq_halt(host, false);
goto out;
}
/*
* CMDQ HW reset would have already made CQE
* in unhalted state, but reflect the same
* in software state of cmdq_ctx.
*/
mmc_host_clr_halt(host);
out:
return;
}
/**
* is_cmdq_dcmd_req - Checks if tag belongs to DCMD request.
* @q: request_queue pointer.
* @tag: tag number of request to check.
*
* This function checks if the request with tag number "tag"
* is a DCMD request or not based on cmdq_req_flags set.
*
* returns true if DCMD req, otherwise false.
*/
static bool is_cmdq_dcmd_req(struct request_queue *q, int tag)
{
struct request *req;
struct mmc_queue_req *mq_rq;
struct mmc_cmdq_req *cmdq_req;
req = blk_queue_find_tag(q, tag);
if (WARN_ON(!req))
goto out;
mq_rq = req->special;
if (WARN_ON(!mq_rq))
goto out;
cmdq_req = &(mq_rq->cmdq_req);
return (cmdq_req->cmdq_req_flags & DCMD);
out:
return -ENOENT;
}
/**
* mmc_blk_cmdq_reset_all - Reset everything for CMDQ block request.
* @host: mmc_host pointer.
* @err: error for which reset is performed.
*
* This function implements reset_all functionality for
* cmdq. It resets the controller, power cycle the card,
* and invalidate all busy tags(requeue all request back to
* elevator).
*/
static void mmc_blk_cmdq_reset_all(struct mmc_host *host, int err)
{
struct mmc_request *mrq = host->err_mrq;
struct mmc_card *card = host->card;
struct mmc_cmdq_context_info *ctx_info = &host->cmdq_ctx;
struct request_queue *q;
int itag = 0;
int ret = 0;
if (WARN_ON(!mrq))
return;
q = mrq->req->q;
WARN_ON(!test_bit(CMDQ_STATE_ERR, &ctx_info->curr_state));
#ifdef CONFIG_MMC_CLKGATE
pr_debug("%s: %s: active_reqs = %lu, clk_requests = %d\n",
mmc_hostname(host), __func__,
ctx_info->active_reqs, host->clk_requests);
#endif
mmc_blk_cmdq_reset(host, false);
for_each_set_bit(itag, &ctx_info->active_reqs,
host->num_cq_slots) {
ret = is_cmdq_dcmd_req(q, itag);
if (WARN_ON(ret == -ENOENT))
continue;
if (!ret) {
WARN_ON(!test_and_clear_bit(itag,
&ctx_info->data_active_reqs));
mmc_cmdq_post_req(host, itag, err);
} else {
clear_bit(CMDQ_STATE_DCMD_ACTIVE,
&ctx_info->curr_state);
}
WARN_ON(!test_and_clear_bit(itag,
&ctx_info->active_reqs));
mmc_host_clk_release(host);
mmc_put_card(card);
}
spin_lock_irq(q->queue_lock);
blk_queue_invalidate_tags(q);
spin_unlock_irq(q->queue_lock);
}
static void mmc_blk_cmdq_shutdown(struct mmc_queue *mq)
{
int err;
struct mmc_card *card = mq->card;
struct mmc_host *host = card->host;
mmc_get_card(card);
mmc_host_clk_hold(host);
err = mmc_cmdq_halt(host, true);
if (err) {
pr_err("%s: halt: failed: %d\n", __func__, err);
goto out;
}
/* disable CQ mode in card */
if (mmc_card_cmdq(card)) {
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_CMDQ, 0,
card->ext_csd.generic_cmd6_time);
if (err) {
pr_err("%s: failed to switch card to legacy mode: %d\n",
__func__, err);
goto out;
}
mmc_card_clr_cmdq(card);
}
host->cmdq_ops->disable(host, false);
host->card->cmdq_init = false;
out:
mmc_host_clk_release(host);
mmc_put_card(card);
}
static enum blk_eh_timer_return mmc_blk_cmdq_req_timed_out(struct request *req)
{
struct mmc_queue *mq = req->q->queuedata;
struct mmc_host *host = mq->card->host;
struct mmc_queue_req *mq_rq = req->special;
struct mmc_request *mrq;
struct mmc_cmdq_req *cmdq_req;
struct mmc_cmdq_context_info *ctx_info = &host->cmdq_ctx;
BUG_ON(!host);
/*
* The mmc_queue_req will be present only if the request
* is issued to the LLD. The request could be fetched from
* block layer queue but could be waiting to be issued
* (for e.g. clock scaling is waiting for an empty cmdq queue)
* Reset the timer in such cases to give LLD more time
*/
if (!mq_rq) {
pr_warn("%s: restart timer for tag: %d\n", __func__, req->tag);
return BLK_EH_RESET_TIMER;
}
mrq = &mq_rq->cmdq_req.mrq;
cmdq_req = &mq_rq->cmdq_req;
BUG_ON(!mrq || !cmdq_req);
if (cmdq_req->cmdq_req_flags & DCMD)
mrq->cmd->error = -ETIMEDOUT;
else
mrq->data->error = -ETIMEDOUT;
host->err_stats[MMC_ERR_CMDQ_REQ_TIMEOUT]++;
if (mrq->cmd && mrq->cmd->error) {
if (!(mrq->req->cmd_flags & REQ_PREFLUSH)) {
/*
* Notify completion for non flush commands like
* discard that wait for DCMD finish.
*/
set_bit(CMDQ_STATE_REQ_TIMED_OUT,
&ctx_info->curr_state);
complete(&mrq->completion);
return BLK_EH_NOT_HANDLED;
}
}
if (test_bit(CMDQ_STATE_REQ_TIMED_OUT, &ctx_info->curr_state) ||
test_bit(CMDQ_STATE_ERR, &ctx_info->curr_state))
return BLK_EH_NOT_HANDLED;
set_bit(CMDQ_STATE_REQ_TIMED_OUT, &ctx_info->curr_state);
return BLK_EH_HANDLED;
}
/*
* mmc_blk_cmdq_err: error handling of cmdq error requests.
