blob: a6edf2f9d4f86dbd11d03872d1478d07f0d453de [file] [log] [blame]
/*
* drivers/cpufreq/cpufreq_interactive.c
*
* Copyright (C) 2010 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Author: Mike Chan (mike@android.com)
*
*/
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpufreq.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/rwsem.h>
#include <linux/sched.h>
#include <linux/sched/rt.h>
#include <linux/tick.h>
#include <linux/time.h>
#include <linux/timer.h>
#include <linux/hrtimer.h>
#include <linux/workqueue.h>
#include <linux/kthread.h>
#include <linux/slab.h>
#define CREATE_TRACE_POINTS
#include <trace/events/cpufreq_interactive.h>
static DEFINE_PER_CPU(struct update_util_data, update_util);
struct cpufreq_interactive_policyinfo {
bool work_in_progress;
struct irq_work irq_work;
spinlock_t irq_work_lock; /* protects work_in_progress */
struct timer_list policy_slack_timer;
struct hrtimer notif_timer;
spinlock_t load_lock; /* protects load tracking stat */
u64 last_evaluated_jiffy;
struct cpufreq_policy *policy;
struct cpufreq_policy p_nolim; /* policy copy with no limits */
struct cpufreq_frequency_table *freq_table;
spinlock_t target_freq_lock; /*protects target freq */
unsigned int target_freq;
unsigned int floor_freq;
unsigned int min_freq;
u64 floor_validate_time;
u64 hispeed_validate_time;
u64 max_freq_hyst_start_time;
struct rw_semaphore enable_sem;
bool reject_notification;
bool notif_pending;
unsigned long notif_cpu;
int governor_enabled;
struct cpufreq_interactive_tunables *cached_tunables;
struct sched_load *sl;
};
/* Protected by per-policy load_lock */
struct cpufreq_interactive_cpuinfo {
u64 time_in_idle;
u64 time_in_idle_timestamp;
u64 cputime_speedadj;
u64 cputime_speedadj_timestamp;
unsigned int loadadjfreq;
};
static DEFINE_PER_CPU(struct cpufreq_interactive_policyinfo *, polinfo);
static DEFINE_PER_CPU(struct cpufreq_interactive_cpuinfo, cpuinfo);
/* realtime thread handles frequency scaling */
static struct task_struct *speedchange_task;
static cpumask_t speedchange_cpumask;
static spinlock_t speedchange_cpumask_lock;
static struct mutex gov_lock;
static int set_window_count;
static int migration_register_count;
static struct mutex sched_lock;
static cpumask_t controlled_cpus;
/* Target load. Lower values result in higher CPU speeds. */
#define DEFAULT_TARGET_LOAD 90
static unsigned int default_target_loads[] = {DEFAULT_TARGET_LOAD};
#define DEFAULT_TIMER_RATE (20 * USEC_PER_MSEC)
#define DEFAULT_ABOVE_HISPEED_DELAY DEFAULT_TIMER_RATE
static unsigned int default_above_hispeed_delay[] = {
DEFAULT_ABOVE_HISPEED_DELAY };
struct cpufreq_interactive_tunables {
int usage_count;
/* Hi speed to bump to from lo speed when load burst (default max) */
unsigned int hispeed_freq;
/* Go to hi speed when CPU load at or above this value. */
#define DEFAULT_GO_HISPEED_LOAD 99
unsigned long go_hispeed_load;
/* Target load. Lower values result in higher CPU speeds. */
spinlock_t target_loads_lock;
unsigned int *target_loads;
int ntarget_loads;
/*
* The minimum amount of time to spend at a frequency before we can ramp
* down.
*/
#define DEFAULT_MIN_SAMPLE_TIME (80 * USEC_PER_MSEC)
unsigned long min_sample_time;
/*
* The sample rate of the timer used to increase frequency
*/
unsigned long timer_rate;
/*
* Wait this long before raising speed above hispeed, by default a
* single timer interval.
*/
spinlock_t above_hispeed_delay_lock;
unsigned int *above_hispeed_delay;
int nabove_hispeed_delay;
/* Non-zero means indefinite speed boost active */
int boost_val;
/* Duration of a boot pulse in usecs */
int boostpulse_duration_val;
/* End time of boost pulse in ktime converted to usecs */
u64 boostpulse_endtime;
bool boosted;
/*
* Max additional time to wait in idle, beyond timer_rate, at speeds
* above minimum before wakeup to reduce speed, or -1 if unnecessary.
*/
#define DEFAULT_TIMER_SLACK (4 * DEFAULT_TIMER_RATE)
int timer_slack_val;
bool io_is_busy;
/* scheduler input related flags */
bool use_sched_load;
bool use_migration_notif;
/*
* Whether to align timer windows across all CPUs. When
* use_sched_load is true, this flag is ignored and windows
* will always be aligned.
*/
bool align_windows;
/*
* Stay at max freq for at least max_freq_hysteresis before dropping
* frequency.
*/
unsigned int max_freq_hysteresis;
/* Ignore hispeed_freq and above_hispeed_delay for notification */
bool ignore_hispeed_on_notif;
/* Ignore min_sample_time for notification */
bool fast_ramp_down;
/* Whether to enable prediction or not */
bool enable_prediction;
};
/* For cases where we have single governor instance for system */
static struct cpufreq_interactive_tunables *common_tunables;
static struct cpufreq_interactive_tunables *cached_common_tunables;
static struct attribute_group *get_sysfs_attr(void);
/* Round to starting jiffy of next evaluation window */
static u64 round_to_nw_start(u64 jif,
struct cpufreq_interactive_tunables *tunables)
{
unsigned long step = usecs_to_jiffies(tunables->timer_rate);
u64 ret;
if (tunables->use_sched_load || tunables->align_windows) {
do_div(jif, step);
ret = (jif + 1) * step;
} else {
ret = jiffies + usecs_to_jiffies(tunables->timer_rate);
}
return ret;
}
static inline int set_window_helper(
struct cpufreq_interactive_tunables *tunables)
{
return sched_set_window(round_to_nw_start(get_jiffies_64(), tunables),
usecs_to_jiffies(tunables->timer_rate));
}
static void cpufreq_interactive_timer_resched(unsigned long cpu,
bool slack_only)
{
struct cpufreq_interactive_policyinfo *ppol = per_cpu(polinfo, cpu);
struct cpufreq_interactive_cpuinfo *pcpu;
struct cpufreq_interactive_tunables *tunables =
ppol->policy->governor_data;
u64 expires;
unsigned long flags;
int i;
spin_lock_irqsave(&ppol->load_lock, flags);
expires = round_to_nw_start(ppol->last_evaluated_jiffy, tunables);
if (!slack_only) {
for_each_cpu(i, ppol->policy->cpus) {
pcpu = &per_cpu(cpuinfo, i);
pcpu->time_in_idle = get_cpu_idle_time(i,
&pcpu->time_in_idle_timestamp,
tunables->io_is_busy);
pcpu->cputime_speedadj = 0;
pcpu->cputime_speedadj_timestamp =
pcpu->time_in_idle_timestamp;
}
}
if (tunables->timer_slack_val >= 0 &&
ppol->target_freq > ppol->policy->min) {
expires += usecs_to_jiffies(tunables->timer_slack_val);
del_timer(&ppol->policy_slack_timer);
ppol->policy_slack_timer.expires = expires;
add_timer(&ppol->policy_slack_timer);
}
spin_unlock_irqrestore(&ppol->load_lock, flags);
}
static void update_util_handler(struct update_util_data *data, u64 time,
unsigned int sched_flags)
{
struct cpufreq_interactive_policyinfo *ppol;
unsigned long flags;
ppol = *this_cpu_ptr(&polinfo);
spin_lock_irqsave(&ppol->irq_work_lock, flags);
/*
* The irq-work may not be allowed to be queued up right now
* because work has already been queued up or is in progress.
