blob: d0fc511e25b0694805cb387a71e9f4a1302663a3 [file] [log] [blame]
/* Copyright (c) 2012-2017, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/pm_runtime.h>
#include <linux/ratelimit.h>
#include <linux/interrupt.h>
#include <asm/dma-iommu.h>
#include <linux/iommu.h>
#include <linux/ioport.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/of_gpio.h>
#include <linux/list.h>
#include <linux/uaccess.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <linux/usb/of.h>
#include <linux/regulator/consumer.h>
#include <linux/pm_wakeup.h>
#include <linux/power_supply.h>
#include <linux/cdev.h>
#include <linux/completion.h>
#include <linux/msm-bus.h>
#include <linux/irq.h>
#include <linux/extcon.h>
#include <linux/reset.h>
#include <linux/clk/qcom.h>
#include "power.h"
#include "core.h"
#include "gadget.h"
#include "dbm.h"
#include "debug.h"
#include "xhci.h"
#define SDP_CONNETION_CHECK_TIME 10000 /* in ms */
/* time out to wait for USB cable status notification (in ms)*/
#define SM_INIT_TIMEOUT 30000
/* AHB2PHY register offsets */
#define PERIPH_SS_AHB2PHY_TOP_CFG 0x10
/* AHB2PHY read/write waite value */
#define ONE_READ_WRITE_WAIT 0x11
/* cpu to fix usb interrupt */
static int cpu_to_affin;
module_param(cpu_to_affin, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(cpu_to_affin, "affin usb irq to this cpu");
/* override for USB speed */
static int override_usb_speed;
module_param(override_usb_speed, int, 0644);
MODULE_PARM_DESC(override_usb_speed, "override for USB speed");
/* XHCI registers */
#define USB3_HCSPARAMS1 (0x4)
#define USB3_PORTSC (0x420)
/**
* USB QSCRATCH Hardware registers
*
*/
#define QSCRATCH_REG_OFFSET (0x000F8800)
#define QSCRATCH_GENERAL_CFG (QSCRATCH_REG_OFFSET + 0x08)
#define CGCTL_REG (QSCRATCH_REG_OFFSET + 0x28)
#define PWR_EVNT_IRQ_STAT_REG (QSCRATCH_REG_OFFSET + 0x58)
#define PWR_EVNT_IRQ_MASK_REG (QSCRATCH_REG_OFFSET + 0x5C)
#define PWR_EVNT_POWERDOWN_IN_P3_MASK BIT(2)
#define PWR_EVNT_POWERDOWN_OUT_P3_MASK BIT(3)
#define PWR_EVNT_LPM_IN_L2_MASK BIT(4)
#define PWR_EVNT_LPM_OUT_L2_MASK BIT(5)
#define PWR_EVNT_LPM_OUT_L1_MASK BIT(13)
/* QSCRATCH_GENERAL_CFG register bit offset */
#define PIPE_UTMI_CLK_SEL BIT(0)
#define PIPE3_PHYSTATUS_SW BIT(3)
#define PIPE_UTMI_CLK_DIS BIT(8)
#define HS_PHY_CTRL_REG (QSCRATCH_REG_OFFSET + 0x10)
#define UTMI_OTG_VBUS_VALID BIT(20)
#define SW_SESSVLD_SEL BIT(28)
#define SS_PHY_CTRL_REG (QSCRATCH_REG_OFFSET + 0x30)
#define LANE0_PWR_PRESENT BIT(24)
/* GSI related registers */
#define GSI_TRB_ADDR_BIT_53_MASK (1 << 21)
#define GSI_TRB_ADDR_BIT_55_MASK (1 << 23)
#define GSI_GENERAL_CFG_REG (QSCRATCH_REG_OFFSET + 0xFC)
#define GSI_RESTART_DBL_PNTR_MASK BIT(20)
#define GSI_CLK_EN_MASK BIT(12)
#define BLOCK_GSI_WR_GO_MASK BIT(1)
#define GSI_EN_MASK BIT(0)
#define GSI_DBL_ADDR_L(n) ((QSCRATCH_REG_OFFSET + 0x110) + (n*4))
#define GSI_DBL_ADDR_H(n) ((QSCRATCH_REG_OFFSET + 0x120) + (n*4))
#define GSI_RING_BASE_ADDR_L(n) ((QSCRATCH_REG_OFFSET + 0x130) + (n*4))
#define GSI_RING_BASE_ADDR_H(n) ((QSCRATCH_REG_OFFSET + 0x140) + (n*4))
#define GSI_IF_STS (QSCRATCH_REG_OFFSET + 0x1A4)
#define GSI_WR_CTRL_STATE_MASK BIT(15)
#define DWC3_GEVNTCOUNT_EVNTINTRPTMASK (1 << 31)
#define DWC3_GEVNTADRHI_EVNTADRHI_GSI_EN(n) (n << 22)
#define DWC3_GEVNTADRHI_EVNTADRHI_GSI_IDX(n) (n << 16)
#define DWC3_GEVENT_TYPE_GSI 0x3
struct dwc3_msm_req_complete {
struct list_head list_item;
struct usb_request *req;
void (*orig_complete)(struct usb_ep *ep,
struct usb_request *req);
};
enum dwc3_id_state {
DWC3_ID_GROUND = 0,
DWC3_ID_FLOAT,
};
/* for type c cable */
enum plug_orientation {
ORIENTATION_NONE,
ORIENTATION_CC1,
ORIENTATION_CC2,
};
enum msm_usb_irq {
HS_PHY_IRQ,
PWR_EVNT_IRQ,
DP_HS_PHY_IRQ,
DM_HS_PHY_IRQ,
SS_PHY_IRQ,
USB_MAX_IRQ
};
struct usb_irq {
char *name;
int irq;
bool enable;
};
static const struct usb_irq usb_irq_info[USB_MAX_IRQ] = {
{"hs_phy_irq", 0},
{"pwr_event_irq", 0},
{"dp_hs_phy_irq", 0},
{"dm_hs_phy_irq", 0},
{"ss_phy_irq", 0},
};
/* Input bits to state machine (mdwc->inputs) */
#define ID 0
#define B_SESS_VLD 1
#define B_SUSPEND 2
#define PM_QOS_SAMPLE_SEC 2
#define PM_QOS_THRESHOLD 400
struct dwc3_msm {
struct device *dev;
void __iomem *base;
void __iomem *ahb2phy_base;
struct platform_device *dwc3;
struct dma_iommu_mapping *iommu_map;
const struct usb_ep_ops *original_ep_ops[DWC3_ENDPOINTS_NUM];
struct list_head req_complete_list;
struct clk *xo_clk;
struct clk *core_clk;
long core_clk_rate;
long core_clk_rate_hs;
struct clk *iface_clk;
struct clk *sleep_clk;
struct clk *utmi_clk;
unsigned int utmi_clk_rate;
struct clk *utmi_clk_src;
struct clk *bus_aggr_clk;
struct clk *noc_aggr_clk;
struct clk *cfg_ahb_clk;
struct reset_control *core_reset;
struct regulator *dwc3_gdsc;
struct usb_phy *hs_phy, *ss_phy;
struct dbm *dbm;
/* VBUS regulator for host mode */
struct regulator *vbus_reg;
int vbus_retry_count;
bool resume_pending;
atomic_t pm_suspended;
struct usb_irq wakeup_irq[USB_MAX_IRQ];
struct work_struct resume_work;
struct work_struct restart_usb_work;
bool in_restart;
struct workqueue_struct *dwc3_wq;
struct delayed_work sm_work;
unsigned long inputs;
unsigned int max_power;
bool charging_disabled;
enum usb_otg_state otg_state;
u32 bus_perf_client;
struct msm_bus_scale_pdata *bus_scale_table;
struct power_supply *usb_psy;
struct work_struct vbus_draw_work;
bool in_host_mode;
enum usb_device_speed max_rh_port_speed;
unsigned int tx_fifo_size;
bool vbus_active;
bool suspend;
bool disable_host_mode_pm;
bool use_pdc_interrupts;
enum dwc3_id_state id_state;
unsigned long lpm_flags;
#define MDWC3_SS_PHY_SUSPEND BIT(0)
#define MDWC3_ASYNC_IRQ_WAKE_CAPABILITY BIT(1)
#define MDWC3_POWER_COLLAPSE BIT(2)
unsigned int irq_to_affin;
struct notifier_block dwc3_cpu_notifier;
struct notifier_block usbdev_nb;
bool hc_died;
struct extcon_dev *extcon_vbus;
struct extcon_dev *extcon_id;
struct extcon_dev *extcon_eud;
struct notifier_block vbus_nb;
struct notifier_block id_nb;
struct notifier_block eud_event_nb;
struct notifier_block host_restart_nb;
struct notifier_block host_nb;
atomic_t in_p3;
unsigned int lpm_to_suspend_delay;
bool init;
enum plug_orientation typec_orientation;
u32 num_gsi_event_buffers;
struct dwc3_event_buffer **gsi_ev_buff;
int pm_qos_latency;
struct pm_qos_request pm_qos_req_dma;
struct delayed_work perf_vote_work;
struct delayed_work sdp_check;
};
#define USB_HSPHY_3P3_VOL_MIN 3050000 /* uV */
#define USB_HSPHY_3P3_VOL_MAX 3300000 /* uV */
#define USB_HSPHY_3P3_HPM_LOAD 16000 /* uA */
#define USB_HSPHY_1P8_VOL_MIN 1800000 /* uV */
#define USB_HSPHY_1P8_VOL_MAX 1800000 /* uV */
#define USB_HSPHY_1P8_HPM_LOAD 19000 /* uA */
#define USB_SSPHY_1P8_VOL_MIN 1800000 /* uV */
#define USB_SSPHY_1P8_VOL_MAX 1800000 /* uV */
#define USB_SSPHY_1P8_HPM_LOAD 23000 /* uA */
#define DSTS_CONNECTSPD_SS 0x4
static void dwc3_pwr_event_handler(struct dwc3_msm *mdwc);
static int dwc3_msm_gadget_vbus_draw(struct dwc3_msm *mdwc, unsigned int mA);
static void dwc3_msm_notify_event(struct dwc3 *dwc, unsigned int event);
static int dwc3_restart_usb_host_mode(struct notifier_block *nb,
unsigned long event, void *ptr);
static inline bool is_valid_usb_speed(struct dwc3 *dwc, int speed)
{
return (((speed == USB_SPEED_FULL) || (speed == USB_SPEED_HIGH) ||
(speed == USB_SPEED_SUPER) || (speed == USB_SPEED_SUPER_PLUS))
&& (speed <= dwc->maximum_speed));
}
/**
*
* Read register with debug info.
*
* @base - DWC3 base virtual address.
* @offset - register offset.
*
* @return u32
*/
static inline u32 dwc3_msm_read_reg(void __iomem *base, u32 offset)
{
u32 val = ioread32(base + offset);
return val;
}
/**
* Read register masked field with debug info.
*
* @base - DWC3 base virtual address.
* @offset - register offset.
* @mask - register bitmask.
*
* @return u32
*/
static inline u32 dwc3_msm_read_reg_field(void __iomem *base,
u32 offset,
const u32 mask)
{
u32 shift = __ffs(mask);
u32 val = ioread32(base + offset);
val &= mask; /* clear other bits */
val >>= shift;
return val;
}
/**
*
* Write register with debug info.
*
* @base - DWC3 base virtual address.
* @offset - register offset.
* @val - value to write.
*
*/
static inline void dwc3_msm_write_reg(void __iomem *base, u32 offset, u32 val)
{
iowrite32(val, base + offset);
}
/**
* Write register masked field with debug info.
*
* @base - DWC3 base virtual address.
* @offset - register offset.
* @mask - register bitmask.
* @val - value to write.
