| /* |
| * This is a maximally equidistributed combined Tausworthe generator |
| * based on code from GNU Scientific Library 1.5 (30 Jun 2004) |
| * |
| * lfsr113 version: |
| * |
| * x_n = (s1_n ^ s2_n ^ s3_n ^ s4_n) |
| * |
| * s1_{n+1} = (((s1_n & 4294967294) << 18) ^ (((s1_n << 6) ^ s1_n) >> 13)) |
| * s2_{n+1} = (((s2_n & 4294967288) << 2) ^ (((s2_n << 2) ^ s2_n) >> 27)) |
| * s3_{n+1} = (((s3_n & 4294967280) << 7) ^ (((s3_n << 13) ^ s3_n) >> 21)) |
| * s4_{n+1} = (((s4_n & 4294967168) << 13) ^ (((s4_n << 3) ^ s4_n) >> 12)) |
| * |
| * The period of this generator is about 2^113 (see erratum paper). |
| * |
| * From: P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe |
| * Generators", Mathematics of Computation, 65, 213 (1996), 203--213: |
| * http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps |
| * ftp://ftp.iro.umontreal.ca/pub/simulation/lecuyer/papers/tausme.ps |
| * |
| * There is an erratum in the paper "Tables of Maximally Equidistributed |
| * Combined LFSR Generators", Mathematics of Computation, 68, 225 (1999), |
| * 261--269: http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps |
| * |
| * ... the k_j most significant bits of z_j must be non-zero, |
| * for each j. (Note: this restriction also applies to the |
| * computer code given in [4], but was mistakenly not mentioned |
| * in that paper.) |
| * |
| * This affects the seeding procedure by imposing the requirement |
| * s1 > 1, s2 > 7, s3 > 15, s4 > 127. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/percpu.h> |
| #include <linux/export.h> |
| #include <linux/jiffies.h> |
| #include <linux/random.h> |
| #include <linux/sched.h> |
| #include <asm/unaligned.h> |
| |
| /** |
| * prandom_u32_state - seeded pseudo-random number generator. |
| * @state: pointer to state structure holding seeded state. |
| * |
| * This is used for pseudo-randomness with no outside seeding. |
| * For more random results, use prandom_u32(). |
| */ |
| u32 prandom_u32_state(struct rnd_state *state) |
| { |
| #define TAUSWORTHE(s, a, b, c, d) ((s & c) << d) ^ (((s << a) ^ s) >> b) |
| state->s1 = TAUSWORTHE(state->s1, 6U, 13U, 4294967294U, 18U); |
| state->s2 = TAUSWORTHE(state->s2, 2U, 27U, 4294967288U, 2U); |
| state->s3 = TAUSWORTHE(state->s3, 13U, 21U, 4294967280U, 7U); |
| state->s4 = TAUSWORTHE(state->s4, 3U, 12U, 4294967168U, 13U); |
| |
| return (state->s1 ^ state->s2 ^ state->s3 ^ state->s4); |
| } |
| EXPORT_SYMBOL(prandom_u32_state); |
| |
| /** |
| * prandom_bytes_state - get the requested number of pseudo-random bytes |
| * |
| * @state: pointer to state structure holding seeded state. |
| * @buf: where to copy the pseudo-random bytes to |
| * @bytes: the requested number of bytes |
| * |
| * This is used for pseudo-randomness with no outside seeding. |
| * For more random results, use prandom_bytes(). |
| */ |
| void prandom_bytes_state(struct rnd_state *state, void *buf, size_t bytes) |
| { |
| u8 *ptr = buf; |
| |
| while (bytes >= sizeof(u32)) { |
| put_unaligned(prandom_u32_state(state), (u32 *) ptr); |
| ptr += sizeof(u32); |