* Function should be called in context of error out request
* which has claim_host and rpm acquired.
* This may be called with CQ engine halted. Make sure to
* unhalt it after error recovery.
*
* TODO: Currently cmdq error handler does reset_all in case
* of any erorr. Need to optimize error handling.
*/
static void mmc_blk_cmdq_err(struct mmc_queue *mq)
{
struct mmc_host *host = mq->card->host;
struct mmc_request *mrq = host->err_mrq;
struct mmc_cmdq_context_info *ctx_info = &host->cmdq_ctx;
struct request_queue *q;
int err, ret;
u32 status = 0;
mmc_host_clk_hold(host);
host->cmdq_ops->dumpstate(host);
mmc_host_clk_release(host);
if (WARN_ON(!mrq))
return;
q = mrq->req->q;
err = mmc_cmdq_halt(host, true);
if (err) {
pr_err("halt: failed: %d\n", err);
goto reset;
}
/* RED error - Fatal: requires reset */
if (mrq->cmdq_req->resp_err) {
err = mrq->cmdq_req->resp_err;
goto reset;
}
/*
* TIMEOUT errrors can happen because of execution error
* in the last command. So send cmd 13 to get device status
*/
if ((mrq->cmd && (mrq->cmd->error == -ETIMEDOUT)) ||
(mrq->data && (mrq->data->error == -ETIMEDOUT))) {
if (mmc_host_halt(host) || mmc_host_cq_disable(host)) {
ret = get_card_status(host->card, &status, 0);
if (ret)
pr_err("%s: CMD13 failed with err %d\n",
mmc_hostname(host), ret);
}
pr_err("%s: Timeout error detected with device status 0x%08x\n",
mmc_hostname(host), status);
}
/*
* In case of software request time-out, we schedule err work only for
* the first error out request and handles all other request in flight
* here.
*/
if (test_bit(CMDQ_STATE_REQ_TIMED_OUT, &ctx_info->curr_state)) {
err = -ETIMEDOUT;
} else if (mrq->data && mrq->data->error) {
err = mrq->data->error;
} else if (mrq->cmd && mrq->cmd->error) {
/* DCMD commands */
err = mrq->cmd->error;
}
reset:
mmc_blk_cmdq_reset_all(host, err);
if (mrq->cmdq_req->resp_err)
mrq->cmdq_req->resp_err = false;
mmc_cmdq_halt(host, false);
host->err_mrq = NULL;
clear_bit(CMDQ_STATE_REQ_TIMED_OUT, &ctx_info->curr_state);
WARN_ON(!test_and_clear_bit(CMDQ_STATE_ERR, &ctx_info->curr_state));
wake_up(&ctx_info->wait);
}
/* invoked by block layer in softirq context */
void mmc_blk_cmdq_complete_rq(struct request *rq)
{
struct mmc_queue_req *mq_rq = rq->special;
struct mmc_request *mrq = &mq_rq->cmdq_req.mrq;
struct mmc_host *host = mrq->host;
struct mmc_cmdq_context_info *ctx_info = &host->cmdq_ctx;
struct mmc_cmdq_req *cmdq_req = &mq_rq->cmdq_req;
struct mmc_queue *mq = (struct mmc_queue *)rq->q->queuedata;
int err = 0;
bool is_dcmd = false;
if (mrq->cmd && mrq->cmd->error)
err = mrq->cmd->error;
else if (mrq->data && mrq->data->error)
err = mrq->data->error;
if ((err || cmdq_req->resp_err) && !cmdq_req->skip_err_handling) {
pr_err("%s: %s: txfr error(%d)/resp_err(%d)\n",
mmc_hostname(mrq->host), __func__, err,
cmdq_req->resp_err);
if (test_bit(CMDQ_STATE_ERR, &ctx_info->curr_state)) {
pr_err("%s: CQ in error state, ending current req: %d\n",
__func__, err);
} else {
set_bit(CMDQ_STATE_ERR, &ctx_info->curr_state);
BUG_ON(host->err_mrq != NULL);
host->err_mrq = mrq;
schedule_work(&mq->cmdq_err_work);
}
goto out;
}
/*
* In case of error CMDQ is expected to be either in halted
* or disable state so cannot receive any completion of
* other requests.
*/
BUG_ON(test_bit(CMDQ_STATE_ERR, &ctx_info->curr_state));
/* clear pending request */
BUG_ON(!test_and_clear_bit(cmdq_req->tag,
&ctx_info->active_reqs));
if (cmdq_req->cmdq_req_flags & DCMD)
is_dcmd = true;
else
BUG_ON(!test_and_clear_bit(cmdq_req->tag,
&ctx_info->data_active_reqs));
if (!is_dcmd)
mmc_cmdq_post_req(host, cmdq_req->tag, err);
if (cmdq_req->cmdq_req_flags & DCMD) {
clear_bit(CMDQ_STATE_DCMD_ACTIVE, &ctx_info->curr_state);
blk_end_request_all(rq, err);
goto out;
}
/*
* In case of error, cmdq_req->data.bytes_xfered is set to 0.
* If we call blk_end_request() with nr_bytes as 0 then the request
* never gets completed. So in case of error, to complete a request
* with error we should use blk_end_request_all().
