| /* |
| * drivers/crypto/tegra-aes.c |
| * |
| * Driver for NVIDIA Tegra AES hardware engine residing inside the |
| * Bit Stream Engine for Video (BSEV) hardware block. |
| * |
| * The programming sequence for this engine is with the help |
| * of commands which travel via a command queue residing between the |
| * CPU and the BSEV block. The BSEV engine has an internal RAM (VRAM) |
| * where the final input plaintext, keys and the IV have to be copied |
| * before starting the encrypt/decrypt operation. |
| * |
| * Copyright (c) 2010, NVIDIA Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write to the Free Software Foundation, Inc., |
| * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/errno.h> |
| #include <linux/kernel.h> |
| #include <linux/clk.h> |
| #include <linux/platform_device.h> |
| #include <linux/scatterlist.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/io.h> |
| #include <linux/mutex.h> |
| #include <linux/interrupt.h> |
| #include <linux/completion.h> |
| #include <linux/workqueue.h> |
| |
| #include <crypto/scatterwalk.h> |
| #include <crypto/aes.h> |
| #include <crypto/internal/rng.h> |
| |
| #include "tegra-aes.h" |
| |
| #define FLAGS_MODE_MASK 0x00FF |
| #define FLAGS_ENCRYPT BIT(0) |
| #define FLAGS_CBC BIT(1) |
| #define FLAGS_GIV BIT(2) |
| #define FLAGS_RNG BIT(3) |
| #define FLAGS_OFB BIT(4) |
| #define FLAGS_NEW_KEY BIT(5) |
| #define FLAGS_NEW_IV BIT(6) |
| #define FLAGS_INIT BIT(7) |
| #define FLAGS_FAST BIT(8) |
| #define FLAGS_BUSY 9 |
| |
| /* |
| * Defines AES engine Max process bytes size in one go, which takes 1 msec. |
| * AES engine spends about 176 cycles/16-bytes or 11 cycles/byte |
| * The duration CPU can use the BSE to 1 msec, then the number of available |
| * cycles of AVP/BSE is 216K. In this duration, AES can process 216/11 ~= 19KB |
| * Based on this AES_HW_DMA_BUFFER_SIZE_BYTES is configured to 16KB. |
| */ |
| #define AES_HW_DMA_BUFFER_SIZE_BYTES 0x4000 |
| |
| /* |
| * The key table length is 64 bytes |
| * (This includes first upto 32 bytes key + 16 bytes original initial vector |
| * and 16 bytes updated initial vector) |
| */ |
| #define AES_HW_KEY_TABLE_LENGTH_BYTES 64 |
| |
| /* |
| * The memory being used is divides as follows: |
| * 1. Key - 32 bytes |
| * 2. Original IV - 16 bytes |
| * 3. Updated IV - 16 bytes |
| * 4. Key schedule - 256 bytes |
| * |
| * 1+2+3 constitute the hw key table. |
| */ |
| #define AES_HW_IV_SIZE 16 |
| #define AES_HW_KEYSCHEDULE_LEN 256 |
| #define AES_IVKEY_SIZE (AES_HW_KEY_TABLE_LENGTH_BYTES + AES_HW_KEYSCHEDULE_LEN) |
| |
| /* Define commands required for AES operation */ |
| enum { |
| CMD_BLKSTARTENGINE = 0x0E, |
| CMD_DMASETUP = 0x10, |
| CMD_DMACOMPLETE = 0x11, |
| CMD_SETTABLE = 0x15, |
| CMD_MEMDMAVD = 0x22, |
| }; |
| |
| /* Define sub-commands */ |
| enum { |
| SUBCMD_VRAM_SEL = 0x1, |
| SUBCMD_CRYPTO_TABLE_SEL = 0x3, |
| SUBCMD_KEY_TABLE_SEL = 0x8, |
| }; |
| |
| /* memdma_vd command */ |
| #define MEMDMA_DIR_DTOVRAM 0 /* sdram -> vram */ |
| #define MEMDMA_DIR_VTODRAM 1 /* vram -> sdram */ |
| #define MEMDMA_DIR_SHIFT 25 |
| #define MEMDMA_NUM_WORDS_SHIFT 12 |
| |
| /* command queue bit shifts */ |
| enum { |
| CMDQ_KEYTABLEADDR_SHIFT = 0, |
| CMDQ_KEYTABLEID_SHIFT = 17, |
| CMDQ_VRAMSEL_SHIFT = 23, |
| CMDQ_TABLESEL_SHIFT = 24, |
| CMDQ_OPCODE_SHIFT = 26, |
| }; |
| |
| /* |
| * The secure key slot contains a unique secure key generated |
| * and loaded by the bootloader. This slot is marked as non-accessible |
| * to the kernel. |
| */ |
| #define SSK_SLOT_NUM 4 |
| |
| #define AES_NR_KEYSLOTS 8 |
| #define TEGRA_AES_QUEUE_LENGTH 50 |
| #define DEFAULT_RNG_BLK_SZ 16 |
| |
| /* The command queue depth */ |
| #define AES_HW_MAX_ICQ_LENGTH 5 |
| |
| struct tegra_aes_slot { |