| bytes -= sizeof(u32); |
| } |
| |
| if (bytes > 0) { |
| u32 rem = prandom_u32_state(state); |
| do { |
| *ptr++ = (u8) rem; |
| bytes--; |
| rem >>= BITS_PER_BYTE; |
| } while (bytes > 0); |
| } |
| } |
| EXPORT_SYMBOL(prandom_bytes_state); |
| |
| static void prandom_warmup(struct rnd_state *state) |
| { |
| /* Calling RNG ten times to satisfy recurrence condition */ |
| prandom_u32_state(state); |
| prandom_u32_state(state); |
| prandom_u32_state(state); |
| prandom_u32_state(state); |
| prandom_u32_state(state); |
| prandom_u32_state(state); |
| prandom_u32_state(state); |
| prandom_u32_state(state); |
| prandom_u32_state(state); |
| prandom_u32_state(state); |
| } |
| |
| void prandom_seed_full_state(struct rnd_state __percpu *pcpu_state) |
| { |
| int i; |
| |
| for_each_possible_cpu(i) { |
| struct rnd_state *state = per_cpu_ptr(pcpu_state, i); |
| u32 seeds[4]; |
| |
| get_random_bytes(&seeds, sizeof(seeds)); |
| state->s1 = __seed(seeds[0], 2U); |
| state->s2 = __seed(seeds[1], 8U); |
| state->s3 = __seed(seeds[2], 16U); |
| state->s4 = __seed(seeds[3], 128U); |
| |
| prandom_warmup(state); |
| } |
| } |
| EXPORT_SYMBOL(prandom_seed_full_state); |
| |
| #ifdef CONFIG_RANDOM32_SELFTEST |
| static struct prandom_test1 { |
| u32 seed; |
| u32 result; |
| } test1[] = { |
| { 1U, 3484351685U }, |
| { 2U, 2623130059U }, |
| { 3U, 3125133893U }, |
| { 4U, 984847254U }, |
| }; |
| |
| static struct prandom_test2 { |
| u32 seed; |
| u32 iteration; |
| u32 result; |
| } test2[] = { |
| /* Test cases against taus113 from GSL library. */ |
| { 931557656U, 959U, 2975593782U }, |
| { 1339693295U, 876U, 3887776532U }, |
| { 1545556285U, 961U, 1615538833U }, |
| { 601730776U, 723U, 1776162651U }, |
| { 1027516047U, 687U, 511983079U }, |
| { 416526298U, 700U, 916156552U }, |
| { 1395522032U, 652U, 2222063676U }, |
| { 366221443U, 617U, 2992857763U }, |
| { 1539836965U, 714U, 3783265725U }, |
| { 556206671U, 994U, 799626459U }, |
| { 684907218U, 799U, 367789491U }, |
| { 2121230701U, 931U, 2115467001U }, |
| { 1668516451U, 644U, 3620590685U }, |
| { 768046066U, 883U, 2034077390U }, |
| { 1989159136U, 833U, 1195767305U }, |
| { 536585145U, 996U, 3577259204U }, |
| { 1008129373U, 642U, 1478080776U }, |
| { 1740775604U, 939U, 1264980372U }, |
| { 1967883163U, 508U, 10734624U }, |
| { 1923019697U, 730U, 3821419629U }, |
| { 442079932U, 560U, 3440032343U }, |
| { 1961302714U, 845U, 841962572U }, |
| { 2030205964U, 962U, 1325144227U }, |
| { 1160407529U, 507U, 240940858U }, |
| { 635482502U, 779U, 4200489746U }, |
| { 1252788931U, 699U, 867195434U }, |
| { 1961817131U, 719U, 668237657U }, |
| { 1071468216U, 983U, 917876630U }, |
| { 1281848367U, 932U, 1003100039U }, |
| { 582537119U, 780U, 1127273778U }, |
| { 1973672777U, 853U, 1071368872U }, |
| { 1896756996U, 762U, 1127851055U }, |
| { 847917054U, 500U, 1717499075U }, |
| { 1240520510U, 951U, 2849576657U }, |
| { 1685071682U, 567U, 1961810396U }, |
| { 1516232129U, 557U, 3173877U }, |
| { 1208118903U, 612U, 1613145022U }, |
| { 1817269927U, 693U, 4279122573U }, |