*/
if (err && cmdq_req->skip_err_handling) {
cmdq_req->skip_err_handling = false;
blk_end_request_all(rq, err);
goto out;
}
blk_end_request(rq, err, cmdq_req->data.bytes_xfered);
out:
mmc_cmdq_clk_scaling_stop_busy(host, true, is_dcmd);
if (!test_bit(CMDQ_STATE_ERR, &ctx_info->curr_state)) {
mmc_host_clk_release(host);
wake_up(&ctx_info->wait);
mmc_put_card(host->card);
}
if (!ctx_info->active_reqs)
wake_up_interruptible(&host->cmdq_ctx.queue_empty_wq);
if (blk_queue_stopped(mq->queue) && !ctx_info->active_reqs)
complete(&mq->cmdq_shutdown_complete);
return;
}
/*
* Complete reqs from block layer softirq context
* Invoked in irq context
*/
void mmc_blk_cmdq_req_done(struct mmc_request *mrq)
{
struct request *req = mrq->req;
blk_complete_request(req);
}
EXPORT_SYMBOL(mmc_blk_cmdq_req_done);
static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
{
struct mmc_blk_data *md = mq->data;
struct mmc_card *card = md->queue.card;
struct mmc_blk_request *brq = &mq->mqrq_cur->brq;
int ret = 1, disable_multi = 0, retry = 0, type, retune_retry_done = 0;
enum mmc_blk_status status;
struct mmc_queue_req *mq_rq;
struct request *req = rqc;
struct mmc_async_req *areq;
const u8 packed_nr = 2;
u8 reqs = 0;
bool reset = false;
#ifdef CONFIG_MMC_SIMULATE_MAX_SPEED
unsigned long waitfor = jiffies;
#endif
if (!rqc && !mq->mqrq_prev->req)
return 0;
if (rqc)
reqs = mmc_blk_prep_packed_list(mq, rqc);
do {
if (rqc) {
/*
* When 4KB native sector is enabled, only 8 blocks
* multiple read or write is allowed
*/
if (mmc_large_sector(card) &&
!IS_ALIGNED(blk_rq_sectors(rqc), 8)) {
pr_err("%s: Transfer size is not 4KB sector size aligned\n",
req->rq_disk->disk_name);
mq_rq = mq->mqrq_cur;
goto cmd_abort;
}
if (reqs >= packed_nr)
mmc_blk_packed_hdr_wrq_prep(mq->mqrq_cur,
card, mq);
else
mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
areq = &mq->mqrq_cur->mmc_active;
} else
areq = NULL;
areq = mmc_start_req(card->host, areq, (int *) &status);
if (!areq) {
if (status == MMC_BLK_NEW_REQUEST)
set_bit(MMC_QUEUE_NEW_REQUEST, &mq->flags);
return 0;
}
mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
brq = &mq_rq->brq;
req = mq_rq->req;
type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
mmc_queue_bounce_post(mq_rq);
if (card->err_in_sdr104) {
/*
* Data CRC/timeout errors will manifest as CMD/DATA
* ERR. But we'd like to retry these too.
* Moreover, no harm done if this fails too for multiple
* times, we anyway reduce the bus-speed and retry the
* same request.
* If that fails too, we don't override this status.
*/
if (status == MMC_BLK_ABORT ||
status == MMC_BLK_CMD_ERR ||
status == MMC_BLK_DATA_ERR ||
status == MMC_BLK_RETRY)
/* reset on all of these errors and retry */
reset = true;
status = MMC_BLK_RETRY;
card->err_in_sdr104 = false;
}
switch (status) {
case MMC_BLK_SUCCESS:
case MMC_BLK_PARTIAL:
/*
* A block was successfully transferred.
*/
mmc_blk_reset_success(md, type);
mmc_blk_simulate_delay(mq, rqc, waitfor);
if (mmc_packed_cmd(mq_rq->cmd_type)) {
ret = mmc_blk_end_packed_req(mq_rq);
break;
} else {
ret = blk_end_request(req, 0,
brq->data.bytes_xfered);
}
/*
* If the blk_end_request function returns non-zero even
* though all data has been transferred and no errors
* were returned by the host controller, it's a bug.
*/
if (status == MMC_BLK_SUCCESS && ret) {
pr_err("%s BUG rq_tot %d d_xfer %d\n",
__func__, blk_rq_bytes(req),
brq->data.bytes_xfered);
rqc = NULL;
goto cmd_abort;
}
break;
case MMC_BLK_CMD_ERR:
ret = mmc_blk_cmd_err(md, card, brq, req, ret);
if (mmc_blk_reset(md, card->host, type))
goto cmd_abort;
if (!ret)
goto start_new_req;
break;
case MMC_BLK_RETRY:
retune_retry_done = brq->retune_retry_done;
if (retry++ < MMC_BLK_MAX_RETRIES) {
break;
} else if (reset) {
reset = false;
/*
* If we exhaust all the retries due to
* CRC/timeout errors in SDR140 mode with UHS SD
* cards, re-configure the card in SDR50
* bus-speed mode.
* All subsequent re-init of this card will be
* in SDR50 mode, unless it is removed and
* re-inserted. When new UHS SD cards are
* inserted, it may start at SDR104 mode if
* supported by the card.
*/
pr_err("%s: blocked SDR104, lower the bus-speed (SDR50 / DDR50)\n",
req->rq_disk->disk_name);
mmc_host_clear_sdr104(card->host);
mmc_suspend_clk_scaling(card->host);
mmc_blk_reset(md, card->host, type);
/* SDR104 mode is blocked from now on */
card->sdr104_blocked = true;
/* retry 5 times again */
retry = 0;
break;
}
/* Fall through */
case MMC_BLK_ABORT:
if (!mmc_blk_reset(md, card->host, type) &&
(retry++ < (MMC_BLK_MAX_RETRIES + 1)))
break;
goto cmd_abort;
case MMC_BLK_DATA_ERR: {
int err;
err = mmc_blk_reset(md, card->host, type);
if (!err)
break;
goto cmd_abort;
}
case MMC_BLK_ECC_ERR:
if (brq->data.blocks > 1) {
/* Redo read one sector at a time */
pr_warn("%s: retrying using single block read\n",
req->rq_disk->disk_name);
disable_multi = 1;
break;
}
/*
* After an error, we redo I/O one sector at a
* time, so we only reach here after trying to
* read a single sector.