| struct list_head node; |
| int slot_num; |
| }; |
| |
| static struct tegra_aes_slot ssk = { |
| .slot_num = SSK_SLOT_NUM, |
| }; |
| |
| struct tegra_aes_reqctx { |
| unsigned long mode; |
| }; |
| |
| struct tegra_aes_dev { |
| struct device *dev; |
| void __iomem *io_base; |
| dma_addr_t ivkey_phys_base; |
| void __iomem *ivkey_base; |
| struct clk *aes_clk; |
| struct tegra_aes_ctx *ctx; |
| int irq; |
| unsigned long flags; |
| struct completion op_complete; |
| u32 *buf_in; |
| dma_addr_t dma_buf_in; |
| u32 *buf_out; |
| dma_addr_t dma_buf_out; |
| u8 *iv; |
| u8 dt[DEFAULT_RNG_BLK_SZ]; |
| int ivlen; |
| u64 ctr; |
| spinlock_t lock; |
| struct crypto_queue queue; |
| struct tegra_aes_slot *slots; |
| struct ablkcipher_request *req; |
| size_t total; |
| struct scatterlist *in_sg; |
| size_t in_offset; |
| struct scatterlist *out_sg; |
| size_t out_offset; |
| }; |
| |
| static struct tegra_aes_dev *aes_dev; |
| |
| struct tegra_aes_ctx { |
| struct tegra_aes_dev *dd; |
| unsigned long flags; |
| struct tegra_aes_slot *slot; |
| u8 key[AES_MAX_KEY_SIZE]; |
| size_t keylen; |
| }; |
| |
| static struct tegra_aes_ctx rng_ctx = { |
| .flags = FLAGS_NEW_KEY, |
| .keylen = AES_KEYSIZE_128, |
| }; |
| |
| /* keep registered devices data here */ |
| static struct list_head dev_list; |
| static DEFINE_SPINLOCK(list_lock); |
| static DEFINE_MUTEX(aes_lock); |
| |
| static void aes_workqueue_handler(struct work_struct *work); |
| static DECLARE_WORK(aes_work, aes_workqueue_handler); |
| static struct workqueue_struct *aes_wq; |
| |
| static inline u32 aes_readl(struct tegra_aes_dev *dd, u32 offset) |
| { |
| return readl(dd->io_base + offset); |
| } |
| |
| static inline void aes_writel(struct tegra_aes_dev *dd, u32 val, u32 offset) |
| { |
| writel(val, dd->io_base + offset); |
| } |
| |
| static int aes_start_crypt(struct tegra_aes_dev *dd, u32 in_addr, u32 out_addr, |
| int nblocks, int mode, bool upd_iv) |
| { |
| u32 cmdq[AES_HW_MAX_ICQ_LENGTH]; |
| int i, eng_busy, icq_empty, ret; |
| u32 value; |
| |
| /* reset all the interrupt bits */ |
| aes_writel(dd, 0xFFFFFFFF, TEGRA_AES_INTR_STATUS); |
| |
| /* enable error, dma xfer complete interrupts */ |
| aes_writel(dd, 0x33, TEGRA_AES_INT_ENB); |
| |
| cmdq[0] = CMD_DMASETUP << CMDQ_OPCODE_SHIFT; |
| cmdq[1] = in_addr; |
| cmdq[2] = CMD_BLKSTARTENGINE << CMDQ_OPCODE_SHIFT | (nblocks-1); |
| cmdq[3] = CMD_DMACOMPLETE << CMDQ_OPCODE_SHIFT; |
| |
| value = aes_readl(dd, TEGRA_AES_CMDQUE_CONTROL); |
| /* access SDRAM through AHB */ |
| value &= ~TEGRA_AES_CMDQ_CTRL_SRC_STM_SEL_FIELD; |
| value &= ~TEGRA_AES_CMDQ_CTRL_DST_STM_SEL_FIELD; |
| value |= TEGRA_AES_CMDQ_CTRL_SRC_STM_SEL_FIELD | |
| TEGRA_AES_CMDQ_CTRL_DST_STM_SEL_FIELD | |
| TEGRA_AES_CMDQ_CTRL_ICMDQEN_FIELD; |
| aes_writel(dd, value, TEGRA_AES_CMDQUE_CONTROL); |
| dev_dbg(dd->dev, "cmd_q_ctrl=0x%x", value); |
| |
| value = (0x1 << TEGRA_AES_SECURE_INPUT_ALG_SEL_SHIFT) | |
| ((dd->ctx->keylen * 8) << |
| TEGRA_AES_SECURE_INPUT_KEY_LEN_SHIFT) | |
| ((u32)upd_iv << TEGRA_AES_SECURE_IV_SELECT_SHIFT); |
| |
| if (mode & FLAGS_CBC) { |
| value |= ((((mode & FLAGS_ENCRYPT) ? 2 : 3) |
| << TEGRA_AES_SECURE_XOR_POS_SHIFT) | |
| (((mode & FLAGS_ENCRYPT) ? 2 : 3) |
| << TEGRA_AES_SECURE_VCTRAM_SEL_SHIFT) | |
| ((mode & FLAGS_ENCRYPT) ? 1 : 0) |
| << TEGRA_AES_SECURE_CORE_SEL_SHIFT); |
| } else if (mode & FLAGS_OFB) { |
| value |= ((TEGRA_AES_SECURE_XOR_POS_FIELD) | |
| (2 << TEGRA_AES_SECURE_INPUT_SEL_SHIFT) | |
| (TEGRA_AES_SECURE_CORE_SEL_FIELD)); |
| } else if (mode & FLAGS_RNG) { |
| value |= (((mode & FLAGS_ENCRYPT) ? 1 : 0) |
| << TEGRA_AES_SECURE_CORE_SEL_SHIFT | |
| TEGRA_AES_SECURE_RNG_ENB_FIELD); |
| } else { |
| value |= (((mode & FLAGS_ENCRYPT) ? 1 : 0) |
