blob: f3e16b3f45b691d671d4658451ea697ef06e1ce3 [file] [log] [blame]
/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/kernel.h>
#include <linux/of.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/types.h>
#include <linux/hwmon.h>
#include <linux/module.h>
#include <linux/debugfs.h>
#include <linux/spmi.h>
#include <linux/platform_device.h>
#include <linux/of_irq.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/qpnp/qpnp-adc.h>
#define KELVINMIL_DEGMIL 273160
#define QPNP_VADC_LDO_VOLTAGE_MIN 1800000
#define QPNP_VADC_LDO_VOLTAGE_MAX 1800000
#define QPNP_VADC_OK_VOLTAGE_MIN 1000000
#define QPNP_VADC_OK_VOLTAGE_MAX 1000000
#define PMI_CHG_SCALE_1 -138890
#define PMI_CHG_SCALE_2 391750000000
#define QPNP_VADC_HC_VREF_CODE 0x4000
#define QPNP_VADC_HC_VDD_REFERENCE_MV 1875
#define CHRG_SCALE_1 -250
#define CHRG_SCALE_2 377500000
#define DIE_SCALE_1 500
#define DIE_SCALE_2 -273150000
/* Clamp negative ADC code to 0 */
#define QPNP_VADC_HC_MAX_CODE 0x7FFF
/*Invalid current reading*/
#define QPNP_IADC_INV 0x8000
#define IADC_SCALE_1 0xffff
#define IADC_SCALE_2 152593
#define USBIN_I_SCALE 25
/*
* Units for temperature below (on x axis) is in 0.1DegC as
* required by the battery driver. Note the resolution used
* here to compute the table was done for DegC to milli-volts.
* In consideration to limit the size of the table for the given
* temperature range below, the result is linearly interpolated
* and provided to the battery driver in the units desired for
* their framework which is 0.1DegC. True resolution of 0.1DegC
* will result in the below table size to increase by 10 times.
*/
static const struct qpnp_vadc_map_pt adcmap_btm_threshold[] = {
{-300, 1642},
{-200, 1544},
{-100, 1414},
{0, 1260},
{10, 1244},
{20, 1228},
{30, 1212},
{40, 1195},
{50, 1179},
{60, 1162},
{70, 1146},
{80, 1129},
{90, 1113},
{100, 1097},
{110, 1080},
{120, 1064},
{130, 1048},
{140, 1032},
{150, 1016},
{160, 1000},
{170, 985},
{180, 969},
{190, 954},
{200, 939},
{210, 924},
{220, 909},
{230, 894},
{240, 880},
{250, 866},
{260, 852},
{270, 838},
{280, 824},
{290, 811},
{300, 798},
{310, 785},
{320, 773},
{330, 760},
{340, 748},
{350, 736},
{360, 725},
{370, 713},
{380, 702},
{390, 691},
{400, 681},
{410, 670},
{420, 660},
{430, 650},
{440, 640},
{450, 631},
{460, 622},
{470, 613},
{480, 604},
{490, 595},
{500, 587},
{510, 579},
{520, 571},
{530, 563},
{540, 556},
{550, 548},
{560, 541},
{570, 534},
{580, 527},
{590, 521},
{600, 514},
{610, 508},
{620, 502},
{630, 496},
{640, 490},
{650, 485},
{660, 281},
{670, 274},
{680, 267},
{690, 260},
{700, 254},
{710, 247},
{720, 241},
{730, 235},
{740, 229},
{750, 224},
{760, 218},
{770, 213},
{780, 208},
{790, 203}
};
static const struct qpnp_vadc_map_pt adcmap_qrd_btm_threshold[] = {
{-200, 1540},
{-180, 1517},
{-160, 1492},
{-140, 1467},
{-120, 1440},
{-100, 1412},
{-80, 1383},
{-60, 1353},
{-40, 1323},
{-20, 1292},
{0, 1260},
{20, 1228},
{40, 1196},
{60, 1163},
{80, 1131},
{100, 1098},
{120, 1066},
{140, 1034},
{160, 1002},
{180, 971},
{200, 941},
{220, 911},
{240, 882},
{260, 854},
{280, 826},
{300, 800},
{320, 774},
{340, 749},
{360, 726},
{380, 703},
{400, 681},
{420, 660},
{440, 640},
{460, 621},
{480, 602},
{500, 585},
{520, 568},
{540, 552},
{560, 537},
{580, 523},
{600, 510},
{620, 497},
{640, 485},
{660, 473},
{680, 462},
{700, 452},
{720, 442},
{740, 433},
{760, 424},
{780, 416},
{800, 408},
};
static const struct qpnp_vadc_map_pt adcmap_qrd_skuaa_btm_threshold[] = {
{-200, 1476},
{-180, 1450},
{-160, 1422},
{-140, 1394},
{-120, 1365},
{-100, 1336},
{-80, 1306},
{-60, 1276},
{-40, 1246},
{-20, 1216},
{0, 1185},
{20, 1155},
{40, 1126},
{60, 1096},
{80, 1068},
{100, 1040},
{120, 1012},
{140, 986},
{160, 960},
{180, 935},
{200, 911},
{220, 888},
{240, 866},
{260, 844},
{280, 824},
{300, 805},
{320, 786},
{340, 769},
{360, 752},
{380, 737},
{400, 722},
{420, 707},
{440, 694},
{460, 681},
{480, 669},
{500, 658},
{520, 648},
{540, 637},
{560, 628},
{580, 619},
{600, 611},
{620, 603},
{640, 595},
{660, 588},
{680, 582},
{700, 575},
{720, 569},
{740, 564},
{760, 559},
{780, 554},
{800, 549},
};
static const struct qpnp_vadc_map_pt adcmap_qrd_skug_btm_threshold[] = {
{-200, 1338},
{-180, 1307},
{-160, 1276},
{-140, 1244},
{-120, 1213},
{-100, 1182},
{-80, 1151},
{-60, 1121},
{-40, 1092},
{-20, 1063},
{0, 1035},
{20, 1008},
{40, 982},
{60, 957},
{80, 933},
{100, 910},
{120, 889},
{140, 868},
{160, 848},
{180, 830},
{200, 812},
{220, 795},
{240, 780},
{260, 765},
{280, 751},
{300, 738},
{320, 726},
{340, 714},
{360, 704},
{380, 694},
{400, 684},
{420, 675},
{440, 667},
{460, 659},
{480, 652},
{500, 645},
{520, 639},
{540, 633},
{560, 627},
{580, 622},
{600, 617},
{620, 613},
{640, 608},
{660, 604},
{680, 600},
{700, 597},
{720, 593},
{740, 590},
{760, 587},
{780, 585},
{800, 582},
};
static const struct qpnp_vadc_map_pt adcmap_qrd_skuh_btm_threshold[] = {
{-200, 1531},
{-180, 1508},
{-160, 1483},
{-140, 1458},
{-120, 1432},
{-100, 1404},
{-80, 1377},
{-60, 1348},
{-40, 1319},
{-20, 1290},
{0, 1260},
{20, 1230},
{40, 1200},
{60, 1171},
{80, 1141},
{100, 1112},
{120, 1083},
{140, 1055},
{160, 1027},
{180, 1000},
{200, 973},
{220, 948},
{240, 923},
{260, 899},
{280, 876},
{300, 854},
{320, 832},
{340, 812},
{360, 792},
{380, 774},
{400, 756},
{420, 739},
{440, 723},
{460, 707},
{480, 692},
{500, 679},
{520, 665},
{540, 653},
{560, 641},
{580, 630},
{600, 619},
{620, 609},
{640, 600},
{660, 591},
{680, 583},
{700, 575},
{720, 567},
{740, 560},
{760, 553},
{780, 547},
{800, 541},
{820, 535},
{840, 530},
{860, 524},
{880, 520},
};
static const struct qpnp_vadc_map_pt adcmap_qrd_skut1_btm_threshold[] = {
{-400, 1759},
{-350, 1742},
{-300, 1720},
{-250, 1691},
{-200, 1654},
{-150, 1619},
{-100, 1556},
{-50, 1493},
{0, 1422},
{50, 1345},
{100, 1264},
{150, 1180},
{200, 1097},
{250, 1017},
{300, 942},
{350, 873},
{400, 810},
{450, 754},
{500, 706},
{550, 664},
{600, 627},
{650, 596},
{700, 570},
{750, 547},
{800, 528},
{850, 512},
{900, 499},
{950, 487},
{1000, 477},
};
/* Voltage to temperature */
static const struct qpnp_vadc_map_pt adcmap_100k_104ef_104fb[] = {
{1758, -40000},
{1742, -35000},
{1719, -30000},
{1691, -25000},
{1654, -20000},
{1608, -15000},
{1551, -10000},
{1483, -5000},
{1404, 0},
{1315, 5000},
{1218, 10000},
{1114, 15000},
{1007, 20000},
{900, 25000},
{795, 30000},
{696, 35000},
{605, 40000},
{522, 45000},
{448, 50000},
{383, 55000},
{327, 60000},
{278, 65000},
{237, 70000},
{202, 75000},
{172, 80000},
{146, 85000},
{125, 90000},
{107, 95000},
{92, 100000},
{79, 105000},
{68, 110000},
{59, 115000},
{51, 120000},
{44, 125000}
};
/* Voltage to temperature */
static const struct qpnp_vadc_map_pt adcmap_150k_104ef_104fb[] = {
{1738, -40000},
{1714, -35000},
{1682, -30000},
{1641, -25000},
{1589, -20000},
{1526, -15000},
{1451, -10000},
{1363, -5000},
{1266, 0},
{1159, 5000},
{1048, 10000},
{936, 15000},
{825, 20000},
{720, 25000},
{622, 30000},
{533, 35000},
{454, 40000},
{385, 45000},
{326, 50000},
{275, 55000},
{232, 60000},