*/
ret = blk_end_request(req, -EIO,
brq->data.blksz);
if (!ret)
goto start_new_req;
break;
case MMC_BLK_NOMEDIUM:
goto cmd_abort;
default:
pr_err("%s: Unhandled return value (%d)",
req->rq_disk->disk_name, status);
goto cmd_abort;
}
if (ret) {
if (mmc_packed_cmd(mq_rq->cmd_type)) {
if (!mq_rq->packed->retries)
goto cmd_abort;
mmc_blk_packed_hdr_wrq_prep(mq_rq, card, mq);
mmc_start_req(card->host,
&mq_rq->mmc_active, NULL);
} else {
/*
* In case of a incomplete request
* prepare it again and resend.
*/
mmc_blk_rw_rq_prep(mq_rq, card,
disable_multi, mq);
mmc_start_req(card->host,
&mq_rq->mmc_active, NULL);
}
mq_rq->brq.retune_retry_done = retune_retry_done;
}
} while (ret);
return 1;
cmd_abort:
if (mmc_packed_cmd(mq_rq->cmd_type)) {
mmc_blk_abort_packed_req(mq_rq);
} else {
if (mmc_card_removed(card))
req->cmd_flags |= REQ_QUIET;
while (ret)
ret = blk_end_request(req, -EIO,
blk_rq_cur_bytes(req));
}
start_new_req:
if (rqc) {
if (mmc_card_removed(card)) {
rqc->cmd_flags |= REQ_QUIET;
blk_end_request_all(rqc, -EIO);
} else {
/*
* If current request is packed, it needs to put back.
*/
if (mmc_packed_cmd(mq->mqrq_cur->cmd_type))
mmc_blk_revert_packed_req(mq, mq->mqrq_cur);
mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
mmc_start_req(card->host,
&mq->mqrq_cur->mmc_active, NULL);
}
}
return 0;
}
static inline int mmc_blk_cmdq_part_switch(struct mmc_card *card,
struct mmc_blk_data *md)
{
struct mmc_blk_data *main_md = mmc_get_drvdata(card);
struct mmc_host *host = card->host;
struct mmc_cmdq_context_info *ctx = &host->cmdq_ctx;
u8 part_config = card->ext_csd.part_config;
int ret = 0, err = 0;
if ((main_md->part_curr == md->part_type) &&
(card->part_curr == md->part_type))
return 0;
WARN_ON(!((card->host->caps2 & MMC_CAP2_CMD_QUEUE) &&
card->ext_csd.cmdq_support &&
(md->flags & MMC_BLK_CMD_QUEUE)));
if (!test_bit(CMDQ_STATE_HALT, &ctx->curr_state)) {
ret = mmc_cmdq_halt(host, true);
if (ret) {
pr_err("%s: %s: halt: failed: %d\n",
mmc_hostname(host), __func__, ret);
goto out;
}
}
/* disable CQ mode in card */
if (mmc_card_cmdq(card)) {
ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_CMDQ, 0,
card->ext_csd.generic_cmd6_time);
if (ret) {
pr_err("%s: %s: cmdq mode disable failed %d\n",
mmc_hostname(host), __func__, ret);
goto cmdq_unhalt;
}
mmc_card_clr_cmdq(card);
}
part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
part_config |= md->part_type;
ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_PART_CONFIG, part_config,
card->ext_csd.part_time);
if (ret) {
pr_err("%s: %s: mmc_switch failure, %d -> %d , err = %d\n",
mmc_hostname(host), __func__, main_md->part_curr,
md->part_type, ret);
goto cmdq_switch;
}
card->ext_csd.part_config = part_config;
card->part_curr = md->part_type;
main_md->part_curr = md->part_type;
cmdq_switch:
err = mmc_blk_cmdq_switch(card, md, true);
if (err) {
pr_err("%s: %s: mmc_blk_cmdq_switch failed: %d\n",
mmc_hostname(host), __func__, err);
ret = err;
}
cmdq_unhalt:
err = mmc_cmdq_halt(host, false);
if (err) {
pr_err("%s: %s: unhalt: failed: %d\n",
mmc_hostname(host), __func__, err);
ret = err;
}
out:
return ret;
}
static int mmc_blk_cmdq_issue_rq(struct mmc_queue *mq, struct request *req)
{
int ret, err = 0;
struct mmc_blk_data *md = mq->data;
struct mmc_card *card = md->queue.card;
struct mmc_host *host = card->host;
mmc_get_card(card);
if (!card->host->cmdq_ctx.active_reqs && mmc_card_doing_bkops(card)) {
ret = mmc_cmdq_halt(card->host, true);
if (ret)
goto out;
ret = mmc_stop_bkops(card);
if (ret) {
pr_err("%s: %s: mmc_stop_bkops failed %d\n",
md->disk->disk_name, __func__, ret);
goto out;
}
ret = mmc_cmdq_halt(card->host, false);
if (ret)
goto out;
}
ret = mmc_blk_cmdq_part_switch(card, md);
if (ret) {
pr_err("%s: %s: partition switch failed %d, resetting cmdq\n",
md->disk->disk_name, __func__, ret);
mmc_blk_cmdq_reset(host, false);
err = mmc_blk_cmdq_part_switch(card, md);
if (!err) {
pr_err("%s: %s: partition switch success err = %d\n",
md->disk->disk_name, __func__, err);
} else {
pr_err("%s: %s: partition switch failed err = %d\n",
md->disk->disk_name, __func__, err);
ret = err;
goto out;
}
}
if (req) {
struct mmc_host *host = card->host;
struct mmc_cmdq_context_info *ctx = &host->cmdq_ctx;
if ((req_op(req) == REQ_OP_FLUSH || req_op(req) == REQ_OP_DISCARD) &&
(card->quirks & MMC_QUIRK_CMDQ_EMPTY_BEFORE_DCMD) &&
ctx->active_small_sector_read_reqs) {
ret = wait_event_interruptible(ctx->queue_empty_wq,
!ctx->active_reqs);
if (ret) {
pr_err("%s: failed while waiting for the CMDQ to be empty %s err (%d)\n",
mmc_hostname(host),
__func__, ret);
BUG_ON(1);
}
/* clear the counter now */
ctx->active_small_sector_read_reqs = 0;
/*
* If there were small sector (less than 8 sectors) read
* operations in progress then we have to wait for the
* outstanding requests to finish and should also have
* atleast 6 microseconds delay before queuing the DCMD
* request.