| { 1510091701U, 717U, 638191229U }, |
| { 365916850U, 807U, 600424314U }, |
| { 399324359U, 702U, 1803598116U }, |
| { 1318480274U, 779U, 2074237022U }, |
| { 697758115U, 840U, 1483639402U }, |
| { 1696507773U, 840U, 577415447U }, |
| { 2081979121U, 981U, 3041486449U }, |
| { 955646687U, 742U, 3846494357U }, |
| { 1250683506U, 749U, 836419859U }, |
| { 595003102U, 534U, 366794109U }, |
| { 47485338U, 558U, 3521120834U }, |
| { 619433479U, 610U, 3991783875U }, |
| { 704096520U, 518U, 4139493852U }, |
| { 1712224984U, 606U, 2393312003U }, |
| { 1318233152U, 922U, 3880361134U }, |
| { 855572992U, 761U, 1472974787U }, |
| { 64721421U, 703U, 683860550U }, |
| { 678931758U, 840U, 380616043U }, |
| { 692711973U, 778U, 1382361947U }, |
| { 677703619U, 530U, 2826914161U }, |
| { 92393223U, 586U, 1522128471U }, |
| { 1222592920U, 743U, 3466726667U }, |
| { 358288986U, 695U, 1091956998U }, |
| { 1935056945U, 958U, 514864477U }, |
| { 735675993U, 990U, 1294239989U }, |
| { 1560089402U, 897U, 2238551287U }, |
| { 70616361U, 829U, 22483098U }, |
| { 368234700U, 731U, 2913875084U }, |
| { 20221190U, 879U, 1564152970U }, |
| { 539444654U, 682U, 1835141259U }, |
| { 1314987297U, 840U, 1801114136U }, |
| { 2019295544U, 645U, 3286438930U }, |
| { 469023838U, 716U, 1637918202U }, |
| { 1843754496U, 653U, 2562092152U }, |
| { 400672036U, 809U, 4264212785U }, |
| { 404722249U, 965U, 2704116999U }, |
| { 600702209U, 758U, 584979986U }, |
| { 519953954U, 667U, 2574436237U }, |
| { 1658071126U, 694U, 2214569490U }, |
| { 420480037U, 749U, 3430010866U }, |
| { 690103647U, 969U, 3700758083U }, |
| { 1029424799U, 937U, 3787746841U }, |
| { 2012608669U, 506U, 3362628973U }, |
| { 1535432887U, 998U, 42610943U }, |
| { 1330635533U, 857U, 3040806504U }, |
| { 1223800550U, 539U, 3954229517U }, |
| { 1322411537U, 680U, 3223250324U }, |
| { 1877847898U, 945U, 2915147143U }, |
| { 1646356099U, 874U, 965988280U }, |
| { 805687536U, 744U, 4032277920U }, |
| { 1948093210U, 633U, 1346597684U }, |
| { 392609744U, 783U, 1636083295U }, |
| { 690241304U, 770U, 1201031298U }, |
| { 1360302965U, 696U, 1665394461U }, |
| { 1220090946U, 780U, 1316922812U }, |
| { 447092251U, 500U, 3438743375U }, |
| { 1613868791U, 592U, 828546883U }, |
| { 523430951U, 548U, 2552392304U }, |
| { 726692899U, 810U, 1656872867U }, |
| { 1364340021U, 836U, 3710513486U }, |
| { 1986257729U, 931U, 935013962U }, |
| { 407983964U, 921U, 728767059U }, |
| }; |
| |
| static u32 __extract_hwseed(void) |
| { |
| unsigned int val = 0; |
| |
| (void)(arch_get_random_seed_int(&val) || |
| arch_get_random_int(&val)); |
| |
| return val; |
| } |
| |
| static void prandom_seed_early(struct rnd_state *state, u32 seed, |
| bool mix_with_hwseed) |
| { |
| #define LCG(x) ((x) * 69069U) /* super-duper LCG */ |
| #define HWSEED() (mix_with_hwseed ? __extract_hwseed() : 0) |
| state->s1 = __seed(HWSEED() ^ LCG(seed), 2U); |
| state->s2 = __seed(HWSEED() ^ LCG(state->s1), 8U); |
| state->s3 = __seed(HWSEED() ^ LCG(state->s2), 16U); |
| state->s4 = __seed(HWSEED() ^ LCG(state->s3), 128U); |
| } |
| |