*/
if (ppol->work_in_progress ||
sched_flags & SCHED_CPUFREQ_INTERCLUSTER_MIG)
goto out;
ppol->work_in_progress = true;
irq_work_queue(&ppol->irq_work);
out:
spin_unlock_irqrestore(&ppol->irq_work_lock, flags);
}
static inline void gov_clear_update_util(struct cpufreq_policy *policy)
{
int i;
for_each_cpu(i, policy->cpus)
cpufreq_remove_update_util_hook(i);
synchronize_sched();
}
static void gov_set_update_util(struct cpufreq_policy *policy)
{
struct update_util_data *util;
int cpu;
for_each_cpu(cpu, policy->cpus) {
util = &per_cpu(update_util, cpu);
cpufreq_add_update_util_hook(cpu, util, update_util_handler);
}
}
/* The caller shall take enable_sem write semaphore to avoid any timer race.
* The policy_slack_timer must be deactivated when calling this function.
*/
static void cpufreq_interactive_timer_start(
struct cpufreq_interactive_tunables *tunables, int cpu)
{
struct cpufreq_interactive_policyinfo *ppol = per_cpu(polinfo, cpu);
struct cpufreq_interactive_cpuinfo *pcpu;
u64 expires = round_to_nw_start(ppol->last_evaluated_jiffy, tunables);
unsigned long flags;
int i;
spin_lock_irqsave(&ppol->load_lock, flags);
gov_set_update_util(ppol->policy);
if (tunables->timer_slack_val >= 0 &&
ppol->target_freq > ppol->policy->min) {
expires += usecs_to_jiffies(tunables->timer_slack_val);
ppol->policy_slack_timer.expires = expires;
add_timer(&ppol->policy_slack_timer);
}
for_each_cpu(i, ppol->policy->cpus) {
pcpu = &per_cpu(cpuinfo, i);
pcpu->time_in_idle =
get_cpu_idle_time(i, &pcpu->time_in_idle_timestamp,
tunables->io_is_busy);
pcpu->cputime_speedadj = 0;
pcpu->cputime_speedadj_timestamp = pcpu->time_in_idle_timestamp;
}
spin_unlock_irqrestore(&ppol->load_lock, flags);
}
static unsigned int freq_to_above_hispeed_delay(
struct cpufreq_interactive_tunables *tunables,
unsigned int freq)
{
int i;
unsigned int ret;
unsigned long flags;
spin_lock_irqsave(&tunables->above_hispeed_delay_lock, flags);
for (i = 0; i < tunables->nabove_hispeed_delay - 1 &&
freq >= tunables->above_hispeed_delay[i+1]; i += 2)
;
ret = tunables->above_hispeed_delay[i];
spin_unlock_irqrestore(&tunables->above_hispeed_delay_lock, flags);
return ret;
}
static unsigned int freq_to_targetload(
struct cpufreq_interactive_tunables *tunables, unsigned int freq)
{
int i;
unsigned int ret;
unsigned long flags;
spin_lock_irqsave(&tunables->target_loads_lock, flags);
for (i = 0; i < tunables->ntarget_loads - 1 &&
freq >= tunables->target_loads[i+1]; i += 2)
;
ret = tunables->target_loads[i];
spin_unlock_irqrestore(&tunables->target_loads_lock, flags);
return ret;
}
#define DEFAULT_MAX_LOAD 100
u32 get_freq_max_load(int cpu, unsigned int freq)
{
struct cpufreq_interactive_policyinfo *ppol = per_cpu(polinfo, cpu);
if (!cpumask_test_cpu(cpu, &controlled_cpus))
return DEFAULT_MAX_LOAD;
if (have_governor_per_policy()) {
if (!ppol || !ppol->cached_tunables)
return DEFAULT_MAX_LOAD;
return freq_to_targetload(ppol->cached_tunables, freq);
}
if (!cached_common_tunables)
return DEFAULT_MAX_LOAD;
return freq_to_targetload(cached_common_tunables, freq);
}
/*
* If increasing frequencies never map to a lower target load then
* choose_freq() will find the minimum frequency that does not exceed its
* target load given the current load.
*/
static unsigned int choose_freq(struct cpufreq_interactive_policyinfo *pcpu,
unsigned int loadadjfreq)
{
unsigned int freq = pcpu->policy->cur;
unsigned int prevfreq, freqmin, freqmax;
unsigned int tl;
int index;
freqmin = 0;
freqmax = UINT_MAX;
do {
prevfreq = freq;
tl = freq_to_targetload(pcpu->policy->governor_data, freq);
/*
* Find the lowest frequency where the computed load is less
* than or equal to the target load.
*/
index = cpufreq_frequency_table_target(&pcpu->p_nolim,
loadadjfreq / tl,
CPUFREQ_RELATION_L);
freq = pcpu->freq_table[index].frequency;
if (freq > prevfreq) {
/* The previous frequency is too low. */
freqmin = prevfreq;
if (freq >= freqmax) {
/*
* Find the highest frequency that is less
* than freqmax.
*/
index = cpufreq_frequency_table_target(
&pcpu->p_nolim,
freqmax - 1, CPUFREQ_RELATION_H);
freq = pcpu->freq_table[index].frequency;
if (freq == freqmin) {
/*
* The first frequency below freqmax
* has already been found to be too
* low. freqmax is the lowest speed
* we found that is fast enough.
*/
freq = freqmax;
break;
}
}
} else if (freq < prevfreq) {
/* The previous frequency is high enough. */
freqmax = prevfreq;
if (freq <= freqmin) {
/*
* Find the lowest frequency that is higher
* than freqmin.
*/
index = cpufreq_frequency_table_target(
&pcpu->p_nolim,
freqmin + 1, CPUFREQ_RELATION_L);
freq = pcpu->freq_table[index].frequency;
/*
* If freqmax is the first frequency above
* freqmin then we have already found that
* this speed is fast enough.