*
*/
static inline void dwc3_msm_write_reg_field(void __iomem *base, u32 offset,
const u32 mask, u32 val)
{
u32 shift = __ffs(mask);
u32 tmp = ioread32(base + offset);
tmp &= ~mask; /* clear written bits */
val = tmp | (val << shift);
iowrite32(val, base + offset);
}
/**
* Write register and read back masked value to confirm it is written
*
* @base - DWC3 base virtual address.
* @offset - register offset.
* @mask - register bitmask specifying what should be updated
* @val - value to write.
*
*/
static inline void dwc3_msm_write_readback(void __iomem *base, u32 offset,
const u32 mask, u32 val)
{
u32 write_val, tmp = ioread32(base + offset);
tmp &= ~mask; /* retain other bits */
write_val = tmp | val;
iowrite32(write_val, base + offset);
/* Read back to see if val was written */
tmp = ioread32(base + offset);
tmp &= mask; /* clear other bits */
if (tmp != val)
pr_err("%s: write: %x to QSCRATCH: %x FAILED\n",
__func__, val, offset);
}
static bool dwc3_msm_is_ss_rhport_connected(struct dwc3_msm *mdwc)
{
int i, num_ports;
u32 reg;
reg = dwc3_msm_read_reg(mdwc->base, USB3_HCSPARAMS1);
num_ports = HCS_MAX_PORTS(reg);
for (i = 0; i < num_ports; i++) {
reg = dwc3_msm_read_reg(mdwc->base, USB3_PORTSC + i*0x10);
if ((reg & PORT_CONNECT) && DEV_SUPERSPEED(reg))
return true;
}
return false;
}
static bool dwc3_msm_is_host_superspeed(struct dwc3_msm *mdwc)
{
int i, num_ports;
u32 reg;
reg = dwc3_msm_read_reg(mdwc->base, USB3_HCSPARAMS1);
num_ports = HCS_MAX_PORTS(reg);
for (i = 0; i < num_ports; i++) {
reg = dwc3_msm_read_reg(mdwc->base, USB3_PORTSC + i*0x10);
if ((reg & PORT_PE) && DEV_SUPERSPEED(reg))
return true;
}
return false;
}
static inline bool dwc3_msm_is_dev_superspeed(struct dwc3_msm *mdwc)
{
u8 speed;
speed = dwc3_msm_read_reg(mdwc->base, DWC3_DSTS) & DWC3_DSTS_CONNECTSPD;
return !!(speed & DSTS_CONNECTSPD_SS);
}
static inline bool dwc3_msm_is_superspeed(struct dwc3_msm *mdwc)
{
if (mdwc->in_host_mode)
return dwc3_msm_is_host_superspeed(mdwc);
return dwc3_msm_is_dev_superspeed(mdwc);
}
#if IS_ENABLED(CONFIG_USB_DWC3_GADGET) || IS_ENABLED(CONFIG_USB_DWC3_DUAL_ROLE)
/**
* Configure the DBM with the BAM's data fifo.
* This function is called by the USB BAM Driver
* upon initialization.
*
* @ep - pointer to usb endpoint.
* @addr - address of data fifo.
* @size - size of data fifo.
*
*/
int msm_data_fifo_config(struct usb_ep *ep, phys_addr_t addr,
u32 size, u8 dst_pipe_idx)
{
struct dwc3_ep *dep = to_dwc3_ep(ep);
struct dwc3 *dwc = dep->dwc;
struct dwc3_msm *mdwc = dev_get_drvdata(dwc->dev->parent);
dev_dbg(mdwc->dev, "%s\n", __func__);
return dbm_data_fifo_config(mdwc->dbm, dep->number, addr, size,
dst_pipe_idx);
}
/**
* Cleanups for msm endpoint on request complete.
*
* Also call original request complete.
*
* @usb_ep - pointer to usb_ep instance.
* @request - pointer to usb_request instance.
*
* @return int - 0 on success, negative on error.
*/
static void dwc3_msm_req_complete_func(struct usb_ep *ep,
struct usb_request *request)
{
struct dwc3_ep *dep = to_dwc3_ep(ep);
struct dwc3 *dwc = dep->dwc;
struct dwc3_msm *mdwc = dev_get_drvdata(dwc->dev->parent);
struct dwc3_msm_req_complete *req_complete = NULL;
/* Find original request complete function and remove it from list */
list_for_each_entry(req_complete, &mdwc->req_complete_list, list_item) {
if (req_complete->req == request)
break;
}
if (!req_complete || req_complete->req != request) {
dev_err(dep->dwc->dev, "%s: could not find the request\n",
__func__);
return;
}
list_del(&req_complete->list_item);
/*
* Release another one TRB to the pool since DBM queue took 2 TRBs
* (normal and link), and the dwc3/gadget.c :: dwc3_gadget_giveback
* released only one.
*/
dep->trb_dequeue++;
/* Unconfigure dbm ep */
dbm_ep_unconfig(mdwc->dbm, dep->number);
/*
* If this is the last endpoint we unconfigured, than reset also
* the event buffers; unless unconfiguring the ep due to lpm,
* in which case the event buffer only gets reset during the
* block reset.
*/
if (dbm_get_num_of_eps_configured(mdwc->dbm) == 0 &&
!dbm_reset_ep_after_lpm(mdwc->dbm))
dbm_event_buffer_config(mdwc->dbm, 0, 0, 0);
/*
* Call original complete function, notice that dwc->lock is already
* taken by the caller of this function (dwc3_gadget_giveback()).
*/
request->complete = req_complete->orig_complete;
if (request->complete)
request->complete(ep, request);
kfree(req_complete);
}
/**
* Helper function
*
* Reset DBM endpoint.
*
* @mdwc - pointer to dwc3_msm instance.
* @dep - pointer to dwc3_ep instance.
*
* @return int - 0 on success, negative on error.
*/
static int __dwc3_msm_dbm_ep_reset(struct dwc3_msm *mdwc, struct dwc3_ep *dep)
{
int ret;
dev_dbg(mdwc->dev, "Resetting dbm endpoint %d\n", dep->number);
/* Reset the dbm endpoint */
ret = dbm_ep_soft_reset(mdwc->dbm, dep->number, true);
if (ret) {
dev_err(mdwc->dev, "%s: failed to assert dbm ep reset\n",
__func__);
return ret;
}
/*
* The necessary delay between asserting and deasserting the dbm ep
* reset is based on the number of active endpoints. If there is more
* than one endpoint, a 1 msec delay is required. Otherwise, a shorter
* delay will suffice.
*/
if (dbm_get_num_of_eps_configured(mdwc->dbm) > 1)
usleep_range(1000, 1200);
else
udelay(10);
ret = dbm_ep_soft_reset(mdwc->dbm, dep->number, false);
if (ret) {
dev_err(mdwc->dev, "%s: failed to deassert dbm ep reset\n",
__func__);
return ret;
}
return 0;
}
/**
* Reset the DBM endpoint which is linked to the given USB endpoint.
*
* @usb_ep - pointer to usb_ep instance.
*
* @return int - 0 on success, negative on error.
*/
int msm_dwc3_reset_dbm_ep(struct usb_ep *ep)
{
struct dwc3_ep *dep = to_dwc3_ep(ep);
struct dwc3 *dwc = dep->dwc;
struct dwc3_msm *mdwc = dev_get_drvdata(dwc->dev->parent);
return __dwc3_msm_dbm_ep_reset(mdwc, dep);
}
EXPORT_SYMBOL(msm_dwc3_reset_dbm_ep);
/**
* Helper function.
* See the header of the dwc3_msm_ep_queue function.
*
* @dwc3_ep - pointer to dwc3_ep instance.
* @req - pointer to dwc3_request instance.
*
* @return int - 0 on success, negative on error.
*/
static int __dwc3_msm_ep_queue(struct dwc3_ep *dep, struct dwc3_request *req)
{
struct dwc3_trb *trb;
struct dwc3_trb *trb_link;
struct dwc3_gadget_ep_cmd_params params;
u32 cmd;
int ret = 0;
/* We push the request to the dep->started_list list to indicate that
* this request is issued with start transfer. The request will be out
* from this list in 2 cases. The first is that the transfer will be
* completed (not if the transfer is endless using a circular TRBs with
* with link TRB). The second case is an option to do stop stransfer,
* this can be initiated by the function driver when calling dequeue.
*/
req->started = true;
list_add_tail(&req->list, &dep->started_list);
/* First, prepare a normal TRB, point to the fake buffer */
trb = &dep->trb_pool[dep->trb_enqueue];
dwc3_ep_inc_enq(dep);
memset(trb, 0, sizeof(*trb));
req->trb = trb;
trb->bph = DBM_TRB_BIT | DBM_TRB_DMA | DBM_TRB_EP_NUM(dep->number);
trb->size = DWC3_TRB_SIZE_LENGTH(req->request.length);
trb->ctrl = DWC3_TRBCTL_NORMAL | DWC3_TRB_CTRL_HWO |
DWC3_TRB_CTRL_CHN | (req->direction ? 0 : DWC3_TRB_CTRL_CSP);
req->trb_dma = dwc3_trb_dma_offset(dep, trb);
/* Second, prepare a Link TRB that points to the first TRB*/
trb_link = &dep->trb_pool[dep->trb_enqueue];
dwc3_ep_inc_enq(dep);
memset(trb_link, 0, sizeof(*trb_link));
trb_link->bpl = lower_32_bits(req->trb_dma);
trb_link->bph = DBM_TRB_BIT |
DBM_TRB_DMA | DBM_TRB_EP_NUM(dep->number);
trb_link->size = 0;
trb_link->ctrl = DWC3_TRBCTL_LINK_TRB | DWC3_TRB_CTRL_HWO;
/*
* Now start the transfer
*/
memset(&params, 0, sizeof(params));
params.param0 = 0; /* TDAddr High */
params.param1 = lower_32_bits(req->trb_dma); /* DAddr Low */
/* DBM requires IOC to be set */
cmd = DWC3_DEPCMD_STARTTRANSFER | DWC3_DEPCMD_CMDIOC;
ret = dwc3_send_gadget_ep_cmd(dep, cmd, &params);
if (ret < 0) {
dev_dbg(dep->dwc->dev,
"%s: failed to send STARTTRANSFER command\n",
__func__);
list_del(&req->list);
return ret;
}
dep->flags |= DWC3_EP_BUSY;
dep->resource_index = dwc3_gadget_ep_get_transfer_index(dep);
return ret;
}
/**
* Queue a usb request to the DBM endpoint.
* This function should be called after the endpoint
* was enabled by the ep_enable.
*
* This function prepares special structure of TRBs which
* is familiar with the DBM HW, so it will possible to use
* this endpoint in DBM mode.
*
* The TRBs prepared by this function, is one normal TRB
* which point to a fake buffer, followed by a link TRB
* that points to the first TRB.
*
* The API of this function follow the regular API of
* usb_ep_queue (see usb_ep_ops in include/linuk/usb/gadget.h).
*
* @usb_ep - pointer to usb_ep instance.
* @request - pointer to usb_request instance.
* @gfp_flags - possible flags.
*
* @return int - 0 on success, negative on error.
*/
static int dwc3_msm_ep_queue(struct usb_ep *ep,
struct usb_request *request, gfp_t gfp_flags)
{
struct dwc3_request *req = to_dwc3_request(request);
struct dwc3_ep *dep = to_dwc3_ep(ep);
struct dwc3 *dwc = dep->dwc;
struct dwc3_msm *mdwc = dev_get_drvdata(dwc->dev->parent);
struct dwc3_msm_req_complete *req_complete;
unsigned long flags;
int ret = 0, size;
u8 bam_pipe;
bool producer;
bool disable_wb;
bool internal_mem;
bool ioc;
bool superspeed;
if (!(request->udc_priv & MSM_SPS_MODE)) {
/* Not SPS mode, call original queue */
dev_vdbg(mdwc->dev, "%s: not sps mode, use regular queue\n",
__func__);
return (mdwc->original_ep_ops[dep->number])->queue(ep,
request,
gfp_flags);
}
/* HW restriction regarding TRB size (8KB) */
if (req->request.length < 0x2000) {
dev_err(mdwc->dev, "%s: Min TRB size is 8KB\n", __func__);
return -EINVAL;
}
/*
* Override req->complete function, but before doing that,
* store it's original pointer in the req_complete_list.