| << TEGRA_AES_SECURE_CORE_SEL_SHIFT); |
| } |
| |
| dev_dbg(dd->dev, "secure_in_sel=0x%x", value); |
| aes_writel(dd, value, TEGRA_AES_SECURE_INPUT_SELECT); |
| |
| aes_writel(dd, out_addr, TEGRA_AES_SECURE_DEST_ADDR); |
| INIT_COMPLETION(dd->op_complete); |
| |
| for (i = 0; i < AES_HW_MAX_ICQ_LENGTH - 1; i++) { |
| do { |
| value = aes_readl(dd, TEGRA_AES_INTR_STATUS); |
| eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD; |
| icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD; |
| } while (eng_busy && !icq_empty); |
| aes_writel(dd, cmdq[i], TEGRA_AES_ICMDQUE_WR); |
| } |
| |
| ret = wait_for_completion_timeout(&dd->op_complete, |
| msecs_to_jiffies(150)); |
| if (ret == 0) { |
| dev_err(dd->dev, "timed out (0x%x)\n", |
| aes_readl(dd, TEGRA_AES_INTR_STATUS)); |
| return -ETIMEDOUT; |
| } |
| |
| aes_writel(dd, cmdq[AES_HW_MAX_ICQ_LENGTH - 1], TEGRA_AES_ICMDQUE_WR); |
| return 0; |
| } |
| |
| static void aes_release_key_slot(struct tegra_aes_slot *slot) |
| { |
| if (slot->slot_num == SSK_SLOT_NUM) |
| return; |
| |
| spin_lock(&list_lock); |
| list_add_tail(&slot->node, &dev_list); |
| slot = NULL; |
| spin_unlock(&list_lock); |
| } |
| |
| static struct tegra_aes_slot *aes_find_key_slot(void) |
| { |
| struct tegra_aes_slot *slot = NULL; |
| struct list_head *new_head; |
| int empty; |
| |
| spin_lock(&list_lock); |
| empty = list_empty(&dev_list); |
| if (!empty) { |
| slot = list_entry(&dev_list, struct tegra_aes_slot, node); |
| new_head = dev_list.next; |
| list_del(&dev_list); |
| dev_list.next = new_head->next; |
| dev_list.prev = NULL; |
| } |
| spin_unlock(&list_lock); |
| |
| return slot; |
| } |
| |
| static int aes_set_key(struct tegra_aes_dev *dd) |
| { |
| u32 value, cmdq[2]; |
| struct tegra_aes_ctx *ctx = dd->ctx; |
| int eng_busy, icq_empty, dma_busy; |
| bool use_ssk = false; |
| |
| /* use ssk? */ |
| if (!dd->ctx->slot) { |
| dev_dbg(dd->dev, "using ssk"); |
| dd->ctx->slot = &ssk; |
| use_ssk = true; |
| } |
| |
| /* enable key schedule generation in hardware */ |
| value = aes_readl(dd, TEGRA_AES_SECURE_CONFIG_EXT); |
| value &= ~TEGRA_AES_SECURE_KEY_SCH_DIS_FIELD; |
| aes_writel(dd, value, TEGRA_AES_SECURE_CONFIG_EXT); |
| |
| /* select the key slot */ |
| value = aes_readl(dd, TEGRA_AES_SECURE_CONFIG); |
| value &= ~TEGRA_AES_SECURE_KEY_INDEX_FIELD; |
| value |= (ctx->slot->slot_num << TEGRA_AES_SECURE_KEY_INDEX_SHIFT); |
| aes_writel(dd, value, TEGRA_AES_SECURE_CONFIG); |
| |
| if (use_ssk) |
| return 0; |
| |
| /* copy the key table from sdram to vram */ |
| cmdq[0] = CMD_MEMDMAVD << CMDQ_OPCODE_SHIFT | |
| MEMDMA_DIR_DTOVRAM << MEMDMA_DIR_SHIFT | |
| AES_HW_KEY_TABLE_LENGTH_BYTES / sizeof(u32) << |
| MEMDMA_NUM_WORDS_SHIFT; |
| cmdq[1] = (u32)dd->ivkey_phys_base; |
| |
| aes_writel(dd, cmdq[0], TEGRA_AES_ICMDQUE_WR); |
| aes_writel(dd, cmdq[1], TEGRA_AES_ICMDQUE_WR); |
| |
| do { |
| value = aes_readl(dd, TEGRA_AES_INTR_STATUS); |
| eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD; |
| icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD; |
| dma_busy = value & TEGRA_AES_DMA_BUSY_FIELD; |
| } while (eng_busy && !icq_empty && dma_busy); |
| |
| /* settable command to get key into internal registers */ |
| value = CMD_SETTABLE << CMDQ_OPCODE_SHIFT | |
| SUBCMD_CRYPTO_TABLE_SEL << CMDQ_TABLESEL_SHIFT | |
| SUBCMD_VRAM_SEL << CMDQ_VRAMSEL_SHIFT | |
| (SUBCMD_KEY_TABLE_SEL | ctx->slot->slot_num) << |
| CMDQ_KEYTABLEID_SHIFT; |
| aes_writel(dd, value, TEGRA_AES_ICMDQUE_WR); |
| |
| do { |
| value = aes_readl(dd, TEGRA_AES_INTR_STATUS); |
| eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD; |
| icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD; |
| } while (eng_busy && !icq_empty); |
| |
| return 0; |
| } |
| |