*/
if (freq == freqmax)
break;
}
}
/* If same frequency chosen as previous then done. */
} while (freq != prevfreq);
return freq;
}
static u64 update_load(int cpu)
{
struct cpufreq_interactive_policyinfo *ppol = per_cpu(polinfo, cpu);
struct cpufreq_interactive_cpuinfo *pcpu = &per_cpu(cpuinfo, cpu);
struct cpufreq_interactive_tunables *tunables =
ppol->policy->governor_data;
u64 now;
u64 now_idle;
unsigned int delta_idle;
unsigned int delta_time;
u64 active_time;
now_idle = get_cpu_idle_time(cpu, &now, tunables->io_is_busy);
delta_idle = (unsigned int)(now_idle - pcpu->time_in_idle);
delta_time = (unsigned int)(now - pcpu->time_in_idle_timestamp);
if (delta_time <= delta_idle)
active_time = 0;
else
active_time = delta_time - delta_idle;
pcpu->cputime_speedadj += active_time * ppol->policy->cur;
pcpu->time_in_idle = now_idle;
pcpu->time_in_idle_timestamp = now;
return now;
}
static unsigned int sl_busy_to_laf(struct cpufreq_interactive_policyinfo *ppol,
unsigned long busy)
{
int prev_load;
struct cpufreq_interactive_tunables *tunables =
ppol->policy->governor_data;
prev_load = mult_frac(ppol->policy->cpuinfo.max_freq * 100,
busy, tunables->timer_rate);
return prev_load;
}
#define NEW_TASK_RATIO 75
#define PRED_TOLERANCE_PCT 10
static void cpufreq_interactive_timer(int data)
{
s64 now;
unsigned int delta_time;
u64 cputime_speedadj;
int cpu_load;
int pol_load = 0;
struct cpufreq_interactive_policyinfo *ppol = per_cpu(polinfo, data);
struct cpufreq_interactive_tunables *tunables =
ppol->policy->governor_data;
struct sched_load *sl = ppol->sl;
struct cpufreq_interactive_cpuinfo *pcpu;
unsigned int new_freq;
unsigned int prev_laf = 0, t_prevlaf;
unsigned int pred_laf = 0, t_predlaf = 0;
unsigned int prev_chfreq, pred_chfreq, chosen_freq;
unsigned int index;
unsigned long flags;
unsigned long max_cpu;
int i, cpu;
int new_load_pct = 0;
int prev_l, pred_l = 0;
struct cpufreq_govinfo govinfo;
bool skip_hispeed_logic, skip_min_sample_time;
bool jump_to_max_no_ts = false;
bool jump_to_max = false;
if (!down_read_trylock(&ppol->enable_sem))
return;
if (!ppol->governor_enabled)
goto exit;
now = ktime_to_us(ktime_get());
spin_lock_irqsave(&ppol->target_freq_lock, flags);
spin_lock(&ppol->load_lock);
skip_hispeed_logic =
tunables->ignore_hispeed_on_notif && ppol->notif_pending;
skip_min_sample_time = tunables->fast_ramp_down && ppol->notif_pending;
ppol->notif_pending = false;
now = ktime_to_us(ktime_get());
ppol->last_evaluated_jiffy = get_jiffies_64();
if (tunables->use_sched_load)
sched_get_cpus_busy(sl, ppol->policy->cpus);
max_cpu = cpumask_first(ppol->policy->cpus);
i = 0;
for_each_cpu(cpu, ppol->policy->cpus) {
pcpu = &per_cpu(cpuinfo, cpu);
if (tunables->use_sched_load) {
t_prevlaf = sl_busy_to_laf(ppol, sl[i].prev_load);
prev_l = t_prevlaf / ppol->target_freq;
if (tunables->enable_prediction) {
t_predlaf = sl_busy_to_laf(ppol,
sl[i].predicted_load);
pred_l = t_predlaf / ppol->target_freq;
}
if (sl[i].prev_load)
new_load_pct = sl[i].new_task_load * 100 /
sl[i].prev_load;
else
new_load_pct = 0;
} else {
now = update_load(cpu);
delta_time = (unsigned int)
(now - pcpu->cputime_speedadj_timestamp);
if (WARN_ON_ONCE(!delta_time))
continue;
cputime_speedadj = pcpu->cputime_speedadj;
do_div(cputime_speedadj, delta_time);
t_prevlaf = (unsigned int)cputime_speedadj * 100;
prev_l = t_prevlaf / ppol->target_freq;
}
/* find max of loadadjfreq inside policy */
if (t_prevlaf > prev_laf) {
prev_laf = t_prevlaf;
max_cpu = cpu;
}
pred_laf = max(t_predlaf, pred_laf);
cpu_load = max(prev_l, pred_l);
pol_load = max(pol_load, cpu_load);
trace_cpufreq_interactive_cpuload(cpu, cpu_load, new_load_pct,
prev_l, pred_l);
/* save loadadjfreq for notification */
pcpu->loadadjfreq = max(t_prevlaf, t_predlaf);
/* detect heavy new task and jump to policy->max */
if (prev_l >= tunables->go_hispeed_load &&
new_load_pct >= NEW_TASK_RATIO) {
skip_hispeed_logic = true;
jump_to_max = true;
}
i++;
}
spin_unlock(&ppol->load_lock);
tunables->boosted = tunables->boost_val || now < tunables->boostpulse_endtime;
prev_chfreq = choose_freq(ppol, prev_laf);
pred_chfreq = choose_freq(ppol, pred_laf);
chosen_freq = max(prev_chfreq, pred_chfreq);
if (prev_chfreq < ppol->policy->max && pred_chfreq >= ppol->policy->max)
if (!jump_to_max)
jump_to_max_no_ts = true;
if (now - ppol->max_freq_hyst_start_time <
tunables->max_freq_hysteresis &&
pol_load >= tunables->go_hispeed_load &&
ppol->target_freq < ppol->policy->max) {
skip_hispeed_logic = true;
skip_min_sample_time = true;
if (!jump_to_max)
jump_to_max_no_ts = true;
}
new_freq = chosen_freq;
if (jump_to_max_no_ts || jump_to_max) {
new_freq = ppol->policy->cpuinfo.max_freq;
} else if (!skip_hispeed_logic) {
if (pol_load >= tunables->go_hispeed_load ||
tunables->boosted) {
if (ppol->target_freq < tunables->hispeed_freq)
new_freq = tunables->hispeed_freq;
else
new_freq = max(new_freq,
tunables->hispeed_freq);
}
}
if (now - ppol->max_freq_hyst_start_time <
tunables->max_freq_hysteresis)
new_freq = max(tunables->hispeed_freq, new_freq);
if (!skip_hispeed_logic &&
ppol->target_freq >= tunables->hispeed_freq &&
new_freq > ppol->target_freq &&
now - ppol->hispeed_validate_time <
freq_to_above_hispeed_delay(tunables, ppol->target_freq)) {
trace_cpufreq_interactive_notyet(
max_cpu, pol_load, ppol->target_freq,
ppol->policy->cur, new_freq);
spin_unlock_irqrestore(&ppol->target_freq_lock, flags);
goto rearm;
}
ppol->hispeed_validate_time = now;
index = cpufreq_frequency_table_target(&ppol->p_nolim, new_freq,
CPUFREQ_RELATION_L);
new_freq = ppol->freq_table[index].frequency;
/*
* Do not scale below floor_freq unless we have been at or above the
* floor frequency for the minimum sample time since last validated.
*/
if (!skip_min_sample_time && new_freq < ppol->floor_freq) {
if (now - ppol->floor_validate_time <
tunables->min_sample_time) {
trace_cpufreq_interactive_notyet(
max_cpu, pol_load, ppol->target_freq,
ppol->policy->cur, new_freq);
spin_unlock_irqrestore(&ppol->target_freq_lock, flags);
goto rearm;
}
}
/*
* Update the timestamp for checking whether speed has been held at
* or above the selected frequency for a minimum of min_sample_time,
* if not boosted to hispeed_freq. If boosted to hispeed_freq then we
* allow the speed to drop as soon as the boostpulse duration expires
* (or the indefinite boost is turned off). If policy->max is restored
* for max_freq_hysteresis, don't extend the timestamp. Otherwise, it
* could incorrectly extended the duration of max_freq_hysteresis by
* min_sample_time.
*/
if ((!tunables->boosted || new_freq > tunables->hispeed_freq)
&& !jump_to_max_no_ts) {
ppol->floor_freq = new_freq;
ppol->floor_validate_time = now;
}
if (new_freq >= ppol->policy->max && !jump_to_max_no_ts)
ppol->max_freq_hyst_start_time = now;
if (ppol->target_freq == new_freq &&
ppol->target_freq <= ppol->policy->cur) {
trace_cpufreq_interactive_already(
max_cpu, pol_load, ppol->target_freq,
ppol->policy->cur, new_freq);
spin_unlock_irqrestore(&ppol->target_freq_lock, flags);
goto rearm;
}
trace_cpufreq_interactive_target(max_cpu, pol_load, ppol->target_freq,
ppol->policy->cur, new_freq);
ppol->target_freq = new_freq;
spin_unlock_irqrestore(&ppol->target_freq_lock, flags);
spin_lock_irqsave(&speedchange_cpumask_lock, flags);
cpumask_set_cpu(max_cpu, &speedchange_cpumask);
spin_unlock_irqrestore(&speedchange_cpumask_lock, flags);
wake_up_process(speedchange_task);
rearm:
cpufreq_interactive_timer_resched(data, false);
/*
* Send govinfo notification.