*/
req_complete = kzalloc(sizeof(*req_complete), gfp_flags);
if (!req_complete)
return -ENOMEM;
req_complete->req = request;
req_complete->orig_complete = request->complete;
list_add_tail(&req_complete->list_item, &mdwc->req_complete_list);
request->complete = dwc3_msm_req_complete_func;
/*
* Configure the DBM endpoint
*/
bam_pipe = request->udc_priv & MSM_PIPE_ID_MASK;
producer = ((request->udc_priv & MSM_PRODUCER) ? true : false);
disable_wb = ((request->udc_priv & MSM_DISABLE_WB) ? true : false);
internal_mem = ((request->udc_priv & MSM_INTERNAL_MEM) ? true : false);
ioc = ((request->udc_priv & MSM_ETD_IOC) ? true : false);
ret = dbm_ep_config(mdwc->dbm, dep->number, bam_pipe, producer,
disable_wb, internal_mem, ioc);
if (ret < 0) {
dev_err(mdwc->dev,
"error %d after calling dbm_ep_config\n", ret);
return ret;
}
dev_vdbg(dwc->dev, "%s: queing request %p to ep %s length %d\n",
__func__, request, ep->name, request->length);
size = dwc3_msm_read_reg(mdwc->base, DWC3_GEVNTSIZ(0));
dbm_event_buffer_config(mdwc->dbm,
dwc3_msm_read_reg(mdwc->base, DWC3_GEVNTADRLO(0)),
dwc3_msm_read_reg(mdwc->base, DWC3_GEVNTADRHI(0)),
DWC3_GEVNTSIZ_SIZE(size));
/*
* We must obtain the lock of the dwc3 core driver,
* including disabling interrupts, so we will be sure
* that we are the only ones that configure the HW device
* core and ensure that we queuing the request will finish
* as soon as possible so we will release back the lock.
*/
spin_lock_irqsave(&dwc->lock, flags);
if (!dep->endpoint.desc) {
dev_err(mdwc->dev,
"%s: trying to queue request %p to disabled ep %s\n",
__func__, request, ep->name);
ret = -EPERM;
goto err;
}
if (dep->number == 0 || dep->number == 1) {
dev_err(mdwc->dev,
"%s: trying to queue dbm request %p to control ep %s\n",
__func__, request, ep->name);
ret = -EPERM;
goto err;
}
if (dep->trb_dequeue != dep->trb_enqueue ||
!list_empty(&dep->pending_list)
|| !list_empty(&dep->started_list)) {
dev_err(mdwc->dev,
"%s: trying to queue dbm request %p tp ep %s\n",
__func__, request, ep->name);
ret = -EPERM;
goto err;
} else {
dep->trb_dequeue = 0;
dep->trb_enqueue = 0;
}
ret = __dwc3_msm_ep_queue(dep, req);
if (ret < 0) {
dev_err(mdwc->dev,
"error %d after calling __dwc3_msm_ep_queue\n", ret);
goto err;
}
spin_unlock_irqrestore(&dwc->lock, flags);
superspeed = dwc3_msm_is_dev_superspeed(mdwc);
dbm_set_speed(mdwc->dbm, (u8)superspeed);
return 0;
err:
spin_unlock_irqrestore(&dwc->lock, flags);
kfree(req_complete);
return ret;
}
/*
* Returns XferRscIndex for the EP. This is stored at StartXfer GSI EP OP
*
* @usb_ep - pointer to usb_ep instance.
*
* @return int - XferRscIndex
*/
static inline int gsi_get_xfer_index(struct usb_ep *ep)
{
struct dwc3_ep *dep = to_dwc3_ep(ep);
return dep->resource_index;
}
/*
* Fills up the GSI channel information needed in call to IPA driver
* for GSI channel creation.
*
* @usb_ep - pointer to usb_ep instance.
* @ch_info - output parameter with requested channel info
*/
static void gsi_get_channel_info(struct usb_ep *ep,
struct gsi_channel_info *ch_info)
{
struct dwc3_ep *dep = to_dwc3_ep(ep);
int last_trb_index = 0;
struct dwc3 *dwc = dep->dwc;
struct usb_gsi_request *request = ch_info->ch_req;
/* Provide physical USB addresses for DEPCMD and GEVENTCNT registers */
ch_info->depcmd_low_addr = (u32)(dwc->reg_phys +
DWC3_DEP_BASE(dep->number) + DWC3_DEPCMD);
ch_info->depcmd_hi_addr = 0;
ch_info->xfer_ring_base_addr = dwc3_trb_dma_offset(dep,
&dep->trb_pool[0]);
/* Convert to multipled of 1KB */
ch_info->const_buffer_size = request->buf_len/1024;
/* IN direction */
if (dep->direction) {
/*
* Multiply by size of each TRB for xfer_ring_len in bytes.
* 2n + 2 TRBs as per GSI h/w requirement. n Xfer TRBs + 1
* extra Xfer TRB followed by n ZLP TRBs + 1 LINK TRB.
*/
ch_info->xfer_ring_len = (2 * request->num_bufs + 2) * 0x10;
last_trb_index = 2 * request->num_bufs + 2;
} else { /* OUT direction */
/*
* Multiply by size of each TRB for xfer_ring_len in bytes.
* n + 1 TRBs as per GSI h/w requirement. n Xfer TRBs + 1
* LINK TRB.
*/
ch_info->xfer_ring_len = (request->num_bufs + 2) * 0x10;
last_trb_index = request->num_bufs + 2;
}
/* Store last 16 bits of LINK TRB address as per GSI hw requirement */
ch_info->last_trb_addr = (dwc3_trb_dma_offset(dep,
&dep->trb_pool[last_trb_index - 1]) & 0x0000FFFF);
ch_info->gevntcount_low_addr = (u32)(dwc->reg_phys +
DWC3_GEVNTCOUNT(ep->ep_intr_num));
ch_info->gevntcount_hi_addr = 0;
dev_dbg(dwc->dev,
"depcmd_laddr=%x last_trb_addr=%x gevtcnt_laddr=%x gevtcnt_haddr=%x",
ch_info->depcmd_low_addr, ch_info->last_trb_addr,
ch_info->gevntcount_low_addr, ch_info->gevntcount_hi_addr);
}
/*
* Perform StartXfer on GSI EP. Stores XferRscIndex.
*
* @usb_ep - pointer to usb_ep instance.
*
* @return int - 0 on success
*/
static int gsi_startxfer_for_ep(struct usb_ep *ep)
{
int ret;
struct dwc3_gadget_ep_cmd_params params;
u32 cmd;
struct dwc3_ep *dep = to_dwc3_ep(ep);
struct dwc3 *dwc = dep->dwc;
memset(&params, 0, sizeof(params));
params.param0 = GSI_TRB_ADDR_BIT_53_MASK | GSI_TRB_ADDR_BIT_55_MASK;
params.param0 |= (ep->ep_intr_num << 16);
params.param1 = lower_32_bits(dwc3_trb_dma_offset(dep,
&dep->trb_pool[0]));
cmd = DWC3_DEPCMD_STARTTRANSFER;
cmd |= DWC3_DEPCMD_PARAM(0);
ret = dwc3_send_gadget_ep_cmd(dep, cmd, &params);
if (ret < 0)
dev_dbg(dwc->dev, "Fail StrtXfr on GSI EP#%d\n", dep->number);
dep->resource_index = dwc3_gadget_ep_get_transfer_index(dep);
dev_dbg(dwc->dev, "XferRsc = %x", dep->resource_index);
return ret;
}
/*
* Store Ring Base and Doorbell Address for GSI EP
* for GSI channel creation.
*
* @usb_ep - pointer to usb_ep instance.
* @dbl_addr - Doorbell address obtained from IPA driver
*/
static void gsi_store_ringbase_dbl_info(struct usb_ep *ep, u32 dbl_addr)
{
struct dwc3_ep *dep = to_dwc3_ep(ep);
struct dwc3 *dwc = dep->dwc;
struct dwc3_msm *mdwc = dev_get_drvdata(dwc->dev->parent);
int n = ep->ep_intr_num - 1;
dwc3_msm_write_reg(mdwc->base, GSI_RING_BASE_ADDR_L(n),
dwc3_trb_dma_offset(dep, &dep->trb_pool[0]));
dwc3_msm_write_reg(mdwc->base, GSI_DBL_ADDR_L(n), dbl_addr);
dev_dbg(mdwc->dev, "Ring Base Addr %d = %x", n,
dwc3_msm_read_reg(mdwc->base, GSI_RING_BASE_ADDR_L(n)));
dev_dbg(mdwc->dev, "GSI DB Addr %d = %x", n,
dwc3_msm_read_reg(mdwc->base, GSI_DBL_ADDR_L(n)));
}
/*
* Rings Doorbell for GSI Channel
*
* @usb_ep - pointer to usb_ep instance.
* @request - pointer to GSI request. This is used to pass in the
* address of the GSI doorbell obtained from IPA driver
*/
static void gsi_ring_db(struct usb_ep *ep, struct usb_gsi_request *request)
{
void __iomem *gsi_dbl_address_lsb;
void __iomem *gsi_dbl_address_msb;
dma_addr_t offset;
u64 dbl_addr = *((u64 *)request->buf_base_addr);
u32 dbl_lo_addr = (dbl_addr & 0xFFFFFFFF);
u32 dbl_hi_addr = (dbl_addr >> 32);
struct dwc3_ep *dep = to_dwc3_ep(ep);
struct dwc3 *dwc = dep->dwc;
struct dwc3_msm *mdwc = dev_get_drvdata(dwc->dev->parent);
int num_trbs = (dep->direction) ? (2 * (request->num_bufs) + 2)
: (request->num_bufs + 2);
gsi_dbl_address_lsb = devm_ioremap_nocache(mdwc->dev,
dbl_lo_addr, sizeof(u32));
if (!gsi_dbl_address_lsb)
dev_dbg(mdwc->dev, "Failed to get GSI DBL address LSB\n");
gsi_dbl_address_msb = devm_ioremap_nocache(mdwc->dev,
dbl_hi_addr, sizeof(u32));
if (!gsi_dbl_address_msb)
dev_dbg(mdwc->dev, "Failed to get GSI DBL address MSB\n");
offset = dwc3_trb_dma_offset(dep, &dep->trb_pool[num_trbs-1]);
dev_dbg(mdwc->dev, "Writing link TRB addr: %pa to %p (%x) for ep:%s\n",
&offset, gsi_dbl_address_lsb, dbl_lo_addr, ep->name);
writel_relaxed(offset, gsi_dbl_address_lsb);
writel_relaxed(0, gsi_dbl_address_msb);
}
/*
* Sets HWO bit for TRBs and performs UpdateXfer for OUT EP.
*
* @usb_ep - pointer to usb_ep instance.
* @request - pointer to GSI request. Used to determine num of TRBs for OUT EP.