{195, 65000},
{165, 70000},
{139, 75000},
{118, 80000},
{100, 85000},
{85, 90000},
{73, 95000},
{62, 100000},
{53, 105000},
{46, 110000},
{40, 115000},
{34, 120000},
{30, 125000}
};
static const struct qpnp_vadc_map_pt adcmap_smb_batt_therm[] = {
{-300, 1625},
{-200, 1515},
{-100, 1368},
{0, 1192},
{10, 1173},
{20, 1154},
{30, 1135},
{40, 1116},
{50, 1097},
{60, 1078},
{70, 1059},
{80, 1040},
{90, 1020},
{100, 1001},
{110, 982},
{120, 963},
{130, 944},
{140, 925},
{150, 907},
{160, 888},
{170, 870},
{180, 851},
{190, 833},
{200, 815},
{210, 797},
{220, 780},
{230, 762},
{240, 745},
{250, 728},
{260, 711},
{270, 695},
{280, 679},
{290, 663},
{300, 647},
{310, 632},
{320, 616},
{330, 602},
{340, 587},
{350, 573},
{360, 559},
{370, 545},
{380, 531},
{390, 518},
{400, 505},
{410, 492},
{420, 480},
{430, 465},
{440, 456},
{450, 445},
{460, 433},
{470, 422},
{480, 412},
{490, 401},
{500, 391},
{510, 381},
{520, 371},
{530, 362},
{540, 352},
{550, 343},
{560, 335},
{570, 326},
{580, 318},
{590, 309},
{600, 302},
{610, 294},
{620, 286},
{630, 279},
{640, 272},
{650, 265},
{660, 258},
{670, 252},
{680, 245},
{690, 239},
{700, 233},
{710, 227},
{720, 221},
{730, 216},
{740, 211},
{750, 205},
{760, 200},
{770, 195},
{780, 190},
{790, 186}
};
/* Voltage to temperature */
static const struct qpnp_vadc_map_pt adcmap_ncp03wf683[] = {
{1742, -40},
{1718, -35},
{1687, -30},
{1647, -25},
{1596, -20},
{1534, -15},
{1459, -10},
{1372, -5},
{1275, 0},
{1169, 5},
{1058, 10},
{945, 15},
{834, 20},
{729, 25},
{630, 30},
{541, 35},
{461, 40},
{392, 45},
{332, 50},
{280, 55},
{236, 60},
{199, 65},
{169, 70},
{142, 75},
{121, 80},
{102, 85},
{87, 90},
{74, 95},
{64, 100},
{55, 105},
{47, 110},
{40, 115},
{35, 120},
{30, 125}
};
/* Voltage to temperature */
static const struct qpnp_vadc_map_pt adcmap_batt_therm[] = {
{1770, -400},
{1757, -380},
{1743, -360},
{1727, -340},
{1710, -320},
{1691, -300},
{1671, -280},
{1650, -260},
{1627, -240},
{1602, -220},
{1576, -200},
{1548, -180},
{1519, -160},
{1488, -140},
{1456, -120},
{1423, -100},
{1388, -80},
{1353, -60},
{1316, -40},
{1278, -20},
{1240, 0},
{1201, 20},
{1162, 40},
{1122, 60},
{1082, 80},
{1042, 100},
{1003, 120},
{964, 140},
{925, 160},
{887, 180},
{849, 200},
{812, 220},
{777, 240},
{742, 260},
{708, 280},
{675, 300},
{643, 320},
{613, 340},
{583, 360},
{555, 380},
{528, 400},
{502, 420},
{477, 440},
{453, 460},
{430, 480},
{409, 500},
{388, 520},
{369, 540},
{350, 560},
{333, 580},
{316, 600},
{300, 620},
{285, 640},
{271, 660},
{257, 680},
{245, 700},
{233, 720},
{221, 740},
{210, 760},
{200, 780},
{190, 800},
{181, 820},
{173, 840},
{164, 860},
{157, 880},
{149, 900},
{142, 920},
{136, 940},
{129, 960},
{124, 980}
};
/*
* Voltage to temperature table for 100k pull up for NTCG104EF104 with
* 1.875V reference.
*/
static const struct qpnp_vadc_map_pt adcmap_100k_104ef_104fb_1875_vref[] = {
{ 1831, -40000 },
{ 1814, -35000 },
{ 1791, -30000 },
{ 1761, -25000 },
{ 1723, -20000 },
{ 1675, -15000 },
{ 1616, -10000 },
{ 1545, -5000 },
{ 1463, 0 },
{ 1370, 5000 },
{ 1268, 10000 },
{ 1160, 15000 },
{ 1049, 20000 },
{ 937, 25000 },
{ 828, 30000 },
{ 726, 35000 },
{ 630, 40000 },
{ 544, 45000 },
{ 467, 50000 },
{ 399, 55000 },
{ 340, 60000 },
{ 290, 65000 },
{ 247, 70000 },
{ 209, 75000 },
{ 179, 80000 },
{ 153, 85000 },
{ 130, 90000 },
{ 112, 95000 },
{ 96, 100000 },
{ 82, 105000 },
{ 71, 110000 },
{ 62, 115000 },
{ 53, 120000 },
{ 46, 125000 },
};
static int32_t qpnp_adc_map_voltage_temp(const struct qpnp_vadc_map_pt *pts,
uint32_t tablesize, int32_t input, int64_t *output)
{
bool descending = 1;
uint32_t i = 0;
if (pts == NULL)
return -EINVAL;
/* Check if table is descending or ascending */
if (tablesize > 1) {
if (pts[0].x < pts[1].x)
descending = 0;
}
while (i < tablesize) {
if ((descending == 1) && (pts[i].x < input)) {
/*
* table entry is less than measured
* value and table is descending, stop.
*/
break;
} else if ((descending == 0) &&
(pts[i].x > input)) {
/*
* table entry is greater than measured
* value and table is ascending, stop.
*/
break;
}
i++;
}
if (i == 0)
*output = pts[0].y;
else if (i == tablesize)
*output = pts[tablesize-1].y;
else {
/* result is between search_index and search_index-1 */
/* interpolate linearly */
*output = (((int32_t) ((pts[i].y - pts[i-1].y)*
(input - pts[i-1].x))/
(pts[i].x - pts[i-1].x))+
pts[i-1].y);
}
return 0;
}
static int32_t qpnp_adc_map_temp_voltage(const struct qpnp_vadc_map_pt *pts,
uint32_t tablesize, int32_t input, int64_t *output)
{
bool descending = 1;
uint32_t i = 0;
if (pts == NULL)
return -EINVAL;
/* Check if table is descending or ascending */
if (tablesize > 1) {
if (pts[0].y < pts[1].y)
descending = 0;
}
while (i < tablesize) {
if ((descending == 1) && (pts[i].y < input)) {
/* Table entry is less than measured value. */
/* Table is descending, stop. */
break;
} else if ((descending == 0) && (pts[i].y > input)) {
/* Table entry is greater than measured value. */
/* Table is ascending, stop. */
break;
}
i++;
}
if (i == 0) {
*output = pts[0].x;
} else if (i == tablesize) {
*output = pts[tablesize-1].x;
} else {
/* result is between search_index and search_index-1 */
/* interpolate linearly */
*output = (((int32_t) ((pts[i].x - pts[i-1].x)*
(input - pts[i-1].y))/
(pts[i].y - pts[i-1].y))+
pts[i-1].x);
}
return 0;
}
static void qpnp_adc_scale_with_calib_param(int32_t adc_code,
const struct qpnp_adc_properties *adc_properties,
const struct qpnp_vadc_chan_properties *chan_properties,
int64_t *scale_voltage)
{
*scale_voltage = (adc_code -
chan_properties->adc_graph[chan_properties->calib_type].adc_gnd)
* chan_properties->adc_graph[chan_properties->calib_type].dx;
*scale_voltage = div64_s64(*scale_voltage,
chan_properties->adc_graph[chan_properties->calib_type].dy);
if (chan_properties->calib_type == CALIB_ABSOLUTE)
*scale_voltage +=
chan_properties->adc_graph[chan_properties->calib_type].dx;
if (*scale_voltage < 0)
*scale_voltage = 0;
}
int32_t qpnp_adc_scale_pmic_therm(struct qpnp_vadc_chip *vadc,
int32_t adc_code,
const struct qpnp_adc_properties *adc_properties,
const struct qpnp_vadc_chan_properties *chan_properties,
struct qpnp_vadc_result *adc_chan_result)
{
int64_t pmic_voltage = 0;
if (!chan_properties || !chan_properties->offset_gain_numerator ||
!chan_properties->offset_gain_denominator || !adc_properties
|| !adc_chan_result)
return -EINVAL;
if (adc_properties->adc_hc) {
/* (ADC code * vref_vadc (1.875V)) / scale_code */
if (adc_code > QPNP_VADC_HC_MAX_CODE)
adc_code = 0;
pmic_voltage = (int64_t) adc_code;
pmic_voltage *= (int64_t) (adc_properties->adc_vdd_reference
* 1000);
pmic_voltage = div64_s64(pmic_voltage,
adc_properties->full_scale_code);
} else {
if (!chan_properties->adc_graph[CALIB_ABSOLUTE].dy)
return -EINVAL;
qpnp_adc_scale_with_calib_param(adc_code, adc_properties,
chan_properties, &pmic_voltage);
}
if (pmic_voltage > 0) {
/* 2mV/K */
adc_chan_result->measurement = pmic_voltage*
chan_properties->offset_gain_denominator;
adc_chan_result->measurement =