* Govinfo notification could potentially wake up another thread
* managed by its clients. Thread wakeups might trigger a load
* change callback that executes this function again. Therefore
* no spinlock could be held when sending the notification.
*/
for_each_cpu(i, ppol->policy->cpus) {
pcpu = &per_cpu(cpuinfo, i);
govinfo.cpu = i;
govinfo.load = pcpu->loadadjfreq / ppol->policy->max;
govinfo.sampling_rate_us = tunables->timer_rate;
atomic_notifier_call_chain(&cpufreq_govinfo_notifier_list,
CPUFREQ_LOAD_CHANGE, &govinfo);
}
exit:
up_read(&ppol->enable_sem);
return;
}
static int cpufreq_interactive_speedchange_task(void *data)
{
unsigned int cpu;
cpumask_t tmp_mask;
unsigned long flags;
struct cpufreq_interactive_policyinfo *ppol;
while (1) {
set_current_state(TASK_INTERRUPTIBLE);
spin_lock_irqsave(&speedchange_cpumask_lock, flags);
if (cpumask_empty(&speedchange_cpumask)) {
spin_unlock_irqrestore(&speedchange_cpumask_lock,
flags);
schedule();
if (kthread_should_stop())
break;
spin_lock_irqsave(&speedchange_cpumask_lock, flags);
}
set_current_state(TASK_RUNNING);
tmp_mask = speedchange_cpumask;
cpumask_clear(&speedchange_cpumask);
spin_unlock_irqrestore(&speedchange_cpumask_lock, flags);
for_each_cpu(cpu, &tmp_mask) {
ppol = per_cpu(polinfo, cpu);
if (!down_read_trylock(&ppol->enable_sem))
continue;
if (!ppol->governor_enabled) {
up_read(&ppol->enable_sem);
continue;
}
if (ppol->target_freq != ppol->policy->cur)
__cpufreq_driver_target(ppol->policy,
ppol->target_freq,
CPUFREQ_RELATION_H);
trace_cpufreq_interactive_setspeed(cpu,
ppol->target_freq,
ppol->policy->cur);
up_read(&ppol->enable_sem);
}
}
return 0;
}
static void cpufreq_interactive_boost(struct cpufreq_interactive_tunables *tunables)
{
int i;
int anyboost = 0;
unsigned long flags[2];
struct cpufreq_interactive_policyinfo *ppol;
tunables->boosted = true;
spin_lock_irqsave(&speedchange_cpumask_lock, flags[0]);
for_each_online_cpu(i) {
ppol = per_cpu(polinfo, i);
if (!ppol || tunables != ppol->policy->governor_data)
continue;
spin_lock_irqsave(&ppol->target_freq_lock, flags[1]);
if (ppol->target_freq < tunables->hispeed_freq) {
ppol->target_freq = tunables->hispeed_freq;
cpumask_set_cpu(i, &speedchange_cpumask);
ppol->hispeed_validate_time =
ktime_to_us(ktime_get());
anyboost = 1;
}
/*
* Set floor freq and (re)start timer for when last
* validated.
*/
ppol->floor_freq = tunables->hispeed_freq;
ppol->floor_validate_time = ktime_to_us(ktime_get());
spin_unlock_irqrestore(&ppol->target_freq_lock, flags[1]);
break;
}
spin_unlock_irqrestore(&speedchange_cpumask_lock, flags[0]);
if (anyboost)
wake_up_process(speedchange_task);
}
static int load_change_callback(struct notifier_block *nb, unsigned long val,
void *data)
{
unsigned long cpu = (unsigned long) data;
struct cpufreq_interactive_policyinfo *ppol = per_cpu(polinfo, cpu);
struct cpufreq_interactive_tunables *tunables;
unsigned long flags;
if (!ppol || ppol->reject_notification)
return 0;
if (!down_read_trylock(&ppol->enable_sem))
return 0;
if (!ppol->governor_enabled)
goto exit;
tunables = ppol->policy->governor_data;
if (!tunables->use_sched_load || !tunables->use_migration_notif)
goto exit;
spin_lock_irqsave(&ppol->target_freq_lock, flags);
ppol->notif_pending = true;
ppol->notif_cpu = cpu;
spin_unlock_irqrestore(&ppol->target_freq_lock, flags);
if (!hrtimer_is_queued(&ppol->notif_timer))
hrtimer_start(&ppol->notif_timer, ms_to_ktime(1),
HRTIMER_MODE_REL);
exit:
up_read(&ppol->enable_sem);
return 0;
}
static enum hrtimer_restart cpufreq_interactive_hrtimer(struct hrtimer *timer)
{
struct cpufreq_interactive_policyinfo *ppol = container_of(timer,
struct cpufreq_interactive_policyinfo, notif_timer);
int cpu;
if (!down_read_trylock(&ppol->enable_sem))
return 0;
if (!ppol->governor_enabled) {
up_read(&ppol->enable_sem);
return 0;
}
cpu = ppol->notif_cpu;
trace_cpufreq_interactive_load_change(cpu);
del_timer(&ppol->policy_slack_timer);
cpufreq_interactive_timer(cpu);
up_read(&ppol->enable_sem);
return HRTIMER_NORESTART;
}
static struct notifier_block load_notifier_block = {
.notifier_call = load_change_callback,
};
static int cpufreq_interactive_notifier(
struct notifier_block *nb, unsigned long val, void *data)
{
struct cpufreq_freqs *freq = data;
struct cpufreq_interactive_policyinfo *ppol;
int cpu;
unsigned long flags;
if (val == CPUFREQ_POSTCHANGE) {
ppol = per_cpu(polinfo, freq->cpu);
if (!ppol)
return 0;
if (!down_read_trylock(&ppol->enable_sem))
return 0;
if (!ppol->governor_enabled) {
up_read(&ppol->enable_sem);
return 0;
}
if (cpumask_first(ppol->policy->cpus) != freq->cpu) {
up_read(&ppol->enable_sem);
return 0;
}
spin_lock_irqsave(&ppol->load_lock, flags);
for_each_cpu(cpu, ppol->policy->cpus)
update_load(cpu);
spin_unlock_irqrestore(&ppol->load_lock, flags);
up_read(&ppol->enable_sem);
}
return 0;
}
static struct notifier_block cpufreq_notifier_block = {
.notifier_call = cpufreq_interactive_notifier,
};
static unsigned int *get_tokenized_data(const char *buf, int *num_tokens)
{
const char *cp;
int i;
int ntokens = 1;
unsigned int *tokenized_data;
int err = -EINVAL;
cp = buf;
while ((cp = strpbrk(cp + 1, " :")))
ntokens++;
if (!(ntokens & 0x1))
goto err;
tokenized_data = kmalloc(ntokens * sizeof(unsigned int), GFP_KERNEL);
if (!tokenized_data) {
err = -ENOMEM;
goto err;
}
cp = buf;
i = 0;
while (i < ntokens) {
if (sscanf(cp, "%u", &tokenized_data[i++]) != 1)
goto err_kfree;
cp = strpbrk(cp, " :");
if (!cp)
break;
cp++;
}
if (i != ntokens)
goto err_kfree;
*num_tokens = ntokens;
return tokenized_data;
err_kfree:
kfree(tokenized_data);
err:
return ERR_PTR(err);
}
static ssize_t show_target_loads(
struct cpufreq_interactive_tunables *tunables,
char *buf)
{
int i;
ssize_t ret = 0;
unsigned long flags;
spin_lock_irqsave(&tunables->target_loads_lock, flags);
for (i = 0; i < tunables->ntarget_loads; i++)
ret += sprintf(buf + ret, "%u%s", tunables->target_loads[i],
i & 0x1 ? ":" : " ");
sprintf(buf + ret - 1, "\n");
spin_unlock_irqrestore(&tunables->target_loads_lock, flags);
return ret;