*
* @return int - 0 on success
*/
static int gsi_updatexfer_for_ep(struct usb_ep *ep,
struct usb_gsi_request *request)
{
int i;
int ret;
u32 cmd;
int num_trbs = request->num_bufs + 1;
struct dwc3_trb *trb;
struct dwc3_gadget_ep_cmd_params params;
struct dwc3_ep *dep = to_dwc3_ep(ep);
struct dwc3 *dwc = dep->dwc;
for (i = 0; i < num_trbs - 1; i++) {
trb = &dep->trb_pool[i];
trb->ctrl |= DWC3_TRB_CTRL_HWO;
}
memset(&params, 0, sizeof(params));
cmd = DWC3_DEPCMD_UPDATETRANSFER;
cmd |= DWC3_DEPCMD_PARAM(dep->resource_index);
ret = dwc3_send_gadget_ep_cmd(dep, cmd, &params);
dep->flags |= DWC3_EP_BUSY;
if (ret < 0)
dev_dbg(dwc->dev, "UpdateXfr fail on GSI EP#%d\n", dep->number);
return ret;
}
/*
* Perform EndXfer on particular GSI EP.
*
* @usb_ep - pointer to usb_ep instance.
*/
static void gsi_endxfer_for_ep(struct usb_ep *ep)
{
struct dwc3_ep *dep = to_dwc3_ep(ep);
struct dwc3 *dwc = dep->dwc;
dwc3_stop_active_transfer(dwc, dep->number, true);
}
/*
* Allocates and configures TRBs for GSI EPs.
*
* @usb_ep - pointer to usb_ep instance.
* @request - pointer to GSI request.
*
* @return int - 0 on success
*/
static int gsi_prepare_trbs(struct usb_ep *ep, struct usb_gsi_request *req)
{
int i = 0;
dma_addr_t buffer_addr = req->dma;
struct dwc3_ep *dep = to_dwc3_ep(ep);
struct dwc3 *dwc = dep->dwc;
struct dwc3_trb *trb;
int num_trbs = (dep->direction) ? (2 * (req->num_bufs) + 2)
: (req->num_bufs + 2);
dep->trb_dma_pool = dma_pool_create(ep->name, dwc->sysdev,
num_trbs * sizeof(struct dwc3_trb),
num_trbs * sizeof(struct dwc3_trb), 0);
if (!dep->trb_dma_pool) {
dev_err(dep->dwc->dev, "failed to alloc trb dma pool for %s\n",
dep->name);
return -ENOMEM;
}
dep->num_trbs = num_trbs;
dep->trb_pool = dma_pool_alloc(dep->trb_dma_pool,
GFP_KERNEL, &dep->trb_pool_dma);
if (!dep->trb_pool) {
dev_err(dep->dwc->dev, "failed to allocate trb pool for %s\n",
dep->name);
return -ENOMEM;
}
/* IN direction */
if (dep->direction) {
for (i = 0; i < num_trbs ; i++) {
trb = &dep->trb_pool[i];
memset(trb, 0, sizeof(*trb));
/* Set up first n+1 TRBs for ZLPs */
if (i < (req->num_bufs + 1)) {
trb->bpl = 0;
trb->bph = 0;
trb->size = 0;
trb->ctrl = DWC3_TRBCTL_NORMAL
| DWC3_TRB_CTRL_IOC;
continue;
}
/* Setup n TRBs pointing to valid buffers */
trb->bpl = lower_32_bits(buffer_addr);
trb->bph = 0;
trb->size = 0;
trb->ctrl = DWC3_TRBCTL_NORMAL
| DWC3_TRB_CTRL_IOC;
buffer_addr += req->buf_len;
/* Set up the Link TRB at the end */
if (i == (num_trbs - 1)) {
trb->bpl = dwc3_trb_dma_offset(dep,
&dep->trb_pool[0]);
trb->bph = (1 << 23) | (1 << 21)
| (ep->ep_intr_num << 16);
trb->size = 0;
trb->ctrl = DWC3_TRBCTL_LINK_TRB
| DWC3_TRB_CTRL_HWO;
}
}
} else { /* OUT direction */
for (i = 0; i < num_trbs ; i++) {
trb = &dep->trb_pool[i];
memset(trb, 0, sizeof(*trb));
/* Setup LINK TRB to start with TRB ring */
if (i == 0) {
trb->bpl = dwc3_trb_dma_offset(dep,
&dep->trb_pool[1]);
trb->ctrl = DWC3_TRBCTL_LINK_TRB;
} else if (i == (num_trbs - 1)) {
/* Set up the Link TRB at the end */
trb->bpl = dwc3_trb_dma_offset(dep,
&dep->trb_pool[0]);
trb->bph = (1 << 23) | (1 << 21)
| (ep->ep_intr_num << 16);
trb->ctrl = DWC3_TRBCTL_LINK_TRB
| DWC3_TRB_CTRL_HWO;
} else {
trb->bpl = lower_32_bits(buffer_addr);
trb->size = req->buf_len;
buffer_addr += req->buf_len;
trb->ctrl = DWC3_TRBCTL_NORMAL
| DWC3_TRB_CTRL_IOC
| DWC3_TRB_CTRL_CSP
| DWC3_TRB_CTRL_ISP_IMI;
}
}
}
pr_debug("%s: Initialized TRB Ring for %s\n", __func__, dep->name);
trb = &dep->trb_pool[0];
if (trb) {
for (i = 0; i < num_trbs; i++) {
pr_debug("TRB(%d): ADDRESS:%lx bpl:%x bph:%x size:%x ctrl:%x\n",
i, (unsigned long)dwc3_trb_dma_offset(dep,
&dep->trb_pool[i]), trb->bpl, trb->bph,
trb->size, trb->ctrl);
trb++;
}
}
return 0;
}
/*
* Frees TRBs for GSI EPs.
*
* @usb_ep - pointer to usb_ep instance.
*
*/
static void gsi_free_trbs(struct usb_ep *ep)
{
struct dwc3_ep *dep = to_dwc3_ep(ep);
if (dep->endpoint.ep_type == EP_TYPE_NORMAL)
return;
/* Free TRBs and TRB pool for EP */
if (dep->trb_dma_pool) {
dma_pool_free(dep->trb_dma_pool, dep->trb_pool,
dep->trb_pool_dma);
dma_pool_destroy(dep->trb_dma_pool);
dep->trb_pool = NULL;
dep->trb_pool_dma = 0;
dep->trb_dma_pool = NULL;
}
}
/*
* Configures GSI EPs. For GSI EPs we need to set interrupter numbers.
*
* @usb_ep - pointer to usb_ep instance.
* @request - pointer to GSI request.
*/
static void gsi_configure_ep(struct usb_ep *ep, struct usb_gsi_request *request)
{
struct dwc3_ep *dep = to_dwc3_ep(ep);
struct dwc3 *dwc = dep->dwc;
struct dwc3_msm *mdwc = dev_get_drvdata(dwc->dev->parent);
struct dwc3_gadget_ep_cmd_params params;
const struct usb_endpoint_descriptor *desc = ep->desc;
const struct usb_ss_ep_comp_descriptor *comp_desc = ep->comp_desc;
u32 reg;
int ret;
memset(&params, 0x00, sizeof(params));
/* Configure GSI EP */
params.param0 = DWC3_DEPCFG_EP_TYPE(usb_endpoint_type(desc))
| DWC3_DEPCFG_MAX_PACKET_SIZE(usb_endpoint_maxp(desc));
/* Burst size is only needed in SuperSpeed mode */
if (dwc->gadget.speed == USB_SPEED_SUPER) {
u32 burst = dep->endpoint.maxburst - 1;
params.param0 |= DWC3_DEPCFG_BURST_SIZE(burst);
}
if (usb_ss_max_streams(comp_desc) && usb_endpoint_xfer_bulk(desc)) {
params.param1 |= DWC3_DEPCFG_STREAM_CAPABLE
| DWC3_DEPCFG_STREAM_EVENT_EN;
dep->stream_capable = true;
}
/* Set EP number */
params.param1 |= DWC3_DEPCFG_EP_NUMBER(dep->number);
/* Set interrupter number for GSI endpoints */
params.param1 |= DWC3_DEPCFG_INT_NUM(ep->ep_intr_num);
/* Enable XferInProgress and XferComplete Interrupts */
params.param1 |= DWC3_DEPCFG_XFER_COMPLETE_EN;
params.param1 |= DWC3_DEPCFG_XFER_IN_PROGRESS_EN;
params.param1 |= DWC3_DEPCFG_FIFO_ERROR_EN;
/*
* We must use the lower 16 TX FIFOs even though
* HW might have more
*/
/* Remove FIFO Number for GSI EP*/
if (dep->direction)
params.param0 |= DWC3_DEPCFG_FIFO_NUMBER(dep->number >> 1);
params.param0 |= DWC3_DEPCFG_ACTION_INIT;
dev_dbg(mdwc->dev, "Set EP config to params = %x %x %x, for %s\n",
params.param0, params.param1, params.param2, dep->name);
dwc3_send_gadget_ep_cmd(dep, DWC3_DEPCMD_SETEPCONFIG, &params);
/* Set XferRsc Index for GSI EP */
if (!(dep->flags & DWC3_EP_ENABLED)) {
ret = dwc3_gadget_resize_tx_fifos(dwc, dep);
if (ret)
return;
memset(&params, 0x00, sizeof(params));
params.param0 = DWC3_DEPXFERCFG_NUM_XFER_RES(1);
dwc3_send_gadget_ep_cmd(dep,
DWC3_DEPCMD_SETTRANSFRESOURCE, &params);
dep->endpoint.desc = desc;
dep->comp_desc = comp_desc;
dep->type = usb_endpoint_type(desc);
dep->flags |= DWC3_EP_ENABLED;
reg = dwc3_readl(dwc->regs, DWC3_DALEPENA);
reg |= DWC3_DALEPENA_EP(dep->number);
dwc3_writel(dwc->regs, DWC3_DALEPENA, reg);
}
}
/*
* Enables USB wrapper for GSI
*
* @usb_ep - pointer to usb_ep instance.
*/
static void gsi_enable(struct usb_ep *ep)
{
struct dwc3_ep *dep = to_dwc3_ep(ep);
struct dwc3 *dwc = dep->dwc;
struct dwc3_msm *mdwc = dev_get_drvdata(dwc->dev->parent);
dwc3_msm_write_reg_field(mdwc->base,
GSI_GENERAL_CFG_REG, GSI_CLK_EN_MASK, 1);
dwc3_msm_write_reg_field(mdwc->base,
GSI_GENERAL_CFG_REG, GSI_RESTART_DBL_PNTR_MASK, 1);
dwc3_msm_write_reg_field(mdwc->base,
GSI_GENERAL_CFG_REG, GSI_RESTART_DBL_PNTR_MASK, 0);
dev_dbg(mdwc->dev, "%s: Enable GSI\n", __func__);
dwc3_msm_write_reg_field(mdwc->base,
GSI_GENERAL_CFG_REG, GSI_EN_MASK, 1);
}
/*
* Block or allow doorbell towards GSI
*
* @usb_ep - pointer to usb_ep instance.
* @request - pointer to GSI request. In this case num_bufs is used as a bool
* to set or clear the doorbell bit
*/
static void gsi_set_clear_dbell(struct usb_ep *ep,
bool block_db)
{
struct dwc3_ep *dep = to_dwc3_ep(ep);
struct dwc3 *dwc = dep->dwc;
struct dwc3_msm *mdwc = dev_get_drvdata(dwc->dev->parent);
dwc3_msm_write_reg_field(mdwc->base,
GSI_GENERAL_CFG_REG, BLOCK_GSI_WR_GO_MASK, block_db);
}
/*
* Performs necessary checks before stopping GSI channels
*
* @usb_ep - pointer to usb_ep instance to access DWC3 regs
*/
static bool gsi_check_ready_to_suspend(struct usb_ep *ep, bool f_suspend)
{
u32 timeout = 1500;
u32 reg = 0;
struct dwc3_ep *dep = to_dwc3_ep(ep);
struct dwc3 *dwc = dep->dwc;
struct dwc3_msm *mdwc = dev_get_drvdata(dwc->dev->parent);
while (dwc3_msm_read_reg_field(mdwc->base,
GSI_IF_STS, GSI_WR_CTRL_STATE_MASK)) {
if (!timeout--) {
dev_err(mdwc->dev,
"Unable to suspend GSI ch. WR_CTRL_STATE != 0\n");
return false;
}
}
/* Check for U3 only if we are not handling Function Suspend */
if (!f_suspend) {
reg = dwc3_readl(dwc->regs, DWC3_DSTS);
if (DWC3_DSTS_USBLNKST(reg) != DWC3_LINK_STATE_U3) {
dev_err(mdwc->dev, "Unable to suspend GSI ch\n");
return false;
}
}
return true;
}
/**
* Performs GSI operations or GSI EP related operations.