div64_s64(adc_chan_result->measurement,
chan_properties->offset_gain_numerator * 2);
} else
adc_chan_result->measurement = 0;
/* Change to .001 deg C */
adc_chan_result->measurement -= KELVINMIL_DEGMIL;
adc_chan_result->physical = (int32_t) adc_chan_result->measurement;
return 0;
}
EXPORT_SYMBOL(qpnp_adc_scale_pmic_therm);
int32_t qpnp_adc_scale_millidegc_pmic_voltage_thr(struct qpnp_vadc_chip *chip,
struct qpnp_adc_tm_btm_param *param,
uint32_t *low_threshold, uint32_t *high_threshold)
{
struct qpnp_vadc_linear_graph btm_param;
int64_t low_output = 0, high_output = 0;
int rc = 0, sign = 0;
/* Convert to Kelvin and account for voltage to be written as 2mV/K */
low_output = (param->low_temp + KELVINMIL_DEGMIL) * 2;
/* Convert to Kelvin and account for voltage to be written as 2mV/K */
high_output = (param->high_temp + KELVINMIL_DEGMIL) * 2;
if (param->adc_tm_hc) {
low_output *= param->full_scale_code;
low_output = div64_s64(low_output,
(QPNP_VADC_HC_VDD_REFERENCE_MV * 1000));
high_output *= param->full_scale_code;
high_output = div64_s64(high_output,
(QPNP_VADC_HC_VDD_REFERENCE_MV * 1000));
} else {
rc = qpnp_get_vadc_gain_and_offset(chip, &btm_param,
CALIB_ABSOLUTE);
if (rc < 0) {
pr_err("Could not acquire gain and offset\n");
return rc;
}
/* Convert to voltage threshold */
low_output = (low_output - QPNP_ADC_625_UV) * btm_param.dy;
if (low_output < 0) {
sign = 1;
low_output = -low_output;
}
low_output = div64_s64(low_output, QPNP_ADC_625_UV);
if (sign)
low_output = -low_output;
low_output += btm_param.adc_gnd;
sign = 0;
/* Convert to voltage threshold */
high_output = (high_output - QPNP_ADC_625_UV) * btm_param.dy;
if (high_output < 0) {
sign = 1;
high_output = -high_output;
}
high_output = div64_s64(high_output, QPNP_ADC_625_UV);
if (sign)
high_output = -high_output;
high_output += btm_param.adc_gnd;
}
*low_threshold = (uint32_t) low_output;
*high_threshold = (uint32_t) high_output;
pr_debug("high_temp:%d, low_temp:%d\n", param->high_temp,
param->low_temp);
pr_debug("adc_code_high:%x, adc_code_low:%x\n", *high_threshold,
*low_threshold);
return 0;
}
EXPORT_SYMBOL(qpnp_adc_scale_millidegc_pmic_voltage_thr);
/* Scales the ADC code to degC using the mapping
* table for the XO thermistor.
*/
int32_t qpnp_adc_tdkntcg_therm(struct qpnp_vadc_chip *chip,
int32_t adc_code,
const struct qpnp_adc_properties *adc_properties,
const struct qpnp_vadc_chan_properties *chan_properties,
struct qpnp_vadc_result *adc_chan_result)
{
int64_t xo_thm_voltage = 0;
if (!chan_properties || !chan_properties->offset_gain_numerator ||
!chan_properties->offset_gain_denominator || !adc_properties
|| !adc_chan_result)
return -EINVAL;
if (adc_properties->adc_hc) {
/* (code * vref_vadc (1.875V) * 1000) / (scale_code * 1000) */
if (adc_code > QPNP_VADC_HC_MAX_CODE)
adc_code = 0;
xo_thm_voltage = (int64_t) adc_code;
xo_thm_voltage *= (int64_t) (adc_properties->adc_vdd_reference
* 1000);
xo_thm_voltage = div64_s64(xo_thm_voltage,
adc_properties->full_scale_code * 1000);
qpnp_adc_map_voltage_temp(adcmap_100k_104ef_104fb_1875_vref,
ARRAY_SIZE(adcmap_100k_104ef_104fb_1875_vref),
xo_thm_voltage, &adc_chan_result->physical);
} else {
qpnp_adc_scale_with_calib_param(adc_code,
adc_properties, chan_properties, &xo_thm_voltage);
if (chan_properties->calib_type == CALIB_ABSOLUTE)
xo_thm_voltage = div64_s64(xo_thm_voltage, 1000);
qpnp_adc_map_voltage_temp(adcmap_100k_104ef_104fb,
ARRAY_SIZE(adcmap_100k_104ef_104fb),
xo_thm_voltage, &adc_chan_result->physical);
}
return 0;
}
EXPORT_SYMBOL(qpnp_adc_tdkntcg_therm);
int32_t qpnp_adc_batt_therm(struct qpnp_vadc_chip *chip,
int32_t adc_code,
const struct qpnp_adc_properties *adc_properties,
const struct qpnp_vadc_chan_properties *chan_properties,
struct qpnp_vadc_result *adc_chan_result)
{
int64_t batt_thm_voltage = 0;
if (!chan_properties || !chan_properties->offset_gain_numerator ||
!chan_properties->offset_gain_denominator || !adc_properties
|| !adc_chan_result)
return -EINVAL;
if (adc_properties->adc_hc) {
/* (code * vref_vadc (1.875V) * 1000) / (scale_code * 1000) */
if (adc_code > QPNP_VADC_HC_MAX_CODE)
adc_code = 0;
batt_thm_voltage = (int64_t) adc_code;
batt_thm_voltage *= (adc_properties->adc_vdd_reference
* 1000);
batt_thm_voltage = div64_s64(batt_thm_voltage,
adc_properties->full_scale_code * 1000);
qpnp_adc_map_voltage_temp(adcmap_batt_therm,
ARRAY_SIZE(adcmap_batt_therm),
batt_thm_voltage, &adc_chan_result->physical);
}
return 0;
}
EXPORT_SYMBOL(qpnp_adc_batt_therm);
int32_t qpnp_adc_scale_batt_therm(struct qpnp_vadc_chip *chip,
int32_t adc_code,
const struct qpnp_adc_properties *adc_properties,
const struct qpnp_vadc_chan_properties *chan_properties,
struct qpnp_vadc_result *adc_chan_result)
{
int64_t bat_voltage = 0;
qpnp_adc_scale_with_calib_param(adc_code,
adc_properties, chan_properties, &bat_voltage);
adc_chan_result->measurement = bat_voltage;
return qpnp_adc_map_temp_voltage(
adcmap_btm_threshold,
ARRAY_SIZE(adcmap_btm_threshold),
bat_voltage,
&adc_chan_result->physical);
}
EXPORT_SYMBOL(qpnp_adc_scale_batt_therm);
int32_t qpnp_adc_scale_chrg_temp(struct qpnp_vadc_chip *vadc,
int32_t adc_code,
const struct qpnp_adc_properties *adc_properties,
const struct qpnp_vadc_chan_properties *chan_properties,
struct qpnp_vadc_result *adc_chan_result)
{
int rc = 0;
if (!chan_properties || !chan_properties->offset_gain_numerator ||
!chan_properties->offset_gain_denominator || !adc_properties
|| !adc_chan_result)
return -EINVAL;
rc = qpnp_adc_scale_default(vadc, adc_code, adc_properties,
chan_properties, adc_chan_result);
if (rc < 0)
return rc;
pr_debug("raw_code:%x, v_adc:%lld\n", adc_code,
adc_chan_result->physical);
adc_chan_result->physical = (int64_t) ((CHRG_SCALE_1) *
(adc_chan_result->physical));
adc_chan_result->physical = (int64_t) (adc_chan_result->physical +
CHRG_SCALE_2);
adc_chan_result->physical = (int64_t) adc_chan_result->physical;
adc_chan_result->physical = div64_s64(adc_chan_result->physical,
1000000);
return 0;
}
EXPORT_SYMBOL(qpnp_adc_scale_chrg_temp);
int32_t qpnp_adc_scale_die_temp(struct qpnp_vadc_chip *vadc,
int32_t adc_code,
const struct qpnp_adc_properties *adc_properties,
const struct qpnp_vadc_chan_properties *chan_properties,
struct qpnp_vadc_result *adc_chan_result)
{
int rc = 0;
if (!chan_properties || !chan_properties->offset_gain_numerator ||
!chan_properties->offset_gain_denominator || !adc_properties
|| !adc_chan_result)
return -EINVAL;
rc = qpnp_adc_scale_default(vadc, adc_code, adc_properties,
chan_properties, adc_chan_result);
if (rc < 0)
return rc;
pr_debug("raw_code:%x, v_adc:%lld\n", adc_code,
adc_chan_result->physical);
adc_chan_result->physical = (int64_t) ((DIE_SCALE_1) *
(adc_chan_result->physical));
adc_chan_result->physical = (int64_t) (adc_chan_result->physical +
DIE_SCALE_2);
adc_chan_result->physical = (int64_t) adc_chan_result->physical;
adc_chan_result->physical = div64_s64(adc_chan_result->physical,
1000000);
return 0;
}
EXPORT_SYMBOL(qpnp_adc_scale_die_temp);