}
static ssize_t store_target_loads(
struct cpufreq_interactive_tunables *tunables,
const char *buf, size_t count)
{
int ntokens;
unsigned int *new_target_loads = NULL;
unsigned long flags;
new_target_loads = get_tokenized_data(buf, &ntokens);
if (IS_ERR(new_target_loads))
return PTR_RET(new_target_loads);
spin_lock_irqsave(&tunables->target_loads_lock, flags);
if (tunables->target_loads != default_target_loads)
kfree(tunables->target_loads);
tunables->target_loads = new_target_loads;
tunables->ntarget_loads = ntokens;
spin_unlock_irqrestore(&tunables->target_loads_lock, flags);
sched_update_freq_max_load(&controlled_cpus);
return count;
}
static ssize_t show_above_hispeed_delay(
struct cpufreq_interactive_tunables *tunables, char *buf)
{
int i;
ssize_t ret = 0;
unsigned long flags;
spin_lock_irqsave(&tunables->above_hispeed_delay_lock, flags);
for (i = 0; i < tunables->nabove_hispeed_delay; i++)
ret += sprintf(buf + ret, "%u%s",
tunables->above_hispeed_delay[i],
i & 0x1 ? ":" : " ");
sprintf(buf + ret - 1, "\n");
spin_unlock_irqrestore(&tunables->above_hispeed_delay_lock, flags);
return ret;
}
static ssize_t store_above_hispeed_delay(
struct cpufreq_interactive_tunables *tunables,
const char *buf, size_t count)
{
int ntokens;
unsigned int *new_above_hispeed_delay = NULL;
unsigned long flags;
new_above_hispeed_delay = get_tokenized_data(buf, &ntokens);
if (IS_ERR(new_above_hispeed_delay))
return PTR_RET(new_above_hispeed_delay);
spin_lock_irqsave(&tunables->above_hispeed_delay_lock, flags);
if (tunables->above_hispeed_delay != default_above_hispeed_delay)
kfree(tunables->above_hispeed_delay);
tunables->above_hispeed_delay = new_above_hispeed_delay;
tunables->nabove_hispeed_delay = ntokens;
spin_unlock_irqrestore(&tunables->above_hispeed_delay_lock, flags);
return count;
}
static ssize_t show_hispeed_freq(struct cpufreq_interactive_tunables *tunables,
char *buf)
{
return sprintf(buf, "%u\n", tunables->hispeed_freq);
}
static ssize_t store_hispeed_freq(struct cpufreq_interactive_tunables *tunables,
const char *buf, size_t count)
{
int ret;
long unsigned int val;
ret = kstrtoul(buf, 0, &val);
if (ret < 0)
return ret;
tunables->hispeed_freq = val;
return count;
}
#define show_store_one(file_name) \
static ssize_t show_##file_name( \
struct cpufreq_interactive_tunables *tunables, char *buf) \
{ \
return snprintf(buf, PAGE_SIZE, "%u\n", tunables->file_name); \
} \
static ssize_t store_##file_name( \
struct cpufreq_interactive_tunables *tunables, \
const char *buf, size_t count) \
{ \
int ret; \
unsigned long int val; \
\
ret = kstrtoul(buf, 0, &val); \
if (ret < 0) \
return ret; \
tunables->file_name = val; \
return count; \
}
show_store_one(max_freq_hysteresis);
show_store_one(align_windows);
show_store_one(ignore_hispeed_on_notif);
show_store_one(fast_ramp_down);
show_store_one(enable_prediction);
static ssize_t show_go_hispeed_load(struct cpufreq_interactive_tunables
*tunables, char *buf)
{
return sprintf(buf, "%lu\n", tunables->go_hispeed_load);
}
static ssize_t store_go_hispeed_load(struct cpufreq_interactive_tunables
*tunables, const char *buf, size_t count)
{
int ret;
unsigned long val;
ret = kstrtoul(buf, 0, &val);
if (ret < 0)
return ret;
tunables->go_hispeed_load = val;
return count;
}
static ssize_t show_min_sample_time(struct cpufreq_interactive_tunables
*tunables, char *buf)
{
return sprintf(buf, "%lu\n", tunables->min_sample_time);
}
static ssize_t store_min_sample_time(struct cpufreq_interactive_tunables
*tunables, const char *buf, size_t count)
{
int ret;
unsigned long val;
ret = kstrtoul(buf, 0, &val);
if (ret < 0)
return ret;
tunables->min_sample_time = val;
return count;
}
static ssize_t show_timer_rate(struct cpufreq_interactive_tunables *tunables,
char *buf)
{
return sprintf(buf, "%lu\n", tunables->timer_rate);
}
static ssize_t store_timer_rate(struct cpufreq_interactive_tunables *tunables,
const char *buf, size_t count)
{
int ret;
unsigned long val, val_round;
struct cpufreq_interactive_tunables *t;
int cpu;
ret = kstrtoul(buf, 0, &val);
if (ret < 0)
return ret;
val_round = jiffies_to_usecs(usecs_to_jiffies(val));
if (val != val_round)
pr_warn("timer_rate not aligned to jiffy. Rounded up to %lu\n",
val_round);
tunables->timer_rate = val_round;
if (!tunables->use_sched_load)
return count;
for_each_possible_cpu(cpu) {
if (!per_cpu(polinfo, cpu))
continue;
t = per_cpu(polinfo, cpu)->cached_tunables;
if (t && t->use_sched_load)
t->timer_rate = val_round;
}
set_window_helper(tunables);
return count;
}
static ssize_t show_timer_slack(struct cpufreq_interactive_tunables *tunables,
char *buf)
{
return sprintf(buf, "%d\n", tunables->timer_slack_val);
}
static ssize_t store_timer_slack(struct cpufreq_interactive_tunables *tunables,
const char *buf, size_t count)
{
int ret;
unsigned long val;
ret = kstrtol(buf, 10, &val);
if (ret < 0)
return ret;
tunables->timer_slack_val = val;
return count;
}
static ssize_t show_boost(struct cpufreq_interactive_tunables *tunables,
char *buf)
{
return sprintf(buf, "%d\n", tunables->boost_val);
}
static ssize_t store_boost(struct cpufreq_interactive_tunables *tunables,
const char *buf, size_t count)
{
int ret;
unsigned long val;
ret = kstrtoul(buf, 0, &val);
if (ret < 0)
return ret;
tunables->boost_val = val;
if (tunables->boost_val) {
trace_cpufreq_interactive_boost("on");
if (!tunables->boosted)
cpufreq_interactive_boost(tunables);
} else {
tunables->boostpulse_endtime = ktime_to_us(ktime_get());
trace_cpufreq_interactive_unboost("off");
}
return count;
}
static ssize_t store_boostpulse(struct cpufreq_interactive_tunables *tunables,
const char *buf, size_t count)
{
int ret;
unsigned long val;
ret = kstrtoul(buf, 0, &val);
if (ret < 0)
return ret;
tunables->boostpulse_endtime = ktime_to_us(ktime_get()) +
tunables->boostpulse_duration_val;
trace_cpufreq_interactive_boost("pulse");
if (!tunables->boosted)
cpufreq_interactive_boost(tunables);
return count;
}
static ssize_t show_boostpulse_duration(struct cpufreq_interactive_tunables
*tunables, char *buf)
{