*
* @usb_ep - pointer to usb_ep instance.
* @op_data - pointer to opcode related data.
* @op - GSI related or GSI EP related op code.
*
* @return int - 0 on success, negative on error.
* Also returns XferRscIdx for GSI_EP_OP_GET_XFER_IDX.
*/
static int dwc3_msm_gsi_ep_op(struct usb_ep *ep,
void *op_data, enum gsi_ep_op op)
{
u32 ret = 0;
struct dwc3_ep *dep = to_dwc3_ep(ep);
struct dwc3 *dwc = dep->dwc;
struct dwc3_msm *mdwc = dev_get_drvdata(dwc->dev->parent);
struct usb_gsi_request *request;
struct gsi_channel_info *ch_info;
bool block_db, f_suspend;
unsigned long flags;
switch (op) {
case GSI_EP_OP_PREPARE_TRBS:
request = (struct usb_gsi_request *)op_data;
dev_dbg(mdwc->dev, "EP_OP_PREPARE_TRBS for %s\n", ep->name);
ret = gsi_prepare_trbs(ep, request);
break;
case GSI_EP_OP_FREE_TRBS:
dev_dbg(mdwc->dev, "EP_OP_FREE_TRBS for %s\n", ep->name);
gsi_free_trbs(ep);
break;
case GSI_EP_OP_CONFIG:
request = (struct usb_gsi_request *)op_data;
dev_dbg(mdwc->dev, "EP_OP_CONFIG for %s\n", ep->name);
spin_lock_irqsave(&dwc->lock, flags);
gsi_configure_ep(ep, request);
spin_unlock_irqrestore(&dwc->lock, flags);
break;
case GSI_EP_OP_STARTXFER:
dev_dbg(mdwc->dev, "EP_OP_STARTXFER for %s\n", ep->name);
spin_lock_irqsave(&dwc->lock, flags);
ret = gsi_startxfer_for_ep(ep);
spin_unlock_irqrestore(&dwc->lock, flags);
break;
case GSI_EP_OP_GET_XFER_IDX:
dev_dbg(mdwc->dev, "EP_OP_GET_XFER_IDX for %s\n", ep->name);
ret = gsi_get_xfer_index(ep);
break;
case GSI_EP_OP_STORE_DBL_INFO:
dev_dbg(mdwc->dev, "EP_OP_STORE_DBL_INFO\n");
gsi_store_ringbase_dbl_info(ep, *((u32 *)op_data));
break;
case GSI_EP_OP_ENABLE_GSI:
dev_dbg(mdwc->dev, "EP_OP_ENABLE_GSI\n");
gsi_enable(ep);
break;
case GSI_EP_OP_GET_CH_INFO:
ch_info = (struct gsi_channel_info *)op_data;
gsi_get_channel_info(ep, ch_info);
break;
case GSI_EP_OP_RING_DB:
request = (struct usb_gsi_request *)op_data;
dbg_print(0xFF, "RING_DB", 0, ep->name);
gsi_ring_db(ep, request);
break;
case GSI_EP_OP_UPDATEXFER:
request = (struct usb_gsi_request *)op_data;
dev_dbg(mdwc->dev, "EP_OP_UPDATEXFER\n");
spin_lock_irqsave(&dwc->lock, flags);
ret = gsi_updatexfer_for_ep(ep, request);
spin_unlock_irqrestore(&dwc->lock, flags);
break;
case GSI_EP_OP_ENDXFER:
request = (struct usb_gsi_request *)op_data;
dev_dbg(mdwc->dev, "EP_OP_ENDXFER for %s\n", ep->name);
spin_lock_irqsave(&dwc->lock, flags);
gsi_endxfer_for_ep(ep);
spin_unlock_irqrestore(&dwc->lock, flags);
break;
case GSI_EP_OP_SET_CLR_BLOCK_DBL:
block_db = *((bool *)op_data);
dev_dbg(mdwc->dev, "EP_OP_SET_CLR_BLOCK_DBL %d\n",
block_db);
gsi_set_clear_dbell(ep, block_db);
break;
case GSI_EP_OP_CHECK_FOR_SUSPEND:
dev_dbg(mdwc->dev, "EP_OP_CHECK_FOR_SUSPEND\n");
f_suspend = *((bool *)op_data);
ret = gsi_check_ready_to_suspend(ep, f_suspend);
break;
case GSI_EP_OP_DISABLE:
dev_dbg(mdwc->dev, "EP_OP_DISABLE\n");
ret = ep->ops->disable(ep);
break;
default:
dev_err(mdwc->dev, "%s: Invalid opcode GSI EP\n", __func__);
}
return ret;
}
/**
* Configure MSM endpoint.
* This function do specific configurations
* to an endpoint which need specific implementaion
* in the MSM architecture.
*
* This function should be called by usb function/class
* layer which need a support from the specific MSM HW
* which wrap the USB3 core. (like GSI or DBM specific endpoints)
*
* @ep - a pointer to some usb_ep instance
*
* @return int - 0 on success, negetive on error.
*/
int msm_ep_config(struct usb_ep *ep)
{
struct dwc3_ep *dep = to_dwc3_ep(ep);
struct dwc3 *dwc = dep->dwc;
struct dwc3_msm *mdwc = dev_get_drvdata(dwc->dev->parent);
struct usb_ep_ops *new_ep_ops;
/* Save original ep ops for future restore*/
if (mdwc->original_ep_ops[dep->number]) {
dev_err(mdwc->dev,
"ep [%s,%d] already configured as msm endpoint\n",
ep->name, dep->number);
return -EPERM;
}
mdwc->original_ep_ops[dep->number] = ep->ops;
/* Set new usb ops as we like */
new_ep_ops = kzalloc(sizeof(struct usb_ep_ops), GFP_ATOMIC);
if (!new_ep_ops)
return -ENOMEM;
(*new_ep_ops) = (*ep->ops);
new_ep_ops->queue = dwc3_msm_ep_queue;
new_ep_ops->gsi_ep_op = dwc3_msm_gsi_ep_op;
ep->ops = new_ep_ops;
/*
* Do HERE more usb endpoint configurations
* which are specific to MSM.
*/
return 0;
}
EXPORT_SYMBOL(msm_ep_config);
/**
* Un-configure MSM endpoint.
* Tear down configurations done in the
* dwc3_msm_ep_config function.
*
* @ep - a pointer to some usb_ep instance
*
* @return int - 0 on success, negative on error.
*/
int msm_ep_unconfig(struct usb_ep *ep)
{
struct dwc3_ep *dep = to_dwc3_ep(ep);
struct dwc3 *dwc = dep->dwc;
struct dwc3_msm *mdwc = dev_get_drvdata(dwc->dev->parent);
struct usb_ep_ops *old_ep_ops;
/* Restore original ep ops */
if (!mdwc->original_ep_ops[dep->number]) {
dev_err(mdwc->dev,
"ep [%s,%d] was not configured as msm endpoint\n",
ep->name, dep->number);
return -EINVAL;
}
old_ep_ops = (struct usb_ep_ops *)ep->ops;
ep->ops = mdwc->original_ep_ops[dep->number];
mdwc->original_ep_ops[dep->number] = NULL;
kfree(old_ep_ops);
/*
* Do HERE more usb endpoint un-configurations
* which are specific to MSM.
*/
return 0;
}
EXPORT_SYMBOL(msm_ep_unconfig);
#endif /* (CONFIG_USB_DWC3_GADGET) || (CONFIG_USB_DWC3_DUAL_ROLE) */
static void dwc3_resume_work(struct work_struct *w);
static void dwc3_restart_usb_work(struct work_struct *w)
{
struct dwc3_msm *mdwc = container_of(w, struct dwc3_msm,
restart_usb_work);
struct dwc3 *dwc = platform_get_drvdata(mdwc->dwc3);
unsigned int timeout = 50;
dev_dbg(mdwc->dev, "%s\n", __func__);
if (atomic_read(&dwc->in_lpm) || !dwc->is_drd) {
dev_dbg(mdwc->dev, "%s failed!!!\n", __func__);
return;
}
/* guard against concurrent VBUS handling */
mdwc->in_restart = true;
if (!mdwc->vbus_active) {
dev_dbg(mdwc->dev, "%s bailing out in disconnect\n", __func__);
dwc->err_evt_seen = false;
mdwc->in_restart = false;
return;
}
dbg_event(0xFF, "RestartUSB", 0);
/* Reset active USB connection */
dwc3_resume_work(&mdwc->resume_work);
/* Make sure disconnect is processed before sending connect */
while (--timeout && !pm_runtime_suspended(mdwc->dev))
msleep(20);
if (!timeout) {
dev_dbg(mdwc->dev,
"Not in LPM after disconnect, forcing suspend...\n");
dbg_event(0xFF, "ReStart:RT SUSP",
atomic_read(&mdwc->dev->power.usage_count));
pm_runtime_suspend(mdwc->dev);
}
mdwc->in_restart = false;
/* Force reconnect only if cable is still connected */
if (mdwc->vbus_active)
dwc3_resume_work(&mdwc->resume_work);
dwc->err_evt_seen = false;
flush_delayed_work(&mdwc->sm_work);
}
static int msm_dwc3_usbdev_notify(struct notifier_block *self,
unsigned long action, void *priv)
{
struct dwc3_msm *mdwc = container_of(self, struct dwc3_msm, usbdev_nb);
struct dwc3 *dwc = platform_get_drvdata(mdwc->dwc3);
struct usb_bus *bus = priv;
/* Interested only in recovery when HC dies */
if (action != USB_BUS_DIED)
return 0;
dev_dbg(mdwc->dev, "%s initiate recovery from hc_died\n", __func__);
/* Recovery already under process */
if (mdwc->hc_died)
return 0;
if (bus->controller != &dwc->xhci->dev) {
dev_dbg(mdwc->dev, "%s event for diff HCD\n", __func__);
return 0;
}
mdwc->hc_died = true;
schedule_delayed_work(&mdwc->sm_work, 0);
return 0;
}
/*
* Check whether the DWC3 requires resetting the ep
* after going to Low Power Mode (lpm)
*/
bool msm_dwc3_reset_ep_after_lpm(struct usb_gadget *gadget)
{
struct dwc3 *dwc = container_of(gadget, struct dwc3, gadget);
struct dwc3_msm *mdwc = dev_get_drvdata(dwc->dev->parent);
return dbm_reset_ep_after_lpm(mdwc->dbm);
}
EXPORT_SYMBOL(msm_dwc3_reset_ep_after_lpm);
/*
* Config Global Distributed Switch Controller (GDSC)
* to support controller power collapse
*/
static int dwc3_msm_config_gdsc(struct dwc3_msm *mdwc, int on)
{
int ret;
if (IS_ERR_OR_NULL(mdwc->dwc3_gdsc))
return -EPERM;
if (on) {
ret = regulator_enable(mdwc->dwc3_gdsc);
if (ret) {
dev_err(mdwc->dev, "unable to enable usb3 gdsc\n");
