blob: f1fbce37942c8627579f659cd948d2d4ab45b67b [file] [log] [blame]
/* Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/input.h>
#include <linux/of_gpio.h>
#include <linux/mfd/msm-cdc-pinctrl.h>
#include <sound/pcm_params.h>
#include <sound/q6afe-v2.h>
#include "qdsp6v2/msm-pcm-routing-v2.h"
#include "sdm660-common.h"
#include "sdm660-internal.h"
#include "sdm660-external.h"
#include "../codecs/sdm660_cdc/msm-analog-cdc.h"
#include "../codecs/wsa881x.h"
#define DRV_NAME "sdm660-asoc-snd"
#define MSM_INT_DIGITAL_CODEC "msm-dig-codec"
#define PMIC_INT_ANALOG_CODEC "analog-codec"
#define DEV_NAME_STR_LEN 32
#define DEFAULT_MCLK_RATE 9600000
struct dev_config {
u32 sample_rate;
u32 bit_format;
u32 channels;
};
enum {
DP_RX_IDX,
EXT_DISP_RX_IDX_MAX,
};
/* TDM default config */
static struct dev_config tdm_rx_cfg[TDM_INTERFACE_MAX][TDM_PORT_MAX] = {
{ /* PRI TDM */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_0 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_1 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_2 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_3 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_4 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_5 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_6 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_7 */
},
{ /* SEC TDM */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_0 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_1 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_2 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_3 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_4 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_5 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_6 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_7 */
},
{ /* TERT TDM */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_0 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_1 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_2 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_3 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_4 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_5 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_6 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_7 */
},
{ /* QUAT TDM */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_0 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_1 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_2 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_3 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_4 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_5 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_6 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* RX_7 */
}
};
/* TDM default config */
static struct dev_config tdm_tx_cfg[TDM_INTERFACE_MAX][TDM_PORT_MAX] = {
{ /* PRI TDM */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_0 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_1 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_2 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_3 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_4 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_5 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_6 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_7 */
},
{ /* SEC TDM */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_0 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_1 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_2 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_3 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_4 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_5 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_6 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_7 */
},
{ /* TERT TDM */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_0 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_1 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_2 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_3 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_4 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_5 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_6 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_7 */
},
{ /* QUAT TDM */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_0 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_1 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_2 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_3 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_4 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_5 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_6 */
{SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1}, /* TX_7 */
}
};
/* Default configuration of external display BE */
static struct dev_config ext_disp_rx_cfg[] = {
[DP_RX_IDX] = {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 2},
};
static struct dev_config usb_rx_cfg = {
.sample_rate = SAMPLING_RATE_48KHZ,
.bit_format = SNDRV_PCM_FORMAT_S16_LE,
.channels = 2,
};
static struct dev_config usb_tx_cfg = {
.sample_rate = SAMPLING_RATE_48KHZ,
.bit_format = SNDRV_PCM_FORMAT_S16_LE,
.channels = 1,
};
enum {
PRIM_MI2S = 0,
SEC_MI2S,
TERT_MI2S,
QUAT_MI2S,
MI2S_MAX,
};
enum {
PRIM_AUX_PCM = 0,
SEC_AUX_PCM,
TERT_AUX_PCM,
QUAT_AUX_PCM,
AUX_PCM_MAX,
};
enum {
PCM_I2S_SEL_PRIM = 0,
PCM_I2S_SEL_SEC,
PCM_I2S_SEL_TERT,
PCM_I2S_SEL_QUAT,
PCM_I2S_SEL_MAX,
};
struct mi2s_conf {
struct mutex lock;
u32 ref_cnt;
u32 msm_is_mi2s_master;
u32 msm_is_ext_mclk;
};
static u32 mi2s_ebit_clk[MI2S_MAX] = {
Q6AFE_LPASS_CLK_ID_PRI_MI2S_EBIT,
Q6AFE_LPASS_CLK_ID_SEC_MI2S_EBIT,
Q6AFE_LPASS_CLK_ID_TER_MI2S_EBIT,
Q6AFE_LPASS_CLK_ID_QUAD_MI2S_EBIT
};
struct msm_wsa881x_dev_info {
struct device_node *of_node;
u32 index;
};
static struct snd_soc_aux_dev *msm_aux_dev;
static struct snd_soc_codec_conf *msm_codec_conf;
static bool msm_swap_gnd_mic(struct snd_soc_codec *codec);
static struct wcd_mbhc_config mbhc_cfg = {
.read_fw_bin = false,
.calibration = NULL,
.detect_extn_cable = true,
.mono_stero_detection = false,
.swap_gnd_mic = NULL,
.hs_ext_micbias = true,
.key_code[0] = KEY_MEDIA,
.key_code[1] = KEY_VOICECOMMAND,
.key_code[2] = KEY_VOLUMEUP,
.key_code[3] = KEY_VOLUMEDOWN,
.key_code[4] = 0,
.key_code[5] = 0,
.key_code[6] = 0,
.key_code[7] = 0,
.linein_th = 5000,
.moisture_en = false,
.mbhc_micbias = 0,
.anc_micbias = 0,
.enable_anc_mic_detect = false,
};
static struct dev_config proxy_rx_cfg = {
.sample_rate = SAMPLING_RATE_48KHZ,
.bit_format = SNDRV_PCM_FORMAT_S16_LE,
.channels = 2,
};
/* Default configuration of MI2S channels */
static struct dev_config mi2s_rx_cfg[] = {
[PRIM_MI2S] = {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 2},
[SEC_MI2S] = {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 2},
[TERT_MI2S] = {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 2},
[QUAT_MI2S] = {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 2},
};
static struct dev_config mi2s_tx_cfg[] = {
[PRIM_MI2S] = {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1},
[SEC_MI2S] = {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1},
[TERT_MI2S] = {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1},
[QUAT_MI2S] = {SAMPLING_RATE_48KHZ, SNDRV_PCM_FORMAT_S16_LE, 1},
};
static struct dev_config aux_pcm_rx_cfg[] = {
[PRIM_AUX_PCM] = {SAMPLING_RATE_8KHZ, SNDRV_PCM_FORMAT_S16_LE, 1},
[SEC_AUX_PCM] = {SAMPLING_RATE_8KHZ, SNDRV_PCM_FORMAT_S16_LE, 1},
[TERT_AUX_PCM] = {SAMPLING_RATE_8KHZ, SNDRV_PCM_FORMAT_S16_LE, 1},
[QUAT_AUX_PCM] = {SAMPLING_RATE_8KHZ, SNDRV_PCM_FORMAT_S16_LE, 1},
};
static struct dev_config aux_pcm_tx_cfg[] = {
[PRIM_AUX_PCM] = {SAMPLING_RATE_8KHZ, SNDRV_PCM_FORMAT_S16_LE, 1},
[SEC_AUX_PCM] = {SAMPLING_RATE_8KHZ, SNDRV_PCM_FORMAT_S16_LE, 1},
[TERT_AUX_PCM] = {SAMPLING_RATE_8KHZ, SNDRV_PCM_FORMAT_S16_LE, 1},
[QUAT_AUX_PCM] = {SAMPLING_RATE_8KHZ, SNDRV_PCM_FORMAT_S16_LE, 1},
};
static char const *ch_text[] = {"Two", "Three", "Four", "Five",
"Six", "Seven", "Eight"};
static const char *const auxpcm_rate_text[] = {"KHZ_8", "KHZ_16"};
static char const *mi2s_rate_text[] = {"KHZ_8", "KHZ_16",
"KHZ_32", "KHZ_44P1", "KHZ_48",
"KHZ_96", "KHZ_192"};
static const char *const mi2s_ch_text[] = {"One", "Two", "Three", "Four",
"Five", "Six", "Seven",
"Eight"};
static char const *bit_format_text[] = {"S16_LE", "S24_LE", "S24_3LE",
"S32_LE"};
static char const *mi2s_format_text[] = {"S16_LE", "S24_LE", "S24_3LE",
"S32_LE"};
static char const *tdm_ch_text[] = {"One", "Two", "Three", "Four",
"Five", "Six", "Seven", "Eight"};
static char const *tdm_bit_format_text[] = {"S16_LE", "S24_LE", "S32_LE"};
static char const *tdm_sample_rate_text[] = {"KHZ_8", "KHZ_16", "KHZ_32",
"KHZ_44P1", "KHZ_48", "KHZ_96",
"KHZ_192", "KHZ_352P8", "KHZ_384"};
static const char *const usb_ch_text[] = {"One", "Two", "Three", "Four",
"Five", "Six", "Seven",
"Eight"};
static char const *usb_sample_rate_text[] = {"KHZ_8", "KHZ_11P025",
"KHZ_16", "KHZ_22P05",
"KHZ_32", "KHZ_44P1", "KHZ_48",
"KHZ_96", "KHZ_192", "KHZ_384"};
static char const *ext_disp_bit_format_text[] = {"S16_LE", "S24_LE"};
static char const *ext_disp_sample_rate_text[] = {"KHZ_48", "KHZ_96",
"KHZ_192"};
static SOC_ENUM_SINGLE_EXT_DECL(ext_disp_rx_chs, ch_text);
static SOC_ENUM_SINGLE_EXT_DECL(proxy_rx_chs, ch_text);
static SOC_ENUM_SINGLE_EXT_DECL(prim_aux_pcm_rx_sample_rate, auxpcm_rate_text);
static SOC_ENUM_SINGLE_EXT_DECL(sec_aux_pcm_rx_sample_rate, auxpcm_rate_text);
static SOC_ENUM_SINGLE_EXT_DECL(tert_aux_pcm_rx_sample_rate, auxpcm_rate_text);
static SOC_ENUM_SINGLE_EXT_DECL(quat_aux_pcm_rx_sample_rate, auxpcm_rate_text);
static SOC_ENUM_SINGLE_EXT_DECL(prim_aux_pcm_tx_sample_rate, auxpcm_rate_text);
static SOC_ENUM_SINGLE_EXT_DECL(sec_aux_pcm_tx_sample_rate, auxpcm_rate_text);
static SOC_ENUM_SINGLE_EXT_DECL(tert_aux_pcm_tx_sample_rate, auxpcm_rate_text);
static SOC_ENUM_SINGLE_EXT_DECL(quat_aux_pcm_tx_sample_rate, auxpcm_rate_text);
static SOC_ENUM_SINGLE_EXT_DECL(prim_mi2s_rx_sample_rate, mi2s_rate_text);
static SOC_ENUM_SINGLE_EXT_DECL(sec_mi2s_rx_sample_rate, mi2s_rate_text);
static SOC_ENUM_SINGLE_EXT_DECL(tert_mi2s_rx_sample_rate, mi2s_rate_text);
static SOC_ENUM_SINGLE_EXT_DECL(quat_mi2s_rx_sample_rate, mi2s_rate_text);
static SOC_ENUM_SINGLE_EXT_DECL(prim_mi2s_tx_sample_rate, mi2s_rate_text);