| static int tegra_aes_handle_req(struct tegra_aes_dev *dd) |
| { |
| struct crypto_async_request *async_req, *backlog; |
| struct crypto_ablkcipher *tfm; |
| struct tegra_aes_ctx *ctx; |
| struct tegra_aes_reqctx *rctx; |
| struct ablkcipher_request *req; |
| unsigned long flags; |
| int dma_max = AES_HW_DMA_BUFFER_SIZE_BYTES; |
| int ret = 0, nblocks, total; |
| int count = 0; |
| dma_addr_t addr_in, addr_out; |
| struct scatterlist *in_sg, *out_sg; |
| |
| if (!dd) |
| return -EINVAL; |
| |
| spin_lock_irqsave(&dd->lock, flags); |
| backlog = crypto_get_backlog(&dd->queue); |
| async_req = crypto_dequeue_request(&dd->queue); |
| if (!async_req) |
| clear_bit(FLAGS_BUSY, &dd->flags); |
| spin_unlock_irqrestore(&dd->lock, flags); |
| |
| if (!async_req) |
| return -ENODATA; |
| |
| if (backlog) |
| backlog->complete(backlog, -EINPROGRESS); |
| |
| req = ablkcipher_request_cast(async_req); |
| |
| dev_dbg(dd->dev, "%s: get new req\n", __func__); |
| |
| if (!req->src || !req->dst) |
| return -EINVAL; |
| |
| /* take mutex to access the aes hw */ |
| mutex_lock(&aes_lock); |
| |
| /* assign new request to device */ |
| dd->req = req; |
| dd->total = req->nbytes; |
| dd->in_offset = 0; |
| dd->in_sg = req->src; |
| dd->out_offset = 0; |
| dd->out_sg = req->dst; |
| |
| in_sg = dd->in_sg; |
| out_sg = dd->out_sg; |
| |
| total = dd->total; |
| |
| tfm = crypto_ablkcipher_reqtfm(req); |
| rctx = ablkcipher_request_ctx(req); |
| ctx = crypto_ablkcipher_ctx(tfm); |
| rctx->mode &= FLAGS_MODE_MASK; |
| dd->flags = (dd->flags & ~FLAGS_MODE_MASK) | rctx->mode; |
| |
| dd->iv = (u8 *)req->info; |
| dd->ivlen = crypto_ablkcipher_ivsize(tfm); |
| |
| /* assign new context to device */ |
| ctx->dd = dd; |
| dd->ctx = ctx; |
| |
| if (ctx->flags & FLAGS_NEW_KEY) { |
| /* copy the key */ |
| memcpy(dd->ivkey_base, ctx->key, ctx->keylen); |
| memset(dd->ivkey_base + ctx->keylen, 0, AES_HW_KEY_TABLE_LENGTH_BYTES - ctx->keylen); |
| aes_set_key(dd); |
| ctx->flags &= ~FLAGS_NEW_KEY; |
| } |
| |
| if (((dd->flags & FLAGS_CBC) || (dd->flags & FLAGS_OFB)) && dd->iv) { |
| /* set iv to the aes hw slot |
| * Hw generates updated iv only after iv is set in slot. |
| * So key and iv is passed asynchronously. |
| */ |
| memcpy(dd->buf_in, dd->iv, dd->ivlen); |
| |
| ret = aes_start_crypt(dd, (u32)dd->dma_buf_in, |
| dd->dma_buf_out, 1, FLAGS_CBC, false); |
| if (ret < 0) { |
| dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret); |
| goto out; |
| } |
| } |
| |
| while (total) { |
| dev_dbg(dd->dev, "remain: %d\n", total); |
| ret = dma_map_sg(dd->dev, in_sg, 1, DMA_TO_DEVICE); |
| if (!ret) { |
| dev_err(dd->dev, "dma_map_sg() error\n"); |
| goto out; |
| } |
| |
| ret = dma_map_sg(dd->dev, out_sg, 1, DMA_FROM_DEVICE); |
| if (!ret) { |
| dev_err(dd->dev, "dma_map_sg() error\n"); |
| dma_unmap_sg(dd->dev, dd->in_sg, |
| 1, DMA_TO_DEVICE); |
| goto out; |
| } |
| |
| addr_in = sg_dma_address(in_sg); |
| addr_out = sg_dma_address(out_sg); |
| dd->flags |= FLAGS_FAST; |
| count = min_t(int, sg_dma_len(in_sg), dma_max); |
| WARN_ON(sg_dma_len(in_sg) != sg_dma_len(out_sg)); |
| nblocks = DIV_ROUND_UP(count, AES_BLOCK_SIZE); |
| |
| ret = aes_start_crypt(dd, addr_in, addr_out, nblocks, |
| dd->flags, true); |
| |
| dma_unmap_sg(dd->dev, out_sg, 1, DMA_FROM_DEVICE); |
| dma_unmap_sg(dd->dev, in_sg, 1, DMA_TO_DEVICE); |
| |
| if (ret < 0) { |
| dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret); |
| goto out; |
| } |
| dd->flags &= ~FLAGS_FAST; |
| |
| dev_dbg(dd->dev, "out: copied %d\n", count); |
| total -= count; |
| in_sg = sg_next(in_sg); |
| out_sg = sg_next(out_sg); |
| WARN_ON(((total != 0) && (!in_sg || !out_sg))); |
| } |
| |
| out: |
| mutex_unlock(&aes_lock); |
| |
| dd->total = total; |
| |
| if (dd->req->base.complete) |