*/
udelay(MMC_QUIRK_CMDQ_DELAY_BEFORE_DCMD);
}
if (req_op(req) == REQ_OP_DISCARD) {
ret = mmc_blk_cmdq_issue_discard_rq(mq, req);
} else if (req_op(req) == REQ_OP_SECURE_ERASE) {
if (!(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
ret = mmc_blk_cmdq_issue_secdiscard_rq(mq, req);
else
ret = mmc_blk_cmdq_issue_discard_rq(mq, req);
} else if (req_op(req) == REQ_OP_FLUSH) {
ret = mmc_blk_cmdq_issue_flush_rq(mq, req);
} else {
ret = mmc_blk_cmdq_issue_rw_rq(mq, req);
/*
* If issuing of the request fails with eitehr EBUSY or
* EAGAIN error, re-queue the request.
* This case would occur with ICE calls.
*/
if (ret == -EBUSY || ret == -EAGAIN)
mmc_blk_cmdq_requeue_rw_rq(mq, req);
}
}
return ret;
out:
if (req)
blk_end_request_all(req, ret);
mmc_put_card(card);
return ret;
}
int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
{
int ret;
struct mmc_blk_data *md = mq->data;
struct mmc_card *card = md->queue.card;
struct mmc_host *host = card->host;
unsigned long flags;
unsigned int cmd_flags = req ? req->cmd_flags : 0;
bool req_is_special = mmc_req_is_special(req);
int err;
if (req && !mq->mqrq_prev->req) {
/* claim host only for the first request */
mmc_get_card(card);
if (mmc_card_doing_bkops(host->card)) {
ret = mmc_stop_bkops(host->card);
if (ret)
goto out;
}
}
ret = mmc_blk_part_switch(card, md);
if (ret) {
err = mmc_blk_reset(md, card->host, MMC_BLK_PARTSWITCH);
if (!err) {
pr_err("%s: mmc_blk_reset(MMC_BLK_PARTSWITCH) succeeded.\n",
mmc_hostname(host));
mmc_blk_reset_success(md, MMC_BLK_PARTSWITCH);
} else
pr_err("%s: mmc_blk_reset(MMC_BLK_PARTSWITCH) failed.\n",
mmc_hostname(host));
if (req) {
blk_end_request_all(req, -EIO);
}
ret = 0;
goto out;
}
mmc_blk_write_packing_control(mq, req);
clear_bit(MMC_QUEUE_NEW_REQUEST, &mq->flags);
if (req && req_op(req) == REQ_OP_DISCARD) {
/* complete ongoing async transfer before issuing discard */
if (card->host->areq)
mmc_blk_issue_rw_rq(mq, NULL);
ret = mmc_blk_issue_discard_rq(mq, req);
} else if (req && req_op(req) == REQ_OP_SECURE_ERASE) {
/* complete ongoing async transfer before issuing secure erase*/
if (card->host->areq)
mmc_blk_issue_rw_rq(mq, NULL);
if (!(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
ret = mmc_blk_issue_secdiscard_rq(mq, req);
else
ret = mmc_blk_issue_discard_rq(mq, req);
} else if ((req && req_op(req) == REQ_OP_FLUSH) ||
(cmd_flags & REQ_BARRIER)) {
/* complete ongoing async transfer before issuing flush */
if (card->host->areq)
mmc_blk_issue_rw_rq(mq, NULL);
ret = mmc_blk_issue_flush(mq, req);
} else {
if (!req && host->areq) {
spin_lock_irqsave(&host->context_info.lock, flags);
host->context_info.is_waiting_last_req = true;
spin_unlock_irqrestore(&host->context_info.lock, flags);
}
ret = mmc_blk_issue_rw_rq(mq, req);
}
out:
if ((!req && !(test_bit(MMC_QUEUE_NEW_REQUEST, &mq->flags))) ||
req_is_special)
/*
* Release host when there are no more requests
* and after special request(discard, flush) is done.
* In case sepecial request, there is no reentry to
* the 'mmc_blk_issue_rq' with 'mqrq_prev->req'.
*/
mmc_put_card(card);
return ret;
}
static inline int mmc_blk_readonly(struct mmc_card *card)
{
return mmc_card_readonly(card) ||
!(card->csd.cmdclass & CCC_BLOCK_WRITE);
}
static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
struct device *parent,
sector_t size,
bool default_ro,
const char *subname,
int area_type)
{
struct mmc_blk_data *md;
int devidx, ret;
again:
if (!ida_pre_get(&mmc_blk_ida, GFP_KERNEL))
return ERR_PTR(-ENOMEM);
spin_lock(&mmc_blk_lock);
ret = ida_get_new(&mmc_blk_ida, &devidx);
spin_unlock(&mmc_blk_lock);
if (ret == -EAGAIN)
goto again;
else if (ret)
return ERR_PTR(ret);
if (devidx >= max_devices) {
ret = -ENOSPC;
goto out;
}
md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
if (!md) {
ret = -ENOMEM;
goto out;
}
md->area_type = area_type;
/*
* Set the read-only status based on the supported commands
* and the write protect switch.