static SOC_ENUM_SINGLE_EXT_DECL(sec_mi2s_tx_sample_rate, mi2s_rate_text);
static SOC_ENUM_SINGLE_EXT_DECL(tert_mi2s_tx_sample_rate, mi2s_rate_text);
static SOC_ENUM_SINGLE_EXT_DECL(quat_mi2s_tx_sample_rate, mi2s_rate_text);
static SOC_ENUM_SINGLE_EXT_DECL(prim_mi2s_rx_format, mi2s_format_text);
static SOC_ENUM_SINGLE_EXT_DECL(sec_mi2s_rx_format, mi2s_format_text);
static SOC_ENUM_SINGLE_EXT_DECL(tert_mi2s_rx_format, mi2s_format_text);
static SOC_ENUM_SINGLE_EXT_DECL(quat_mi2s_rx_format, mi2s_format_text);
static SOC_ENUM_SINGLE_EXT_DECL(prim_mi2s_tx_format, mi2s_format_text);
static SOC_ENUM_SINGLE_EXT_DECL(sec_mi2s_tx_format, mi2s_format_text);
static SOC_ENUM_SINGLE_EXT_DECL(tert_mi2s_tx_format, mi2s_format_text);
static SOC_ENUM_SINGLE_EXT_DECL(quat_mi2s_tx_format, mi2s_format_text);
static SOC_ENUM_SINGLE_EXT_DECL(prim_mi2s_rx_chs, mi2s_ch_text);
static SOC_ENUM_SINGLE_EXT_DECL(prim_mi2s_tx_chs, mi2s_ch_text);
static SOC_ENUM_SINGLE_EXT_DECL(sec_mi2s_rx_chs, mi2s_ch_text);
static SOC_ENUM_SINGLE_EXT_DECL(sec_mi2s_tx_chs, mi2s_ch_text);
static SOC_ENUM_SINGLE_EXT_DECL(tert_mi2s_rx_chs, mi2s_ch_text);
static SOC_ENUM_SINGLE_EXT_DECL(tert_mi2s_tx_chs, mi2s_ch_text);
static SOC_ENUM_SINGLE_EXT_DECL(quat_mi2s_rx_chs, mi2s_ch_text);
static SOC_ENUM_SINGLE_EXT_DECL(quat_mi2s_tx_chs, mi2s_ch_text);
static SOC_ENUM_SINGLE_EXT_DECL(usb_rx_chs, usb_ch_text);
static SOC_ENUM_SINGLE_EXT_DECL(usb_tx_chs, usb_ch_text);
static SOC_ENUM_SINGLE_EXT_DECL(usb_rx_format, bit_format_text);
static SOC_ENUM_SINGLE_EXT_DECL(usb_tx_format, bit_format_text);
static SOC_ENUM_SINGLE_EXT_DECL(ext_disp_rx_format, ext_disp_bit_format_text);
static SOC_ENUM_SINGLE_EXT_DECL(usb_rx_sample_rate, usb_sample_rate_text);
static SOC_ENUM_SINGLE_EXT_DECL(usb_tx_sample_rate, usb_sample_rate_text);
static SOC_ENUM_SINGLE_EXT_DECL(ext_disp_rx_sample_rate,
ext_disp_sample_rate_text);
static SOC_ENUM_SINGLE_EXT_DECL(tdm_tx_chs, tdm_ch_text);
static SOC_ENUM_SINGLE_EXT_DECL(tdm_tx_format, tdm_bit_format_text);
static SOC_ENUM_SINGLE_EXT_DECL(tdm_tx_sample_rate, tdm_sample_rate_text);
static SOC_ENUM_SINGLE_EXT_DECL(tdm_rx_chs, tdm_ch_text);
static SOC_ENUM_SINGLE_EXT_DECL(tdm_rx_format, tdm_bit_format_text);
static SOC_ENUM_SINGLE_EXT_DECL(tdm_rx_sample_rate, tdm_sample_rate_text);
static struct afe_clk_set mi2s_clk[MI2S_MAX] = {
{
AFE_API_VERSION_I2S_CONFIG,
Q6AFE_LPASS_CLK_ID_PRI_MI2S_IBIT,
Q6AFE_LPASS_IBIT_CLK_1_P536_MHZ,
Q6AFE_LPASS_CLK_ATTRIBUTE_COUPLE_NO,
Q6AFE_LPASS_CLK_ROOT_DEFAULT,
0,
},
{
AFE_API_VERSION_I2S_CONFIG,
Q6AFE_LPASS_CLK_ID_SEC_MI2S_IBIT,
Q6AFE_LPASS_IBIT_CLK_1_P536_MHZ,
Q6AFE_LPASS_CLK_ATTRIBUTE_COUPLE_NO,
Q6AFE_LPASS_CLK_ROOT_DEFAULT,
0,
},
{
AFE_API_VERSION_I2S_CONFIG,
Q6AFE_LPASS_CLK_ID_TER_MI2S_IBIT,
Q6AFE_LPASS_IBIT_CLK_1_P536_MHZ,
Q6AFE_LPASS_CLK_ATTRIBUTE_COUPLE_NO,
Q6AFE_LPASS_CLK_ROOT_DEFAULT,
0,
},
{
AFE_API_VERSION_I2S_CONFIG,
Q6AFE_LPASS_CLK_ID_QUAD_MI2S_IBIT,
Q6AFE_LPASS_IBIT_CLK_1_P536_MHZ,
Q6AFE_LPASS_CLK_ATTRIBUTE_COUPLE_NO,
Q6AFE_LPASS_CLK_ROOT_DEFAULT,
0,
}
};
static struct afe_clk_set mi2s_mclk[MI2S_MAX] = {
{
AFE_API_VERSION_I2S_CONFIG,
Q6AFE_LPASS_CLK_ID_MCLK_3,
Q6AFE_LPASS_OSR_CLK_9_P600_MHZ,
Q6AFE_LPASS_CLK_ATTRIBUTE_COUPLE_NO,
Q6AFE_LPASS_CLK_ROOT_DEFAULT,
0,
},
{
AFE_API_VERSION_I2S_CONFIG,
Q6AFE_LPASS_CLK_ID_MCLK_4,
Q6AFE_LPASS_OSR_CLK_9_P600_MHZ,
Q6AFE_LPASS_CLK_ATTRIBUTE_COUPLE_NO,
Q6AFE_LPASS_CLK_ROOT_DEFAULT,
0,
},
{
AFE_API_VERSION_I2S_CONFIG,
Q6AFE_LPASS_CLK_ID_MCLK_1,
Q6AFE_LPASS_OSR_CLK_9_P600_MHZ,
Q6AFE_LPASS_CLK_ATTRIBUTE_COUPLE_NO,
Q6AFE_LPASS_CLK_ROOT_DEFAULT,
0,
},
{
AFE_API_VERSION_I2S_CONFIG,
Q6AFE_LPASS_CLK_ID_MCLK_2,
Q6AFE_LPASS_OSR_CLK_9_P600_MHZ,
Q6AFE_LPASS_CLK_ATTRIBUTE_COUPLE_NO,
Q6AFE_LPASS_CLK_ROOT_DEFAULT,
0,
}
};
static struct mi2s_conf mi2s_intf_conf[MI2S_MAX];
static int proxy_rx_ch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
pr_debug("%s: proxy_rx channels = %d\n",
__func__, proxy_rx_cfg.channels);
ucontrol->value.integer.value[0] = proxy_rx_cfg.channels - 2;
return 0;
}
static int proxy_rx_ch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
proxy_rx_cfg.channels = ucontrol->value.integer.value[0] + 2;
pr_debug("%s: proxy_rx channels = %d\n",
__func__, proxy_rx_cfg.channels);
return 1;
}
static int tdm_get_sample_rate(int value)
{
int sample_rate = 0;
switch (value) {
case 0:
sample_rate = SAMPLING_RATE_8KHZ;
break;
case 1:
sample_rate = SAMPLING_RATE_16KHZ;
break;
case 2:
sample_rate = SAMPLING_RATE_32KHZ;
break;
case 3:
sample_rate = SAMPLING_RATE_44P1KHZ;
break;
case 4:
sample_rate = SAMPLING_RATE_48KHZ;
break;
case 5:
sample_rate = SAMPLING_RATE_96KHZ;
break;
case 6:
sample_rate = SAMPLING_RATE_192KHZ;
break;
case 7:
sample_rate = SAMPLING_RATE_352P8KHZ;
break;
case 8:
sample_rate = SAMPLING_RATE_384KHZ;
break;
default:
sample_rate = SAMPLING_RATE_48KHZ;
break;
}
return sample_rate;
}
static int tdm_get_sample_rate_val(int sample_rate)
{
int sample_rate_val = 0;
switch (sample_rate) {
case SAMPLING_RATE_8KHZ:
sample_rate_val = 0;
break;
case SAMPLING_RATE_16KHZ:
sample_rate_val = 1;
break;
case SAMPLING_RATE_32KHZ:
sample_rate_val = 2;
break;
case SAMPLING_RATE_44P1KHZ:
sample_rate_val = 3;
break;
case SAMPLING_RATE_48KHZ:
sample_rate_val = 4;
break;
case SAMPLING_RATE_96KHZ:
sample_rate_val = 5;
break;
case SAMPLING_RATE_192KHZ:
sample_rate_val = 6;
break;
case SAMPLING_RATE_352P8KHZ:
sample_rate_val = 7;
break;
case SAMPLING_RATE_384KHZ:
sample_rate_val = 8;
break;
default:
sample_rate_val = 4;
break;
}
return sample_rate_val;
}
static int tdm_get_port_idx(struct snd_kcontrol *kcontrol,
struct tdm_port *port)
{
if (port) {
if (strnstr(kcontrol->id.name, "PRI",
sizeof(kcontrol->id.name))) {
port->mode = TDM_PRI;
} else if (strnstr(kcontrol->id.name, "SEC",
sizeof(kcontrol->id.name))) {
port->mode = TDM_SEC;
} else if (strnstr(kcontrol->id.name, "TERT",
sizeof(kcontrol->id.name))) {
port->mode = TDM_TERT;
} else if (strnstr(kcontrol->id.name, "QUAT",
sizeof(kcontrol->id.name))) {
port->mode = TDM_QUAT;
} else {
pr_err("%s: unsupported mode in: %s",
__func__, kcontrol->id.name);
return -EINVAL;
}
if (strnstr(kcontrol->id.name, "RX_0",
sizeof(kcontrol->id.name)) ||
strnstr(kcontrol->id.name, "TX_0",
sizeof(kcontrol->id.name))) {
port->channel = TDM_0;
} else if (strnstr(kcontrol->id.name, "RX_1",
sizeof(kcontrol->id.name)) ||
strnstr(kcontrol->id.name, "TX_1",
sizeof(kcontrol->id.name))) {
port->channel = TDM_1;
} else if (strnstr(kcontrol->id.name, "RX_2",
sizeof(kcontrol->id.name)) ||
strnstr(kcontrol->id.name, "TX_2",
sizeof(kcontrol->id.name))) {
port->channel = TDM_2;
} else if (strnstr(kcontrol->id.name, "RX_3",
sizeof(kcontrol->id.name)) ||
strnstr(kcontrol->id.name, "TX_3",
sizeof(kcontrol->id.name))) {
port->channel = TDM_3;
} else if (strnstr(kcontrol->id.name, "RX_4",
sizeof(kcontrol->id.name)) ||
strnstr(kcontrol->id.name, "TX_4",
sizeof(kcontrol->id.name))) {
port->channel = TDM_4;
} else if (strnstr(kcontrol->id.name, "RX_5",
sizeof(kcontrol->id.name)) ||
strnstr(kcontrol->id.name, "TX_5",
sizeof(kcontrol->id.name))) {
port->channel = TDM_5;
} else if (strnstr(kcontrol->id.name, "RX_6",
sizeof(kcontrol->id.name)) ||
strnstr(kcontrol->id.name, "TX_6",
sizeof(kcontrol->id.name))) {
port->channel = TDM_6;
} else if (strnstr(kcontrol->id.name, "RX_7",
sizeof(kcontrol->id.name)) ||
strnstr(kcontrol->id.name, "TX_7",
sizeof(kcontrol->id.name))) {
port->channel = TDM_7;
} else {
pr_err("%s: unsupported channel in: %s",
__func__, kcontrol->id.name);
return -EINVAL;
}
} else
return -EINVAL;
return 0;
}
static int tdm_rx_sample_rate_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tdm_port port;
int ret = tdm_get_port_idx(kcontrol, &port);
if (ret) {
pr_err("%s: unsupported control: %s",
__func__, kcontrol->id.name);
} else {
ucontrol->value.enumerated.item[0] = tdm_get_sample_rate_val(
tdm_rx_cfg[port.mode][port.channel].sample_rate);
pr_debug("%s: tdm_rx_sample_rate = %d, item = %d\n", __func__,
tdm_rx_cfg[port.mode][port.channel].sample_rate,
ucontrol->value.enumerated.item[0]);
}
return ret;
}
static int tdm_rx_sample_rate_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tdm_port port;
int ret = tdm_get_port_idx(kcontrol, &port);
if (ret) {
pr_err("%s: unsupported control: %s",
__func__, kcontrol->id.name);
} else {
tdm_rx_cfg[port.mode][port.channel].sample_rate =
tdm_get_sample_rate(ucontrol->value.enumerated.item[0]);
pr_debug("%s: tdm_rx_sample_rate = %d, item = %d\n", __func__,
tdm_rx_cfg[port.mode][port.channel].sample_rate,
ucontrol->value.enumerated.item[0]);
}
return ret;
}
static int tdm_tx_sample_rate_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tdm_port port;
int ret = tdm_get_port_idx(kcontrol, &port);
if (ret) {
pr_err("%s: unsupported control: %s",
__func__, kcontrol->id.name);
} else {
ucontrol->value.enumerated.item[0] = tdm_get_sample_rate_val(
tdm_tx_cfg[port.mode][port.channel].sample_rate);
pr_debug("%s: tdm_tx_sample_rate = %d, item = %d\n", __func__,
tdm_tx_cfg[port.mode][port.channel].sample_rate,
ucontrol->value.enumerated.item[0]);
}
return ret;
}
static int tdm_tx_sample_rate_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tdm_port port;
int ret = tdm_get_port_idx(kcontrol, &port);
if (ret) {
pr_err("%s: unsupported control: %s",
__func__, kcontrol->id.name);
} else {
tdm_tx_cfg[port.mode][port.channel].sample_rate =
tdm_get_sample_rate(ucontrol->value.enumerated.item[0]);
pr_debug("%s: tdm_tx_sample_rate = %d, item = %d\n", __func__,
tdm_tx_cfg[port.mode][port.channel].sample_rate,
ucontrol->value.enumerated.item[0]);
}
return ret;
}
static int tdm_get_format(int value)
{
int format = 0;
switch (value) {
case 0:
format = SNDRV_PCM_FORMAT_S16_LE;
break;
case 1:
format = SNDRV_PCM_FORMAT_S24_LE;
break;
case 2:
format = SNDRV_PCM_FORMAT_S32_LE;
break;
default:
format = SNDRV_PCM_FORMAT_S16_LE;
break;
}
return format;
}
static int tdm_get_format_val(int format)
{
int value = 0;
switch (format) {
case SNDRV_PCM_FORMAT_S16_LE:
value = 0;
break;
case SNDRV_PCM_FORMAT_S24_LE:
value = 1;
break;
case SNDRV_PCM_FORMAT_S32_LE:
value = 2;
break;
default:
value = 0;
break;
}
return value;
}
static int mi2s_get_format(int value)
{
int format = 0;
switch (value) {
case 0:
format = SNDRV_PCM_FORMAT_S16_LE;
break;
case 1:
format = SNDRV_PCM_FORMAT_S24_LE;
break;
case 2:
format = SNDRV_PCM_FORMAT_S24_3LE;
break;
case 3:
format = SNDRV_PCM_FORMAT_S32_LE;
break;
default:
format = SNDRV_PCM_FORMAT_S16_LE;
break;
}
return format;
}
static int mi2s_get_format_value(int format)
{
int value = 0;
switch (format) {
case SNDRV_PCM_FORMAT_S16_LE:
value = 0;
break;
case SNDRV_PCM_FORMAT_S24_LE:
value = 1;
break;
case SNDRV_PCM_FORMAT_S24_3LE:
value = 2;
break;
case SNDRV_PCM_FORMAT_S32_LE:
value = 3;
break;
default:
value = 0;
break;
}
return value;
}
static int tdm_rx_format_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tdm_port port;
int ret = tdm_get_port_idx(kcontrol, &port);
if (ret) {
pr_err("%s: unsupported control: %s",
__func__, kcontrol->id.name);
} else {
ucontrol->value.enumerated.item[0] = tdm_get_format_val(
tdm_rx_cfg[port.mode][port.channel].bit_format);
pr_debug("%s: tdm_rx_bit_format = %d, item = %d\n", __func__,
tdm_rx_cfg[port.mode][port.channel].bit_format,
ucontrol->value.enumerated.item[0]);
}
return ret;
}
static int tdm_rx_format_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tdm_port port;
int ret = tdm_get_port_idx(kcontrol, &port);
if (ret) {
pr_err("%s: unsupported control: %s",
__func__, kcontrol->id.name);
} else {
tdm_rx_cfg[port.mode][port.channel].bit_format =
tdm_get_format(ucontrol->value.enumerated.item[0]);
pr_debug("%s: tdm_rx_bit_format = %d, item = %d\n", __func__,
tdm_rx_cfg[port.mode][port.channel].bit_format,
ucontrol->value.enumerated.item[0]);
}
return ret;
}
static int tdm_tx_format_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tdm_port port;
int ret = tdm_get_port_idx(kcontrol, &port);
if (ret) {
pr_err("%s: unsupported control: %s",
__func__, kcontrol->id.name);
} else {
ucontrol->value.enumerated.item[0] = tdm_get_format_val(
tdm_tx_cfg[port.mode][port.channel].bit_format);
pr_debug("%s: tdm_tx_bit_format = %d, item = %d\n", __func__,
tdm_tx_cfg[port.mode][port.channel].bit_format,
ucontrol->value.enumerated.item[0]);
}
return ret;
}
static int tdm_tx_format_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tdm_port port;
int ret = tdm_get_port_idx(kcontrol, &port);
if (ret) {
pr_err("%s: unsupported control: %s",
__func__, kcontrol->id.name);
} else {
tdm_tx_cfg[port.mode][port.channel].bit_format =
tdm_get_format(ucontrol->value.enumerated.item[0]);
pr_debug("%s: tdm_tx_bit_format = %d, item = %d\n", __func__,
tdm_tx_cfg[port.mode][port.channel].bit_format,
ucontrol->value.enumerated.item[0]);
}
return ret;
}
static int tdm_rx_ch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tdm_port port;
int ret = tdm_get_port_idx(kcontrol, &port);
if (ret) {
pr_err("%s: unsupported control: %s",
__func__, kcontrol->id.name);
} else {
ucontrol->value.enumerated.item[0] =
tdm_rx_cfg[port.mode][port.channel].channels - 1;
pr_debug("%s: tdm_rx_ch = %d, item = %d\n", __func__,
tdm_rx_cfg[port.mode][port.channel].channels - 1,
ucontrol->value.enumerated.item[0]);
}
return ret;
}
static int tdm_rx_ch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tdm_port port;
int ret = tdm_get_port_idx(kcontrol, &port);
if (ret) {
pr_err("%s: unsupported control: %s",
__func__, kcontrol->id.name);
} else {
tdm_rx_cfg[port.mode][port.channel].channels =
ucontrol->value.enumerated.item[0] + 1;
pr_debug("%s: tdm_rx_ch = %d, item = %d\n", __func__,
tdm_rx_cfg[port.mode][port.channel].channels,
ucontrol->value.enumerated.item[0] + 1);
}
return ret;
}
static int tdm_tx_ch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tdm_port port;
int ret = tdm_get_port_idx(kcontrol, &port);
if (ret) {
pr_err("%s: unsupported control: %s",
__func__, kcontrol->id.name);
} else {
ucontrol->value.enumerated.item[0] =
tdm_tx_cfg[port.mode][port.channel].channels - 1;
pr_debug("%s: tdm_tx_ch = %d, item = %d\n", __func__,
tdm_tx_cfg[port.mode][port.channel].channels - 1,
ucontrol->value.enumerated.item[0]);
}
return ret;
}
static int tdm_tx_ch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tdm_port port;
int ret = tdm_get_port_idx(kcontrol, &port);
if (ret) {
pr_err("%s: unsupported control: %s",
__func__, kcontrol->id.name);
} else {
tdm_tx_cfg[port.mode][port.channel].channels =
ucontrol->value.enumerated.item[0] + 1;
pr_debug("%s: tdm_tx_ch = %d, item = %d\n", __func__,
tdm_tx_cfg[port.mode][port.channel].channels,
ucontrol->value.enumerated.item[0] + 1);
}
return ret;
}
static int aux_pcm_get_sample_rate(int value)
{
int sample_rate;
switch (value) {
case 1:
sample_rate = SAMPLING_RATE_16KHZ;
break;
case 0:
default:
sample_rate = SAMPLING_RATE_8KHZ;
break;
}
return sample_rate;
}
static int aux_pcm_get_sample_rate_val(int sample_rate)
{
int sample_rate_val;
switch (sample_rate) {
case SAMPLING_RATE_16KHZ:
sample_rate_val = 1;
break;
case SAMPLING_RATE_8KHZ:
default:
sample_rate_val = 0;
break;
}
return sample_rate_val;
}
static int aux_pcm_get_port_idx(struct snd_kcontrol *kcontrol)
{
int idx;
if (strnstr(kcontrol->id.name, "PRIM_AUX_PCM",
sizeof("PRIM_AUX_PCM")))
idx = PRIM_AUX_PCM;
else if (strnstr(kcontrol->id.name, "SEC_AUX_PCM",
sizeof("SEC_AUX_PCM")))
idx = SEC_AUX_PCM;
else if (strnstr(kcontrol->id.name, "TERT_AUX_PCM",
sizeof("TERT_AUX_PCM")))
idx = TERT_AUX_PCM;
else if (strnstr(kcontrol->id.name, "QUAT_AUX_PCM",
sizeof("QUAT_AUX_PCM")))
idx = QUAT_AUX_PCM;
else {
pr_err("%s: unsupported port: %s",
__func__, kcontrol->id.name);
idx = -EINVAL;
}
return idx;
}
static int aux_pcm_rx_sample_rate_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int idx = aux_pcm_get_port_idx(kcontrol);
if (idx < 0)
return idx;
aux_pcm_rx_cfg[idx].sample_rate =
aux_pcm_get_sample_rate(ucontrol->value.enumerated.item[0]);
pr_debug("%s: idx[%d]_rx_sample_rate = %d, item = %d\n", __func__,
idx, aux_pcm_rx_cfg[idx].sample_rate,
ucontrol->value.enumerated.item[0]);
return 0;
}
static int aux_pcm_rx_sample_rate_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int idx = aux_pcm_get_port_idx(kcontrol);
if (idx < 0)
return idx;
ucontrol->value.enumerated.item[0] =
aux_pcm_get_sample_rate_val(aux_pcm_rx_cfg[idx].sample_rate);
pr_debug("%s: idx[%d]_rx_sample_rate = %d, item = %d\n", __func__,
idx, aux_pcm_rx_cfg[idx].sample_rate,
ucontrol->value.enumerated.item[0]);
return 0;
}
static int aux_pcm_tx_sample_rate_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int idx = aux_pcm_get_port_idx(kcontrol);
if (idx < 0)
return idx;
aux_pcm_tx_cfg[idx].sample_rate =
aux_pcm_get_sample_rate(ucontrol->value.enumerated.item[0]);
pr_debug("%s: idx[%d]_tx_sample_rate = %d, item = %d\n", __func__,
idx, aux_pcm_tx_cfg[idx].sample_rate,
ucontrol->value.enumerated.item[0]);
return 0;
}
static int aux_pcm_tx_sample_rate_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int idx = aux_pcm_get_port_idx(kcontrol);
if (idx < 0)
return idx;
ucontrol->value.enumerated.item[0] =
aux_pcm_get_sample_rate_val(aux_pcm_tx_cfg[idx].sample_rate);
pr_debug("%s: idx[%d]_tx_sample_rate = %d, item = %d\n", __func__,
idx, aux_pcm_tx_cfg[idx].sample_rate,
ucontrol->value.enumerated.item[0]);
return 0;
}
static int mi2s_get_port_idx(struct snd_kcontrol *kcontrol)
{
int idx;
if (strnstr(kcontrol->id.name, "PRIM_MI2S_RX",
sizeof("PRIM_MI2S_RX")))
idx = PRIM_MI2S;
else if (strnstr(kcontrol->id.name, "SEC_MI2S_RX",
sizeof("SEC_MI2S_RX")))
idx = SEC_MI2S;
else if (strnstr(kcontrol->id.name, "TERT_MI2S_RX",
sizeof("TERT_MI2S_RX")))
idx = TERT_MI2S;
else if (strnstr(kcontrol->id.name, "QUAT_MI2S_RX",
sizeof("QUAT_MI2S_RX")))
idx = QUAT_MI2S;
else if (strnstr(kcontrol->id.name, "PRIM_MI2S_TX",
sizeof("PRIM_MI2S_TX")))
idx = PRIM_MI2S;
else if (strnstr(kcontrol->id.name, "SEC_MI2S_TX",
sizeof("SEC_MI2S_TX")))
idx = SEC_MI2S;
else if (strnstr(kcontrol->id.name, "TERT_MI2S_TX",
sizeof("TERT_MI2S_TX")))
idx = TERT_MI2S;
else if (strnstr(kcontrol->id.name, "QUAT_MI2S_TX",
sizeof("QUAT_MI2S_TX")))
idx = QUAT_MI2S;
else {
pr_err("%s: unsupported channel: %s",
__func__, kcontrol->id.name);
idx = -EINVAL;
}
return idx;
}
static int mi2s_get_sample_rate_val(int sample_rate)
{
int sample_rate_val;
switch (sample_rate) {
case SAMPLING_RATE_8KHZ:
sample_rate_val = 0;
break;
case SAMPLING_RATE_16KHZ:
sample_rate_val = 1;
break;
case SAMPLING_RATE_32KHZ:
sample_rate_val = 2;
break;
case SAMPLING_RATE_44P1KHZ:
sample_rate_val = 3;
break;
case SAMPLING_RATE_48KHZ:
sample_rate_val = 4;
break;
case SAMPLING_RATE_96KHZ:
sample_rate_val = 5;
break;
case SAMPLING_RATE_192KHZ:
sample_rate_val = 6;
break;
default:
sample_rate_val = 4;
break;
}
return sample_rate_val;
}
static int mi2s_get_sample_rate(int value)
{
int sample_rate;
switch (value) {
case 0:
sample_rate = SAMPLING_RATE_8KHZ;
break;
case 1:
sample_rate = SAMPLING_RATE_16KHZ;
break;
case 2:
sample_rate = SAMPLING_RATE_32KHZ;
break;
case 3:
sample_rate = SAMPLING_RATE_44P1KHZ;
break;
case 4:
sample_rate = SAMPLING_RATE_48KHZ;
break;
case 5:
sample_rate = SAMPLING_RATE_96KHZ;
break;
case 6:
sample_rate = SAMPLING_RATE_192KHZ;
break;
default:
sample_rate = SAMPLING_RATE_48KHZ;
break;
}
return sample_rate;
}
static int mi2s_rx_sample_rate_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int idx = mi2s_get_port_idx(kcontrol);
if (idx < 0)
return idx;
mi2s_rx_cfg[idx].sample_rate =
mi2s_get_sample_rate(ucontrol->value.enumerated.item[0]);
pr_debug("%s: idx[%d]_rx_sample_rate = %d, item = %d\n", __func__,
idx, mi2s_rx_cfg[idx].sample_rate,
ucontrol->value.enumerated.item[0]);
return 0;
}
static int mi2s_rx_sample_rate_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int idx = mi2s_get_port_idx(kcontrol);
if (idx < 0)
return idx;
ucontrol->value.enumerated.item[0] =
mi2s_get_sample_rate_val(mi2s_rx_cfg[idx].sample_rate);
pr_debug("%s: idx[%d]_rx_sample_rate = %d, item = %d\n", __func__,
idx, mi2s_rx_cfg[idx].sample_rate,
ucontrol->value.enumerated.item[0]);
return 0;
}
static int mi2s_tx_sample_rate_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int idx = mi2s_get_port_idx(kcontrol);
if (idx < 0)
return idx;
mi2s_tx_cfg[idx].sample_rate =
mi2s_get_sample_rate(ucontrol->value.enumerated.item[0]);
pr_debug("%s: idx[%d]_tx_sample_rate = %d, item = %d\n", __func__,
idx, mi2s_tx_cfg[idx].sample_rate,
ucontrol->value.enumerated.item[0]);
return 0;
}
static int mi2s_tx_sample_rate_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int idx = mi2s_get_port_idx(kcontrol);
if (idx < 0)
return idx;
ucontrol->value.enumerated.item[0] =
mi2s_get_sample_rate_val(mi2s_tx_cfg[idx].sample_rate);
pr_debug("%s: idx[%d]_tx_sample_rate = %d, item = %d\n", __func__,
idx, mi2s_tx_cfg[idx].sample_rate,