return ret;
}
} else {
ret = regulator_disable(mdwc->dwc3_gdsc);
if (ret) {
dev_err(mdwc->dev, "unable to disable usb3 gdsc\n");
return ret;
}
}
return ret;
}
static int dwc3_msm_link_clk_reset(struct dwc3_msm *mdwc, bool assert)
{
int ret = 0;
if (assert) {
disable_irq(mdwc->wakeup_irq[PWR_EVNT_IRQ].irq);
/* Using asynchronous block reset to the hardware */
dev_dbg(mdwc->dev, "block_reset ASSERT\n");
clk_disable_unprepare(mdwc->utmi_clk);
clk_disable_unprepare(mdwc->sleep_clk);
clk_disable_unprepare(mdwc->core_clk);
clk_disable_unprepare(mdwc->iface_clk);
ret = reset_control_assert(mdwc->core_reset);
if (ret)
dev_err(mdwc->dev, "dwc3 core_reset assert failed\n");
} else {
dev_dbg(mdwc->dev, "block_reset DEASSERT\n");
ret = reset_control_deassert(mdwc->core_reset);
if (ret)
dev_err(mdwc->dev, "dwc3 core_reset deassert failed\n");
ndelay(200);
clk_prepare_enable(mdwc->iface_clk);
clk_prepare_enable(mdwc->core_clk);
clk_prepare_enable(mdwc->sleep_clk);
clk_prepare_enable(mdwc->utmi_clk);
enable_irq(mdwc->wakeup_irq[PWR_EVNT_IRQ].irq);
}
return ret;
}
static void dwc3_msm_update_ref_clk(struct dwc3_msm *mdwc)
{
u32 guctl, gfladj = 0;
guctl = dwc3_msm_read_reg(mdwc->base, DWC3_GUCTL);
guctl &= ~DWC3_GUCTL_REFCLKPER;
/* GFLADJ register is used starting with revision 2.50a */
if (dwc3_msm_read_reg(mdwc->base, DWC3_GSNPSID) >= DWC3_REVISION_250A) {
gfladj = dwc3_msm_read_reg(mdwc->base, DWC3_GFLADJ);
gfladj &= ~DWC3_GFLADJ_REFCLK_240MHZDECR_PLS1;
gfladj &= ~DWC3_GFLADJ_REFCLK_240MHZ_DECR;
gfladj &= ~DWC3_GFLADJ_REFCLK_LPM_SEL;
gfladj &= ~DWC3_GFLADJ_REFCLK_FLADJ;
}
/* Refer to SNPS Databook Table 6-55 for calculations used */
switch (mdwc->utmi_clk_rate) {
case 19200000:
guctl |= 52 << __ffs(DWC3_GUCTL_REFCLKPER);
gfladj |= 12 << __ffs(DWC3_GFLADJ_REFCLK_240MHZ_DECR);
gfladj |= DWC3_GFLADJ_REFCLK_240MHZDECR_PLS1;
gfladj |= DWC3_GFLADJ_REFCLK_LPM_SEL;
gfladj |= 200 << __ffs(DWC3_GFLADJ_REFCLK_FLADJ);
break;
case 24000000:
guctl |= 41 << __ffs(DWC3_GUCTL_REFCLKPER);
gfladj |= 10 << __ffs(DWC3_GFLADJ_REFCLK_240MHZ_DECR);
gfladj |= DWC3_GFLADJ_REFCLK_LPM_SEL;
gfladj |= 2032 << __ffs(DWC3_GFLADJ_REFCLK_FLADJ);
break;
default:
dev_warn(mdwc->dev, "Unsupported utmi_clk_rate: %u\n",
mdwc->utmi_clk_rate);
break;
}
dwc3_msm_write_reg(mdwc->base, DWC3_GUCTL, guctl);
if (gfladj)
dwc3_msm_write_reg(mdwc->base, DWC3_GFLADJ, gfladj);
}
/* Initialize QSCRATCH registers for HSPHY and SSPHY operation */
static void dwc3_msm_qscratch_reg_init(struct dwc3_msm *mdwc)
{
if (dwc3_msm_read_reg(mdwc->base, DWC3_GSNPSID) < DWC3_REVISION_250A)
/* On older cores set XHCI_REV bit to specify revision 1.0 */
dwc3_msm_write_reg_field(mdwc->base, QSCRATCH_GENERAL_CFG,
BIT(2), 1);
/*
* Enable master clock for RAMs to allow BAM to access RAMs when
* RAM clock gating is enabled via DWC3's GCTL. Otherwise issues
* are seen where RAM clocks get turned OFF in SS mode
*/
dwc3_msm_write_reg(mdwc->base, CGCTL_REG,
dwc3_msm_read_reg(mdwc->base, CGCTL_REG) | 0x18);
}
static void dwc3_msm_vbus_draw_work(struct work_struct *w)
{
struct dwc3_msm *mdwc = container_of(w, struct dwc3_msm,
vbus_draw_work);
struct dwc3 *dwc = platform_get_drvdata(mdwc->dwc3);
dwc3_msm_gadget_vbus_draw(mdwc, dwc->vbus_draw);
}
static void dwc3_msm_notify_event(struct dwc3 *dwc, unsigned int event)
{
struct dwc3_msm *mdwc = dev_get_drvdata(dwc->dev->parent);
struct dwc3_event_buffer *evt;
u32 reg;
int i;
switch (event) {
case DWC3_CONTROLLER_ERROR_EVENT:
dev_info(mdwc->dev,
"DWC3_CONTROLLER_ERROR_EVENT received, irq cnt %lu\n",
dwc->irq_cnt);
dwc3_gadget_disable_irq(dwc);
/* prevent core from generating interrupts until recovery */
reg = dwc3_msm_read_reg(mdwc->base, DWC3_GCTL);
reg |= DWC3_GCTL_CORESOFTRESET;
dwc3_msm_write_reg(mdwc->base, DWC3_GCTL, reg);
/* restart USB which performs full reset and reconnect */
schedule_work(&mdwc->restart_usb_work);
break;
case DWC3_CONTROLLER_RESET_EVENT:
dev_dbg(mdwc->dev, "DWC3_CONTROLLER_RESET_EVENT received\n");
/* HS & SSPHYs get reset as part of core soft reset */
dwc3_msm_qscratch_reg_init(mdwc);
break;
case DWC3_CONTROLLER_POST_RESET_EVENT:
dev_dbg(mdwc->dev,
"DWC3_CONTROLLER_POST_RESET_EVENT received\n");
/*
* Below sequence is used when controller is working without
* having ssphy and only USB high/full speed is supported.
*/
if (dwc->maximum_speed == USB_SPEED_HIGH ||
dwc->maximum_speed == USB_SPEED_FULL) {
dwc3_msm_write_reg(mdwc->base, QSCRATCH_GENERAL_CFG,
dwc3_msm_read_reg(mdwc->base,
QSCRATCH_GENERAL_CFG)
| PIPE_UTMI_CLK_DIS);
usleep_range(2, 5);
dwc3_msm_write_reg(mdwc->base, QSCRATCH_GENERAL_CFG,
dwc3_msm_read_reg(mdwc->base,
QSCRATCH_GENERAL_CFG)
| PIPE_UTMI_CLK_SEL
| PIPE3_PHYSTATUS_SW);
usleep_range(2, 5);
dwc3_msm_write_reg(mdwc->base, QSCRATCH_GENERAL_CFG,
dwc3_msm_read_reg(mdwc->base,
QSCRATCH_GENERAL_CFG)
& ~PIPE_UTMI_CLK_DIS);
}
dwc3_msm_update_ref_clk(mdwc);
dwc->tx_fifo_size = mdwc->tx_fifo_size;
break;
case DWC3_CONTROLLER_CONNDONE_EVENT:
dev_dbg(mdwc->dev, "DWC3_CONTROLLER_CONNDONE_EVENT received\n");
/*
* Add power event if the dbm indicates coming out of L1 by
* interrupt
*/
if (mdwc->dbm && dbm_l1_lpm_interrupt(mdwc->dbm))
dwc3_msm_write_reg_field(mdwc->base,
PWR_EVNT_IRQ_MASK_REG,
PWR_EVNT_LPM_OUT_L1_MASK, 1);
atomic_set(&dwc->in_lpm, 0);
break;
case DWC3_CONTROLLER_NOTIFY_OTG_EVENT:
dev_dbg(mdwc->dev, "DWC3_CONTROLLER_NOTIFY_OTG_EVENT received\n");
if (dwc->enable_bus_suspend) {
mdwc->suspend = dwc->b_suspend;
queue_work(mdwc->dwc3_wq, &mdwc->resume_work);
}
break;
case DWC3_CONTROLLER_SET_CURRENT_DRAW_EVENT:
dev_dbg(mdwc->dev, "DWC3_CONTROLLER_SET_CURRENT_DRAW_EVENT received\n");
schedule_work(&mdwc->vbus_draw_work);
break;
case DWC3_CONTROLLER_RESTART_USB_SESSION:
dev_dbg(mdwc->dev, "DWC3_CONTROLLER_RESTART_USB_SESSION received\n");
schedule_work(&mdwc->restart_usb_work);
break;
case DWC3_GSI_EVT_BUF_ALLOC:
dev_dbg(mdwc->dev, "DWC3_GSI_EVT_BUF_ALLOC\n");
if (!mdwc->num_gsi_event_buffers)
break;
mdwc->gsi_ev_buff = devm_kzalloc(dwc->dev,
sizeof(*dwc->ev_buf) * mdwc->num_gsi_event_buffers,
GFP_KERNEL);
if (!mdwc->gsi_ev_buff) {
dev_err(dwc->dev, "can't allocate gsi_ev_buff\n");
break;
}
for (i = 0; i < mdwc->num_gsi_event_buffers; i++) {
evt = devm_kzalloc(dwc->dev, sizeof(*evt), GFP_KERNEL);
if (!evt)
break;
evt->dwc = dwc;
evt->length = DWC3_EVENT_BUFFERS_SIZE;
evt->buf = dma_alloc_coherent(dwc->dev,
DWC3_EVENT_BUFFERS_SIZE,
&evt->dma, GFP_KERNEL);
if (!evt->buf) {
dev_err(dwc->dev,
"can't allocate gsi_evt_buf(%d)\n", i);
break;
}
mdwc->gsi_ev_buff[i] = evt;
}
break;
case DWC3_GSI_EVT_BUF_SETUP:
dev_dbg(mdwc->dev, "DWC3_GSI_EVT_BUF_SETUP\n");
for (i = 0; i < mdwc->num_gsi_event_buffers; i++) {
evt = mdwc->gsi_ev_buff[i];
if (!evt)
break;
dev_dbg(mdwc->dev, "Evt buf %p dma %08llx length %d\n",
evt->buf, (unsigned long long) evt->dma,
evt->length);
memset(evt->buf, 0, evt->length);
evt->lpos = 0;
/*
* Primary event buffer is programmed with registers
* DWC3_GEVNT*(0). Hence use DWC3_GEVNT*(i+1) to
* program USB GSI related event buffer with DWC3
* controller.
*/
dwc3_writel(dwc->regs, DWC3_GEVNTADRLO((i+1)),
lower_32_bits(evt->dma));
dwc3_writel(dwc->regs, DWC3_GEVNTADRHI((i+1)),
DWC3_GEVNTADRHI_EVNTADRHI_GSI_EN(
DWC3_GEVENT_TYPE_GSI) |
DWC3_GEVNTADRHI_EVNTADRHI_GSI_IDX((i+1)));
dwc3_writel(dwc->regs, DWC3_GEVNTSIZ((i+1)),
DWC3_GEVNTCOUNT_EVNTINTRPTMASK |
((evt->length) & 0xffff));
dwc3_writel(dwc->regs, DWC3_GEVNTCOUNT((i+1)), 0);
}
break;
case DWC3_GSI_EVT_BUF_CLEANUP:
dev_dbg(mdwc->dev, "DWC3_GSI_EVT_BUF_CLEANUP\n");
if (!mdwc->gsi_ev_buff)
break;
for (i = 0; i < mdwc->num_gsi_event_buffers; i++) {
evt = mdwc->gsi_ev_buff[i];
evt->lpos = 0;
/*
* Primary event buffer is programmed with registers
* DWC3_GEVNT*(0). Hence use DWC3_GEVNT*(i+1) to
* program USB GSI related event buffer with DWC3
* controller.