| static int __init prandom_state_selftest(void) |
| { |
| int i, j, errors = 0, runs = 0; |
| bool error = false; |
| |
| for (i = 0; i < ARRAY_SIZE(test1); i++) { |
| struct rnd_state state; |
| |
| prandom_seed_early(&state, test1[i].seed, false); |
| prandom_warmup(&state); |
| |
| if (test1[i].result != prandom_u32_state(&state)) |
| error = true; |
| } |
| |
| if (error) |
| pr_warn("prandom: seed boundary self test failed\n"); |
| else |
| pr_info("prandom: seed boundary self test passed\n"); |
| |
| for (i = 0; i < ARRAY_SIZE(test2); i++) { |
| struct rnd_state state; |
| |
| prandom_seed_early(&state, test2[i].seed, false); |
| prandom_warmup(&state); |
| |
| for (j = 0; j < test2[i].iteration - 1; j++) |
| prandom_u32_state(&state); |
| |
| if (test2[i].result != prandom_u32_state(&state)) |
| errors++; |
| |
| runs++; |
| cond_resched(); |
| } |
| |
| if (errors) |
| pr_warn("prandom: %d/%d self tests failed\n", errors, runs); |
| else |
| pr_info("prandom: %d self tests passed\n", runs); |
| return 0; |
| } |
| core_initcall(prandom_state_selftest); |
| #endif |
| |
| /* |
| * The prandom_u32() implementation is now completely separate from the |
| * prandom_state() functions, which are retained (for now) for compatibility. |
| * |
| * Because of (ab)use in the networking code for choosing random TCP/UDP port |
| * numbers, which open DoS possibilities if guessable, we want something |
| * stronger than a standard PRNG. But the performance requirements of |
| * the network code do not allow robust crypto for this application. |
| * |
| * So this is a homebrew Junior Spaceman implementation, based on the |
| * lowest-latency trustworthy crypto primitive available, SipHash. |
| * (The authors of SipHash have not been consulted about this abuse of |
| * their work.) |
| * |
| * Standard SipHash-2-4 uses 2n+4 rounds to hash n words of input to |
| * one word of output. This abbreviated version uses 2 rounds per word |
| * of output. |
| */ |
| |
| struct siprand_state { |
| unsigned long v0; |
| unsigned long v1; |
| unsigned long v2; |
| unsigned long v3; |
| }; |
| |
| static DEFINE_PER_CPU(struct siprand_state, net_rand_state) __latent_entropy; |
| |
| /* |
| * This is the core CPRNG function. As "pseudorandom", this is not used |
| * for truly valuable things, just intended to be a PITA to guess. |
| * For maximum speed, we do just two SipHash rounds per word. This is |
| * the same rate as 4 rounds per 64 bits that SipHash normally uses, |
| * so hopefully it's reasonably secure. |
| * |
| * There are two changes from the official SipHash finalization: |
| * - We omit some constants XORed with v2 in the SipHash spec as irrelevant; |
| * they are there only to make the output rounds distinct from the input |
| * rounds, and this application has no input rounds. |
| * - Rather than returning v0^v1^v2^v3, return v1+v3. |
| * If you look at the SipHash round, the last operation on v3 is |
| * "v3 ^= v0", so "v0 ^ v3" just undoes that, a waste of time. |
| * Likewise "v1 ^= v2". (The rotate of v2 makes a difference, but |