| dd->req->base.complete(&dd->req->base, ret); |
| |
| dev_dbg(dd->dev, "%s: exit\n", __func__); |
| return ret; |
| } |
| |
| static int tegra_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key, |
| unsigned int keylen) |
| { |
| struct tegra_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm); |
| struct tegra_aes_dev *dd = aes_dev; |
| struct tegra_aes_slot *key_slot; |
| |
| if ((keylen != AES_KEYSIZE_128) && (keylen != AES_KEYSIZE_192) && |
| (keylen != AES_KEYSIZE_256)) { |
| dev_err(dd->dev, "unsupported key size\n"); |
| crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| return -EINVAL; |
| } |
| |
| dev_dbg(dd->dev, "keylen: %d\n", keylen); |
| |
| ctx->dd = dd; |
| |
| if (key) { |
| if (!ctx->slot) { |
| key_slot = aes_find_key_slot(); |
| if (!key_slot) { |
| dev_err(dd->dev, "no empty slot\n"); |
| return -ENOMEM; |
| } |
| |
| ctx->slot = key_slot; |
| } |
| |
| memcpy(ctx->key, key, keylen); |
| ctx->keylen = keylen; |
| } |
| |
| ctx->flags |= FLAGS_NEW_KEY; |
| dev_dbg(dd->dev, "done\n"); |
| return 0; |
| } |
| |
| static void aes_workqueue_handler(struct work_struct *work) |
| { |
| struct tegra_aes_dev *dd = aes_dev; |
| int ret; |
| |
| ret = clk_prepare_enable(dd->aes_clk); |
| if (ret) |
| BUG_ON("clock enable failed"); |
| |
| /* empty the crypto queue and then return */ |
| do { |
| ret = tegra_aes_handle_req(dd); |
| } while (!ret); |
| |
| clk_disable_unprepare(dd->aes_clk); |
| } |
| |
| static irqreturn_t aes_irq(int irq, void *dev_id) |
| { |
| struct tegra_aes_dev *dd = (struct tegra_aes_dev *)dev_id; |
| u32 value = aes_readl(dd, TEGRA_AES_INTR_STATUS); |
| int busy = test_bit(FLAGS_BUSY, &dd->flags); |
| |
| if (!busy) { |
| dev_dbg(dd->dev, "spurious interrupt\n"); |
| return IRQ_NONE; |
| } |
| |
| dev_dbg(dd->dev, "irq_stat: 0x%x\n", value); |
| if (value & TEGRA_AES_INT_ERROR_MASK) |
| aes_writel(dd, TEGRA_AES_INT_ERROR_MASK, TEGRA_AES_INTR_STATUS); |
| |
| if (!(value & TEGRA_AES_ENGINE_BUSY_FIELD)) |
| complete(&dd->op_complete); |
| else |
| return IRQ_NONE; |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int tegra_aes_crypt(struct ablkcipher_request *req, unsigned long mode) |
| { |
| struct tegra_aes_reqctx *rctx = ablkcipher_request_ctx(req); |
| struct tegra_aes_dev *dd = aes_dev; |
| unsigned long flags; |
| int err = 0; |
| int busy; |
| |
| dev_dbg(dd->dev, "nbytes: %d, enc: %d, cbc: %d, ofb: %d\n", |
| req->nbytes, !!(mode & FLAGS_ENCRYPT), |
| !!(mode & FLAGS_CBC), !!(mode & FLAGS_OFB)); |
| |
| rctx->mode = mode; |
| |
| spin_lock_irqsave(&dd->lock, flags); |
| err = ablkcipher_enqueue_request(&dd->queue, req); |
| busy = test_and_set_bit(FLAGS_BUSY, &dd->flags); |
| spin_unlock_irqrestore(&dd->lock, flags); |
| |
| if (!busy) |
| queue_work(aes_wq, &aes_work); |
| |
| return err; |
| } |
| |
| static int tegra_aes_ecb_encrypt(struct ablkcipher_request *req) |
| { |
| return tegra_aes_crypt(req, FLAGS_ENCRYPT); |
| } |
| |
| static int tegra_aes_ecb_decrypt(struct ablkcipher_request *req) |
| { |
| return tegra_aes_crypt(req, 0); |
| } |
| |
| static int tegra_aes_cbc_encrypt(struct ablkcipher_request *req) |
| { |
| return tegra_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_CBC); |
| } |
| |
| static int tegra_aes_cbc_decrypt(struct ablkcipher_request *req) |
| { |
| return tegra_aes_crypt(req, FLAGS_CBC); |
| } |
| |
| static int tegra_aes_ofb_encrypt(struct ablkcipher_request *req) |
| { |
| return tegra_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_OFB); |
| } |
| |
| static int tegra_aes_ofb_decrypt(struct ablkcipher_request *req) |
| { |
| return tegra_aes_crypt(req, FLAGS_OFB); |
| } |
| |
| static int tegra_aes_get_random(struct crypto_rng *tfm, u8 *rdata, |
| unsigned int dlen) |