return sprintf(buf, "%d\n", tunables->boostpulse_duration_val);
}
static ssize_t store_boostpulse_duration(struct cpufreq_interactive_tunables
*tunables, const char *buf, size_t count)
{
int ret;
unsigned long val;
ret = kstrtoul(buf, 0, &val);
if (ret < 0)
return ret;
tunables->boostpulse_duration_val = val;
return count;
}
static ssize_t show_io_is_busy(struct cpufreq_interactive_tunables *tunables,
char *buf)
{
return sprintf(buf, "%u\n", tunables->io_is_busy);
}
static ssize_t store_io_is_busy(struct cpufreq_interactive_tunables *tunables,
const char *buf, size_t count)
{
int ret;
unsigned long val;
struct cpufreq_interactive_tunables *t;
int cpu;
ret = kstrtoul(buf, 0, &val);
if (ret < 0)
return ret;
tunables->io_is_busy = val;
if (!tunables->use_sched_load)
return count;
for_each_possible_cpu(cpu) {
if (!per_cpu(polinfo, cpu))
continue;
t = per_cpu(polinfo, cpu)->cached_tunables;
if (t && t->use_sched_load)
t->io_is_busy = val;
}
sched_set_io_is_busy(val);
return count;
}
static int cpufreq_interactive_enable_sched_input(
struct cpufreq_interactive_tunables *tunables)
{
int rc = 0, j;
struct cpufreq_interactive_tunables *t;
mutex_lock(&sched_lock);
set_window_count++;
if (set_window_count > 1) {
for_each_possible_cpu(j) {
if (!per_cpu(polinfo, j))
continue;
t = per_cpu(polinfo, j)->cached_tunables;
if (t && t->use_sched_load) {
tunables->timer_rate = t->timer_rate;
tunables->io_is_busy = t->io_is_busy;
break;
}
}
} else {
rc = set_window_helper(tunables);
if (rc) {
pr_err("%s: Failed to set sched window\n", __func__);
set_window_count--;
goto out;
}
sched_set_io_is_busy(tunables->io_is_busy);
}
if (!tunables->use_migration_notif)
goto out;
migration_register_count++;
if (migration_register_count > 1)
goto out;
else
atomic_notifier_chain_register(&load_alert_notifier_head,
&load_notifier_block);
out:
mutex_unlock(&sched_lock);
return rc;
}
static int cpufreq_interactive_disable_sched_input(
struct cpufreq_interactive_tunables *tunables)
{
mutex_lock(&sched_lock);
if (tunables->use_migration_notif) {
migration_register_count--;
if (migration_register_count < 1)
atomic_notifier_chain_unregister(
&load_alert_notifier_head,
&load_notifier_block);
}
set_window_count--;
mutex_unlock(&sched_lock);
return 0;
}
static ssize_t show_use_sched_load(
struct cpufreq_interactive_tunables *tunables, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", tunables->use_sched_load);
}
static ssize_t store_use_sched_load(
struct cpufreq_interactive_tunables *tunables,
const char *buf, size_t count)
{
int ret;
unsigned long val;
ret = kstrtoul(buf, 0, &val);
if (ret < 0)
return ret;
if (tunables->use_sched_load == (bool) val)
return count;
tunables->use_sched_load = val;
if (val)
ret = cpufreq_interactive_enable_sched_input(tunables);
else
ret = cpufreq_interactive_disable_sched_input(tunables);
if (ret) {
tunables->use_sched_load = !val;
return ret;
}
return count;
}
static ssize_t show_use_migration_notif(
struct cpufreq_interactive_tunables *tunables, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n",
tunables->use_migration_notif);
}
static ssize_t store_use_migration_notif(
struct cpufreq_interactive_tunables *tunables,
const char *buf, size_t count)
{
int ret;
unsigned long val;
ret = kstrtoul(buf, 0, &val);
if (ret < 0)
return ret;
if (tunables->use_migration_notif == (bool) val)
return count;
tunables->use_migration_notif = val;
if (!tunables->use_sched_load)
return count;
mutex_lock(&sched_lock);
if (val) {
migration_register_count++;
if (migration_register_count == 1)
atomic_notifier_chain_register(
&load_alert_notifier_head,
&load_notifier_block);
} else {
migration_register_count--;
if (!migration_register_count)
atomic_notifier_chain_unregister(
&load_alert_notifier_head,
&load_notifier_block);
}
mutex_unlock(&sched_lock);
return count;
}
/*
* Create show/store routines
* - sys: One governor instance for complete SYSTEM
* - pol: One governor instance per struct cpufreq_policy
*/
#define show_gov_pol_sys(file_name) \
static ssize_t show_##file_name##_gov_sys \
(struct kobject *kobj, struct attribute *attr, char *buf) \
{ \
return show_##file_name(common_tunables, buf); \
} \
\
static ssize_t show_##file_name##_gov_pol \
(struct cpufreq_policy *policy, char *buf) \
{ \
return show_##file_name(policy->governor_data, buf); \
}
#define store_gov_pol_sys(file_name) \
static ssize_t store_##file_name##_gov_sys \
(struct kobject *kobj, struct attribute *attr, const char *buf, \
size_t count) \
{ \
return store_##file_name(common_tunables, buf, count); \
} \
\
static ssize_t store_##file_name##_gov_pol \
(struct cpufreq_policy *policy, const char *buf, size_t count) \
{ \
return store_##file_name(policy->governor_data, buf, count); \
}
#define show_store_gov_pol_sys(file_name) \
show_gov_pol_sys(file_name); \
store_gov_pol_sys(file_name)
show_store_gov_pol_sys(target_loads);
show_store_gov_pol_sys(above_hispeed_delay);
show_store_gov_pol_sys(hispeed_freq);
show_store_gov_pol_sys(go_hispeed_load);
show_store_gov_pol_sys(min_sample_time);
show_store_gov_pol_sys(timer_rate);
show_store_gov_pol_sys(timer_slack);
show_store_gov_pol_sys(boost);
store_gov_pol_sys(boostpulse);
show_store_gov_pol_sys(boostpulse_duration);
show_store_gov_pol_sys(io_is_busy);
show_store_gov_pol_sys(use_sched_load);
show_store_gov_pol_sys(use_migration_notif);
show_store_gov_pol_sys(max_freq_hysteresis);
show_store_gov_pol_sys(align_windows);
show_store_gov_pol_sys(ignore_hispeed_on_notif);
show_store_gov_pol_sys(fast_ramp_down);
show_store_gov_pol_sys(enable_prediction);
#define gov_sys_attr_rw(_name) \
static struct global_attr _name##_gov_sys = \
__ATTR(_name, 0644, show_##_name##_gov_sys, store_##_name##_gov_sys)
#define gov_pol_attr_rw(_name) \
static struct freq_attr _name##_gov_pol = \
__ATTR(_name, 0644, show_##_name##_gov_pol, store_##_name##_gov_pol)
#define gov_sys_pol_attr_rw(_name) \
gov_sys_attr_rw(_name); \
gov_pol_attr_rw(_name)
gov_sys_pol_attr_rw(target_loads);
gov_sys_pol_attr_rw(above_hispeed_delay);