int32_t qpnp_adc_scale_qrd_batt_therm(struct qpnp_vadc_chip *chip,
int32_t adc_code,
const struct qpnp_adc_properties *adc_properties,
const struct qpnp_vadc_chan_properties *chan_properties,
struct qpnp_vadc_result *adc_chan_result)
{
int64_t bat_voltage = 0;
qpnp_adc_scale_with_calib_param(adc_code,
adc_properties, chan_properties, &bat_voltage);
adc_chan_result->measurement = bat_voltage;
return qpnp_adc_map_temp_voltage(
adcmap_qrd_btm_threshold,
ARRAY_SIZE(adcmap_qrd_btm_threshold),
bat_voltage,
&adc_chan_result->physical);
}
EXPORT_SYMBOL(qpnp_adc_scale_qrd_batt_therm);
int32_t qpnp_adc_scale_qrd_skuaa_batt_therm(struct qpnp_vadc_chip *chip,
int32_t adc_code,
const struct qpnp_adc_properties *adc_properties,
const struct qpnp_vadc_chan_properties *chan_properties,
struct qpnp_vadc_result *adc_chan_result)
{
int64_t bat_voltage = 0;
qpnp_adc_scale_with_calib_param(adc_code,
adc_properties, chan_properties, &bat_voltage);
adc_chan_result->measurement = bat_voltage;
return qpnp_adc_map_temp_voltage(
adcmap_qrd_skuaa_btm_threshold,
ARRAY_SIZE(adcmap_qrd_skuaa_btm_threshold),
bat_voltage,
&adc_chan_result->physical);
}
EXPORT_SYMBOL(qpnp_adc_scale_qrd_skuaa_batt_therm);
int32_t qpnp_adc_scale_qrd_skug_batt_therm(struct qpnp_vadc_chip *chip,
int32_t adc_code,
const struct qpnp_adc_properties *adc_properties,
const struct qpnp_vadc_chan_properties *chan_properties,
struct qpnp_vadc_result *adc_chan_result)
{
int64_t bat_voltage = 0;
qpnp_adc_scale_with_calib_param(adc_code,
adc_properties, chan_properties, &bat_voltage);
adc_chan_result->measurement = bat_voltage;
return qpnp_adc_map_temp_voltage(
adcmap_qrd_skug_btm_threshold,
ARRAY_SIZE(adcmap_qrd_skug_btm_threshold),
bat_voltage,
&adc_chan_result->physical);
}
EXPORT_SYMBOL(qpnp_adc_scale_qrd_skug_batt_therm);
int32_t qpnp_adc_scale_qrd_skuh_batt_therm(struct qpnp_vadc_chip *chip,
int32_t adc_code,
const struct qpnp_adc_properties *adc_properties,
const struct qpnp_vadc_chan_properties *chan_properties,
struct qpnp_vadc_result *adc_chan_result)
{
int64_t bat_voltage = 0;
qpnp_adc_scale_with_calib_param(adc_code,
adc_properties, chan_properties, &bat_voltage);
return qpnp_adc_map_temp_voltage(
adcmap_qrd_skuh_btm_threshold,
ARRAY_SIZE(adcmap_qrd_skuh_btm_threshold),
bat_voltage,
&adc_chan_result->physical);
}
EXPORT_SYMBOL(qpnp_adc_scale_qrd_skuh_batt_therm);
int32_t qpnp_adc_scale_qrd_skut1_batt_therm(struct qpnp_vadc_chip *chip,
int32_t adc_code,
const struct qpnp_adc_properties *adc_properties,
const struct qpnp_vadc_chan_properties *chan_properties,
struct qpnp_vadc_result *adc_chan_result)
{
int64_t bat_voltage = 0;
qpnp_adc_scale_with_calib_param(adc_code,
adc_properties, chan_properties, &bat_voltage);
return qpnp_adc_map_temp_voltage(
adcmap_qrd_skut1_btm_threshold,
ARRAY_SIZE(adcmap_qrd_skut1_btm_threshold),
bat_voltage,
&adc_chan_result->physical);
}
EXPORT_SYMBOL(qpnp_adc_scale_qrd_skut1_batt_therm);
int32_t qpnp_adc_scale_smb_batt_therm(struct qpnp_vadc_chip *chip,
int32_t adc_code,
const struct qpnp_adc_properties *adc_properties,
const struct qpnp_vadc_chan_properties *chan_properties,
struct qpnp_vadc_result *adc_chan_result)
{
int64_t bat_voltage = 0;
qpnp_adc_scale_with_calib_param(adc_code,
adc_properties, chan_properties, &bat_voltage);
return qpnp_adc_map_temp_voltage(
adcmap_smb_batt_therm,
ARRAY_SIZE(adcmap_smb_batt_therm),
bat_voltage,
&adc_chan_result->physical);
}
EXPORT_SYMBOL(qpnp_adc_scale_smb_batt_therm);
int32_t qpnp_adc_scale_therm_pu1(struct qpnp_vadc_chip *chip,
int32_t adc_code,
const struct qpnp_adc_properties *adc_properties,
const struct qpnp_vadc_chan_properties *chan_properties,
struct qpnp_vadc_result *adc_chan_result)
{
int64_t therm_voltage = 0;
qpnp_adc_scale_with_calib_param(adc_code,
adc_properties, chan_properties, &therm_voltage);
qpnp_adc_map_voltage_temp(adcmap_150k_104ef_104fb,
ARRAY_SIZE(adcmap_150k_104ef_104fb),
therm_voltage, &adc_chan_result->physical);
return 0;
}
EXPORT_SYMBOL(qpnp_adc_scale_therm_pu1);
int32_t qpnp_adc_scale_therm_pu2(struct qpnp_vadc_chip *chip,
int32_t adc_code,
const struct qpnp_adc_properties *adc_properties,
const struct qpnp_vadc_chan_properties *chan_properties,
struct qpnp_vadc_result *adc_chan_result)
{
int64_t therm_voltage = 0;
if (!chan_properties || !chan_properties->offset_gain_numerator ||
!chan_properties->offset_gain_denominator || !adc_properties)
return -EINVAL;
if (adc_properties->adc_hc) {
/* (code * vref_vadc (1.875V) * 1000) / (scale code * 1000) */
if (adc_code > QPNP_VADC_HC_MAX_CODE)
adc_code = 0;
therm_voltage = (int64_t) adc_code;
therm_voltage *= (int64_t) (adc_properties->adc_vdd_reference
* 1000);
therm_voltage = div64_s64(therm_voltage,
(adc_properties->full_scale_code * 1000));
qpnp_adc_map_voltage_temp(adcmap_100k_104ef_104fb_1875_vref,
ARRAY_SIZE(adcmap_100k_104ef_104fb_1875_vref),
therm_voltage, &adc_chan_result->physical);
} else {
qpnp_adc_scale_with_calib_param(adc_code,
adc_properties, chan_properties, &therm_voltage);
if (chan_properties->calib_type == CALIB_ABSOLUTE)
therm_voltage = div64_s64(therm_voltage, 1000);
qpnp_adc_map_voltage_temp(adcmap_100k_104ef_104fb,
ARRAY_SIZE(adcmap_100k_104ef_104fb),
therm_voltage, &adc_chan_result->physical);
}
return 0;
}
EXPORT_SYMBOL(qpnp_adc_scale_therm_pu2);
int32_t qpnp_adc_tm_scale_voltage_therm_pu2(struct qpnp_vadc_chip *chip,
const struct qpnp_adc_properties *adc_properties,
uint32_t reg, int64_t *result)
{
int64_t adc_voltage = 0;
struct qpnp_vadc_linear_graph param1;
int negative_offset = 0;
if (adc_properties->adc_hc) {
/* (ADC code * vref_vadc (1.875V)) / full_scale_code */
if (reg > QPNP_VADC_HC_MAX_CODE)
reg = 0;
adc_voltage = (int64_t) reg;
adc_voltage *= QPNP_VADC_HC_VDD_REFERENCE_MV;
adc_voltage = div64_s64(adc_voltage,
adc_properties->full_scale_code);
qpnp_adc_map_voltage_temp(adcmap_100k_104ef_104fb_1875_vref,
ARRAY_SIZE(adcmap_100k_104ef_104fb_1875_vref),
adc_voltage, result);
} else {
qpnp_get_vadc_gain_and_offset(chip, &param1, CALIB_RATIOMETRIC);
adc_voltage = (reg - param1.adc_gnd) * param1.adc_vref;
if (adc_voltage < 0) {
negative_offset = 1;
adc_voltage = -adc_voltage;
}
adc_voltage = div64_s64(adc_voltage, param1.dy);
qpnp_adc_map_voltage_temp(adcmap_100k_104ef_104fb,
ARRAY_SIZE(adcmap_100k_104ef_104fb),
adc_voltage, result);
if (negative_offset)
adc_voltage = -adc_voltage;
}
return 0;
}
EXPORT_SYMBOL(qpnp_adc_tm_scale_voltage_therm_pu2);
int32_t qpnp_adc_tm_scale_therm_voltage_pu2(struct qpnp_vadc_chip *chip,
const struct qpnp_adc_properties *adc_properties,
struct qpnp_adc_tm_config *param)
{
struct qpnp_vadc_linear_graph param1;
int rc;
if (adc_properties->adc_hc) {
rc = qpnp_adc_map_temp_voltage(
adcmap_100k_104ef_104fb_1875_vref,
ARRAY_SIZE(adcmap_100k_104ef_104fb_1875_vref),
param->low_thr_temp, &param->low_thr_voltage);
if (rc)
return rc;
param->low_thr_voltage *= adc_properties->full_scale_code;
param->low_thr_voltage = div64_s64(param->low_thr_voltage,
QPNP_VADC_HC_VDD_REFERENCE_MV);
rc = qpnp_adc_map_temp_voltage(
adcmap_100k_104ef_104fb_1875_vref,