| { |
| struct tegra_aes_dev *dd = aes_dev; |
| struct tegra_aes_ctx *ctx = &rng_ctx; |
| int ret, i; |
| u8 *dest = rdata, *dt = dd->dt; |
| |
| /* take mutex to access the aes hw */ |
| mutex_lock(&aes_lock); |
| |
| ret = clk_prepare_enable(dd->aes_clk); |
| if (ret) { |
| mutex_unlock(&aes_lock); |
| return ret; |
| } |
| |
| ctx->dd = dd; |
| dd->ctx = ctx; |
| dd->flags = FLAGS_ENCRYPT | FLAGS_RNG; |
| |
| memcpy(dd->buf_in, dt, DEFAULT_RNG_BLK_SZ); |
| |
| ret = aes_start_crypt(dd, (u32)dd->dma_buf_in, |
| (u32)dd->dma_buf_out, 1, dd->flags, true); |
| if (ret < 0) { |
| dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret); |
| dlen = ret; |
| goto out; |
| } |
| memcpy(dest, dd->buf_out, dlen); |
| |
| /* update the DT */ |
| for (i = DEFAULT_RNG_BLK_SZ - 1; i >= 0; i--) { |
| dt[i] += 1; |
| if (dt[i] != 0) |
| break; |
| } |
| |
| out: |
| clk_disable_unprepare(dd->aes_clk); |
| mutex_unlock(&aes_lock); |
| |
| dev_dbg(dd->dev, "%s: done\n", __func__); |
| return dlen; |
| } |
| |
| static int tegra_aes_rng_reset(struct crypto_rng *tfm, u8 *seed, |
| unsigned int slen) |
| { |
| struct tegra_aes_dev *dd = aes_dev; |
| struct tegra_aes_ctx *ctx = &rng_ctx; |
| struct tegra_aes_slot *key_slot; |
| int ret = 0; |
| u8 tmp[16]; /* 16 bytes = 128 bits of entropy */ |
| u8 *dt; |
| |
| if (!ctx || !dd) { |
| dev_err(dd->dev, "ctx=0x%x, dd=0x%x\n", |
| (unsigned int)ctx, (unsigned int)dd); |
| return -EINVAL; |
| } |
| |
| if (slen < (DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128)) { |
| dev_err(dd->dev, "seed size invalid"); |
| return -ENOMEM; |
| } |
| |
| /* take mutex to access the aes hw */ |
| mutex_lock(&aes_lock); |
| |
| if (!ctx->slot) { |
| key_slot = aes_find_key_slot(); |
| if (!key_slot) { |
| dev_err(dd->dev, "no empty slot\n"); |
| mutex_unlock(&aes_lock); |
| return -ENOMEM; |
| } |
| ctx->slot = key_slot; |
| } |
| |
| ctx->dd = dd; |
| dd->ctx = ctx; |
| dd->ctr = 0; |
| |
| ctx->keylen = AES_KEYSIZE_128; |
| ctx->flags |= FLAGS_NEW_KEY; |
| |
| /* copy the key to the key slot */ |
| memcpy(dd->ivkey_base, seed + DEFAULT_RNG_BLK_SZ, AES_KEYSIZE_128); |
| memset(dd->ivkey_base + AES_KEYSIZE_128, 0, AES_HW_KEY_TABLE_LENGTH_BYTES - AES_KEYSIZE_128); |
| |
| dd->iv = seed; |
| dd->ivlen = slen; |
| |
| dd->flags = FLAGS_ENCRYPT | FLAGS_RNG; |
| |
| ret = clk_prepare_enable(dd->aes_clk); |
| if (ret) { |
| mutex_unlock(&aes_lock); |
| return ret; |
| } |
| |
| aes_set_key(dd); |
| |
| /* set seed to the aes hw slot */ |
| memcpy(dd->buf_in, dd->iv, DEFAULT_RNG_BLK_SZ); |
| ret = aes_start_crypt(dd, (u32)dd->dma_buf_in, |
| dd->dma_buf_out, 1, FLAGS_CBC, false); |
| if (ret < 0) { |
| dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret); |
| goto out; |
| } |
| |
| if (dd->ivlen >= (2 * DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128)) { |
| dt = dd->iv + DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128; |
| } else { |
| get_random_bytes(tmp, sizeof(tmp)); |
| dt = tmp; |
| } |
| memcpy(dd->dt, dt, DEFAULT_RNG_BLK_SZ); |
| |
| out: |
| clk_disable_unprepare(dd->aes_clk); |
| mutex_unlock(&aes_lock); |
| |
| dev_dbg(dd->dev, "%s: done\n", __func__); |
| return ret; |
| } |
| |
| static int tegra_aes_cra_init(struct crypto_tfm *tfm) |
| { |
| tfm->crt_ablkcipher.reqsize = sizeof(struct tegra_aes_reqctx); |
| |
| return 0; |
| } |
| |
| static void tegra_aes_cra_exit(struct crypto_tfm *tfm) |
| { |
| struct tegra_aes_ctx *ctx = |
| crypto_ablkcipher_ctx((struct crypto_ablkcipher *)tfm); |
| |
| if (ctx && ctx->slot) |
| aes_release_key_slot(ctx->slot); |
| } |
| |
| static struct crypto_alg algs[] = { |
| { |
| .cra_name = "ecb(aes)", |
| .cra_driver_name = "ecb-aes-tegra", |
| .cra_priority = 300, |