ucontrol->value.enumerated.item[0]);
return 0;
}
static int mi2s_tx_format_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int idx = mi2s_get_port_idx(kcontrol);
if (idx < 0)
return idx;
mi2s_tx_cfg[idx].bit_format =
mi2s_get_format(ucontrol->value.enumerated.item[0]);
pr_debug("%s: idx[%d] _tx_format = %d, item = %d\n", __func__,
idx, mi2s_tx_cfg[idx].bit_format,
ucontrol->value.enumerated.item[0]);
return 0;
}
static int mi2s_tx_format_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int idx = mi2s_get_port_idx(kcontrol);
if (idx < 0)
return idx;
ucontrol->value.enumerated.item[0] =
mi2s_get_format_value(mi2s_tx_cfg[idx].bit_format);
pr_debug("%s: idx[%d]_tx_format = %d, item = %d\n", __func__,
idx, mi2s_tx_cfg[idx].bit_format,
ucontrol->value.enumerated.item[0]);
return 0;
}
static int mi2s_rx_format_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int idx = mi2s_get_port_idx(kcontrol);
if (idx < 0)
return idx;
mi2s_rx_cfg[idx].bit_format =
mi2s_get_format(ucontrol->value.enumerated.item[0]);
pr_debug("%s: idx[%d] _rx_format = %d, item = %d\n", __func__,
idx, mi2s_rx_cfg[idx].bit_format,
ucontrol->value.enumerated.item[0]);
return 0;
}
static int mi2s_rx_format_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int idx = mi2s_get_port_idx(kcontrol);
if (idx < 0)
return idx;
ucontrol->value.enumerated.item[0] =
mi2s_get_format_value(mi2s_rx_cfg[idx].bit_format);
pr_debug("%s: idx[%d]_rx_format = %d, item = %d\n", __func__,
idx, mi2s_rx_cfg[idx].bit_format,
ucontrol->value.enumerated.item[0]);
return 0;
}
static int msm_mi2s_rx_ch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int idx = mi2s_get_port_idx(kcontrol);
if (idx < 0)
return idx;
pr_debug("%s: msm_mi2s_[%d]_rx_ch = %d\n", __func__,
idx, mi2s_rx_cfg[idx].channels);
ucontrol->value.enumerated.item[0] = mi2s_rx_cfg[idx].channels - 1;
return 0;
}
static int msm_mi2s_rx_ch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int idx = mi2s_get_port_idx(kcontrol);
if (idx < 0)
return idx;
mi2s_rx_cfg[idx].channels = ucontrol->value.enumerated.item[0] + 1;
pr_debug("%s: msm_mi2s_[%d]_rx_ch = %d\n", __func__,
idx, mi2s_rx_cfg[idx].channels);
return 1;
}
static int msm_mi2s_tx_ch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int idx = mi2s_get_port_idx(kcontrol);
if (idx < 0)
return idx;
pr_debug("%s: msm_mi2s_[%d]_tx_ch = %d\n", __func__,
idx, mi2s_tx_cfg[idx].channels);
ucontrol->value.enumerated.item[0] = mi2s_tx_cfg[idx].channels - 1;
return 0;
}
static int msm_mi2s_tx_ch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int idx = mi2s_get_port_idx(kcontrol);
if (idx < 0)
return idx;
mi2s_tx_cfg[idx].channels = ucontrol->value.enumerated.item[0] + 1;
pr_debug("%s: msm_mi2s_[%d]_tx_ch = %d\n", __func__,
idx, mi2s_tx_cfg[idx].channels);
return 1;
}
static int usb_audio_rx_ch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
pr_debug("%s: usb_audio_rx_ch = %d\n", __func__,
usb_rx_cfg.channels);
ucontrol->value.integer.value[0] = usb_rx_cfg.channels - 1;
return 0;
}
static int usb_audio_rx_ch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
usb_rx_cfg.channels = ucontrol->value.integer.value[0] + 1;
pr_debug("%s: usb_audio_rx_ch = %d\n", __func__, usb_rx_cfg.channels);
return 1;
}
static int usb_audio_rx_sample_rate_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int sample_rate_val;
switch (usb_rx_cfg.sample_rate) {
case SAMPLING_RATE_384KHZ:
sample_rate_val = 9;
break;
case SAMPLING_RATE_192KHZ:
sample_rate_val = 8;
break;
case SAMPLING_RATE_96KHZ:
sample_rate_val = 7;
break;
case SAMPLING_RATE_48KHZ:
sample_rate_val = 6;
break;
case SAMPLING_RATE_44P1KHZ:
sample_rate_val = 5;
break;
case SAMPLING_RATE_32KHZ:
sample_rate_val = 4;
break;
case SAMPLING_RATE_22P05KHZ:
sample_rate_val = 3;
break;
case SAMPLING_RATE_16KHZ:
sample_rate_val = 2;
break;
case SAMPLING_RATE_11P025KHZ:
sample_rate_val = 1;
break;
case SAMPLING_RATE_8KHZ:
default:
sample_rate_val = 0;
break;
}
ucontrol->value.integer.value[0] = sample_rate_val;
pr_debug("%s: usb_audio_rx_sample_rate = %d\n", __func__,
usb_rx_cfg.sample_rate);
return 0;
}
static int usb_audio_rx_sample_rate_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
switch (ucontrol->value.integer.value[0]) {
case 9:
usb_rx_cfg.sample_rate = SAMPLING_RATE_384KHZ;
break;
case 8:
usb_rx_cfg.sample_rate = SAMPLING_RATE_192KHZ;
break;
case 7:
usb_rx_cfg.sample_rate = SAMPLING_RATE_96KHZ;
break;
case 6:
usb_rx_cfg.sample_rate = SAMPLING_RATE_48KHZ;
break;
case 5:
usb_rx_cfg.sample_rate = SAMPLING_RATE_44P1KHZ;
break;
case 4:
usb_rx_cfg.sample_rate = SAMPLING_RATE_32KHZ;
break;
case 3:
usb_rx_cfg.sample_rate = SAMPLING_RATE_22P05KHZ;
break;
case 2:
usb_rx_cfg.sample_rate = SAMPLING_RATE_16KHZ;
break;
case 1:
usb_rx_cfg.sample_rate = SAMPLING_RATE_11P025KHZ;
break;
case 0:
usb_rx_cfg.sample_rate = SAMPLING_RATE_8KHZ;
break;
default:
usb_rx_cfg.sample_rate = SAMPLING_RATE_48KHZ;
break;
}
pr_debug("%s: control value = %ld, usb_audio_rx_sample_rate = %d\n",
__func__, ucontrol->value.integer.value[0],
usb_rx_cfg.sample_rate);
return 0;
}
static int usb_audio_rx_format_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
switch (usb_rx_cfg.bit_format) {
case SNDRV_PCM_FORMAT_S32_LE:
ucontrol->value.integer.value[0] = 3;
break;
case SNDRV_PCM_FORMAT_S24_3LE:
ucontrol->value.integer.value[0] = 2;
break;
case SNDRV_PCM_FORMAT_S24_LE:
ucontrol->value.integer.value[0] = 1;
break;
case SNDRV_PCM_FORMAT_S16_LE:
default:
ucontrol->value.integer.value[0] = 0;
break;
}
pr_debug("%s: usb_audio_rx_format = %d, ucontrol value = %ld\n",
__func__, usb_rx_cfg.bit_format,
ucontrol->value.integer.value[0]);
return 0;
}
static int usb_audio_rx_format_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int rc = 0;
switch (ucontrol->value.integer.value[0]) {
case 3:
usb_rx_cfg.bit_format = SNDRV_PCM_FORMAT_S32_LE;
break;
case 2:
usb_rx_cfg.bit_format = SNDRV_PCM_FORMAT_S24_3LE;
break;
case 1:
usb_rx_cfg.bit_format = SNDRV_PCM_FORMAT_S24_LE;
break;
case 0:
default:
usb_rx_cfg.bit_format = SNDRV_PCM_FORMAT_S16_LE;
break;
}
pr_debug("%s: usb_audio_rx_format = %d, ucontrol value = %ld\n",
__func__, usb_rx_cfg.bit_format,
ucontrol->value.integer.value[0]);
return rc;
}
static int usb_audio_tx_ch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
pr_debug("%s: usb_audio_tx_ch = %d\n", __func__,
usb_tx_cfg.channels);
ucontrol->value.integer.value[0] = usb_tx_cfg.channels - 1;
return 0;
}
static int usb_audio_tx_ch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
usb_tx_cfg.channels = ucontrol->value.integer.value[0] + 1;
pr_debug("%s: usb_audio_tx_ch = %d\n", __func__, usb_tx_cfg.channels);
return 1;
}
static int usb_audio_tx_sample_rate_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int sample_rate_val;
switch (usb_tx_cfg.sample_rate) {
case SAMPLING_RATE_384KHZ:
sample_rate_val = 9;
break;
case SAMPLING_RATE_192KHZ:
sample_rate_val = 8;
break;
case SAMPLING_RATE_96KHZ:
sample_rate_val = 7;
break;
case SAMPLING_RATE_48KHZ:
sample_rate_val = 6;
break;
case SAMPLING_RATE_44P1KHZ:
sample_rate_val = 5;
break;
case SAMPLING_RATE_32KHZ:
sample_rate_val = 4;
break;
case SAMPLING_RATE_22P05KHZ:
sample_rate_val = 3;
break;
case SAMPLING_RATE_16KHZ:
sample_rate_val = 2;
break;
case SAMPLING_RATE_11P025KHZ:
sample_rate_val = 1;
break;
case SAMPLING_RATE_8KHZ:
sample_rate_val = 0;
break;
default:
sample_rate_val = 6;
break;
}
ucontrol->value.integer.value[0] = sample_rate_val;
pr_debug("%s: usb_audio_tx_sample_rate = %d\n", __func__,
usb_tx_cfg.sample_rate);
return 0;
}
static int usb_audio_tx_sample_rate_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
switch (ucontrol->value.integer.value[0]) {
case 9:
usb_tx_cfg.sample_rate = SAMPLING_RATE_384KHZ;
break;
case 8:
usb_tx_cfg.sample_rate = SAMPLING_RATE_192KHZ;
break;
case 7:
usb_tx_cfg.sample_rate = SAMPLING_RATE_96KHZ;
break;
case 6:
usb_tx_cfg.sample_rate = SAMPLING_RATE_48KHZ;
break;
case 5:
usb_tx_cfg.sample_rate = SAMPLING_RATE_44P1KHZ;
break;
case 4:
usb_tx_cfg.sample_rate = SAMPLING_RATE_32KHZ;
break;
case 3:
usb_tx_cfg.sample_rate = SAMPLING_RATE_22P05KHZ;
break;
case 2:
usb_tx_cfg.sample_rate = SAMPLING_RATE_16KHZ;
break;
case 1:
usb_tx_cfg.sample_rate = SAMPLING_RATE_11P025KHZ;
break;
case 0:
usb_tx_cfg.sample_rate = SAMPLING_RATE_8KHZ;
break;
default:
usb_tx_cfg.sample_rate = SAMPLING_RATE_48KHZ;
break;
}
pr_debug("%s: control value = %ld, usb_audio_tx_sample_rate = %d\n",
__func__, ucontrol->value.integer.value[0],
usb_tx_cfg.sample_rate);
return 0;
}
static int usb_audio_tx_format_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
switch (usb_tx_cfg.bit_format) {
case SNDRV_PCM_FORMAT_S32_LE:
ucontrol->value.integer.value[0] = 3;
break;
case SNDRV_PCM_FORMAT_S24_3LE:
ucontrol->value.integer.value[0] = 2;
break;
case SNDRV_PCM_FORMAT_S24_LE:
ucontrol->value.integer.value[0] = 1;
break;
case SNDRV_PCM_FORMAT_S16_LE:
default:
ucontrol->value.integer.value[0] = 0;
break;
}
pr_debug("%s: usb_audio_tx_format = %d, ucontrol value = %ld\n",
__func__, usb_tx_cfg.bit_format,
ucontrol->value.integer.value[0]);
return 0;
}
static int usb_audio_tx_format_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int rc = 0;
switch (ucontrol->value.integer.value[0]) {
case 3:
usb_tx_cfg.bit_format = SNDRV_PCM_FORMAT_S32_LE;
break;
case 2:
usb_tx_cfg.bit_format = SNDRV_PCM_FORMAT_S24_3LE;
break;
case 1:
usb_tx_cfg.bit_format = SNDRV_PCM_FORMAT_S24_LE;
break;
case 0:
default:
usb_tx_cfg.bit_format = SNDRV_PCM_FORMAT_S16_LE;
break;
}
pr_debug("%s: usb_audio_tx_format = %d, ucontrol value = %ld\n",
__func__, usb_tx_cfg.bit_format,
ucontrol->value.integer.value[0]);
return rc;
}
static int ext_disp_get_port_idx(struct snd_kcontrol *kcontrol)
{
int idx;
if (strnstr(kcontrol->id.name, "Display Port RX",
sizeof("Display Port RX")))
idx = DP_RX_IDX;
else {
pr_err("%s: unsupported BE: %s",
__func__, kcontrol->id.name);
idx = -EINVAL;
}
return idx;
}
static int ext_disp_rx_format_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int idx = ext_disp_get_port_idx(kcontrol);
if (idx < 0)
return idx;
switch (ext_disp_rx_cfg[idx].bit_format) {
case SNDRV_PCM_FORMAT_S24_LE:
ucontrol->value.integer.value[0] = 1;
break;
case SNDRV_PCM_FORMAT_S16_LE:
default:
ucontrol->value.integer.value[0] = 0;
break;
}
pr_debug("%s: ext_disp_rx[%d].format = %d, ucontrol value = %ld\n",
__func__, idx, ext_disp_rx_cfg[idx].bit_format,
ucontrol->value.integer.value[0]);