ARRAY_SIZE(adcmap_100k_104ef_104fb_1875_vref),
param->high_thr_temp, &param->high_thr_voltage);
if (rc)
return rc;
param->high_thr_voltage *= adc_properties->full_scale_code;
param->high_thr_voltage = div64_s64(param->high_thr_voltage,
QPNP_VADC_HC_VDD_REFERENCE_MV);
} else {
qpnp_get_vadc_gain_and_offset(chip, &param1, CALIB_RATIOMETRIC);
rc = qpnp_adc_map_temp_voltage(adcmap_100k_104ef_104fb,
ARRAY_SIZE(adcmap_100k_104ef_104fb),
param->low_thr_temp, &param->low_thr_voltage);
if (rc)
return rc;
param->low_thr_voltage *= param1.dy;
param->low_thr_voltage = div64_s64(param->low_thr_voltage,
param1.adc_vref);
param->low_thr_voltage += param1.adc_gnd;
rc = qpnp_adc_map_temp_voltage(adcmap_100k_104ef_104fb,
ARRAY_SIZE(adcmap_100k_104ef_104fb),
param->high_thr_temp, &param->high_thr_voltage);
if (rc)
return rc;
param->high_thr_voltage *= param1.dy;
param->high_thr_voltage = div64_s64(param->high_thr_voltage,
param1.adc_vref);
param->high_thr_voltage += param1.adc_gnd;
}
return 0;
}
EXPORT_SYMBOL(qpnp_adc_tm_scale_therm_voltage_pu2);
int32_t qpnp_adc_scale_therm_ncp03(struct qpnp_vadc_chip *chip,
int32_t adc_code,
const struct qpnp_adc_properties *adc_properties,
const struct qpnp_vadc_chan_properties *chan_properties,
struct qpnp_vadc_result *adc_chan_result)
{
int64_t therm_voltage = 0;
qpnp_adc_scale_with_calib_param(adc_code,
adc_properties, chan_properties, &therm_voltage);
qpnp_adc_map_voltage_temp(adcmap_ncp03wf683,
ARRAY_SIZE(adcmap_ncp03wf683),
therm_voltage, &adc_chan_result->physical);
return 0;
}
EXPORT_SYMBOL(qpnp_adc_scale_therm_ncp03);
int32_t qpnp_adc_scale_batt_id(struct qpnp_vadc_chip *chip,
int32_t adc_code,
const struct qpnp_adc_properties *adc_properties,
const struct qpnp_vadc_chan_properties *chan_properties,
struct qpnp_vadc_result *adc_chan_result)
{
int64_t batt_id_voltage = 0;
qpnp_adc_scale_with_calib_param(adc_code,
adc_properties, chan_properties, &batt_id_voltage);
adc_chan_result->physical = batt_id_voltage;
adc_chan_result->physical = adc_chan_result->measurement;
return 0;
}
EXPORT_SYMBOL(qpnp_adc_scale_batt_id);
int32_t qpnp_adc_scale_default(struct qpnp_vadc_chip *vadc,
int32_t adc_code,
const struct qpnp_adc_properties *adc_properties,
const struct qpnp_vadc_chan_properties *chan_properties,
struct qpnp_vadc_result *adc_chan_result)
{
int64_t scale_voltage = 0;
if (!chan_properties || !chan_properties->offset_gain_numerator ||
!chan_properties->offset_gain_denominator || !adc_properties
|| !adc_chan_result)
return -EINVAL;
if (adc_properties->adc_hc) {
/* (ADC code * vref_vadc (1.875V)) / full_scale_code */
if (adc_code > QPNP_VADC_HC_MAX_CODE)
adc_code = 0;
scale_voltage = (int64_t) adc_code;
scale_voltage *= (adc_properties->adc_vdd_reference * 1000);
scale_voltage = div64_s64(scale_voltage,
adc_properties->full_scale_code);
} else {
qpnp_adc_scale_with_calib_param(adc_code, adc_properties,
chan_properties, &scale_voltage);
if (!chan_properties->calib_type == CALIB_ABSOLUTE)
scale_voltage *= 1000;
}
scale_voltage *= chan_properties->offset_gain_denominator;
scale_voltage = div64_s64(scale_voltage,
chan_properties->offset_gain_numerator);
adc_chan_result->measurement = scale_voltage;
/*
* Note: adc_chan_result->measurement is in the unit of
* adc_properties.adc_reference. For generic channel processing,
* channel measurement is a scale/ratio relative to the adc
* reference input
*/
adc_chan_result->physical = adc_chan_result->measurement;
return 0;
}
EXPORT_SYMBOL(qpnp_adc_scale_default);
int32_t qpnp_iadc_scale_default(struct qpnp_vadc_chip *vadc,
int32_t adc_code,
const struct qpnp_adc_properties *adc_properties,
const struct qpnp_vadc_chan_properties *chan_properties,
struct qpnp_vadc_result *adc_chan_result)
{
int64_t scale_current = 0;
if (!chan_properties || !chan_properties->offset_gain_numerator ||
!chan_properties->offset_gain_denominator || !adc_properties
|| !adc_chan_result)
return -EINVAL;
if (adc_properties->adc_hc) {
if (adc_code == QPNP_IADC_INV)
return -EINVAL;
scale_current = (int64_t) adc_code;
if (adc_code > QPNP_IADC_INV) {
scale_current = ((~scale_current) & IADC_SCALE_1);
scale_current++;
scale_current = -scale_current;
}
}
scale_current *= IADC_SCALE_2;
scale_current = div64_s64(scale_current,
1000);
scale_current *= chan_properties->offset_gain_denominator;
scale_current = div64_s64(scale_current,
chan_properties->offset_gain_numerator);
adc_chan_result->measurement = scale_current;
/*
* Note: adc_chan_result->measurement is in uA.
*/
adc_chan_result->physical = adc_chan_result->measurement;
return 0;
}
EXPORT_SYMBOL(qpnp_iadc_scale_default);
int qpnp_adc_scale_usbin_curr(struct qpnp_vadc_chip *vadc,
int32_t adc_code,
const struct qpnp_adc_properties *adc_properties,
const struct qpnp_vadc_chan_properties *chan_properties,
struct qpnp_vadc_result *adc_chan_result)
{
int rc = 0;
rc = qpnp_adc_scale_default(vadc, adc_code, adc_properties,
chan_properties, adc_chan_result);
if (rc < 0)
return rc;
pr_debug("raw_code:%x, v_adc:%lld\n", adc_code,
adc_chan_result->physical);
adc_chan_result->physical = (int64_t) ((USBIN_I_SCALE) *
adc_chan_result->physical);
adc_chan_result->physical = div64_s64(adc_chan_result->physical,
10);
return 0;
}
EXPORT_SYMBOL(qpnp_adc_scale_usbin_curr);
int32_t qpnp_adc_usb_scaler(struct qpnp_vadc_chip *chip,
struct qpnp_adc_tm_btm_param *param,
uint32_t *low_threshold, uint32_t *high_threshold)
{
struct qpnp_vadc_linear_graph usb_param;
qpnp_get_vadc_gain_and_offset(chip, &usb_param, CALIB_RATIOMETRIC);
*low_threshold = param->low_thr * usb_param.dy;
*low_threshold = div64_s64(*low_threshold, usb_param.adc_vref);
*low_threshold += usb_param.adc_gnd;
*high_threshold = param->high_thr * usb_param.dy;
*high_threshold = div64_s64(*high_threshold, usb_param.adc_vref);
*high_threshold += usb_param.adc_gnd;
pr_debug("high_volt:%d, low_volt:%d\n", param->high_thr,
param->low_thr);
return 0;
}
EXPORT_SYMBOL(qpnp_adc_usb_scaler);
int32_t qpnp_adc_absolute_rthr(struct qpnp_vadc_chip *chip,
struct qpnp_adc_tm_btm_param *param,
uint32_t *low_threshold, uint32_t *high_threshold)
{
struct qpnp_vadc_linear_graph vbatt_param;
int rc = 0, sign = 0;
int64_t low_thr = 0, high_thr = 0;
if (param->adc_tm_hc) {
low_thr = (param->low_thr/param->gain_den);
low_thr *= param->gain_num;
low_thr *= param->full_scale_code;
low_thr = div64_s64(low_thr,
(QPNP_VADC_HC_VDD_REFERENCE_MV * 1000));
*low_threshold = low_thr;
high_thr = (param->high_thr/param->gain_den);
high_thr *= param->gain_num;
high_thr *= param->full_scale_code;
high_thr = div64_s64(high_thr,
(QPNP_VADC_HC_VDD_REFERENCE_MV * 1000));
*high_threshold = high_thr;
} else {
rc = qpnp_get_vadc_gain_and_offset(chip, &vbatt_param,
CALIB_ABSOLUTE);
if (rc < 0)
return rc;
low_thr = (((param->low_thr/param->gain_den) -
QPNP_ADC_625_UV) * vbatt_param.dy);
if (low_thr < 0) {
sign = 1;
low_thr = -low_thr;
}
low_thr = low_thr * param->gain_num;
low_thr = div64_s64(low_thr, QPNP_ADC_625_UV);
if (sign)
low_thr = -low_thr;
*low_threshold = low_thr + vbatt_param.adc_gnd;