| * it still cancels out half of the bits in v2 for no benefit.) |
| * Second, since the last combining operation was xor, continue the |
| * pattern of alternating xor/add for a tiny bit of extra non-linearity. |
| */ |
| static inline u32 siprand_u32(struct siprand_state *s) |
| { |
| unsigned long v0 = s->v0, v1 = s->v1, v2 = s->v2, v3 = s->v3; |
| |
| PRND_SIPROUND(v0, v1, v2, v3); |
| PRND_SIPROUND(v0, v1, v2, v3); |
| s->v0 = v0; s->v1 = v1; s->v2 = v2; s->v3 = v3; |
| return v1 + v3; |
| } |
| |
| |
| /** |
| * prandom_u32 - pseudo random number generator |
| * |
| * A 32 bit pseudo-random number is generated using a fast |
| * algorithm suitable for simulation. This algorithm is NOT |
| * considered safe for cryptographic use. |
| */ |
| u32 prandom_u32(void) |
| { |
| struct siprand_state *state = get_cpu_ptr(&net_rand_state); |
| u32 res = siprand_u32(state); |
| |
| put_cpu_ptr(&net_rand_state); |
| return res; |
| } |
| EXPORT_SYMBOL(prandom_u32); |
| |
| /** |
| * prandom_bytes - get the requested number of pseudo-random bytes |
| * @buf: where to copy the pseudo-random bytes to |
| * @bytes: the requested number of bytes |
| */ |
| void prandom_bytes(void *buf, size_t bytes) |
| { |
| struct siprand_state *state = get_cpu_ptr(&net_rand_state); |
| u8 *ptr = buf; |
| |
| while (bytes >= sizeof(u32)) { |
| put_unaligned(siprand_u32(state), (u32 *)ptr); |
| ptr += sizeof(u32); |
| bytes -= sizeof(u32); |
| } |
| |
| if (bytes > 0) { |
| u32 rem = siprand_u32(state); |
| |
| do { |
| *ptr++ = (u8)rem; |
| rem >>= BITS_PER_BYTE; |
| } while (--bytes > 0); |
| } |
| put_cpu_ptr(&net_rand_state); |
| } |
| EXPORT_SYMBOL(prandom_bytes); |
| |
| /** |
| * prandom_seed - add entropy to pseudo random number generator |
| * @entropy: entropy value |
| * |
| * Add some additional seed material to the prandom pool. |
| * The "entropy" is actually our IP address (the only caller is |
| * the network code), not for unpredictability, but to ensure that |
| * different machines are initialized differently. |
| */ |
| void prandom_seed(u32 entropy) |
| { |
| int i; |
| |
| add_device_randomness(&entropy, sizeof(entropy)); |
| |
| for_each_possible_cpu(i) { |
| struct siprand_state *state = per_cpu_ptr(&net_rand_state, i); |
| unsigned long v0 = state->v0, v1 = state->v1; |
| unsigned long v2 = state->v2, v3 = state->v3; |
| |
| do { |
| v3 ^= entropy; |
| PRND_SIPROUND(v0, v1, v2, v3); |
| PRND_SIPROUND(v0, v1, v2, v3); |
| v0 ^= entropy; |
| } while (unlikely(!v0 || !v1 || !v2 || !v3)); |
| |
| WRITE_ONCE(state->v0, v0); |
| WRITE_ONCE(state->v1, v1); |
| WRITE_ONCE(state->v2, v2); |
| WRITE_ONCE(state->v3, v3); |
| } |
| } |
| EXPORT_SYMBOL(prandom_seed); |
| |
| /* |
| * Generate some initially weak seeding values to allow |
| * the prandom_u32() engine to be started. |
| */ |
| static int __init prandom_init_early(void) |
| { |
| int i; |
| unsigned long v0, v1, v2, v3; |
| |
| if (!arch_get_random_long(&v0)) |
| v0 = jiffies; |
| if (!arch_get_random_long(&v1)) |
| v1 = random_get_entropy(); |