gov_sys_pol_attr_rw(hispeed_freq);
gov_sys_pol_attr_rw(go_hispeed_load);
gov_sys_pol_attr_rw(min_sample_time);
gov_sys_pol_attr_rw(timer_rate);
gov_sys_pol_attr_rw(timer_slack);
gov_sys_pol_attr_rw(boost);
gov_sys_pol_attr_rw(boostpulse_duration);
gov_sys_pol_attr_rw(io_is_busy);
gov_sys_pol_attr_rw(use_sched_load);
gov_sys_pol_attr_rw(use_migration_notif);
gov_sys_pol_attr_rw(max_freq_hysteresis);
gov_sys_pol_attr_rw(align_windows);
gov_sys_pol_attr_rw(ignore_hispeed_on_notif);
gov_sys_pol_attr_rw(fast_ramp_down);
gov_sys_pol_attr_rw(enable_prediction);
static struct global_attr boostpulse_gov_sys =
__ATTR(boostpulse, 0200, NULL, store_boostpulse_gov_sys);
static struct freq_attr boostpulse_gov_pol =
__ATTR(boostpulse, 0200, NULL, store_boostpulse_gov_pol);
/* One Governor instance for entire system */
static struct attribute *interactive_attributes_gov_sys[] = {
&target_loads_gov_sys.attr,
&above_hispeed_delay_gov_sys.attr,
&hispeed_freq_gov_sys.attr,
&go_hispeed_load_gov_sys.attr,
&min_sample_time_gov_sys.attr,
&timer_rate_gov_sys.attr,
&timer_slack_gov_sys.attr,
&boost_gov_sys.attr,
&boostpulse_gov_sys.attr,
&boostpulse_duration_gov_sys.attr,
&io_is_busy_gov_sys.attr,
&use_sched_load_gov_sys.attr,
&use_migration_notif_gov_sys.attr,
&max_freq_hysteresis_gov_sys.attr,
&align_windows_gov_sys.attr,
&ignore_hispeed_on_notif_gov_sys.attr,
&fast_ramp_down_gov_sys.attr,
&enable_prediction_gov_sys.attr,
NULL,
};
static struct attribute_group interactive_attr_group_gov_sys = {
.attrs = interactive_attributes_gov_sys,
.name = "interactive",
};
/* Per policy governor instance */
static struct attribute *interactive_attributes_gov_pol[] = {
&target_loads_gov_pol.attr,
&above_hispeed_delay_gov_pol.attr,
&hispeed_freq_gov_pol.attr,
&go_hispeed_load_gov_pol.attr,
&min_sample_time_gov_pol.attr,
&timer_rate_gov_pol.attr,
&timer_slack_gov_pol.attr,
&boost_gov_pol.attr,
&boostpulse_gov_pol.attr,
&boostpulse_duration_gov_pol.attr,
&io_is_busy_gov_pol.attr,
&use_sched_load_gov_pol.attr,
&use_migration_notif_gov_pol.attr,
&max_freq_hysteresis_gov_pol.attr,
&align_windows_gov_pol.attr,
&ignore_hispeed_on_notif_gov_pol.attr,
&fast_ramp_down_gov_pol.attr,
&enable_prediction_gov_pol.attr,
NULL,
};
static struct attribute_group interactive_attr_group_gov_pol = {
.attrs = interactive_attributes_gov_pol,
.name = "interactive",
};
static struct attribute_group *get_sysfs_attr(void)
{
if (have_governor_per_policy())
return &interactive_attr_group_gov_pol;
else
return &interactive_attr_group_gov_sys;
}
static void cpufreq_interactive_nop_timer(unsigned long data)
{
}
static struct cpufreq_interactive_tunables *alloc_tunable(
struct cpufreq_policy *policy)
{
struct cpufreq_interactive_tunables *tunables;
tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
if (!tunables)
return ERR_PTR(-ENOMEM);
tunables->above_hispeed_delay = default_above_hispeed_delay;
tunables->nabove_hispeed_delay =
ARRAY_SIZE(default_above_hispeed_delay);
tunables->go_hispeed_load = DEFAULT_GO_HISPEED_LOAD;
tunables->target_loads = default_target_loads;
tunables->ntarget_loads = ARRAY_SIZE(default_target_loads);
tunables->min_sample_time = DEFAULT_MIN_SAMPLE_TIME;
tunables->timer_rate = DEFAULT_TIMER_RATE;
tunables->boostpulse_duration_val = DEFAULT_MIN_SAMPLE_TIME;
tunables->timer_slack_val = DEFAULT_TIMER_SLACK;
spin_lock_init(&tunables->target_loads_lock);
spin_lock_init(&tunables->above_hispeed_delay_lock);
return tunables;
}
static void irq_work(struct irq_work *irq_work)
{
struct cpufreq_interactive_policyinfo *ppol;
unsigned long flags;
ppol = container_of(irq_work, struct cpufreq_interactive_policyinfo,
irq_work);
cpufreq_interactive_timer(smp_processor_id());
spin_lock_irqsave(&ppol->irq_work_lock, flags);
ppol->work_in_progress = false;
spin_unlock_irqrestore(&ppol->irq_work_lock, flags);
}
static struct cpufreq_interactive_policyinfo *get_policyinfo(
struct cpufreq_policy *policy)
{
struct cpufreq_interactive_policyinfo *ppol =
per_cpu(polinfo, policy->cpu);
int i;
struct sched_load *sl;
/* polinfo already allocated for policy, return */
if (ppol)
return ppol;
ppol = kzalloc(sizeof(*ppol), GFP_KERNEL);
if (!ppol)
return ERR_PTR(-ENOMEM);
sl = kcalloc(cpumask_weight(policy->related_cpus), sizeof(*sl),
GFP_KERNEL);
if (!sl) {
kfree(ppol);
return ERR_PTR(-ENOMEM);
}
ppol->sl = sl;
init_timer(&ppol->policy_slack_timer);
ppol->policy_slack_timer.function = cpufreq_interactive_nop_timer;
hrtimer_init(&ppol->notif_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
ppol->notif_timer.function = cpufreq_interactive_hrtimer;
init_irq_work(&ppol->irq_work, irq_work);
spin_lock_init(&ppol->irq_work_lock);
spin_lock_init(&ppol->load_lock);
spin_lock_init(&ppol->target_freq_lock);
init_rwsem(&ppol->enable_sem);
for_each_cpu(i, policy->related_cpus)
per_cpu(polinfo, i) = ppol;
return ppol;
}
/* This function is not multithread-safe. */
static void free_policyinfo(int cpu)
{
struct cpufreq_interactive_policyinfo *ppol = per_cpu(polinfo, cpu);
int j;
if (!ppol)
return;
for_each_possible_cpu(j)
if (per_cpu(polinfo, j) == ppol)
per_cpu(polinfo, cpu) = NULL;
kfree(ppol->cached_tunables);
kfree(ppol->sl);
kfree(ppol);
}
static struct cpufreq_interactive_tunables *get_tunables(
struct cpufreq_interactive_policyinfo *ppol)
{
if (have_governor_per_policy())
return ppol->cached_tunables;
else
return cached_common_tunables;
}
/* Interactive Governor callbacks */
struct interactive_governor {
struct cpufreq_governor gov;
unsigned int usage_count;
};
static struct interactive_governor interactive_gov;
#define CPU_FREQ_GOV_INTERACTIVE (&interactive_gov.gov)
int cpufreq_interactive_init(struct cpufreq_policy *policy)
{
int rc;
struct cpufreq_interactive_policyinfo *ppol;
struct cpufreq_interactive_tunables *tunables;
if (have_governor_per_policy())
tunables = policy->governor_data;
else
tunables = common_tunables;
ppol = get_policyinfo(policy);
if (IS_ERR(ppol))
return PTR_ERR(ppol);
if (have_governor_per_policy()) {
WARN_ON(tunables);
} else if (tunables) {
tunables->usage_count++;