sign = 0;
high_thr = (((param->high_thr/param->gain_den) -
QPNP_ADC_625_UV) * vbatt_param.dy);
if (high_thr < 0) {
sign = 1;
high_thr = -high_thr;
}
high_thr = high_thr * param->gain_num;
high_thr = div64_s64(high_thr, QPNP_ADC_625_UV);
if (sign)
high_thr = -high_thr;
*high_threshold = high_thr + vbatt_param.adc_gnd;
}
pr_debug("high_volt:%d, low_volt:%d\n", param->high_thr,
param->low_thr);
pr_debug("adc_code_high:%x, adc_code_low:%x\n", *high_threshold,
*low_threshold);
return 0;
}
EXPORT_SYMBOL(qpnp_adc_absolute_rthr);
int32_t qpnp_adc_vbatt_rscaler(struct qpnp_vadc_chip *chip,
struct qpnp_adc_tm_btm_param *param,
uint32_t *low_threshold, uint32_t *high_threshold)
{
return qpnp_adc_absolute_rthr(chip, param, low_threshold,
high_threshold);
}
EXPORT_SYMBOL(qpnp_adc_vbatt_rscaler);
int32_t qpnp_vadc_absolute_rthr(struct qpnp_vadc_chip *chip,
const struct qpnp_vadc_chan_properties *chan_prop,
struct qpnp_adc_tm_btm_param *param,
uint32_t *low_threshold, uint32_t *high_threshold)
{
struct qpnp_vadc_linear_graph vbatt_param;
int rc = 0, sign = 0;
int64_t low_thr = 0, high_thr = 0;
if (!chan_prop || !chan_prop->offset_gain_numerator ||
!chan_prop->offset_gain_denominator)
return -EINVAL;
rc = qpnp_get_vadc_gain_and_offset(chip, &vbatt_param, CALIB_ABSOLUTE);
if (rc < 0)
return rc;
low_thr = (((param->low_thr)/(int)chan_prop->offset_gain_denominator
- QPNP_ADC_625_UV) * vbatt_param.dy);
if (low_thr < 0) {
sign = 1;
low_thr = -low_thr;
}
low_thr = low_thr * chan_prop->offset_gain_numerator;
low_thr = div64_s64(low_thr, QPNP_ADC_625_UV);
if (sign)
low_thr = -low_thr;
*low_threshold = low_thr + vbatt_param.adc_gnd;
sign = 0;
high_thr = (((param->high_thr)/(int)chan_prop->offset_gain_denominator
- QPNP_ADC_625_UV) * vbatt_param.dy);
if (high_thr < 0) {
sign = 1;
high_thr = -high_thr;
}
high_thr = high_thr * chan_prop->offset_gain_numerator;
high_thr = div64_s64(high_thr, QPNP_ADC_625_UV);
if (sign)
high_thr = -high_thr;
*high_threshold = high_thr + vbatt_param.adc_gnd;
pr_debug("high_volt:%d, low_volt:%d\n", param->high_thr,
param->low_thr);
pr_debug("adc_code_high:%x, adc_code_low:%x\n", *high_threshold,
*low_threshold);
return 0;
}
EXPORT_SYMBOL(qpnp_vadc_absolute_rthr);
int32_t qpnp_adc_btm_scaler(struct qpnp_vadc_chip *chip,
struct qpnp_adc_tm_btm_param *param,
uint32_t *low_threshold, uint32_t *high_threshold)
{
struct qpnp_vadc_linear_graph btm_param;
int64_t low_output = 0, high_output = 0;
int rc = 0;
if (param->adc_tm_hc) {
pr_err("Update scaling for VADC_TM_HC\n");
return -EINVAL;
}
qpnp_get_vadc_gain_and_offset(chip, &btm_param, CALIB_RATIOMETRIC);
pr_debug("warm_temp:%d and cool_temp:%d\n", param->high_temp,
param->low_temp);
rc = qpnp_adc_map_voltage_temp(
adcmap_btm_threshold,
ARRAY_SIZE(adcmap_btm_threshold),
(param->low_temp),
&low_output);
if (rc) {
pr_debug("low_temp mapping failed with %d\n", rc);
return rc;
}
pr_debug("low_output:%lld\n", low_output);
low_output *= btm_param.dy;
low_output = div64_s64(low_output, btm_param.adc_vref);
low_output += btm_param.adc_gnd;
rc = qpnp_adc_map_voltage_temp(
adcmap_btm_threshold,
ARRAY_SIZE(adcmap_btm_threshold),
(param->high_temp),
&high_output);
if (rc) {
pr_debug("high temp mapping failed with %d\n", rc);
return rc;
}
pr_debug("high_output:%lld\n", high_output);
high_output *= btm_param.dy;
high_output = div64_s64(high_output, btm_param.adc_vref);
high_output += btm_param.adc_gnd;
/* btm low temperature correspondes to high voltage threshold */
*low_threshold = high_output;
/* btm high temperature correspondes to low voltage threshold */
*high_threshold = low_output;
pr_debug("high_volt:%d, low_volt:%d\n", *high_threshold,
*low_threshold);
return 0;
}
EXPORT_SYMBOL(qpnp_adc_btm_scaler);
int32_t qpnp_adc_qrd_skuh_btm_scaler(struct qpnp_vadc_chip *chip,
struct qpnp_adc_tm_btm_param *param,
uint32_t *low_threshold, uint32_t *high_threshold)
{
struct qpnp_vadc_linear_graph btm_param;
int64_t low_output = 0, high_output = 0;
int rc = 0;
if (param->adc_tm_hc) {
pr_err("Update scaling for VADC_TM_HC\n");
return -EINVAL;
}
qpnp_get_vadc_gain_and_offset(chip, &btm_param, CALIB_RATIOMETRIC);
pr_debug("warm_temp:%d and cool_temp:%d\n", param->high_temp,
param->low_temp);
rc = qpnp_adc_map_voltage_temp(
adcmap_qrd_skuh_btm_threshold,
ARRAY_SIZE(adcmap_qrd_skuh_btm_threshold),
(param->low_temp),
&low_output);
if (rc) {
pr_debug("low_temp mapping failed with %d\n", rc);
return rc;
}
pr_debug("low_output:%lld\n", low_output);
low_output *= btm_param.dy;
low_output = div64_s64(low_output, btm_param.adc_vref);
low_output += btm_param.adc_gnd;
rc = qpnp_adc_map_voltage_temp(
adcmap_qrd_skuh_btm_threshold,
ARRAY_SIZE(adcmap_qrd_skuh_btm_threshold),
(param->high_temp),
&high_output);
if (rc) {
pr_debug("high temp mapping failed with %d\n", rc);
return rc;
}
pr_debug("high_output:%lld\n", high_output);
high_output *= btm_param.dy;
high_output = div64_s64(high_output, btm_param.adc_vref);
high_output += btm_param.adc_gnd;
/* btm low temperature correspondes to high voltage threshold */
*low_threshold = high_output;
/* btm high temperature correspondes to low voltage threshold */
*high_threshold = low_output;
pr_debug("high_volt:%d, low_volt:%d\n", *high_threshold,
*low_threshold);
return 0;
}
EXPORT_SYMBOL(qpnp_adc_qrd_skuh_btm_scaler);
int32_t qpnp_adc_qrd_skut1_btm_scaler(struct qpnp_vadc_chip *chip,
struct qpnp_adc_tm_btm_param *param,
uint32_t *low_threshold, uint32_t *high_threshold)
{
struct qpnp_vadc_linear_graph btm_param;
int64_t low_output = 0, high_output = 0;
int rc = 0;
if (param->adc_tm_hc) {
pr_err("Update scaling for VADC_TM_HC\n");
return -EINVAL;
}
qpnp_get_vadc_gain_and_offset(chip, &btm_param, CALIB_RATIOMETRIC);
pr_debug("warm_temp:%d and cool_temp:%d\n", param->high_temp,
param->low_temp);
rc = qpnp_adc_map_voltage_temp(
adcmap_qrd_skut1_btm_threshold,
ARRAY_SIZE(adcmap_qrd_skut1_btm_threshold),
(param->low_temp),
&low_output);
if (rc) {
pr_debug("low_temp mapping failed with %d\n", rc);
return rc;
}
pr_debug("low_output:%lld\n", low_output);
low_output *= btm_param.dy;
low_output = div64_s64(low_output, btm_param.adc_vref);
low_output += btm_param.adc_gnd;
rc = qpnp_adc_map_voltage_temp(
adcmap_qrd_skut1_btm_threshold,
ARRAY_SIZE(adcmap_qrd_skut1_btm_threshold),
(param->high_temp),
&high_output);
if (rc) {
pr_debug("high temp mapping failed with %d\n", rc);
return rc;
}
pr_debug("high_output:%lld\n", high_output);
high_output *= btm_param.dy;
high_output = div64_s64(high_output, btm_param.adc_vref);
high_output += btm_param.adc_gnd;
/* btm low temperature correspondes to high voltage threshold */
*low_threshold = high_output;
/* btm high temperature correspondes to low voltage threshold */
*high_threshold = low_output;
pr_debug("high_volt:%d, low_volt:%d\n", *high_threshold,
*low_threshold);
return 0;
}
EXPORT_SYMBOL(qpnp_adc_qrd_skut1_btm_scaler);
int32_t qpnp_adc_smb_btm_rscaler(struct qpnp_vadc_chip *chip,
struct qpnp_adc_tm_btm_param *param,
uint32_t *low_threshold, uint32_t *high_threshold)