*/
dwc3_writel(dwc->regs, DWC3_GEVNTADRLO((i+1)), 0);
dwc3_writel(dwc->regs, DWC3_GEVNTADRHI((i+1)), 0);
dwc3_writel(dwc->regs, DWC3_GEVNTSIZ((i+1)),
DWC3_GEVNTSIZ_INTMASK |
DWC3_GEVNTSIZ_SIZE((i+1)));
dwc3_writel(dwc->regs, DWC3_GEVNTCOUNT((i+1)), 0);
}
break;
case DWC3_GSI_EVT_BUF_FREE:
dev_dbg(mdwc->dev, "DWC3_GSI_EVT_BUF_FREE\n");
if (!mdwc->gsi_ev_buff)
break;
for (i = 0; i < mdwc->num_gsi_event_buffers; i++) {
evt = mdwc->gsi_ev_buff[i];
if (evt)
dma_free_coherent(dwc->dev, evt->length,
evt->buf, evt->dma);
}
break;
default:
dev_dbg(mdwc->dev, "unknown dwc3 event\n");
break;
}
}
static void dwc3_msm_block_reset(struct dwc3_msm *mdwc, bool core_reset)
{
int ret = 0;
if (core_reset) {
ret = dwc3_msm_link_clk_reset(mdwc, 1);
if (ret)
return;
usleep_range(1000, 1200);
ret = dwc3_msm_link_clk_reset(mdwc, 0);
if (ret)
return;
usleep_range(10000, 12000);
}
if (mdwc->dbm) {
/* Reset the DBM */
dbm_soft_reset(mdwc->dbm, 1);
usleep_range(1000, 1200);
dbm_soft_reset(mdwc->dbm, 0);
/*enable DBM*/
dwc3_msm_write_reg_field(mdwc->base, QSCRATCH_GENERAL_CFG,
DBM_EN_MASK, 0x1);
dbm_enable(mdwc->dbm);
}
}
static void dwc3_msm_power_collapse_por(struct dwc3_msm *mdwc)
{
struct dwc3 *dwc = platform_get_drvdata(mdwc->dwc3);
u32 val;
int ret;
/* Configure AHB2PHY for one wait state read/write */
if (mdwc->ahb2phy_base) {
clk_prepare_enable(mdwc->cfg_ahb_clk);
val = readl_relaxed(mdwc->ahb2phy_base +
PERIPH_SS_AHB2PHY_TOP_CFG);
if (val != ONE_READ_WRITE_WAIT) {
writel_relaxed(ONE_READ_WRITE_WAIT,
mdwc->ahb2phy_base + PERIPH_SS_AHB2PHY_TOP_CFG);
/* complete above write before configuring USB PHY. */
mb();
}
clk_disable_unprepare(mdwc->cfg_ahb_clk);
}
if (!mdwc->init) {
dbg_event(0xFF, "dwc3 init",
atomic_read(&mdwc->dev->power.usage_count));
ret = dwc3_core_pre_init(dwc);
if (ret) {
dev_err(mdwc->dev, "dwc3_core_pre_init failed\n");
return;
}
mdwc->init = true;
}
dwc3_core_init(dwc);
/* Re-configure event buffers */
dwc3_event_buffers_setup(dwc);
}
static int dwc3_msm_prepare_suspend(struct dwc3_msm *mdwc)
{
unsigned long timeout;
u32 reg = 0;
if ((mdwc->in_host_mode || mdwc->vbus_active)
&& dwc3_msm_is_superspeed(mdwc) && !mdwc->in_restart) {
if (!atomic_read(&mdwc->in_p3)) {
dev_err(mdwc->dev, "Not in P3,aborting LPM sequence\n");
return -EBUSY;
}
}
/* Clear previous L2 events */
dwc3_msm_write_reg(mdwc->base, PWR_EVNT_IRQ_STAT_REG,
PWR_EVNT_LPM_IN_L2_MASK | PWR_EVNT_LPM_OUT_L2_MASK);
/* Prepare HSPHY for suspend */
reg = dwc3_msm_read_reg(mdwc->base, DWC3_GUSB2PHYCFG(0));
dwc3_msm_write_reg(mdwc->base, DWC3_GUSB2PHYCFG(0),
reg | DWC3_GUSB2PHYCFG_ENBLSLPM | DWC3_GUSB2PHYCFG_SUSPHY);
/* Wait for PHY to go into L2 */
timeout = jiffies + msecs_to_jiffies(5);
while (!time_after(jiffies, timeout)) {
reg = dwc3_msm_read_reg(mdwc->base, PWR_EVNT_IRQ_STAT_REG);
if (reg & PWR_EVNT_LPM_IN_L2_MASK)
break;
}
if (!(reg & PWR_EVNT_LPM_IN_L2_MASK))
dev_err(mdwc->dev, "could not transition HS PHY to L2\n");
/* Clear L2 event bit */
dwc3_msm_write_reg(mdwc->base, PWR_EVNT_IRQ_STAT_REG,
PWR_EVNT_LPM_IN_L2_MASK);
return 0;
}
static void dwc3_set_phy_speed_flags(struct dwc3_msm *mdwc)
{
struct dwc3 *dwc = platform_get_drvdata(mdwc->dwc3);
int i, num_ports;
u32 reg;
mdwc->hs_phy->flags &= ~(PHY_HSFS_MODE | PHY_LS_MODE);
if (mdwc->in_host_mode) {
reg = dwc3_msm_read_reg(mdwc->base, USB3_HCSPARAMS1);
num_ports = HCS_MAX_PORTS(reg);
for (i = 0; i < num_ports; i++) {
reg = dwc3_msm_read_reg(mdwc->base,
USB3_PORTSC + i*0x10);
if (reg & PORT_PE) {
if (DEV_HIGHSPEED(reg) || DEV_FULLSPEED(reg))
mdwc->hs_phy->flags |= PHY_HSFS_MODE;
else if (DEV_LOWSPEED(reg))
mdwc->hs_phy->flags |= PHY_LS_MODE;
}
}
} else {
if (dwc->gadget.speed == USB_SPEED_HIGH ||
dwc->gadget.speed == USB_SPEED_FULL)
mdwc->hs_phy->flags |= PHY_HSFS_MODE;
else if (dwc->gadget.speed == USB_SPEED_LOW)
mdwc->hs_phy->flags |= PHY_LS_MODE;
}
}
static void msm_dwc3_perf_vote_update(struct dwc3_msm *mdwc,
bool perf_mode);
static void configure_usb_wakeup_interrupt(struct dwc3_msm *mdwc,
struct usb_irq *uirq, unsigned int polarity, bool enable)
{
struct dwc3 *dwc = platform_get_drvdata(mdwc->dwc3);
if (uirq && enable && !uirq->enable) {
dbg_event(0xFF, "PDC_IRQ_EN", uirq->irq);
dbg_event(0xFF, "PDC_IRQ_POL", polarity);
/* clear any pending interrupt */
irq_set_irqchip_state(uirq->irq, IRQCHIP_STATE_PENDING, 0);
irq_set_irq_type(uirq->irq, polarity);
enable_irq_wake(uirq->irq);
enable_irq(uirq->irq);
uirq->enable = true;
}
if (uirq && !enable && uirq->enable) {
dbg_event(0xFF, "PDC_IRQ_DIS", uirq->irq);
disable_irq_wake(uirq->irq);
disable_irq_nosync(uirq->irq);
uirq->enable = false;
}
}
static void enable_usb_pdc_interrupt(struct dwc3_msm *mdwc, bool enable)
{
if (!enable)
goto disable_usb_irq;
if (mdwc->hs_phy->flags & PHY_LS_MODE) {
configure_usb_wakeup_interrupt(mdwc,
&mdwc->wakeup_irq[DM_HS_PHY_IRQ],
IRQ_TYPE_EDGE_FALLING, enable);
} else if (mdwc->hs_phy->flags & PHY_HSFS_MODE) {
configure_usb_wakeup_interrupt(mdwc,
&mdwc->wakeup_irq[DP_HS_PHY_IRQ],
IRQ_TYPE_EDGE_FALLING, enable);
} else {
configure_usb_wakeup_interrupt(mdwc,
&mdwc->wakeup_irq[DP_HS_PHY_IRQ],
IRQ_TYPE_EDGE_RISING, true);
configure_usb_wakeup_interrupt(mdwc,
&mdwc->wakeup_irq[DM_HS_PHY_IRQ],
IRQ_TYPE_EDGE_RISING, true);
}
configure_usb_wakeup_interrupt(mdwc,
&mdwc->wakeup_irq[SS_PHY_IRQ],
IRQF_TRIGGER_HIGH | IRQ_TYPE_LEVEL_HIGH, enable);
return;
disable_usb_irq:
configure_usb_wakeup_interrupt(mdwc,
&mdwc->wakeup_irq[DP_HS_PHY_IRQ], 0, enable);
configure_usb_wakeup_interrupt(mdwc,
&mdwc->wakeup_irq[DM_HS_PHY_IRQ], 0, enable);
configure_usb_wakeup_interrupt(mdwc,
&mdwc->wakeup_irq[SS_PHY_IRQ], 0, enable);
}
static void configure_nonpdc_usb_interrupt(struct dwc3_msm *mdwc,
struct usb_irq *uirq, bool enable)
{
struct dwc3 *dwc = platform_get_drvdata(mdwc->dwc3);
if (uirq && enable && !uirq->enable) {
dbg_event(0xFF, "IRQ_EN", uirq->irq);
enable_irq_wake(uirq->irq);
enable_irq(uirq->irq);
uirq->enable = true;
}
if (uirq && !enable && uirq->enable) {
dbg_event(0xFF, "IRQ_DIS", uirq->irq);
disable_irq_wake(uirq->irq);
disable_irq_nosync(uirq->irq);
uirq->enable = true;
}
}
static int dwc3_msm_suspend(struct dwc3_msm *mdwc)
{
int ret;
struct dwc3 *dwc = platform_get_drvdata(mdwc->dwc3);
struct dwc3_event_buffer *evt;
struct usb_irq *uirq;
if (atomic_read(&dwc->in_lpm)) {
dev_dbg(mdwc->dev, "%s: Already suspended\n", __func__);
return 0;
}
cancel_delayed_work_sync(&mdwc->perf_vote_work);
msm_dwc3_perf_vote_update(mdwc, false);
if (!mdwc->in_host_mode) {
evt = dwc->ev_buf;
if ((evt->flags & DWC3_EVENT_PENDING)) {
dev_dbg(mdwc->dev,
"%s: %d device events pending, abort suspend\n",
__func__, evt->count / 4);
return -EBUSY;
}
}
if (!mdwc->vbus_active && dwc->is_drd &&
mdwc->otg_state == OTG_STATE_B_PERIPHERAL) {
/*
* In some cases, the pm_runtime_suspend may be called by
* usb_bam when there is pending lpm flag. However, if this is
* done when cable was disconnected and otg state has not
* yet changed to IDLE, then it means OTG state machine
* is running and we race against it. So cancel LPM for now,
* and OTG state machine will go for LPM later, after completing
* transition to IDLE state.
*/
dev_dbg(mdwc->dev,
"%s: cable disconnected while not in idle otg state\n",
__func__);
return -EBUSY;
}
/*
* Check if device is not in CONFIGURED state
* then check controller state of L2 and break
* LPM sequence. Check this for device bus suspend case.