cpumask_or(&controlled_cpus, &controlled_cpus,
policy->related_cpus);
sched_update_freq_max_load(policy->related_cpus);
policy->governor_data = tunables;
return 0;
}
tunables = get_tunables(ppol);
if (!tunables) {
tunables = alloc_tunable(policy);
if (IS_ERR(tunables))
return PTR_ERR(tunables);
}
tunables->usage_count = 1;
policy->governor_data = tunables;
if (!have_governor_per_policy())
common_tunables = tunables;
rc = sysfs_create_group(get_governor_parent_kobj(policy),
get_sysfs_attr());
if (rc) {
kfree(tunables);
policy->governor_data = NULL;
if (!have_governor_per_policy())
common_tunables = NULL;
return rc;
}
if (!interactive_gov.usage_count++)
cpufreq_register_notifier(&cpufreq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
if (tunables->use_sched_load)
cpufreq_interactive_enable_sched_input(tunables);
cpumask_or(&controlled_cpus, &controlled_cpus,
policy->related_cpus);
sched_update_freq_max_load(policy->related_cpus);
if (have_governor_per_policy())
ppol->cached_tunables = tunables;
else
cached_common_tunables = tunables;
return 0;
}
void cpufreq_interactive_exit(struct cpufreq_policy *policy)
{
struct cpufreq_interactive_tunables *tunables;
if (have_governor_per_policy())
tunables = policy->governor_data;
else
tunables = common_tunables;
BUG_ON(!tunables);
cpumask_andnot(&controlled_cpus, &controlled_cpus,
policy->related_cpus);
sched_update_freq_max_load(cpu_possible_mask);
if (!--tunables->usage_count) {
/* Last policy using the governor ? */
if (!--interactive_gov.usage_count)
cpufreq_unregister_notifier(&cpufreq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
sysfs_remove_group(get_governor_parent_kobj(policy),
get_sysfs_attr());
common_tunables = NULL;
}
policy->governor_data = NULL;
if (tunables->use_sched_load)
cpufreq_interactive_disable_sched_input(tunables);
}
int cpufreq_interactive_start(struct cpufreq_policy *policy)
{
struct cpufreq_interactive_policyinfo *ppol;
struct cpufreq_frequency_table *freq_table;
struct cpufreq_interactive_tunables *tunables;
if (have_governor_per_policy())
tunables = policy->governor_data;
else
tunables = common_tunables;
BUG_ON(!tunables);
mutex_lock(&gov_lock);
freq_table = policy->freq_table;
if (!tunables->hispeed_freq)
tunables->hispeed_freq = policy->max;
ppol = per_cpu(polinfo, policy->cpu);
ppol->policy = policy;
ppol->target_freq = policy->cur;
ppol->freq_table = freq_table;
ppol->p_nolim = *policy;
ppol->p_nolim.min = policy->cpuinfo.min_freq;
ppol->p_nolim.max = policy->cpuinfo.max_freq;
ppol->floor_freq = ppol->target_freq;
ppol->floor_validate_time = ktime_to_us(ktime_get());
ppol->hispeed_validate_time = ppol->floor_validate_time;
ppol->min_freq = policy->min;
ppol->reject_notification = true;
ppol->notif_pending = false;
down_write(&ppol->enable_sem);
del_timer_sync(&ppol->policy_slack_timer);
ppol->last_evaluated_jiffy = get_jiffies_64();
cpufreq_interactive_timer_start(tunables, policy->cpu);
ppol->governor_enabled = 1;
up_write(&ppol->enable_sem);
ppol->reject_notification = false;
mutex_unlock(&gov_lock);
return 0;
}
void cpufreq_interactive_stop(struct cpufreq_policy *policy)
{
struct cpufreq_interactive_policyinfo *ppol;
struct cpufreq_interactive_tunables *tunables;
if (have_governor_per_policy())
tunables = policy->governor_data;
else
tunables = common_tunables;
BUG_ON(!tunables);
mutex_lock(&gov_lock);
ppol = per_cpu(polinfo, policy->cpu);
ppol->reject_notification = true;
down_write(&ppol->enable_sem);
ppol->governor_enabled = 0;
ppol->target_freq = 0;
gov_clear_update_util(ppol->policy);
irq_work_sync(&ppol->irq_work);
ppol->work_in_progress = false;
del_timer_sync(&ppol->policy_slack_timer);
up_write(&ppol->enable_sem);
ppol->reject_notification = false;
mutex_unlock(&gov_lock);
}
void cpufreq_interactive_limits(struct cpufreq_policy *policy)
{
struct cpufreq_interactive_policyinfo *ppol;
struct cpufreq_interactive_tunables *tunables;
if (have_governor_per_policy())
tunables = policy->governor_data;
else
tunables = common_tunables;
BUG_ON(!tunables);
ppol = per_cpu(polinfo, policy->cpu);
__cpufreq_driver_target(policy,
ppol->target_freq, CPUFREQ_RELATION_L);
down_read(&ppol->enable_sem);
if (ppol->governor_enabled) {
if (policy->min < ppol->min_freq)
cpufreq_interactive_timer_resched(policy->cpu,
true);
ppol->min_freq = policy->min;
}
up_read(&ppol->enable_sem);
}
static struct interactive_governor interactive_gov = {
.gov = {
.name = "interactive",
.max_transition_latency = 10000000,
.owner = THIS_MODULE,
.init = cpufreq_interactive_init,
.exit = cpufreq_interactive_exit,
.start = cpufreq_interactive_start,
.stop = cpufreq_interactive_stop,
.limits = cpufreq_interactive_limits,
}
};
static int __init cpufreq_interactive_gov_init(void)
{
struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
spin_lock_init(&speedchange_cpumask_lock);
mutex_init(&gov_lock);
mutex_init(&sched_lock);
speedchange_task =
kthread_create(cpufreq_interactive_speedchange_task, NULL,
"cfinteractive");
if (IS_ERR(speedchange_task))
return PTR_ERR(speedchange_task);
sched_setscheduler_nocheck(speedchange_task, SCHED_FIFO, &param);
get_task_struct(speedchange_task);
/* NB: wake up so the thread does not look hung to the freezer */
wake_up_process(speedchange_task);
return cpufreq_register_governor(CPU_FREQ_GOV_INTERACTIVE);
}
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_INTERACTIVE
struct cpufreq_governor *cpufreq_default_governor(void)
{
return CPU_FREQ_GOV_INTERACTIVE;
}
fs_initcall(cpufreq_interactive_gov_init);
#else
module_init(cpufreq_interactive_gov_init);
#endif
static void __exit cpufreq_interactive_gov_exit(void)
{
int cpu;
cpufreq_unregister_governor(CPU_FREQ_GOV_INTERACTIVE);
kthread_stop(speedchange_task);
put_task_struct(speedchange_task);
for_each_possible_cpu(cpu)
free_policyinfo(cpu);
}
module_exit(cpufreq_interactive_gov_exit);
MODULE_AUTHOR("Mike Chan <mike@android.com>");
MODULE_DESCRIPTION("'cpufreq_interactive' - A cpufreq governor for "
"Latency sensitive workloads");
MODULE_LICENSE("GPL");