| v2 = v0 ^ PRND_K0; |
| v3 = v1 ^ PRND_K1; |
| |
| for_each_possible_cpu(i) { |
| struct siprand_state *state; |
| |
| v3 ^= i; |
| PRND_SIPROUND(v0, v1, v2, v3); |
| PRND_SIPROUND(v0, v1, v2, v3); |
| v0 ^= i; |
| |
| state = per_cpu_ptr(&net_rand_state, i); |
| state->v0 = v0; state->v1 = v1; |
| state->v2 = v2; state->v3 = v3; |
| } |
| |
| return 0; |
| } |
| core_initcall(prandom_init_early); |
| |
| |
| /* Stronger reseeding when available, and periodically thereafter. */ |
| static void prandom_reseed(unsigned long dontcare); |
| |
| static DEFINE_TIMER(seed_timer, prandom_reseed, 0, 0); |
| |
| static void prandom_reseed(unsigned long dontcare) |
| { |
| unsigned long expires; |
| int i; |
| |
| /* |
| * Reinitialize each CPU's PRNG with 128 bits of key. |
| * No locking on the CPUs, but then somewhat random results are, |
| * well, expected. |
| */ |
| for_each_possible_cpu(i) { |
| struct siprand_state *state; |
| unsigned long v0 = get_random_long(), v2 = v0 ^ PRND_K0; |
| unsigned long v1 = get_random_long(), v3 = v1 ^ PRND_K1; |
| #if BITS_PER_LONG == 32 |
| int j; |
| |
| /* |
| * On 32-bit machines, hash in two extra words to |
| * approximate 128-bit key length. Not that the hash |
| * has that much security, but this prevents a trivial |
| * 64-bit brute force. |
| */ |
| for (j = 0; j < 2; j++) { |
| unsigned long m = get_random_long(); |
| |
| v3 ^= m; |
| PRND_SIPROUND(v0, v1, v2, v3); |
| PRND_SIPROUND(v0, v1, v2, v3); |
| v0 ^= m; |
| } |
| #endif |
| /* |
| * Probably impossible in practice, but there is a |
| * theoretical risk that a race between this reseeding |
| * and the target CPU writing its state back could |
| * create the all-zero SipHash fixed point. |
| * |
| * To ensure that never happens, ensure the state |
| * we write contains no zero words. |
| */ |
| state = per_cpu_ptr(&net_rand_state, i); |
| WRITE_ONCE(state->v0, v0 ? v0 : -1ul); |
| WRITE_ONCE(state->v1, v1 ? v1 : -1ul); |
| WRITE_ONCE(state->v2, v2 ? v2 : -1ul); |
| WRITE_ONCE(state->v3, v3 ? v3 : -1ul); |
| } |
| |
| /* reseed every ~60 seconds, in [40 .. 80) interval with slack */ |
| expires = round_jiffies(jiffies + 40 * HZ + prandom_u32_max(40 * HZ)); |
| mod_timer(&seed_timer, expires); |
| } |
| |
| /* |
| * The random ready callback can be called from almost any interrupt. |
| * To avoid worrying about whether it's safe to delay that interrupt |
| * long enough to seed all CPUs, just schedule an immediate timer event. |
| */ |
| static void prandom_timer_start(struct random_ready_callback *unused) |
| { |
| mod_timer(&seed_timer, jiffies); |
| } |
| |
| /* |
| * Start periodic full reseeding as soon as strong |
| * random numbers are available. |
| */ |
| static int __init prandom_init_late(void) |
| { |
| static struct random_ready_callback random_ready = { |
| .func = prandom_timer_start |
| }; |
| int ret = add_random_ready_callback(&random_ready); |
| |
| if (ret == -EALREADY) { |
| prandom_timer_start(&random_ready); |
| ret = 0; |
| } |
| return ret; |
| } |
| late_initcall(prandom_init_late); |