| .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_alignmask = 3, |
| .cra_type = &crypto_ablkcipher_type, |
| .cra_u.ablkcipher = { |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .setkey = tegra_aes_setkey, |
| .encrypt = tegra_aes_ecb_encrypt, |
| .decrypt = tegra_aes_ecb_decrypt, |
| }, |
| }, { |
| .cra_name = "cbc(aes)", |
| .cra_driver_name = "cbc-aes-tegra", |
| .cra_priority = 300, |
| .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_alignmask = 3, |
| .cra_type = &crypto_ablkcipher_type, |
| .cra_u.ablkcipher = { |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = AES_MIN_KEY_SIZE, |
| .setkey = tegra_aes_setkey, |
| .encrypt = tegra_aes_cbc_encrypt, |
| .decrypt = tegra_aes_cbc_decrypt, |
| } |
| }, { |
| .cra_name = "ofb(aes)", |
| .cra_driver_name = "ofb-aes-tegra", |
| .cra_priority = 300, |
| .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_alignmask = 3, |
| .cra_type = &crypto_ablkcipher_type, |
| .cra_u.ablkcipher = { |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = AES_MIN_KEY_SIZE, |
| .setkey = tegra_aes_setkey, |
| .encrypt = tegra_aes_ofb_encrypt, |
| .decrypt = tegra_aes_ofb_decrypt, |
| } |
| }, { |
| .cra_name = "ansi_cprng", |
| .cra_driver_name = "rng-aes-tegra", |
| .cra_flags = CRYPTO_ALG_TYPE_RNG, |
| .cra_ctxsize = sizeof(struct tegra_aes_ctx), |
| .cra_type = &crypto_rng_type, |
| .cra_u.rng = { |
| .rng_make_random = tegra_aes_get_random, |
| .rng_reset = tegra_aes_rng_reset, |
| .seedsize = AES_KEYSIZE_128 + (2 * DEFAULT_RNG_BLK_SZ), |
| } |
| } |
| }; |
| |
| static int tegra_aes_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct tegra_aes_dev *dd; |
| struct resource *res; |
| int err = -ENOMEM, i = 0, j; |
| |
| dd = devm_kzalloc(dev, sizeof(struct tegra_aes_dev), GFP_KERNEL); |
| if (dd == NULL) { |
| dev_err(dev, "unable to alloc data struct.\n"); |
| return err; |
| } |
| |
| dd->dev = dev; |
| platform_set_drvdata(pdev, dd); |
| |
| dd->slots = devm_kzalloc(dev, sizeof(struct tegra_aes_slot) * |
| AES_NR_KEYSLOTS, GFP_KERNEL); |
| if (dd->slots == NULL) { |
| dev_err(dev, "unable to alloc slot struct.\n"); |
| goto out; |
| } |
| |
| spin_lock_init(&dd->lock); |
| crypto_init_queue(&dd->queue, TEGRA_AES_QUEUE_LENGTH); |
| |
| /* Get the module base address */ |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (!res) { |
| dev_err(dev, "invalid resource type: base\n"); |
| err = -ENODEV; |
| goto out; |
| } |
| |
| if (!devm_request_mem_region(&pdev->dev, res->start, |
| resource_size(res), |
| dev_name(&pdev->dev))) { |
| dev_err(&pdev->dev, "Couldn't request MEM resource\n"); |
| return -ENODEV; |
| } |
| |
| dd->io_base = devm_ioremap(dev, res->start, resource_size(res)); |
| if (!dd->io_base) { |
| dev_err(dev, "can't ioremap register space\n"); |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| /* Initialize the vde clock */ |
| dd->aes_clk = clk_get(dev, "vde"); |
| if (IS_ERR(dd->aes_clk)) { |
| dev_err(dev, "iclock intialization failed.\n"); |
| err = -ENODEV; |
| goto out; |
| } |
| |
| err = clk_set_rate(dd->aes_clk, ULONG_MAX); |
| if (err) { |
| dev_err(dd->dev, "iclk set_rate fail(%d)\n", err); |
| goto out; |
| } |
| |
| /* |
| * the foll contiguous memory is allocated as follows - |
| * - hardware key table |
| * - key schedule |
| */ |
| dd->ivkey_base = dma_alloc_coherent(dev, AES_HW_KEY_TABLE_LENGTH_BYTES, |
| &dd->ivkey_phys_base, |
| GFP_KERNEL); |
| if (!dd->ivkey_base) { |
| dev_err(dev, "can not allocate iv/key buffer\n"); |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| dd->buf_in = dma_alloc_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, |
| &dd->dma_buf_in, GFP_KERNEL); |
| if (!dd->buf_in) { |