return 0;
}
static int ext_disp_rx_format_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int idx = ext_disp_get_port_idx(kcontrol);
if (idx < 0)
return idx;
switch (ucontrol->value.integer.value[0]) {
case 1:
ext_disp_rx_cfg[idx].bit_format = SNDRV_PCM_FORMAT_S24_LE;
break;
case 0:
default:
ext_disp_rx_cfg[idx].bit_format = SNDRV_PCM_FORMAT_S16_LE;
break;
}
pr_debug("%s: ext_disp_rx[%d].format = %d, ucontrol value = %ld\n",
__func__, idx, ext_disp_rx_cfg[idx].bit_format,
ucontrol->value.integer.value[0]);
return 0;
}
static int ext_disp_rx_ch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int idx = ext_disp_get_port_idx(kcontrol);
if (idx < 0)
return idx;
ucontrol->value.integer.value[0] =
ext_disp_rx_cfg[idx].channels - 2;
pr_debug("%s: ext_disp_rx[%d].ch = %d\n", __func__,
idx, ext_disp_rx_cfg[idx].channels);
return 0;
}
static int ext_disp_rx_ch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int idx = ext_disp_get_port_idx(kcontrol);
if (idx < 0)
return idx;
ext_disp_rx_cfg[idx].channels =
ucontrol->value.integer.value[0] + 2;
pr_debug("%s: ext_disp_rx[%d].ch = %d\n", __func__,
idx, ext_disp_rx_cfg[idx].channels);
return 1;
}
static int ext_disp_rx_sample_rate_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int sample_rate_val;
int idx = ext_disp_get_port_idx(kcontrol);
if (idx < 0)
return idx;
switch (ext_disp_rx_cfg[idx].sample_rate) {
case SAMPLING_RATE_192KHZ:
sample_rate_val = 2;
break;
case SAMPLING_RATE_96KHZ:
sample_rate_val = 1;
break;
case SAMPLING_RATE_48KHZ:
default:
sample_rate_val = 0;
break;
}
ucontrol->value.integer.value[0] = sample_rate_val;
pr_debug("%s: ext_disp_rx[%d].sample_rate = %d\n", __func__,
idx, ext_disp_rx_cfg[idx].sample_rate);
return 0;
}
static int ext_disp_rx_sample_rate_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int idx = ext_disp_get_port_idx(kcontrol);
if (idx < 0)
return idx;
switch (ucontrol->value.integer.value[0]) {
case 2:
ext_disp_rx_cfg[idx].sample_rate = SAMPLING_RATE_192KHZ;
break;
case 1:
ext_disp_rx_cfg[idx].sample_rate = SAMPLING_RATE_96KHZ;
break;
case 0:
default:
ext_disp_rx_cfg[idx].sample_rate = SAMPLING_RATE_48KHZ;
break;
}
pr_debug("%s: control value = %ld, ext_disp_rx[%d].sample_rate = %d\n",
__func__, ucontrol->value.integer.value[0], idx,
ext_disp_rx_cfg[idx].sample_rate);
return 0;
}
const struct snd_kcontrol_new msm_common_snd_controls[] = {
SOC_ENUM_EXT("PROXY_RX Channels", proxy_rx_chs,
proxy_rx_ch_get, proxy_rx_ch_put),
SOC_ENUM_EXT("PRIM_AUX_PCM_RX SampleRate", prim_aux_pcm_rx_sample_rate,
aux_pcm_rx_sample_rate_get,
aux_pcm_rx_sample_rate_put),
SOC_ENUM_EXT("SEC_AUX_PCM_RX SampleRate", sec_aux_pcm_rx_sample_rate,
aux_pcm_rx_sample_rate_get,
aux_pcm_rx_sample_rate_put),
SOC_ENUM_EXT("TERT_AUX_PCM_RX SampleRate", tert_aux_pcm_rx_sample_rate,
aux_pcm_rx_sample_rate_get,
aux_pcm_rx_sample_rate_put),
SOC_ENUM_EXT("QUAT_AUX_PCM_RX SampleRate", quat_aux_pcm_rx_sample_rate,
aux_pcm_rx_sample_rate_get,
aux_pcm_rx_sample_rate_put),
SOC_ENUM_EXT("PRIM_AUX_PCM_TX SampleRate", prim_aux_pcm_tx_sample_rate,
aux_pcm_tx_sample_rate_get,
aux_pcm_tx_sample_rate_put),
SOC_ENUM_EXT("SEC_AUX_PCM_TX SampleRate", sec_aux_pcm_tx_sample_rate,
aux_pcm_tx_sample_rate_get,
aux_pcm_tx_sample_rate_put),
SOC_ENUM_EXT("TERT_AUX_PCM_TX SampleRate", tert_aux_pcm_tx_sample_rate,
aux_pcm_tx_sample_rate_get,
aux_pcm_tx_sample_rate_put),
SOC_ENUM_EXT("QUAT_AUX_PCM_TX SampleRate", quat_aux_pcm_tx_sample_rate,
aux_pcm_tx_sample_rate_get,
aux_pcm_tx_sample_rate_put),
SOC_ENUM_EXT("PRIM_MI2S_RX SampleRate", prim_mi2s_rx_sample_rate,
mi2s_rx_sample_rate_get,
mi2s_rx_sample_rate_put),
SOC_ENUM_EXT("SEC_MI2S_RX SampleRate", sec_mi2s_rx_sample_rate,
mi2s_rx_sample_rate_get,
mi2s_rx_sample_rate_put),
SOC_ENUM_EXT("TERT_MI2S_RX SampleRate", tert_mi2s_rx_sample_rate,
mi2s_rx_sample_rate_get,
mi2s_rx_sample_rate_put),
SOC_ENUM_EXT("QUAT_MI2S_RX SampleRate", quat_mi2s_rx_sample_rate,
mi2s_rx_sample_rate_get,
mi2s_rx_sample_rate_put),
SOC_ENUM_EXT("PRIM_MI2S_TX SampleRate", prim_mi2s_tx_sample_rate,
mi2s_tx_sample_rate_get,
mi2s_tx_sample_rate_put),
SOC_ENUM_EXT("SEC_MI2S_TX SampleRate", sec_mi2s_tx_sample_rate,
mi2s_tx_sample_rate_get,
mi2s_tx_sample_rate_put),
SOC_ENUM_EXT("TERT_MI2S_TX SampleRate", tert_mi2s_tx_sample_rate,
mi2s_tx_sample_rate_get,
mi2s_tx_sample_rate_put),
SOC_ENUM_EXT("QUAT_MI2S_TX SampleRate", quat_mi2s_tx_sample_rate,
mi2s_tx_sample_rate_get,
mi2s_tx_sample_rate_put),
SOC_ENUM_EXT("PRIM_MI2S_RX Format", prim_mi2s_rx_format,
mi2s_rx_format_get,
mi2s_rx_format_put),
SOC_ENUM_EXT("SEC_MI2S_RX Format", sec_mi2s_rx_format,
mi2s_rx_format_get,
mi2s_rx_format_put),
SOC_ENUM_EXT("TERT_MI2S_RX Format", tert_mi2s_rx_format,
mi2s_rx_format_get,
mi2s_rx_format_put),
SOC_ENUM_EXT("QUAT_MI2S_RX Format", quat_mi2s_rx_format,
mi2s_rx_format_get,
mi2s_rx_format_put),
SOC_ENUM_EXT("PRIM_MI2S_TX Format", prim_mi2s_tx_format,
mi2s_tx_format_get,
mi2s_tx_format_put),
SOC_ENUM_EXT("SEC_MI2S_TX Format", sec_mi2s_tx_format,
mi2s_tx_format_get,
mi2s_tx_format_put),
SOC_ENUM_EXT("TERT_MI2S_TX Format", tert_mi2s_tx_format,
mi2s_tx_format_get,
mi2s_tx_format_put),
SOC_ENUM_EXT("QUAT_MI2S_TX Format", quat_mi2s_tx_format,
mi2s_tx_format_get,
mi2s_tx_format_put),
SOC_ENUM_EXT("PRIM_MI2S_RX Channels", prim_mi2s_rx_chs,
msm_mi2s_rx_ch_get, msm_mi2s_rx_ch_put),
SOC_ENUM_EXT("PRIM_MI2S_TX Channels", prim_mi2s_tx_chs,
msm_mi2s_tx_ch_get, msm_mi2s_tx_ch_put),
SOC_ENUM_EXT("SEC_MI2S_RX Channels", sec_mi2s_rx_chs,
msm_mi2s_rx_ch_get, msm_mi2s_rx_ch_put),
SOC_ENUM_EXT("SEC_MI2S_TX Channels", sec_mi2s_tx_chs,
msm_mi2s_tx_ch_get, msm_mi2s_tx_ch_put),
SOC_ENUM_EXT("TERT_MI2S_RX Channels", tert_mi2s_rx_chs,
msm_mi2s_rx_ch_get, msm_mi2s_rx_ch_put),
SOC_ENUM_EXT("TERT_MI2S_TX Channels", tert_mi2s_tx_chs,
msm_mi2s_tx_ch_get, msm_mi2s_tx_ch_put),
SOC_ENUM_EXT("QUAT_MI2S_RX Channels", quat_mi2s_rx_chs,
msm_mi2s_rx_ch_get, msm_mi2s_rx_ch_put),
SOC_ENUM_EXT("QUAT_MI2S_TX Channels", quat_mi2s_tx_chs,
msm_mi2s_tx_ch_get, msm_mi2s_tx_ch_put),
SOC_ENUM_EXT("USB_AUDIO_RX Channels", usb_rx_chs,
usb_audio_rx_ch_get, usb_audio_rx_ch_put),
SOC_ENUM_EXT("USB_AUDIO_TX Channels", usb_tx_chs,
usb_audio_tx_ch_get, usb_audio_tx_ch_put),
SOC_ENUM_EXT("Display Port RX Channels", ext_disp_rx_chs,
ext_disp_rx_ch_get, ext_disp_rx_ch_put),
SOC_ENUM_EXT("USB_AUDIO_RX Format", usb_rx_format,
usb_audio_rx_format_get, usb_audio_rx_format_put),
SOC_ENUM_EXT("USB_AUDIO_TX Format", usb_tx_format,
usb_audio_tx_format_get, usb_audio_tx_format_put),
SOC_ENUM_EXT("Display Port RX Bit Format", ext_disp_rx_format,
ext_disp_rx_format_get, ext_disp_rx_format_put),
SOC_ENUM_EXT("USB_AUDIO_RX SampleRate", usb_rx_sample_rate,
usb_audio_rx_sample_rate_get,
usb_audio_rx_sample_rate_put),
SOC_ENUM_EXT("USB_AUDIO_TX SampleRate", usb_tx_sample_rate,
usb_audio_tx_sample_rate_get,
usb_audio_tx_sample_rate_put),
SOC_ENUM_EXT("Display Port RX SampleRate", ext_disp_rx_sample_rate,
ext_disp_rx_sample_rate_get,
ext_disp_rx_sample_rate_put),
SOC_ENUM_EXT("PRI_TDM_RX_0 SampleRate", tdm_rx_sample_rate,
tdm_rx_sample_rate_get,
tdm_rx_sample_rate_put),
SOC_ENUM_EXT("PRI_TDM_TX_0 SampleRate", tdm_tx_sample_rate,
tdm_tx_sample_rate_get,
tdm_tx_sample_rate_put),
SOC_ENUM_EXT("PRI_TDM_RX_0 Format", tdm_rx_format,
tdm_rx_format_get,
tdm_rx_format_put),
SOC_ENUM_EXT("PRI_TDM_TX_0 Format", tdm_tx_format,
tdm_tx_format_get,
tdm_tx_format_put),
SOC_ENUM_EXT("PRI_TDM_RX_0 Channels", tdm_rx_chs,
tdm_rx_ch_get,
tdm_rx_ch_put),
SOC_ENUM_EXT("PRI_TDM_TX_0 Channels", tdm_tx_chs,
tdm_tx_ch_get,
tdm_tx_ch_put),
SOC_ENUM_EXT("SEC_TDM_RX_0 SampleRate", tdm_rx_sample_rate,
tdm_rx_sample_rate_get,
tdm_rx_sample_rate_put),
SOC_ENUM_EXT("SEC_TDM_TX_0 SampleRate", tdm_tx_sample_rate,
tdm_tx_sample_rate_get,
tdm_tx_sample_rate_put),
SOC_ENUM_EXT("SEC_TDM_RX_0 Format", tdm_rx_format,
tdm_rx_format_get,
tdm_rx_format_put),
SOC_ENUM_EXT("SEC_TDM_TX_0 Format", tdm_tx_format,
tdm_tx_format_get,
tdm_tx_format_put),
SOC_ENUM_EXT("SEC_TDM_RX_0 Channels", tdm_rx_chs,
tdm_rx_ch_get,
tdm_rx_ch_put),
SOC_ENUM_EXT("SEC_TDM_TX_0 Channels", tdm_tx_chs,
tdm_tx_ch_get,
tdm_tx_ch_put),
SOC_ENUM_EXT("TERT_TDM_RX_0 SampleRate", tdm_rx_sample_rate,
tdm_rx_sample_rate_get,
tdm_rx_sample_rate_put),
SOC_ENUM_EXT("TERT_TDM_TX_0 SampleRate", tdm_tx_sample_rate,
tdm_tx_sample_rate_get,
tdm_tx_sample_rate_put),
SOC_ENUM_EXT("TERT_TDM_RX_0 Format", tdm_rx_format,
tdm_rx_format_get,
tdm_rx_format_put),
SOC_ENUM_EXT("TERT_TDM_TX_0 Format", tdm_tx_format,
tdm_tx_format_get,
tdm_tx_format_put),
SOC_ENUM_EXT("TERT_TDM_RX_0 Channels", tdm_rx_chs,
tdm_rx_ch_get,
tdm_rx_ch_put),
SOC_ENUM_EXT("TERT_TDM_TX_0 Channels", tdm_tx_chs,
tdm_tx_ch_get,
tdm_tx_ch_put),
SOC_ENUM_EXT("QUAT_TDM_RX_0 SampleRate", tdm_rx_sample_rate,
tdm_rx_sample_rate_get,
tdm_rx_sample_rate_put),
SOC_ENUM_EXT("QUAT_TDM_TX_0 SampleRate", tdm_tx_sample_rate,
tdm_tx_sample_rate_get,
tdm_tx_sample_rate_put),
SOC_ENUM_EXT("QUAT_TDM_RX_0 Format", tdm_rx_format,
tdm_rx_format_get,
tdm_rx_format_put),
SOC_ENUM_EXT("QUAT_TDM_TX_0 Format", tdm_tx_format,
tdm_tx_format_get,
tdm_tx_format_put),
SOC_ENUM_EXT("QUAT_TDM_RX_0 Channels", tdm_rx_chs,
tdm_rx_ch_get,
tdm_rx_ch_put),
SOC_ENUM_EXT("QUAT_TDM_TX_0 Channels", tdm_tx_chs,
tdm_tx_ch_get,
tdm_tx_ch_put),
};
/**
* msm_common_snd_controls_size - to return controls size
*
* Return: returns size of common controls array
*/
int msm_common_snd_controls_size(void)
{
return ARRAY_SIZE(msm_common_snd_controls);
}
EXPORT_SYMBOL(msm_common_snd_controls_size);
static inline int param_is_mask(int p)
{
return (p >= SNDRV_PCM_HW_PARAM_FIRST_MASK) &&
(p <= SNDRV_PCM_HW_PARAM_LAST_MASK);
}
static inline struct snd_mask *param_to_mask(struct snd_pcm_hw_params *p,
int n)
{
return &(p->masks[n - SNDRV_PCM_HW_PARAM_FIRST_MASK]);
}
static void param_set_mask(struct snd_pcm_hw_params *p, int n, unsigned int bit)
{
if (bit >= SNDRV_MASK_MAX)
return;
if (param_is_mask(n)) {
struct snd_mask *m = param_to_mask(p, n);
m->bits[0] = 0;
m->bits[1] = 0;
m->bits[bit >> 5] |= (1 << (bit & 31));
}
}
static int msm_ext_disp_get_idx_from_beid(int32_t be_id)
{
int idx;
switch (be_id) {
case MSM_BACKEND_DAI_DISPLAY_PORT_RX:
idx = DP_RX_IDX;
break;
default:
pr_err("%s: Incorrect ext_disp be_id %d\n", __func__, be_id);
idx = -EINVAL;
break;
}
return idx;
}
/**
* msm_common_be_hw_params_fixup - updates settings of ALSA BE hw params.