*/
md->read_only = mmc_blk_readonly(card);
md->disk = alloc_disk(perdev_minors);
if (md->disk == NULL) {
ret = -ENOMEM;
goto err_kfree;
}
spin_lock_init(&md->lock);
INIT_LIST_HEAD(&md->part);
md->usage = 1;
ret = mmc_init_queue(&md->queue, card, NULL, subname, area_type);
if (ret)
goto err_putdisk;
md->queue.data = md;
md->disk->major = MMC_BLOCK_MAJOR;
md->disk->first_minor = devidx * perdev_minors;
md->disk->fops = &mmc_bdops;
md->disk->private_data = md;
md->disk->queue = md->queue.queue;
md->parent = parent;
set_disk_ro(md->disk, md->read_only || default_ro);
md->disk->flags = GENHD_FL_EXT_DEVT;
if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
md->disk->flags |= GENHD_FL_NO_PART_SCAN;
/*
* As discussed on lkml, GENHD_FL_REMOVABLE should:
*
* - be set for removable media with permanent block devices
* - be unset for removable block devices with permanent media
*
* Since MMC block devices clearly fall under the second
* case, we do not set GENHD_FL_REMOVABLE. Userspace
* should use the block device creation/destruction hotplug
* messages to tell when the card is present.
*/
snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
"mmcblk%u%s", card->host->index, subname ? subname : "");
if (mmc_card_mmc(card))
blk_queue_logical_block_size(md->queue.queue,
card->ext_csd.data_sector_size);
else
blk_queue_logical_block_size(md->queue.queue, 512);
set_capacity(md->disk, size);
if (mmc_host_cmd23(card->host)) {
if ((mmc_card_mmc(card) &&
card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
(mmc_card_sd(card) &&
card->scr.cmds & SD_SCR_CMD23_SUPPORT))
md->flags |= MMC_BLK_CMD23;
}
if (mmc_card_mmc(card) &&
md->flags & MMC_BLK_CMD23 &&
((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
card->ext_csd.rel_sectors)) {
md->flags |= MMC_BLK_REL_WR;
blk_queue_write_cache(md->queue.queue, true, true);
}
if (card->cmdq_init) {
md->flags |= MMC_BLK_CMD_QUEUE;
md->queue.cmdq_complete_fn = mmc_blk_cmdq_complete_rq;
md->queue.cmdq_issue_fn = mmc_blk_cmdq_issue_rq;
md->queue.cmdq_error_fn = mmc_blk_cmdq_err;
md->queue.cmdq_req_timed_out = mmc_blk_cmdq_req_timed_out;
md->queue.cmdq_shutdown = mmc_blk_cmdq_shutdown;
}
if (mmc_card_mmc(card) && !card->cmdq_init &&
(area_type == MMC_BLK_DATA_AREA_MAIN) &&
(md->flags & MMC_BLK_CMD23) &&
card->ext_csd.packed_event_en) {
if (!mmc_packed_init(&md->queue, card))
md->flags |= MMC_BLK_PACKED_CMD;
}
return md;
err_putdisk:
put_disk(md->disk);
err_kfree:
kfree(md);
out:
spin_lock(&mmc_blk_lock);
ida_remove(&mmc_blk_ida, devidx);
spin_unlock(&mmc_blk_lock);
return ERR_PTR(ret);
}
static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
{
sector_t size;
if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
/*
* The EXT_CSD sector count is in number or 512 byte
* sectors.
*/
size = card->ext_csd.sectors;
} else {
/*
* The CSD capacity field is in units of read_blkbits.
* set_capacity takes units of 512 bytes.
*/
size = (typeof(sector_t))card->csd.capacity
<< (card->csd.read_blkbits - 9);
}
return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
MMC_BLK_DATA_AREA_MAIN);
}
static int mmc_blk_alloc_part(struct mmc_card *card,
struct mmc_blk_data *md,
unsigned int part_type,
sector_t size,
bool default_ro,
const char *subname,
int area_type)
{
char cap_str[10];
struct mmc_blk_data *part_md;
part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
subname, area_type);
if (IS_ERR(part_md))
return PTR_ERR(part_md);
part_md->part_type = part_type;
list_add(&part_md->part, &md->part);
string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
cap_str, sizeof(cap_str));
pr_info("%s: %s %s partition %u %s\n",
part_md->disk->disk_name, mmc_card_id(card),
mmc_card_name(card), part_md->part_type, cap_str);
return 0;
}
/* MMC Physical partitions consist of two boot partitions and
* up to four general purpose partitions.
* For each partition enabled in EXT_CSD a block device will be allocatedi
* to provide access to the partition.
*/
static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
{
int idx, ret = 0;
if (!mmc_card_mmc(card))
return 0;
for (idx = 0; idx < card->nr_parts; idx++) {
if (card->part[idx].size) {
ret = mmc_blk_alloc_part(card, md,
card->part[idx].part_cfg,
card->part[idx].size >> 9,
card->part[idx].force_ro,
card->part[idx].name,
card->part[idx].area_type);
if (ret)
return ret;
}
}
return ret;
}
static void mmc_blk_remove_req(struct mmc_blk_data *md)
{
struct mmc_card *card;
if (md) {
/*
* Flush remaining requests and free queues. It
* is freeing the queue that stops new requests
* from being accepted.