{
struct qpnp_vadc_linear_graph btm_param;
int64_t low_output = 0, high_output = 0;
int rc = 0;
if (param->adc_tm_hc) {
pr_err("Update scaling for VADC_TM_HC\n");
return -EINVAL;
}
qpnp_get_vadc_gain_and_offset(chip, &btm_param, CALIB_RATIOMETRIC);
pr_debug("warm_temp:%d and cool_temp:%d\n", param->high_temp,
param->low_temp);
rc = qpnp_adc_map_voltage_temp(
adcmap_smb_batt_therm,
ARRAY_SIZE(adcmap_smb_batt_therm),
(param->low_temp),
&low_output);
if (rc) {
pr_debug("low_temp mapping failed with %d\n", rc);
return rc;
}
pr_debug("low_output:%lld\n", low_output);
low_output *= btm_param.dy;
low_output = div64_s64(low_output, btm_param.adc_vref);
low_output += btm_param.adc_gnd;
rc = qpnp_adc_map_voltage_temp(
adcmap_smb_batt_therm,
ARRAY_SIZE(adcmap_smb_batt_therm),
(param->high_temp),
&high_output);
if (rc) {
pr_debug("high temp mapping failed with %d\n", rc);
return rc;
}
pr_debug("high_output:%lld\n", high_output);
high_output *= btm_param.dy;
high_output = div64_s64(high_output, btm_param.adc_vref);
high_output += btm_param.adc_gnd;
/* btm low temperature correspondes to high voltage threshold */
*low_threshold = high_output;
/* btm high temperature correspondes to low voltage threshold */
*high_threshold = low_output;
pr_debug("high_volt:%d, low_volt:%d\n", *high_threshold,
*low_threshold);
return 0;
}
EXPORT_SYMBOL(qpnp_adc_smb_btm_rscaler);
int32_t qpnp_adc_scale_pmi_chg_temp(struct qpnp_vadc_chip *vadc,
int32_t adc_code,
const struct qpnp_adc_properties *adc_properties,
const struct qpnp_vadc_chan_properties *chan_properties,
struct qpnp_vadc_result *adc_chan_result)
{
int rc = 0;
rc = qpnp_adc_scale_default(vadc, adc_code, adc_properties,
chan_properties, adc_chan_result);
if (rc < 0)
return rc;
pr_debug("raw_code:%x, v_adc:%lld\n", adc_code,
adc_chan_result->physical);
adc_chan_result->physical = (int64_t) ((PMI_CHG_SCALE_1) *
(adc_chan_result->physical * 2));
adc_chan_result->physical = (int64_t) (adc_chan_result->physical +
PMI_CHG_SCALE_2);
adc_chan_result->physical = (int64_t) adc_chan_result->physical;
adc_chan_result->physical = div64_s64(adc_chan_result->physical,
1000000);
return 0;
}
EXPORT_SYMBOL(qpnp_adc_scale_pmi_chg_temp);
int32_t qpnp_adc_enable_voltage(struct qpnp_adc_drv *adc)
{
int rc = 0;
if (adc->hkadc_ldo) {
rc = regulator_enable(adc->hkadc_ldo);
if (rc < 0) {
pr_err("Failed to enable hkadc ldo\n");
return rc;
}
}
if (adc->hkadc_ldo_ok) {
rc = regulator_enable(adc->hkadc_ldo_ok);
if (rc < 0) {
pr_err("Failed to enable hkadc ok signal\n");
return rc;
}
}
return rc;
}
EXPORT_SYMBOL(qpnp_adc_enable_voltage);
void qpnp_adc_disable_voltage(struct qpnp_adc_drv *adc)
{
if (adc->hkadc_ldo)
regulator_disable(adc->hkadc_ldo);
if (adc->hkadc_ldo_ok)
regulator_disable(adc->hkadc_ldo_ok);
}
EXPORT_SYMBOL(qpnp_adc_disable_voltage);
void qpnp_adc_free_voltage_resource(struct qpnp_adc_drv *adc)
{
if (adc->hkadc_ldo)
regulator_put(adc->hkadc_ldo);
if (adc->hkadc_ldo_ok)
regulator_put(adc->hkadc_ldo_ok);
}
EXPORT_SYMBOL(qpnp_adc_free_voltage_resource);
int qpnp_adc_get_revid_version(struct device *dev)
{
struct pmic_revid_data *revid_data;
struct device_node *revid_dev_node;
revid_dev_node = of_parse_phandle(dev->of_node,
"qcom,pmic-revid", 0);
if (!revid_dev_node) {
pr_debug("Missing qcom,pmic-revid property\n");
return -EINVAL;
}
revid_data = get_revid_data(revid_dev_node);
if (IS_ERR(revid_data)) {
pr_debug("revid error rc = %ld\n", PTR_ERR(revid_data));
return -EINVAL;
}
if (!revid_data)
return -EINVAL;
if ((revid_data->rev1 == PM8941_V3P1_REV1) &&
(revid_data->rev2 == PM8941_V3P1_REV2) &&
(revid_data->rev3 == PM8941_V3P1_REV3) &&
(revid_data->rev4 == PM8941_V3P1_REV4) &&
(revid_data->pmic_subtype == PM8941_SUBTYPE))
return QPNP_REV_ID_8941_3_1;
else if ((revid_data->rev1 == PM8941_V3P0_REV1) &&
(revid_data->rev2 == PM8941_V3P0_REV2) &&
(revid_data->rev3 == PM8941_V3P0_REV3) &&
(revid_data->rev4 == PM8941_V3P0_REV4) &&
(revid_data->pmic_subtype == PM8941_SUBTYPE))
return QPNP_REV_ID_8941_3_0;
else if ((revid_data->rev1 == PM8941_V2P0_REV1) &&
(revid_data->rev2 == PM8941_V2P0_REV2) &&
(revid_data->rev3 == PM8941_V2P0_REV3) &&
(revid_data->rev4 == PM8941_V2P0_REV4) &&
(revid_data->pmic_subtype == PM8941_SUBTYPE))
return QPNP_REV_ID_8941_2_0;
else if ((revid_data->rev1 == PM8226_V2P2_REV1) &&
(revid_data->rev2 == PM8226_V2P2_REV2) &&
(revid_data->rev3 == PM8226_V2P2_REV3) &&
(revid_data->rev4 == PM8226_V2P2_REV4) &&
(revid_data->pmic_subtype == PM8226_SUBTYPE))
return QPNP_REV_ID_8026_2_2;
else if ((revid_data->rev1 == PM8226_V2P1_REV1) &&
(revid_data->rev2 == PM8226_V2P1_REV2) &&
(revid_data->rev3 == PM8226_V2P1_REV3) &&
(revid_data->rev4 == PM8226_V2P1_REV4) &&
(revid_data->pmic_subtype == PM8226_SUBTYPE))
return QPNP_REV_ID_8026_2_1;
else if ((revid_data->rev1 == PM8226_V2P0_REV1) &&
(revid_data->rev2 == PM8226_V2P0_REV2) &&
(revid_data->rev3 == PM8226_V2P0_REV3) &&
(revid_data->rev4 == PM8226_V2P0_REV4) &&
(revid_data->pmic_subtype == PM8226_SUBTYPE))
return QPNP_REV_ID_8026_2_0;
else if ((revid_data->rev1 == PM8226_V1P0_REV1) &&
(revid_data->rev2 == PM8226_V1P0_REV2) &&
(revid_data->rev3 == PM8226_V1P0_REV3) &&
(revid_data->rev4 == PM8226_V1P0_REV4) &&
(revid_data->pmic_subtype == PM8226_SUBTYPE))
return QPNP_REV_ID_8026_1_0;
else if ((revid_data->rev1 == PM8110_V1P0_REV1) &&
(revid_data->rev2 == PM8110_V1P0_REV2) &&
(revid_data->rev3 == PM8110_V1P0_REV3) &&
(revid_data->rev4 == PM8110_V1P0_REV4) &&
(revid_data->pmic_subtype == PM8110_SUBTYPE))
return QPNP_REV_ID_8110_1_0;
else if ((revid_data->rev1 == PM8110_V2P0_REV1) &&
(revid_data->rev2 == PM8110_V2P0_REV2) &&
(revid_data->rev3 == PM8110_V2P0_REV3) &&
(revid_data->rev4 == PM8110_V2P0_REV4) &&
(revid_data->pmic_subtype == PM8110_SUBTYPE))
return QPNP_REV_ID_8110_2_0;
else if ((revid_data->rev1 == PM8916_V1P0_REV1) &&
(revid_data->rev2 == PM8916_V1P0_REV2) &&
(revid_data->rev3 == PM8916_V1P0_REV3) &&
(revid_data->rev4 == PM8916_V1P0_REV4) &&
(revid_data->pmic_subtype == PM8916_SUBTYPE))
return QPNP_REV_ID_8916_1_0;
else if ((revid_data->rev1 == PM8916_V1P1_REV1) &&
(revid_data->rev2 == PM8916_V1P1_REV2) &&
(revid_data->rev3 == PM8916_V1P1_REV3) &&
(revid_data->rev4 == PM8916_V1P1_REV4) &&
(revid_data->pmic_subtype == PM8916_SUBTYPE))
return QPNP_REV_ID_8916_1_1;
else if ((revid_data->rev1 == PM8916_V2P0_REV1) &&
(revid_data->rev2 == PM8916_V2P0_REV2) &&
(revid_data->rev3 == PM8916_V2P0_REV3) &&
(revid_data->rev4 == PM8916_V2P0_REV4) &&
(revid_data->pmic_subtype == PM8916_SUBTYPE))
return QPNP_REV_ID_8916_2_0;
else if ((revid_data->rev1 == PM8909_V1P0_REV1) &&
(revid_data->rev2 == PM8909_V1P0_REV2) &&
(revid_data->rev3 == PM8909_V1P0_REV3) &&
(revid_data->rev4 == PM8909_V1P0_REV4) &&
(revid_data->pmic_subtype == PM8909_SUBTYPE))
return QPNP_REV_ID_8909_1_0;
else if ((revid_data->rev1 == PM8909_V1P1_REV1) &&
(revid_data->rev2 == PM8909_V1P1_REV2) &&
(revid_data->rev3 == PM8909_V1P1_REV3) &&
(revid_data->rev4 == PM8909_V1P1_REV4) &&
(revid_data->pmic_subtype == PM8909_SUBTYPE))