*
* @rtd: runtime dailink instance
* @params: HW params of associated backend dailink.
*
* Returns 0.
*/
int msm_common_be_hw_params_fixup(struct snd_soc_pcm_runtime *rtd,
struct snd_pcm_hw_params *params)
{
struct snd_soc_dai_link *dai_link = rtd->dai_link;
struct snd_interval *rate = hw_param_interval(params,
SNDRV_PCM_HW_PARAM_RATE);
struct snd_interval *channels = hw_param_interval(params,
SNDRV_PCM_HW_PARAM_CHANNELS);
int rc = 0;
int idx;
pr_debug("%s: format = %d, rate = %d\n",
__func__, params_format(params), params_rate(params));
switch (dai_link->be_id) {
case MSM_BACKEND_DAI_USB_RX:
param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT,
usb_rx_cfg.bit_format);
rate->min = rate->max = usb_rx_cfg.sample_rate;
channels->min = channels->max = usb_rx_cfg.channels;
break;
case MSM_BACKEND_DAI_USB_TX:
param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT,
usb_tx_cfg.bit_format);
rate->min = rate->max = usb_tx_cfg.sample_rate;
channels->min = channels->max = usb_tx_cfg.channels;
break;
case MSM_BACKEND_DAI_DISPLAY_PORT_RX:
idx = msm_ext_disp_get_idx_from_beid(dai_link->be_id);
if (IS_ERR_VALUE(idx)) {
pr_err("%s: Incorrect ext disp idx %d\n",
__func__, idx);
rc = idx;
break;
}
param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT,
ext_disp_rx_cfg[idx].bit_format);
rate->min = rate->max = ext_disp_rx_cfg[idx].sample_rate;
channels->min = channels->max = ext_disp_rx_cfg[idx].channels;
break;
case MSM_BACKEND_DAI_AFE_PCM_RX:
channels->min = channels->max = proxy_rx_cfg.channels;
rate->min = rate->max = SAMPLING_RATE_48KHZ;
break;
case MSM_BACKEND_DAI_PRI_TDM_RX_0:
channels->min = channels->max =
tdm_rx_cfg[TDM_PRI][TDM_0].channels;
param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT,
tdm_rx_cfg[TDM_PRI][TDM_0].bit_format);
rate->min = rate->max = tdm_rx_cfg[TDM_PRI][TDM_0].sample_rate;
break;
case MSM_BACKEND_DAI_PRI_TDM_TX_0:
channels->min = channels->max =
tdm_tx_cfg[TDM_PRI][TDM_0].channels;
param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT,
tdm_tx_cfg[TDM_PRI][TDM_0].bit_format);
rate->min = rate->max = tdm_tx_cfg[TDM_PRI][TDM_0].sample_rate;
break;
case MSM_BACKEND_DAI_SEC_TDM_RX_0:
channels->min = channels->max =
tdm_rx_cfg[TDM_SEC][TDM_0].channels;
param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT,
tdm_rx_cfg[TDM_SEC][TDM_0].bit_format);
rate->min = rate->max = tdm_rx_cfg[TDM_SEC][TDM_0].sample_rate;
break;
case MSM_BACKEND_DAI_SEC_TDM_TX_0:
channels->min = channels->max =
tdm_tx_cfg[TDM_SEC][TDM_0].channels;
param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT,
tdm_tx_cfg[TDM_SEC][TDM_0].bit_format);
rate->min = rate->max = tdm_tx_cfg[TDM_SEC][TDM_0].sample_rate;
break;
case MSM_BACKEND_DAI_TERT_TDM_RX_0:
channels->min = channels->max =
tdm_rx_cfg[TDM_TERT][TDM_0].channels;
param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT,
tdm_rx_cfg[TDM_TERT][TDM_0].bit_format);
rate->min = rate->max = tdm_rx_cfg[TDM_TERT][TDM_0].sample_rate;
break;
case MSM_BACKEND_DAI_TERT_TDM_TX_0:
channels->min = channels->max =
tdm_tx_cfg[TDM_TERT][TDM_0].channels;
param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT,
tdm_tx_cfg[TDM_TERT][TDM_0].bit_format);
rate->min = rate->max = tdm_tx_cfg[TDM_TERT][TDM_0].sample_rate;
break;
case MSM_BACKEND_DAI_QUAT_TDM_RX_0:
channels->min = channels->max =
tdm_rx_cfg[TDM_QUAT][TDM_0].channels;
param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT,
tdm_rx_cfg[TDM_QUAT][TDM_0].bit_format);
rate->min = rate->max = tdm_rx_cfg[TDM_QUAT][TDM_0].sample_rate;
break;
case MSM_BACKEND_DAI_QUAT_TDM_TX_0:
channels->min = channels->max =
tdm_tx_cfg[TDM_QUAT][TDM_0].channels;
param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT,
tdm_tx_cfg[TDM_QUAT][TDM_0].bit_format);
rate->min = rate->max = tdm_tx_cfg[TDM_QUAT][TDM_0].sample_rate;
break;
case MSM_BACKEND_DAI_AUXPCM_RX:
rate->min = rate->max =
aux_pcm_rx_cfg[PRIM_AUX_PCM].sample_rate;
channels->min = channels->max =
aux_pcm_rx_cfg[PRIM_AUX_PCM].channels;
break;
case MSM_BACKEND_DAI_AUXPCM_TX:
rate->min = rate->max =
aux_pcm_tx_cfg[PRIM_AUX_PCM].sample_rate;
channels->min = channels->max =
aux_pcm_tx_cfg[PRIM_AUX_PCM].channels;
break;
case MSM_BACKEND_DAI_SEC_AUXPCM_RX:
rate->min = rate->max =
aux_pcm_rx_cfg[SEC_AUX_PCM].sample_rate;
channels->min = channels->max =
aux_pcm_rx_cfg[SEC_AUX_PCM].channels;
break;
case MSM_BACKEND_DAI_SEC_AUXPCM_TX:
rate->min = rate->max =
aux_pcm_tx_cfg[SEC_AUX_PCM].sample_rate;
channels->min = channels->max =
aux_pcm_tx_cfg[SEC_AUX_PCM].channels;
break;
case MSM_BACKEND_DAI_TERT_AUXPCM_RX:
rate->min = rate->max =
aux_pcm_rx_cfg[TERT_AUX_PCM].sample_rate;
channels->min = channels->max =
aux_pcm_rx_cfg[TERT_AUX_PCM].channels;
break;
case MSM_BACKEND_DAI_TERT_AUXPCM_TX:
rate->min = rate->max =
aux_pcm_tx_cfg[TERT_AUX_PCM].sample_rate;
channels->min = channels->max =
aux_pcm_tx_cfg[TERT_AUX_PCM].channels;
break;
case MSM_BACKEND_DAI_QUAT_AUXPCM_RX:
rate->min = rate->max =
aux_pcm_rx_cfg[QUAT_AUX_PCM].sample_rate;
channels->min = channels->max =
aux_pcm_rx_cfg[QUAT_AUX_PCM].channels;
break;
case MSM_BACKEND_DAI_QUAT_AUXPCM_TX:
rate->min = rate->max =
aux_pcm_tx_cfg[QUAT_AUX_PCM].sample_rate;
channels->min = channels->max =
aux_pcm_tx_cfg[QUAT_AUX_PCM].channels;
break;
case MSM_BACKEND_DAI_PRI_MI2S_RX:
rate->min = rate->max = mi2s_rx_cfg[PRIM_MI2S].sample_rate;
channels->min = channels->max =
mi2s_rx_cfg[PRIM_MI2S].channels;
param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT,
mi2s_rx_cfg[PRIM_MI2S].bit_format);
break;
case MSM_BACKEND_DAI_PRI_MI2S_TX:
rate->min = rate->max = mi2s_tx_cfg[PRIM_MI2S].sample_rate;
channels->min = channels->max =
mi2s_tx_cfg[PRIM_MI2S].channels;
param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT,
mi2s_tx_cfg[PRIM_MI2S].bit_format);
break;
case MSM_BACKEND_DAI_SECONDARY_MI2S_RX:
rate->min = rate->max = mi2s_rx_cfg[SEC_MI2S].sample_rate;
channels->min = channels->max =
mi2s_rx_cfg[SEC_MI2S].channels;
param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT,
mi2s_rx_cfg[SEC_MI2S].bit_format);
break;
case MSM_BACKEND_DAI_SECONDARY_MI2S_TX:
rate->min = rate->max = mi2s_tx_cfg[SEC_MI2S].sample_rate;
channels->min = channels->max =
mi2s_tx_cfg[SEC_MI2S].channels;
param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT,
mi2s_tx_cfg[SEC_MI2S].bit_format);
break;
case MSM_BACKEND_DAI_TERTIARY_MI2S_RX:
rate->min = rate->max = mi2s_rx_cfg[TERT_MI2S].sample_rate;
channels->min = channels->max =
mi2s_rx_cfg[TERT_MI2S].channels;
param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT,
mi2s_rx_cfg[TERT_MI2S].bit_format);
break;
case MSM_BACKEND_DAI_TERTIARY_MI2S_TX:
rate->min = rate->max = mi2s_tx_cfg[TERT_MI2S].sample_rate;
channels->min = channels->max =
mi2s_tx_cfg[TERT_MI2S].channels;
param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT,
mi2s_tx_cfg[TERT_MI2S].bit_format);
break;
case MSM_BACKEND_DAI_QUATERNARY_MI2S_RX:
rate->min = rate->max = mi2s_rx_cfg[QUAT_MI2S].sample_rate;
channels->min = channels->max =
mi2s_rx_cfg[QUAT_MI2S].channels;
param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT,
mi2s_rx_cfg[QUAT_MI2S].bit_format);
break;
case MSM_BACKEND_DAI_QUATERNARY_MI2S_TX:
rate->min = rate->max = mi2s_tx_cfg[QUAT_MI2S].sample_rate;
channels->min = channels->max =
mi2s_tx_cfg[QUAT_MI2S].channels;
param_set_mask(params, SNDRV_PCM_HW_PARAM_FORMAT,
mi2s_tx_cfg[QUAT_MI2S].bit_format);
break;
default:
rate->min = rate->max = SAMPLING_RATE_48KHZ;
break;
}
return rc;
}
EXPORT_SYMBOL(msm_common_be_hw_params_fixup);
/**
* msm_aux_pcm_snd_startup - startup ops of auxpcm.
*
* @substream: PCM stream pointer of associated backend dailink
*
* Returns 0 on success or -EINVAL on error.
*/
int msm_aux_pcm_snd_startup(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
dev_dbg(rtd->card->dev,
"%s: substream = %s stream = %d, dai name %s, dai ID %d\n",
__func__, substream->name, substream->stream,
rtd->cpu_dai->name, rtd->cpu_dai->id);
return 0;
}
EXPORT_SYMBOL(msm_aux_pcm_snd_startup);
/**
* msm_aux_pcm_snd_shutdown - shutdown ops of auxpcm.
*
* @substream: PCM stream pointer of associated backend dailink
*/
void msm_aux_pcm_snd_shutdown(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
dev_dbg(rtd->card->dev,
"%s: substream = %s stream = %d, dai name %s, dai ID %d\n",
__func__,
substream->name, substream->stream,
rtd->cpu_dai->name, rtd->cpu_dai->id);
}
EXPORT_SYMBOL(msm_aux_pcm_snd_shutdown);
static int msm_get_port_id(int be_id)
{
int afe_port_id;
switch (be_id) {
case MSM_BACKEND_DAI_PRI_MI2S_RX:
afe_port_id = AFE_PORT_ID_PRIMARY_MI2S_RX;
break;
case MSM_BACKEND_DAI_PRI_MI2S_TX:
afe_port_id = AFE_PORT_ID_PRIMARY_MI2S_TX;
break;
case MSM_BACKEND_DAI_SECONDARY_MI2S_RX:
afe_port_id = AFE_PORT_ID_SECONDARY_MI2S_RX;
break;
case MSM_BACKEND_DAI_SECONDARY_MI2S_TX:
afe_port_id = AFE_PORT_ID_SECONDARY_MI2S_TX;
break;
case MSM_BACKEND_DAI_TERTIARY_MI2S_RX:
afe_port_id = AFE_PORT_ID_TERTIARY_MI2S_RX;
break;
case MSM_BACKEND_DAI_TERTIARY_MI2S_TX:
afe_port_id = AFE_PORT_ID_TERTIARY_MI2S_TX;
break;
case MSM_BACKEND_DAI_QUATERNARY_MI2S_RX:
afe_port_id = AFE_PORT_ID_QUATERNARY_MI2S_RX;
break;
case MSM_BACKEND_DAI_QUATERNARY_MI2S_TX:
afe_port_id = AFE_PORT_ID_QUATERNARY_MI2S_TX;
break;
default:
pr_err("%s: Invalid be_id: %d\n", __func__, be_id);
afe_port_id = -EINVAL;
}
return afe_port_id;
}
static u32 get_mi2s_bits_per_sample(u32 bit_format)
{
u32 bit_per_sample;
switch (bit_format) {
case SNDRV_PCM_FORMAT_S32_LE:
case SNDRV_PCM_FORMAT_S24_3LE:
case SNDRV_PCM_FORMAT_S24_LE:
bit_per_sample = 32;
break;
case SNDRV_PCM_FORMAT_S16_LE:
default:
bit_per_sample = 16;
break;
}
return bit_per_sample;
}
static void update_mi2s_clk_val(int dai_id, int stream)
{
u32 bit_per_sample;
if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
bit_per_sample =
get_mi2s_bits_per_sample(mi2s_rx_cfg[dai_id].bit_format);
mi2s_clk[dai_id].clk_freq_in_hz =
mi2s_rx_cfg[dai_id].sample_rate * 2 * bit_per_sample;
} else {
bit_per_sample =
get_mi2s_bits_per_sample(mi2s_tx_cfg[dai_id].bit_format);
mi2s_clk[dai_id].clk_freq_in_hz =
mi2s_tx_cfg[dai_id].sample_rate * 2 * bit_per_sample;
}
if (!mi2s_intf_conf[dai_id].msm_is_mi2s_master)
mi2s_clk[dai_id].clk_freq_in_hz = 0;
}
static int msm_mi2s_set_sclk(struct snd_pcm_substream *substream, bool enable)
{
int ret = 0;
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
int port_id = 0;
int index = cpu_dai->id;
port_id = msm_get_port_id(rtd->dai_link->be_id);
if (port_id < 0) {
dev_err(rtd->card->dev, "%s: Invalid port_id\n", __func__);
ret = port_id;
goto done;
}
if (enable) {
update_mi2s_clk_val(index, substream->stream);
dev_dbg(rtd->card->dev, "%s: clock rate %ul\n", __func__,
mi2s_clk[index].clk_freq_in_hz);
}
mi2s_clk[index].enable = enable;
ret = afe_set_lpass_clock_v2(port_id,
&mi2s_clk[index]);
if (ret < 0) {
dev_err(rtd->card->dev,
"%s: afe lpass clock failed for port 0x%x , err:%d\n",
__func__, port_id, ret);
goto done;
}
done:
return ret;
}
/**
* msm_mi2s_snd_startup - startup ops of mi2s.