*/
card = md->queue.card;
mmc_cleanup_queue(&md->queue);
if (md->flags & MMC_BLK_PACKED_CMD)
mmc_packed_clean(&md->queue);
if (md->flags & MMC_BLK_CMD_QUEUE)
mmc_cmdq_clean(&md->queue, card);
device_remove_file(disk_to_dev(md->disk),
&md->num_wr_reqs_to_start_packing);
if (md->disk->flags & GENHD_FL_UP) {
device_remove_file(disk_to_dev(md->disk), &md->force_ro);
if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
card->ext_csd.boot_ro_lockable)
device_remove_file(disk_to_dev(md->disk),
&md->power_ro_lock);
#ifdef CONFIG_MMC_SIMULATE_MAX_SPEED
device_remove_file(disk_to_dev(md->disk),
&dev_attr_max_write_speed);
device_remove_file(disk_to_dev(md->disk),
&dev_attr_max_read_speed);
device_remove_file(disk_to_dev(md->disk),
&dev_attr_cache_size);
#endif
del_gendisk(md->disk);
}
mmc_blk_put(md);
}
}
static void mmc_blk_remove_parts(struct mmc_card *card,
struct mmc_blk_data *md)
{
struct list_head *pos, *q;
struct mmc_blk_data *part_md;
list_for_each_safe(pos, q, &md->part) {
part_md = list_entry(pos, struct mmc_blk_data, part);
list_del(pos);
mmc_blk_remove_req(part_md);
}
}
static int mmc_add_disk(struct mmc_blk_data *md)
{
int ret;
struct mmc_card *card = md->queue.card;
device_add_disk(md->parent, md->disk);
md->force_ro.show = force_ro_show;
md->force_ro.store = force_ro_store;
sysfs_attr_init(&md->force_ro.attr);
md->force_ro.attr.name = "force_ro";
md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
if (ret)
goto force_ro_fail;
#ifdef CONFIG_MMC_SIMULATE_MAX_SPEED
atomic_set(&md->queue.max_write_speed, max_write_speed);
ret = device_create_file(disk_to_dev(md->disk),
&dev_attr_max_write_speed);
if (ret)
goto max_write_speed_fail;
atomic_set(&md->queue.max_read_speed, max_read_speed);
ret = device_create_file(disk_to_dev(md->disk),
&dev_attr_max_read_speed);
if (ret)
goto max_read_speed_fail;
atomic_set(&md->queue.cache_size, cache_size);
atomic_long_set(&md->queue.cache_used, 0);
md->queue.cache_jiffies = jiffies;
ret = device_create_file(disk_to_dev(md->disk), &dev_attr_cache_size);
if (ret)
goto cache_size_fail;
#endif
if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
card->ext_csd.boot_ro_lockable) {
umode_t mode;
if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
mode = S_IRUGO;
else
mode = S_IRUGO | S_IWUSR;
md->power_ro_lock.show = power_ro_lock_show;
md->power_ro_lock.store = power_ro_lock_store;
sysfs_attr_init(&md->power_ro_lock.attr);
md->power_ro_lock.attr.mode = mode;
md->power_ro_lock.attr.name =
"ro_lock_until_next_power_on";
ret = device_create_file(disk_to_dev(md->disk),
&md->power_ro_lock);
if (ret)
goto power_ro_lock_fail;
}
md->num_wr_reqs_to_start_packing.show =
num_wr_reqs_to_start_packing_show;
md->num_wr_reqs_to_start_packing.store =
num_wr_reqs_to_start_packing_store;
sysfs_attr_init(&md->num_wr_reqs_to_start_packing.attr);
md->num_wr_reqs_to_start_packing.attr.name =
"num_wr_reqs_to_start_packing";
md->num_wr_reqs_to_start_packing.attr.mode = S_IRUGO | S_IWUSR;
ret = device_create_file(disk_to_dev(md->disk),
&md->num_wr_reqs_to_start_packing);
if (ret)
goto num_wr_reqs_to_start_packing_fail;
md->no_pack_for_random.show = no_pack_for_random_show;
md->no_pack_for_random.store = no_pack_for_random_store;
sysfs_attr_init(&md->no_pack_for_random.attr);
md->no_pack_for_random.attr.name = "no_pack_for_random";
md->no_pack_for_random.attr.mode = S_IRUGO | S_IWUSR;
ret = device_create_file(disk_to_dev(md->disk),
&md->no_pack_for_random);
if (ret)
goto no_pack_for_random_fails;
return ret;
no_pack_for_random_fails:
device_remove_file(disk_to_dev(md->disk),
&md->num_wr_reqs_to_start_packing);
num_wr_reqs_to_start_packing_fail:
device_remove_file(disk_to_dev(md->disk), &md->power_ro_lock);
power_ro_lock_fail:
#ifdef CONFIG_MMC_SIMULATE_MAX_SPEED
device_remove_file(disk_to_dev(md->disk), &dev_attr_cache_size);
cache_size_fail:
device_remove_file(disk_to_dev(md->disk), &dev_attr_max_read_speed);
max_read_speed_fail:
device_remove_file(disk_to_dev(md->disk), &dev_attr_max_write_speed);
max_write_speed_fail:
#endif
device_remove_file(disk_to_dev(md->disk), &md->force_ro);
force_ro_fail:
del_gendisk(md->disk);
return ret;
}
static const struct mmc_fixup blk_fixups[] =
{
MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk,
MMC_QUIRK_INAND_CMD38),
MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk,
MMC_QUIRK_INAND_CMD38),
MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk,
MMC_QUIRK_INAND_CMD38),
MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk,
MMC_QUIRK_INAND_CMD38),
MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk,
MMC_QUIRK_INAND_CMD38),
/*
* Some MMC cards experience performance degradation with CMD23
* instead of CMD12-bounded multiblock transfers. For now we'll
* black list what's bad...
* - Certain Toshiba cards.
*
* N.B. This doesn't affect SD cards.
*/
MMC_FIXUP("SDMB-32", CID_MANFID_SANDISK, CID_OEMID_ANY, add_quirk_mmc,
MMC_QUIRK_BLK_NO_CMD23),
MMC_FIXUP("SDM032", CID_MANFID_SANDISK, CID_OEMID_ANY, add_quirk_mmc,
MMC_QUIRK_BLK_NO_CMD23),
MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
MMC_QUIRK_BLK_NO_CMD23),
MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
MMC_QUIRK_BLK_NO_CMD23),
MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
MMC_QUIRK_BLK_NO_CMD23),
MMC_FIXUP(CID_NAME_ANY, CID_MANFID_TOSHIBA, CID_OEMID_ANY,
add_quirk_mmc, MMC_QUIRK_CMDQ_EMPTY_BEFORE_DCMD),
/*
* Some MMC cards need longer data read timeout than indicated in CSD.
*/
MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc,
MMC_QUIRK_LONG_READ_TIME),
MMC_FIXUP("008GE0", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
MMC_QUIRK_LONG_READ_TIME),
/*
* Some Samsung MMC cards need longer data read timeout than
* indicated in CSD.