return QPNP_REV_ID_8909_1_1;
else if ((revid_data->rev4 == PM8950_V1P0_REV4) &&
(revid_data->pmic_subtype == PM8950_SUBTYPE))
return QPNP_REV_ID_PM8950_1_0;
else
return -EINVAL;
}
EXPORT_SYMBOL(qpnp_adc_get_revid_version);
int32_t qpnp_adc_get_devicetree_data(struct platform_device *pdev,
struct qpnp_adc_drv *adc_qpnp)
{
struct device_node *node = pdev->dev.of_node;
unsigned int base;
struct device_node *child;
struct qpnp_adc_amux *adc_channel_list;
struct qpnp_adc_properties *adc_prop;
struct qpnp_adc_amux_properties *amux_prop;
int count_adc_channel_list = 0, decimation = 0, rc = 0, i = 0;
int decimation_tm_hc = 0, fast_avg_setup_tm_hc = 0, cal_val_hc = 0;
bool adc_hc;
if (!node)
return -EINVAL;
for_each_child_of_node(node, child)
count_adc_channel_list++;
if (!count_adc_channel_list) {
pr_err("No channel listing\n");
return -EINVAL;
}
adc_qpnp->pdev = pdev;
adc_prop = devm_kzalloc(&pdev->dev,
sizeof(struct qpnp_adc_properties),
GFP_KERNEL);
if (!adc_prop)
return -ENOMEM;
adc_channel_list = devm_kzalloc(&pdev->dev,
((sizeof(struct qpnp_adc_amux)) * count_adc_channel_list),
GFP_KERNEL);
if (!adc_channel_list)
return -ENOMEM;
amux_prop = devm_kzalloc(&pdev->dev,
sizeof(struct qpnp_adc_amux_properties) +
sizeof(struct qpnp_vadc_chan_properties), GFP_KERNEL);
if (!amux_prop) {
dev_err(&pdev->dev, "Unable to allocate memory\n");
return -ENOMEM;
}
adc_qpnp->adc_channels = adc_channel_list;
adc_qpnp->amux_prop = amux_prop;
adc_hc = adc_qpnp->adc_hc;
adc_prop->adc_hc = adc_hc;
if (of_device_is_compatible(node, "qcom,qpnp-adc-tm-hc")) {
rc = of_property_read_u32(node, "qcom,decimation",
&decimation_tm_hc);
if (rc) {
pr_err("Invalid decimation property\n");
return -EINVAL;
}
rc = of_property_read_u32(node,
"qcom,fast-avg-setup", &fast_avg_setup_tm_hc);
if (rc) {
pr_err("Invalid fast average setup with %d\n", rc);
return -EINVAL;
}
if ((fast_avg_setup_tm_hc) > ADC_FAST_AVG_SAMPLE_16) {
pr_err("Max average support is 2^16\n");
return -EINVAL;
}
}
for_each_child_of_node(node, child) {
int channel_num, scaling = 0, post_scaling = 0;
int fast_avg_setup, calib_type = 0, rc, hw_settle_time = 0;
const char *calibration_param, *channel_name;
channel_name = of_get_property(child,
"label", NULL) ? : child->name;
if (!channel_name) {
pr_err("Invalid channel name\n");
return -EINVAL;
}
rc = of_property_read_u32(child, "reg", &channel_num);
if (rc) {
pr_err("Invalid channel num\n");
return -EINVAL;
}
if (!of_device_is_compatible(node, "qcom,qpnp-iadc")) {
rc = of_property_read_u32(child,
"qcom,hw-settle-time", &hw_settle_time);
if (rc) {
pr_err("Invalid channel hw settle time property\n");
return -EINVAL;
}
rc = of_property_read_u32(child,
"qcom,pre-div-channel-scaling", &scaling);
if (rc) {
pr_err("Invalid channel scaling property\n");
return -EINVAL;
}
rc = of_property_read_u32(child,
"qcom,scale-function", &post_scaling);
if (rc) {
pr_err("Invalid channel post scaling property\n");
return -EINVAL;
}
rc = of_property_read_string(child,
"qcom,calibration-type", &calibration_param);
if (rc) {
pr_err("Invalid calibration type\n");
return -EINVAL;
}
if (!strcmp(calibration_param, "absolute")) {
if (adc_hc)
calib_type = ADC_HC_ABS_CAL;
else
calib_type = CALIB_ABSOLUTE;
} else if (!strcmp(calibration_param, "ratiometric")) {
if (adc_hc)
calib_type = ADC_HC_RATIO_CAL;
else
calib_type = CALIB_RATIOMETRIC;
} else if (!strcmp(calibration_param, "no_cal")) {
if (adc_hc)
calib_type = ADC_HC_NO_CAL;
else {
pr_err("%s: Invalid calibration property\n",
__func__);
return -EINVAL;
}
} else {
pr_err("%s: Invalid calibration property\n",
__func__);
return -EINVAL;
}
}
/* ADC_TM_HC fast avg setting is common across channels */
if (!of_device_is_compatible(node, "qcom,qpnp-adc-tm-hc")) {
rc = of_property_read_u32(child,
"qcom,fast-avg-setup", &fast_avg_setup);
if (rc) {
pr_err("Invalid channel fast average setup\n");
return -EINVAL;
}
} else {
fast_avg_setup = fast_avg_setup_tm_hc;
}
/* ADC_TM_HC decimation setting is common across channels */
if (!of_device_is_compatible(node, "qcom,qpnp-adc-tm-hc")) {
rc = of_property_read_u32(child,
"qcom,decimation", &decimation);
if (rc) {
pr_err("Invalid decimation\n");
return -EINVAL;
}
} else {
decimation = decimation_tm_hc;
}
if (of_device_is_compatible(node, "qcom,qpnp-vadc-hc")) {
rc = of_property_read_u32(child, "qcom,cal-val",
&cal_val_hc);
if (rc) {
pr_debug("Use calibration value from timer\n");
adc_channel_list[i].cal_val = ADC_TIMER_CAL;
} else {
adc_channel_list[i].cal_val = cal_val_hc;
}
}
/* Individual channel properties */
adc_channel_list[i].name = (char *)channel_name;
adc_channel_list[i].channel_num = channel_num;
adc_channel_list[i].adc_decimation = decimation;
adc_channel_list[i].fast_avg_setup = fast_avg_setup;
if (!of_device_is_compatible(node, "qcom,qpnp-iadc")) {
adc_channel_list[i].chan_path_prescaling = scaling;
adc_channel_list[i].adc_scale_fn = post_scaling;
adc_channel_list[i].hw_settle_time = hw_settle_time;
adc_channel_list[i].calib_type = calib_type;
}
i++;
}
/* Get the ADC VDD reference voltage and ADC bit resolution */
rc = of_property_read_u32(node, "qcom,adc-vdd-reference",
&adc_prop->adc_vdd_reference);
if (rc) {
pr_err("Invalid adc vdd reference property\n");
return -EINVAL;
}
rc = of_property_read_u32(node, "qcom,adc-full-scale-code",
&adc_prop->full_scale_code);
if (rc) {
pr_debug("Use default value of 0x4000 for full scale\n");
adc_prop->full_scale_code = QPNP_VADC_HC_VREF_CODE;
}
adc_qpnp->adc_prop = adc_prop;
/* Get the peripheral address */
rc = of_property_read_u32(pdev->dev.of_node, "reg", &base);
if (rc < 0) {
dev_err(&pdev->dev,
"Couldn't find reg in node = %s rc = %d\n",
pdev->dev.of_node->full_name, rc);
return rc;
}
adc_qpnp->slave = to_spmi_device(pdev->dev.parent)->usid;
adc_qpnp->offset = base;
/* Register the ADC peripheral interrupt */
adc_qpnp->adc_irq_eoc = platform_get_irq_byname(pdev,
"eoc-int-en-set");
if (adc_qpnp->adc_irq_eoc < 0) {
pr_err("Invalid irq\n");
return -ENXIO;
}
init_completion(&adc_qpnp->adc_rslt_completion);
if (of_get_property(node, "hkadc_ldo-supply", NULL)) {
adc_qpnp->hkadc_ldo = regulator_get(&pdev->dev, "hkadc_ldo");
if (IS_ERR(adc_qpnp->hkadc_ldo)) {
pr_err("hkadc_ldo-supply node not found\n");
return -EINVAL;
}
rc = regulator_set_voltage(adc_qpnp->hkadc_ldo,
QPNP_VADC_LDO_VOLTAGE_MIN,
QPNP_VADC_LDO_VOLTAGE_MAX);
if (rc < 0) {
pr_err("setting voltage for hkadc_ldo failed\n");
return rc;
}
rc = regulator_set_load(adc_qpnp->hkadc_ldo, 100000);
if (rc < 0) {
pr_err("hkadc_ldo optimum mode failed%d\n", rc);
return rc;
}
}
if (of_get_property(node, "hkadc_ok-supply", NULL)) {
adc_qpnp->hkadc_ldo_ok = regulator_get(&pdev->dev,
"hkadc_ok");
if (IS_ERR(adc_qpnp->hkadc_ldo_ok)) {
pr_err("hkadc_ok node not found\n");
return -EINVAL;
}
rc = regulator_set_voltage(adc_qpnp->hkadc_ldo_ok,
QPNP_VADC_OK_VOLTAGE_MIN,
QPNP_VADC_OK_VOLTAGE_MAX);
if (rc < 0) {
pr_err("setting voltage for hkadc-ldo-ok failed\n");
return rc;
}
}
return 0;
}
EXPORT_SYMBOL(qpnp_adc_get_devicetree_data);