*
* @substream: PCM stream pointer of associated backend dailink
*
* Returns 0 on success or -EINVAL on error.
*/
int msm_mi2s_snd_startup(struct snd_pcm_substream *substream)
{
int ret = 0;
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
int port_id = msm_get_port_id(rtd->dai_link->be_id);
int index = cpu_dai->id;
unsigned int fmt = SND_SOC_DAIFMT_CBS_CFS;
dev_dbg(rtd->card->dev,
"%s: substream = %s stream = %d, dai name %s, dai ID %d\n",
__func__, substream->name, substream->stream,
cpu_dai->name, cpu_dai->id);
if (index < PRIM_MI2S || index > QUAT_MI2S) {
ret = -EINVAL;
dev_err(rtd->card->dev,
"%s: CPU DAI id (%d) out of range\n",
__func__, cpu_dai->id);
goto done;
}
/*
* Muxtex protection in case the same MI2S
* interface using for both TX and RX so
* that the same clock won't be enable twice.
*/
mutex_lock(&mi2s_intf_conf[index].lock);
if (++mi2s_intf_conf[index].ref_cnt == 1) {
/* Check if msm needs to provide the clock to the interface */
if (!mi2s_intf_conf[index].msm_is_mi2s_master) {
mi2s_clk[index].clk_id = mi2s_ebit_clk[index];
fmt = SND_SOC_DAIFMT_CBM_CFM;
}
ret = msm_mi2s_set_sclk(substream, true);
if (ret < 0) {
dev_err(rtd->card->dev,
"%s: afe lpass clock failed to enable MI2S clock, err:%d\n",
__func__, ret);
goto clean_up;
}
ret = snd_soc_dai_set_fmt(cpu_dai, fmt);
if (ret < 0) {
dev_err(rtd->card->dev,
"%s: set fmt cpu dai failed for MI2S (%d), err:%d\n",
__func__, index, ret);
goto clk_off;
}
if (mi2s_intf_conf[index].msm_is_ext_mclk) {
mi2s_mclk[index].enable = 1;
pr_debug("%s: Enabling mclk, clk_freq_in_hz = %u\n",
__func__, mi2s_mclk[index].clk_freq_in_hz);
ret = afe_set_lpass_clock_v2(port_id,
&mi2s_mclk[index]);
if (ret < 0) {
pr_err("%s: afe lpass mclk failed, err:%d\n",
__func__, ret);
goto clk_off;
}
}
}
mutex_unlock(&mi2s_intf_conf[index].lock);
return 0;
clk_off:
if (ret < 0)
msm_mi2s_set_sclk(substream, false);
clean_up:
if (ret < 0)
mi2s_intf_conf[index].ref_cnt--;
mutex_unlock(&mi2s_intf_conf[index].lock);
done:
return ret;
}
EXPORT_SYMBOL(msm_mi2s_snd_startup);
/**
* msm_mi2s_snd_shutdown - shutdown ops of mi2s.
*
* @substream: PCM stream pointer of associated backend dailink
*/
void msm_mi2s_snd_shutdown(struct snd_pcm_substream *substream)
{
int ret;
struct snd_soc_pcm_runtime *rtd = substream->private_data;
int port_id = msm_get_port_id(rtd->dai_link->be_id);
int index = rtd->cpu_dai->id;
pr_debug("%s(): substream = %s stream = %d\n", __func__,
substream->name, substream->stream);
if (index < PRIM_MI2S || index > QUAT_MI2S) {
pr_err("%s:invalid MI2S DAI(%d)\n", __func__, index);
return;
}
mutex_lock(&mi2s_intf_conf[index].lock);
if (--mi2s_intf_conf[index].ref_cnt == 0) {
ret = msm_mi2s_set_sclk(substream, false);
if (ret < 0) {
pr_err("%s:clock disable failed for MI2S (%d); ret=%d\n",
__func__, index, ret);
mi2s_intf_conf[index].ref_cnt++;
}
if (mi2s_intf_conf[index].msm_is_ext_mclk) {
mi2s_mclk[index].enable = 0;
pr_debug("%s: Disabling mclk, clk_freq_in_hz = %u\n",
__func__, mi2s_mclk[index].clk_freq_in_hz);
ret = afe_set_lpass_clock_v2(port_id,
&mi2s_mclk[index]);
if (ret < 0) {
pr_err("%s: mclk disable failed for MCLK (%d); ret=%d\n",
__func__, index, ret);
}
}
}
mutex_unlock(&mi2s_intf_conf[index].lock);
}
EXPORT_SYMBOL(msm_mi2s_snd_shutdown);
/* Validate whether US EU switch is present or not */
static int msm_prepare_us_euro(struct snd_soc_card *card)
{
struct msm_asoc_mach_data *pdata =
snd_soc_card_get_drvdata(card);
int ret = 0;
if (pdata->us_euro_gpio >= 0) {
dev_dbg(card->dev, "%s: us_euro gpio request %d", __func__,
pdata->us_euro_gpio);
ret = gpio_request(pdata->us_euro_gpio, "TASHA_CODEC_US_EURO");
if (ret) {
dev_err(card->dev,
"%s: Failed to request codec US/EURO gpio %d error %d\n",
__func__, pdata->us_euro_gpio, ret);
}
}
return ret;
}
static bool msm_swap_gnd_mic(struct snd_soc_codec *codec)
{
struct snd_soc_card *card = codec->component.card;
struct msm_asoc_mach_data *pdata =
snd_soc_card_get_drvdata(card);
int value = 0;
if (pdata->us_euro_gpio_p) {
value = msm_cdc_pinctrl_get_state(pdata->us_euro_gpio_p);
if (value)
msm_cdc_pinctrl_select_sleep_state(
pdata->us_euro_gpio_p);
else
msm_cdc_pinctrl_select_active_state(
pdata->us_euro_gpio_p);
} else if (pdata->us_euro_gpio >= 0) {
value = gpio_get_value_cansleep(pdata->us_euro_gpio);
gpio_set_value_cansleep(pdata->us_euro_gpio, !value);
}
pr_debug("%s: swap select switch %d to %d\n", __func__, value, !value);
return true;
}
static int msm_populate_dai_link_component_of_node(
struct msm_asoc_mach_data *pdata,
struct snd_soc_card *card)
{
int i, index, ret = 0;
struct device *cdev = card->dev;
struct snd_soc_dai_link *dai_link = card->dai_link;
struct device_node *phandle;
if (!cdev) {
pr_err("%s: Sound card device memory NULL\n", __func__);
return -ENODEV;
}
for (i = 0; i < card->num_links; i++) {
if (dai_link[i].platform_of_node && dai_link[i].cpu_of_node)
continue;
/* populate platform_of_node for snd card dai links */
if (dai_link[i].platform_name &&
!dai_link[i].platform_of_node) {
index = of_property_match_string(cdev->of_node,
"asoc-platform-names",
dai_link[i].platform_name);
if (index < 0) {
pr_err("%s: No match found for platform name: %s\n",
__func__, dai_link[i].platform_name);
ret = index;
goto cpu_dai;
}
phandle = of_parse_phandle(cdev->of_node,
"asoc-platform",
index);
if (!phandle) {
pr_err("%s: retrieving phandle for platform %s, index %d failed\n",
__func__, dai_link[i].platform_name,
index);
ret = -ENODEV;
goto err;
}
dai_link[i].platform_of_node = phandle;
dai_link[i].platform_name = NULL;
}
cpu_dai:
/* populate cpu_of_node for snd card dai links */
if (dai_link[i].cpu_dai_name && !dai_link[i].cpu_of_node) {
index = of_property_match_string(cdev->of_node,
"asoc-cpu-names",
dai_link[i].cpu_dai_name);
if (index < 0)
goto codec_dai;
phandle = of_parse_phandle(cdev->of_node, "asoc-cpu",
index);
if (!phandle) {
pr_err("%s: retrieving phandle for cpu dai %s failed\n",
__func__, dai_link[i].cpu_dai_name);
ret = -ENODEV;
goto err;
}
dai_link[i].cpu_of_node = phandle;
dai_link[i].cpu_dai_name = NULL;
}
codec_dai:
/* populate codec_of_node for snd card dai links */
if (dai_link[i].codec_name && !dai_link[i].codec_of_node) {
index = of_property_match_string(cdev->of_node,
"asoc-codec-names",
dai_link[i].codec_name);
if (index < 0)
continue;
phandle = of_parse_phandle(cdev->of_node, "asoc-codec",
index);
if (!phandle) {
pr_err("%s: retrieving phandle for codec dai %s failed\n",
__func__, dai_link[i].codec_name);
ret = -ENODEV;
goto err;
}
dai_link[i].codec_of_node = phandle;
dai_link[i].codec_name = NULL;
}
if (pdata->snd_card_val == INT_SND_CARD) {
if ((dai_link[i].be_id ==
MSM_BACKEND_DAI_INT0_MI2S_RX) ||
(dai_link[i].be_id ==
MSM_BACKEND_DAI_INT1_MI2S_RX) ||
(dai_link[i].be_id ==
MSM_BACKEND_DAI_INT2_MI2S_TX) ||
(dai_link[i].be_id ==
MSM_BACKEND_DAI_INT3_MI2S_TX)) {
index = of_property_match_string(cdev->of_node,
"asoc-codec-names",
MSM_INT_DIGITAL_CODEC);
phandle = of_parse_phandle(cdev->of_node,
"asoc-codec",
index);
dai_link[i].codecs[DIG_CDC].of_node = phandle;
index = of_property_match_string(cdev->of_node,
"asoc-codec-names",
PMIC_INT_ANALOG_CODEC);
phandle = of_parse_phandle(cdev->of_node,
"asoc-codec",
index);
dai_link[i].codecs[ANA_CDC].of_node = phandle;
}
}
}
err:
return ret;
}
static int msm_wsa881x_init(struct snd_soc_component *component)
{
u8 spkleft_ports[WSA881X_MAX_SWR_PORTS] = {100, 101, 102, 106};
u8 spkright_ports[WSA881X_MAX_SWR_PORTS] = {103, 104, 105, 107};
unsigned int ch_rate[WSA881X_MAX_SWR_PORTS] = {2400, 600, 300, 1200};
unsigned int ch_mask[WSA881X_MAX_SWR_PORTS] = {0x1, 0xF, 0x3, 0x3};
struct snd_soc_codec *codec = snd_soc_component_to_codec(component);
struct msm_asoc_mach_data *pdata;
struct snd_soc_dapm_context *dapm =
snd_soc_codec_get_dapm(codec);
if (!codec) {
pr_err("%s codec is NULL\n", __func__);
return -EINVAL;
}
if (!strcmp(component->name_prefix, "SpkrLeft")) {
dev_dbg(codec->dev, "%s: setting left ch map to codec %s\n",
__func__, codec->component.name);
wsa881x_set_channel_map(codec, &spkleft_ports[0],
WSA881X_MAX_SWR_PORTS, &ch_mask[0],
&ch_rate[0]);
if (dapm->component) {
snd_soc_dapm_ignore_suspend(dapm, "SpkrLeft IN");
snd_soc_dapm_ignore_suspend(dapm, "SpkrLeft SPKR");
}
} else if (!strcmp(component->name_prefix, "SpkrRight")) {
dev_dbg(codec->dev, "%s: setting right ch map to codec %s\n",
__func__, codec->component.name);
wsa881x_set_channel_map(codec, &spkright_ports[0],
WSA881X_MAX_SWR_PORTS, &ch_mask[0],
&ch_rate[0]);
if (dapm->component) {
snd_soc_dapm_ignore_suspend(dapm, "SpkrRight IN");
snd_soc_dapm_ignore_suspend(dapm, "SpkrRight SPKR");
}
} else {
dev_err(codec->dev, "%s: wrong codec name %s\n", __func__,
codec->component.name);
return -EINVAL;
}
pdata = snd_soc_card_get_drvdata(component->card);
if (pdata && pdata->codec_root)
wsa881x_codec_info_create_codec_entry(pdata->codec_root,
codec);
return 0;
}
static int msm_init_wsa_dev(struct platform_device *pdev,
struct snd_soc_card *card)
{
struct device_node *wsa_of_node;
u32 wsa_max_devs;
u32 wsa_dev_cnt;
char *dev_name_str = NULL;
struct msm_wsa881x_dev_info *wsa881x_dev_info;
const char *wsa_auxdev_name_prefix[1];
int found = 0;
int i;
int ret;
/* Get maximum WSA device count for this platform */
ret = of_property_read_u32(pdev->dev.of_node,
"qcom,wsa-max-devs", &wsa_max_devs);
if (ret) {
dev_dbg(&pdev->dev,
"%s: wsa-max-devs property missing in DT %s, ret = %d\n",
__func__, pdev->dev.of_node->full_name, ret);
goto err_dt;
}
if (wsa_max_devs == 0) {
dev_warn(&pdev->dev,
"%s: Max WSA devices is 0 for this target?\n",
__func__);
goto err_dt;
}
/* Get count of WSA device phandles for this platform */
wsa_dev_cnt = of_count_phandle_with_args(pdev->dev.of_node,
"qcom,wsa-devs", NULL);
if (wsa_dev_cnt == -ENOENT) {
dev_warn(&pdev->dev, "%s: No wsa device defined in DT.\n",
__func__);
goto err_dt;
} else if (wsa_dev_cnt <= 0) {
dev_err(&pdev->dev,
"%s: Error reading wsa device from DT. wsa_dev_cnt = %d\n",
__func__, wsa_dev_cnt);
ret = -EINVAL;
goto err_dt;
}
/*
* Expect total phandles count to be NOT less than maximum possible
* WSA count. However, if it is less, then assign same value to
* max count as well.