*/
MMC_FIXUP("Q7XSAB", CID_MANFID_SAMSUNG, 0x100, add_quirk_mmc,
MMC_QUIRK_LONG_READ_TIME),
/*
* Hynix eMMC cards need longer data read timeout than
* indicated in CSD.
*/
MMC_FIXUP(CID_NAME_ANY, CID_MANFID_HYNIX, CID_OEMID_ANY, add_quirk_mmc,
MMC_QUIRK_LONG_READ_TIME),
/*
* On these Samsung MoviNAND parts, performing secure erase or
* secure trim can result in unrecoverable corruption due to a
* firmware bug.
*/
MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
/*
* On Some Kingston eMMCs, performing trim can result in
* unrecoverable data conrruption occasionally due to a firmware bug.
*/
MMC_FIXUP("V10008", CID_MANFID_KINGSTON, CID_OEMID_ANY, add_quirk_mmc,
MMC_QUIRK_TRIM_BROKEN),
MMC_FIXUP("V10016", CID_MANFID_KINGSTON, CID_OEMID_ANY, add_quirk_mmc,
MMC_QUIRK_TRIM_BROKEN),
/* Some INAND MCP devices advertise incorrect timeout values */
MMC_FIXUP("SEM04G", 0x45, CID_OEMID_ANY, add_quirk_mmc,
MMC_QUIRK_INAND_DATA_TIMEOUT),
END_FIXUP
};
static int mmc_blk_probe(struct mmc_card *card)
{
struct mmc_blk_data *md, *part_md;
char cap_str[10];
/*
* Check that the card supports the command class(es) we need.
*/
if (!(card->csd.cmdclass & CCC_BLOCK_READ))
return -ENODEV;
mmc_fixup_device(card, blk_fixups);
md = mmc_blk_alloc(card);
if (IS_ERR(md))
return PTR_ERR(md);
string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
cap_str, sizeof(cap_str));
pr_info("%s: %s %s %s %s\n",
md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
cap_str, md->read_only ? "(ro)" : "");
if (mmc_blk_alloc_parts(card, md))
goto out;
dev_set_drvdata(&card->dev, md);
#ifdef CONFIG_MMC_BLOCK_DEFERRED_RESUME
mmc_set_bus_resume_policy(card->host, 1);
#endif
if (mmc_add_disk(md))
goto out;
list_for_each_entry(part_md, &md->part, part) {
if (mmc_add_disk(part_md))
goto out;
}
pm_runtime_use_autosuspend(&card->dev);
pm_runtime_set_autosuspend_delay(&card->dev, MMC_AUTOSUSPEND_DELAY_MS);
pm_runtime_use_autosuspend(&card->dev);
/*
* Don't enable runtime PM for SD-combo cards here. Leave that
* decision to be taken during the SDIO init sequence instead.
*/
if (card->type != MMC_TYPE_SD_COMBO) {
pm_runtime_set_active(&card->dev);
pm_runtime_enable(&card->dev);
}
return 0;
out:
mmc_blk_remove_parts(card, md);
mmc_blk_remove_req(md);
return 0;
}
static void mmc_blk_remove(struct mmc_card *card)
{
struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
mmc_blk_remove_parts(card, md);
pm_runtime_get_sync(&card->dev);
mmc_claim_host(card->host);
mmc_blk_part_switch(card, md);
mmc_release_host(card->host);
if (card->type != MMC_TYPE_SD_COMBO)
pm_runtime_disable(&card->dev);
pm_runtime_put_noidle(&card->dev);
mmc_blk_remove_req(md);
dev_set_drvdata(&card->dev, NULL);
#ifdef CONFIG_MMC_BLOCK_DEFERRED_RESUME
mmc_set_bus_resume_policy(card->host, 0);
#endif
}
static int _mmc_blk_suspend(struct mmc_card *card, bool wait)
{
struct mmc_blk_data *part_md;
struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
int rc = 0;
if (md) {
rc = mmc_queue_suspend(&md->queue, wait);
if (rc)
goto out;
list_for_each_entry(part_md, &md->part, part) {
rc = mmc_queue_suspend(&part_md->queue, wait);
if (rc)
goto out_resume;
}
}
goto out;
out_resume:
mmc_queue_resume(&md->queue);
list_for_each_entry(part_md, &md->part, part) {
mmc_queue_resume(&part_md->queue);
}
out:
return rc;
}
static void mmc_blk_shutdown(struct mmc_card *card)
{
_mmc_blk_suspend(card, 1);
}
#ifdef CONFIG_PM_SLEEP
static int mmc_blk_suspend(struct device *dev)
{
struct mmc_card *card = mmc_dev_to_card(dev);
return _mmc_blk_suspend(card, 0);
}
static int mmc_blk_resume(struct device *dev)
{
struct mmc_blk_data *part_md;
struct mmc_blk_data *md = dev_get_drvdata(dev);
if (md) {
/*
* Resume involves the card going into idle state,
* so current partition is always the main one.
*/
md->part_curr = md->part_type;
mmc_queue_resume(&md->queue);
list_for_each_entry(part_md, &md->part, part) {
mmc_queue_resume(&part_md->queue);
}
}
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
static struct mmc_driver mmc_driver = {
.drv = {
.name = "mmcblk",
.pm = &mmc_blk_pm_ops,
},
.probe = mmc_blk_probe,
.remove = mmc_blk_remove,
.shutdown = mmc_blk_shutdown,
};
static int __init mmc_blk_init(void)
{
int res;
if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
pr_info("mmcblk: using %d minors per device\n", perdev_minors);
max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
if (res)
goto out;
res = mmc_register_driver(&mmc_driver);
if (res)
goto out2;
return 0;
out2:
unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
out:
return res;
}
static void __exit mmc_blk_exit(void)
{
mmc_unregister_driver(&mmc_driver);
unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
}
module_init(mmc_blk_init);
module_exit(mmc_blk_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");