| dev_err(dev, "can not allocate dma-in buffer\n"); |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| dd->buf_out = dma_alloc_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, |
| &dd->dma_buf_out, GFP_KERNEL); |
| if (!dd->buf_out) { |
| dev_err(dev, "can not allocate dma-out buffer\n"); |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| init_completion(&dd->op_complete); |
| aes_wq = alloc_workqueue("tegra_aes_wq", WQ_HIGHPRI | WQ_UNBOUND, 1); |
| if (!aes_wq) { |
| dev_err(dev, "alloc_workqueue failed\n"); |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| /* get the irq */ |
| res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); |
| if (!res) { |
| dev_err(dev, "invalid resource type: base\n"); |
| err = -ENODEV; |
| goto out; |
| } |
| dd->irq = res->start; |
| |
| err = devm_request_irq(dev, dd->irq, aes_irq, IRQF_TRIGGER_HIGH | |
| IRQF_SHARED, "tegra-aes", dd); |
| if (err) { |
| dev_err(dev, "request_irq failed\n"); |
| goto out; |
| } |
| |
| mutex_init(&aes_lock); |
| INIT_LIST_HEAD(&dev_list); |
| |
| spin_lock_init(&list_lock); |
| spin_lock(&list_lock); |
| for (i = 0; i < AES_NR_KEYSLOTS; i++) { |
| if (i == SSK_SLOT_NUM) |
| continue; |
| dd->slots[i].slot_num = i; |
| INIT_LIST_HEAD(&dd->slots[i].node); |
| list_add_tail(&dd->slots[i].node, &dev_list); |
| } |
| spin_unlock(&list_lock); |
| |
| aes_dev = dd; |
| for (i = 0; i < ARRAY_SIZE(algs); i++) { |
| algs[i].cra_priority = 300; |
| algs[i].cra_ctxsize = sizeof(struct tegra_aes_ctx); |
| algs[i].cra_module = THIS_MODULE; |
| algs[i].cra_init = tegra_aes_cra_init; |
| algs[i].cra_exit = tegra_aes_cra_exit; |
| |
| err = crypto_register_alg(&algs[i]); |
| if (err) |
| goto out; |
| } |
| |
| dev_info(dev, "registered"); |
| return 0; |
| |
| out: |
| for (j = 0; j < i; j++) |
| crypto_unregister_alg(&algs[j]); |
| if (dd->ivkey_base) |
| dma_free_coherent(dev, AES_HW_KEY_TABLE_LENGTH_BYTES, |
| dd->ivkey_base, dd->ivkey_phys_base); |
| if (dd->buf_in) |
| dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, |
| dd->buf_in, dd->dma_buf_in); |
| if (dd->buf_out) |
| dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, |
| dd->buf_out, dd->dma_buf_out); |
| if (!IS_ERR(dd->aes_clk)) |
| clk_put(dd->aes_clk); |
| if (aes_wq) |
| destroy_workqueue(aes_wq); |
| spin_lock(&list_lock); |
| list_del(&dev_list); |
| spin_unlock(&list_lock); |
| |
| aes_dev = NULL; |
| |
| dev_err(dev, "%s: initialization failed.\n", __func__); |
| return err; |
| } |
| |
| static int tegra_aes_remove(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct tegra_aes_dev *dd = platform_get_drvdata(pdev); |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(algs); i++) |
| crypto_unregister_alg(&algs[i]); |
| |
| cancel_work_sync(&aes_work); |
| destroy_workqueue(aes_wq); |
| spin_lock(&list_lock); |
| list_del(&dev_list); |
| spin_unlock(&list_lock); |
| |
| dma_free_coherent(dev, AES_HW_KEY_TABLE_LENGTH_BYTES, |
| dd->ivkey_base, dd->ivkey_phys_base); |
| dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, |
| dd->buf_in, dd->dma_buf_in); |
| dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, |
| dd->buf_out, dd->dma_buf_out); |
| clk_put(dd->aes_clk); |
| aes_dev = NULL; |
| |
| return 0; |
| } |
| |
| static struct of_device_id tegra_aes_of_match[] = { |
| { .compatible = "nvidia,tegra20-aes", }, |
| { .compatible = "nvidia,tegra30-aes", }, |
| { }, |
| }; |
| |
| static struct platform_driver tegra_aes_driver = { |
| .probe = tegra_aes_probe, |
| .remove = tegra_aes_remove, |
| .driver = { |
| .name = "tegra-aes", |
| .owner = THIS_MODULE, |
| .of_match_table = tegra_aes_of_match, |
| }, |
| }; |
| |
| module_platform_driver(tegra_aes_driver); |
| |
| MODULE_DESCRIPTION("Tegra AES/OFB/CPRNG hw acceleration support."); |
| MODULE_AUTHOR("NVIDIA Corporation"); |
| MODULE_LICENSE("GPL v2"); |