*/
if (wsa_dev_cnt < wsa_max_devs) {
dev_dbg(&pdev->dev,
"%s: wsa_max_devs = %d cannot exceed wsa_dev_cnt = %d\n",
__func__, wsa_max_devs, wsa_dev_cnt);
wsa_max_devs = wsa_dev_cnt;
}
/* Make sure prefix string passed for each WSA device */
ret = of_property_count_strings(pdev->dev.of_node,
"qcom,wsa-aux-dev-prefix");
if (ret != wsa_dev_cnt) {
dev_err(&pdev->dev,
"%s: expecting %d wsa prefix. Defined only %d in DT\n",
__func__, wsa_dev_cnt, ret);
ret = -EINVAL;
goto err_dt;
}
/*
* Alloc mem to store phandle and index info of WSA device, if already
* registered with ALSA core
*/
wsa881x_dev_info = devm_kcalloc(&pdev->dev, wsa_max_devs,
sizeof(struct msm_wsa881x_dev_info),
GFP_KERNEL);
if (!wsa881x_dev_info) {
ret = -ENOMEM;
goto err_mem;
}
/*
* search and check whether all WSA devices are already
* registered with ALSA core or not. If found a node, store
* the node and the index in a local array of struct for later
* use.
*/
for (i = 0; i < wsa_dev_cnt; i++) {
wsa_of_node = of_parse_phandle(pdev->dev.of_node,
"qcom,wsa-devs", i);
if (unlikely(!wsa_of_node)) {
/* we should not be here */
dev_err(&pdev->dev,
"%s: wsa dev node is not present\n",
__func__);
ret = -EINVAL;
goto err_dev_node;
}
if (soc_find_component(wsa_of_node, NULL)) {
/* WSA device registered with ALSA core */
wsa881x_dev_info[found].of_node = wsa_of_node;
wsa881x_dev_info[found].index = i;
found++;
if (found == wsa_max_devs)
break;
}
}
if (found < wsa_max_devs) {
dev_dbg(&pdev->dev,
"%s: failed to find %d components. Found only %d\n",
__func__, wsa_max_devs, found);
return -EPROBE_DEFER;
}
dev_info(&pdev->dev,
"%s: found %d wsa881x devices registered with ALSA core\n",
__func__, found);
card->num_aux_devs = wsa_max_devs;
card->num_configs = wsa_max_devs;
/* Alloc array of AUX devs struct */
msm_aux_dev = devm_kcalloc(&pdev->dev, card->num_aux_devs,
sizeof(struct snd_soc_aux_dev),
GFP_KERNEL);
if (!msm_aux_dev) {
ret = -ENOMEM;
goto err_auxdev_mem;
}
/* Alloc array of codec conf struct */
msm_codec_conf = devm_kcalloc(&pdev->dev, card->num_aux_devs,
sizeof(struct snd_soc_codec_conf),
GFP_KERNEL);
if (!msm_codec_conf) {
ret = -ENOMEM;
goto err_codec_conf;
}
for (i = 0; i < card->num_aux_devs; i++) {
dev_name_str = devm_kzalloc(&pdev->dev, DEV_NAME_STR_LEN,
GFP_KERNEL);
if (!dev_name_str) {
ret = -ENOMEM;
goto err_dev_str;
}
ret = of_property_read_string_index(pdev->dev.of_node,
"qcom,wsa-aux-dev-prefix",
wsa881x_dev_info[i].index,
wsa_auxdev_name_prefix);
if (ret) {
dev_err(&pdev->dev,
"%s: failed to read wsa aux dev prefix, ret = %d\n",
__func__, ret);
ret = -EINVAL;
goto err_dt_prop;
}
snprintf(dev_name_str, strlen("wsa881x.%d"), "wsa881x.%d", i);
msm_aux_dev[i].name = dev_name_str;
msm_aux_dev[i].codec_name = NULL;
msm_aux_dev[i].codec_of_node =
wsa881x_dev_info[i].of_node;
msm_aux_dev[i].init = msm_wsa881x_init;
msm_codec_conf[i].dev_name = NULL;
msm_codec_conf[i].name_prefix = wsa_auxdev_name_prefix[0];
msm_codec_conf[i].of_node = wsa881x_dev_info[i].of_node;
}
card->codec_conf = msm_codec_conf;
card->aux_dev = msm_aux_dev;
return 0;
err_dt_prop:
devm_kfree(&pdev->dev, dev_name_str);
err_dev_str:
devm_kfree(&pdev->dev, msm_codec_conf);
err_codec_conf:
devm_kfree(&pdev->dev, msm_aux_dev);
err_auxdev_mem:
err_dev_node:
devm_kfree(&pdev->dev, wsa881x_dev_info);
err_mem:
err_dt:
return ret;
}
static void msm_free_auxdev_mem(struct platform_device *pdev)
{
struct snd_soc_card *card = platform_get_drvdata(pdev);
int i;
if (card->num_aux_devs > 0) {
for (i = 0; i < card->num_aux_devs; i++) {
kfree(msm_aux_dev[i].codec_name);
kfree(msm_codec_conf[i].dev_name);
kfree(msm_codec_conf[i].name_prefix);
}
}
}
static void i2s_auxpcm_init(struct platform_device *pdev)
{
int count;
u32 mi2s_master_slave[MI2S_MAX];
u32 mi2s_ext_mclk[MI2S_MAX];
int ret;
for (count = 0; count < MI2S_MAX; count++) {
mutex_init(&mi2s_intf_conf[count].lock);
mi2s_intf_conf[count].ref_cnt = 0;
}
ret = of_property_read_u32_array(pdev->dev.of_node,
"qcom,msm-mi2s-master",
mi2s_master_slave, MI2S_MAX);
if (ret) {
dev_dbg(&pdev->dev, "%s: no qcom,msm-mi2s-master in DT node\n",
__func__);
} else {
for (count = 0; count < MI2S_MAX; count++) {
mi2s_intf_conf[count].msm_is_mi2s_master =
mi2s_master_slave[count];
}
}
ret = of_property_read_u32_array(pdev->dev.of_node,
"qcom,msm-mi2s-ext-mclk",
mi2s_ext_mclk, MI2S_MAX);
if (ret) {
dev_dbg(&pdev->dev, "%s: no qcom,msm-mi2s-ext-mclk in DT node\n",
__func__);
} else {
for (count = 0; count < MI2S_MAX; count++)
mi2s_intf_conf[count].msm_is_ext_mclk =
mi2s_ext_mclk[count];
}
}
static const struct of_device_id sdm660_asoc_machine_of_match[] = {
{ .compatible = "qcom,sdm660-asoc-snd",
.data = "internal_codec"},
{ .compatible = "qcom,sdm660-asoc-snd-tasha",
.data = "tasha_codec"},
{ .compatible = "qcom,sdm660-asoc-snd-tavil",
.data = "tavil_codec"},
{},
};
static int msm_asoc_machine_probe(struct platform_device *pdev)
{
struct snd_soc_card *card = NULL;
struct msm_asoc_mach_data *pdata = NULL;
const char *mclk = "qcom,msm-mclk-freq";
int ret = -EINVAL, id;
const struct of_device_id *match;
pdata = devm_kzalloc(&pdev->dev,
sizeof(struct msm_asoc_mach_data),
GFP_KERNEL);
if (!pdata)
return -ENOMEM;
match = of_match_node(sdm660_asoc_machine_of_match,
pdev->dev.of_node);
if (!match)
goto err;
ret = of_property_read_u32(pdev->dev.of_node, mclk, &id);
if (ret) {
dev_err(&pdev->dev,
"%s: missing %s in dt node\n", __func__, mclk);
id = DEFAULT_MCLK_RATE;
}
pdata->mclk_freq = id;
if (!strcmp(match->data, "tasha_codec") ||
!strcmp(match->data, "tavil_codec")) {
if (!strcmp(match->data, "tasha_codec"))
pdata->snd_card_val = EXT_SND_CARD_TASHA;
else
pdata->snd_card_val = EXT_SND_CARD_TAVIL;
ret = msm_ext_cdc_init(pdev, pdata, &card, &mbhc_cfg);
if (ret)
goto err;
} else if (!strcmp(match->data, "internal_codec")) {
pdata->snd_card_val = INT_SND_CARD;
ret = msm_int_cdc_init(pdev, pdata, &card, &mbhc_cfg);
if (ret)
goto err;
} else {
dev_err(&pdev->dev,
"%s: Not a matching DT sound node\n", __func__);
goto err;
}
if (!card)
goto err;
if (pdata->snd_card_val == INT_SND_CARD) {
/*reading the gpio configurations from dtsi file*/
pdata->pdm_gpio_p = of_parse_phandle(pdev->dev.of_node,
"qcom,cdc-pdm-gpios", 0);
pdata->comp_gpio_p = of_parse_phandle(pdev->dev.of_node,
"qcom,cdc-comp-gpios", 0);
pdata->dmic_gpio_p = of_parse_phandle(pdev->dev.of_node,
"qcom,cdc-dmic-gpios", 0);
pdata->ext_spk_gpio_p = of_parse_phandle(pdev->dev.of_node,
"qcom,cdc-ext-spk-gpios", 0);
}
/*
* Parse US-Euro gpio info from DT. Report no error if us-euro
* entry is not found in DT file as some targets do not support
* US-Euro detection
*/
pdata->us_euro_gpio = of_get_named_gpio(pdev->dev.of_node,
"qcom,us-euro-gpios", 0);
if (!gpio_is_valid(pdata->us_euro_gpio))
pdata->us_euro_gpio_p = of_parse_phandle(pdev->dev.of_node,
"qcom,us-euro-gpios", 0);
if (!gpio_is_valid(pdata->us_euro_gpio) && (!pdata->us_euro_gpio_p)) {
dev_dbg(&pdev->dev, "property %s not detected in node %s",
"qcom,us-euro-gpios", pdev->dev.of_node->full_name);
} else {
dev_dbg(&pdev->dev, "%s detected",
"qcom,us-euro-gpios");
mbhc_cfg.swap_gnd_mic = msm_swap_gnd_mic;
}
ret = msm_prepare_us_euro(card);
if (ret)
dev_dbg(&pdev->dev, "msm_prepare_us_euro failed (%d)\n",
ret);
i2s_auxpcm_init(pdev);
ret = snd_soc_of_parse_audio_routing(card, "qcom,audio-routing");
if (ret)
goto err;
ret = msm_populate_dai_link_component_of_node(pdata, card);
if (ret) {
ret = -EPROBE_DEFER;
goto err;
}
if (!of_property_read_bool(pdev->dev.of_node, "qcom,wsa-disable")) {
ret = msm_init_wsa_dev(pdev, card);
if (ret)
goto err;
}
ret = devm_snd_soc_register_card(&pdev->dev, card);
if (ret == -EPROBE_DEFER) {
if (codec_reg_done) {
/*
* return failure as EINVAL since other codec
* registered sound card successfully.
* This avoids any further probe calls.
*/
ret = -EINVAL;
}
goto err;
} else if (ret) {
dev_err(&pdev->dev, "snd_soc_register_card failed (%d)\n",
ret);
goto err;
}
if (pdata->snd_card_val != INT_SND_CARD)
msm_ext_register_audio_notifier(pdev);
return 0;
err:
if (pdata->us_euro_gpio > 0) {
dev_dbg(&pdev->dev, "%s free us_euro gpio %d\n",
__func__, pdata->us_euro_gpio);
pdata->us_euro_gpio = 0;
}
if (pdata->hph_en1_gpio > 0) {
dev_dbg(&pdev->dev, "%s free hph_en1_gpio %d\n",
__func__, pdata->hph_en1_gpio);
gpio_free(pdata->hph_en1_gpio);
pdata->hph_en1_gpio = 0;
}
if (pdata->hph_en0_gpio > 0) {
dev_dbg(&pdev->dev, "%s free hph_en0_gpio %d\n",
__func__, pdata->hph_en0_gpio);
gpio_free(pdata->hph_en0_gpio);
pdata->hph_en0_gpio = 0;
}
if (pdata->snd_card_val != INT_SND_CARD)
msm_ext_cdc_deinit(pdata);
devm_kfree(&pdev->dev, pdata);
return ret;
}
static int msm_asoc_machine_remove(struct platform_device *pdev)
{
struct snd_soc_card *card = platform_get_drvdata(pdev);
struct msm_asoc_mach_data *pdata = snd_soc_card_get_drvdata(card);
if (pdata->snd_card_val == INT_SND_CARD)
mutex_destroy(&pdata->cdc_int_mclk0_mutex);
else
msm_ext_cdc_deinit(pdata);
msm_free_auxdev_mem(pdev);
gpio_free(pdata->us_euro_gpio);
gpio_free(pdata->hph_en1_gpio);
gpio_free(pdata->hph_en0_gpio);
snd_soc_unregister_card(card);
return 0;
}
static struct platform_driver sdm660_asoc_machine_driver = {
.driver = {
.name = DRV_NAME,
.owner = THIS_MODULE,
.pm = &snd_soc_pm_ops,
.of_match_table = sdm660_asoc_machine_of_match,
},
.probe = msm_asoc_machine_probe,
.remove = msm_asoc_machine_remove,
};
module_platform_driver(sdm660_asoc_machine_driver);
MODULE_DESCRIPTION("ALSA SoC msm");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" DRV_NAME);
MODULE_DEVICE_TABLE(of, sdm660_asoc_machine_of_match);