*/
if ((dwc->is_drd && mdwc->otg_state == OTG_STATE_B_SUSPEND) &&
(dwc->gadget.state != USB_STATE_CONFIGURED)) {
pr_err("%s(): Trying to go in LPM with state:%d\n",
__func__, dwc->gadget.state);
pr_err("%s(): LPM is not performed.\n", __func__);
return -EBUSY;
}
ret = dwc3_msm_prepare_suspend(mdwc);
if (ret)
return ret;
/* Disable core irq */
if (dwc->irq)
disable_irq(dwc->irq);
if (work_busy(&dwc->bh_work))
dbg_event(0xFF, "pend evt", 0);
/* disable power event irq, hs and ss phy irq is used as wake up src */
disable_irq(mdwc->wakeup_irq[PWR_EVNT_IRQ].irq);
dwc3_set_phy_speed_flags(mdwc);
/* Suspend HS PHY */
usb_phy_set_suspend(mdwc->hs_phy, 1);
/* Suspend SS PHY */
if (dwc->maximum_speed == USB_SPEED_SUPER) {
/* indicate phy about SS mode */
if (dwc3_msm_is_superspeed(mdwc))
mdwc->ss_phy->flags |= DEVICE_IN_SS_MODE;
usb_phy_set_suspend(mdwc->ss_phy, 1);
mdwc->lpm_flags |= MDWC3_SS_PHY_SUSPEND;
}
/* make sure above writes are completed before turning off clocks */
wmb();
/* Disable clocks */
if (mdwc->bus_aggr_clk)
clk_disable_unprepare(mdwc->bus_aggr_clk);
clk_disable_unprepare(mdwc->utmi_clk);
/* Memory core: OFF, Memory periphery: OFF */
if (!mdwc->in_host_mode && !mdwc->vbus_active) {
clk_set_flags(mdwc->core_clk, CLKFLAG_NORETAIN_MEM);
clk_set_flags(mdwc->core_clk, CLKFLAG_NORETAIN_PERIPH);
}
clk_set_rate(mdwc->core_clk, 19200000);
clk_disable_unprepare(mdwc->core_clk);
if (mdwc->noc_aggr_clk)
clk_disable_unprepare(mdwc->noc_aggr_clk);
/*
* Disable iface_clk only after core_clk as core_clk has FSM
* depedency on iface_clk. Hence iface_clk should be turned off
* after core_clk is turned off.
*/
clk_disable_unprepare(mdwc->iface_clk);
/* USB PHY no more requires TCXO */
clk_disable_unprepare(mdwc->xo_clk);
/* Perform controller power collapse */
if (!mdwc->in_host_mode && (!mdwc->vbus_active || mdwc->in_restart)) {
mdwc->lpm_flags |= MDWC3_POWER_COLLAPSE;
dev_dbg(mdwc->dev, "%s: power collapse\n", __func__);
dwc3_msm_config_gdsc(mdwc, 0);
clk_disable_unprepare(mdwc->sleep_clk);
if (mdwc->iommu_map) {
arm_iommu_detach_device(mdwc->dev);
dev_dbg(mdwc->dev, "IOMMU detached\n");
}
}
/* Remove bus voting */
if (mdwc->bus_perf_client) {
dbg_event(0xFF, "bus_devote_start", 0);
ret = msm_bus_scale_client_update_request(
mdwc->bus_perf_client, 0);
dbg_event(0xFF, "bus_devote_finish", 0);
if (ret)
dev_err(mdwc->dev, "bus bw unvoting failed %d\n", ret);
}
/*
* release wakeup source with timeout to defer system suspend to
* handle case where on USB cable disconnect, SUSPEND and DISCONNECT
* event is received.
*/
if (mdwc->lpm_to_suspend_delay) {
dev_dbg(mdwc->dev, "defer suspend with %d(msecs)\n",
mdwc->lpm_to_suspend_delay);
pm_wakeup_event(mdwc->dev, mdwc->lpm_to_suspend_delay);
} else {
pm_relax(mdwc->dev);
}
atomic_set(&dwc->in_lpm, 1);
/*
* with DCP or during cable disconnect, we dont require wakeup
* using HS_PHY_IRQ or SS_PHY_IRQ. Hence enable wakeup only in
* case of host bus suspend and device bus suspend.
*/
if (mdwc->vbus_active || mdwc->in_host_mode) {
if (mdwc->use_pdc_interrupts) {
enable_usb_pdc_interrupt(mdwc, true);
} else {
uirq = &mdwc->wakeup_irq[HS_PHY_IRQ];
configure_nonpdc_usb_interrupt(mdwc, uirq, true);
uirq = &mdwc->wakeup_irq[SS_PHY_IRQ];
configure_nonpdc_usb_interrupt(mdwc, uirq, true);
}
mdwc->lpm_flags |= MDWC3_ASYNC_IRQ_WAKE_CAPABILITY;
}
dev_info(mdwc->dev, "DWC3 in low power mode\n");
return 0;
}
static int dwc3_msm_resume(struct dwc3_msm *mdwc)
{
int ret;
long core_clk_rate;
struct dwc3 *dwc = platform_get_drvdata(mdwc->dwc3);
struct usb_irq *uirq;
dev_dbg(mdwc->dev, "%s: exiting lpm\n", __func__);
if (!atomic_read(&dwc->in_lpm)) {
dev_dbg(mdwc->dev, "%s: Already resumed\n", __func__);
return 0;
}
pm_stay_awake(mdwc->dev);
/* Enable bus voting */
if (mdwc->bus_perf_client) {
dbg_event(0xFF, "bus_vote_start", 1);
ret = msm_bus_scale_client_update_request(
mdwc->bus_perf_client, 1);
dbg_event(0xFF, "bus_vote_finish", 1);
if (ret)
dev_err(mdwc->dev, "bus bw voting failed %d\n", ret);
}
/* Vote for TCXO while waking up USB HSPHY */
ret = clk_prepare_enable(mdwc->xo_clk);
if (ret)
dev_err(mdwc->dev, "%s failed to vote TCXO buffer%d\n",
__func__, ret);
/* Restore controller power collapse */
if (mdwc->lpm_flags & MDWC3_POWER_COLLAPSE) {
dev_dbg(mdwc->dev, "%s: exit power collapse\n", __func__);
dwc3_msm_config_gdsc(mdwc, 1);
ret = reset_control_assert(mdwc->core_reset);
if (ret)
dev_err(mdwc->dev, "%s:core_reset assert failed\n",
__func__);
/* HW requires a short delay for reset to take place properly */
usleep_range(1000, 1200);
ret = reset_control_deassert(mdwc->core_reset);
if (ret)
dev_err(mdwc->dev, "%s:core_reset deassert failed\n",
__func__);
clk_prepare_enable(mdwc->sleep_clk);
}
/*
* Enable clocks
* Turned ON iface_clk before core_clk due to FSM depedency.
*/
clk_prepare_enable(mdwc->iface_clk);
if (mdwc->noc_aggr_clk)
clk_prepare_enable(mdwc->noc_aggr_clk);
core_clk_rate = mdwc->core_clk_rate;
if (mdwc->in_host_mode && mdwc->max_rh_port_speed == USB_SPEED_HIGH) {
core_clk_rate = mdwc->core_clk_rate_hs;
dev_dbg(mdwc->dev, "%s: set hs core clk rate %ld\n", __func__,
core_clk_rate);
}
clk_set_rate(mdwc->core_clk, core_clk_rate);
clk_prepare_enable(mdwc->core_clk);
/* set Memory core: ON, Memory periphery: ON */
clk_set_flags(mdwc->core_clk, CLKFLAG_RETAIN_MEM);
clk_set_flags(mdwc->core_clk, CLKFLAG_RETAIN_PERIPH);
clk_prepare_enable(mdwc->utmi_clk);
if (mdwc->bus_aggr_clk)
clk_prepare_enable(mdwc->bus_aggr_clk);
/* Resume SS PHY */
if (dwc->maximum_speed == USB_SPEED_SUPER &&
mdwc->lpm_flags & MDWC3_SS_PHY_SUSPEND) {
mdwc->ss_phy->flags &= ~(PHY_LANE_A | PHY_LANE_B);
if (mdwc->typec_orientation == ORIENTATION_CC1)
mdwc->ss_phy->flags |= PHY_LANE_A;
if (mdwc->typec_orientation == ORIENTATION_CC2)
mdwc->ss_phy->flags |= PHY_LANE_B;
usb_phy_set_suspend(mdwc->ss_phy, 0);
mdwc->ss_phy->flags &= ~DEVICE_IN_SS_MODE;
mdwc->lpm_flags &= ~MDWC3_SS_PHY_SUSPEND;
}
mdwc->hs_phy->flags &= ~(PHY_HSFS_MODE | PHY_LS_MODE);
/* Resume HS PHY */
usb_phy_set_suspend(mdwc->hs_phy, 0);
/* Recover from controller power collapse */
if (mdwc->lpm_flags & MDWC3_POWER_COLLAPSE) {
u32 tmp;
if (mdwc->iommu_map) {
ret = arm_iommu_attach_device(mdwc->dev,
mdwc->iommu_map);
if (ret)
dev_err(mdwc->dev, "IOMMU attach failed (%d)\n",
ret);
else
dev_dbg(mdwc->dev, "attached to IOMMU\n");
}
dev_dbg(mdwc->dev, "%s: exit power collapse\n", __func__);
dwc3_msm_power_collapse_por(mdwc);
/* Get initial P3 status and enable IN_P3 event */
tmp = dwc3_msm_read_reg_field(mdwc->base,
DWC3_GDBGLTSSM, DWC3_GDBGLTSSM_LINKSTATE_MASK);
atomic_set(&mdwc->in_p3, tmp == DWC3_LINK_STATE_U3);
dwc3_msm_write_reg_field(mdwc->base, PWR_EVNT_IRQ_MASK_REG,
PWR_EVNT_POWERDOWN_IN_P3_MASK, 1);
mdwc->lpm_flags &= ~MDWC3_POWER_COLLAPSE;
}
atomic_set(&dwc->in_lpm, 0);
/* enable power evt irq for IN P3 detection */
enable_irq(mdwc->wakeup_irq[PWR_EVNT_IRQ].irq);
/* Disable HSPHY auto suspend */
dwc3_msm_write_reg(mdwc->base, DWC3_GUSB2PHYCFG(0),
dwc3_msm_read_reg(mdwc->base, DWC3_GUSB2PHYCFG(0)) &
~(DWC3_GUSB2PHYCFG_ENBLSLPM |
DWC3_GUSB2PHYCFG_SUSPHY));
/* Disable wakeup capable for HS_PHY IRQ & SS_PHY_IRQ if enabled */
if (mdwc->lpm_flags & MDWC3_ASYNC_IRQ_WAKE_CAPABILITY) {
if (mdwc->use_pdc_interrupts) {
enable_usb_pdc_interrupt(mdwc, false);
} else {
uirq = &mdwc->wakeup_irq[HS_PHY_IRQ];
configure_nonpdc_usb_interrupt(mdwc, uirq, false);
uirq = &mdwc->wakeup_irq[SS_PHY_IRQ];
configure_nonpdc_usb_interrupt(mdwc, uirq, false);
}
mdwc->lpm_flags &= ~MDWC3_ASYNC_IRQ_WAKE_CAPABILITY;
}
dev_info(mdwc->dev, "DWC3 exited from low power mode\n");
/* Enable core irq */
if (dwc->irq)
enable_irq(dwc->irq);
/*
* Handle other power events that could not have been handled during
* Low Power Mode
*/
dwc3_pwr_event_handler(mdwc);
if (pm_qos_request_active(&mdwc->pm_qos_req_dma))
schedule_delayed_work(&mdwc->perf_vote_work,
msecs_to_jiffies(1000 * PM_QOS_SAMPLE_SEC));
dbg_event(0xFF, "Ctl Res", atomic_read(&dwc->in_lpm));
return 0;
}
/**
* dwc3_ext_event_notify - callback to handle events from external transceiver
*
* Returns 0 on success
*/
static void dwc3_ext_event_notify(struct dwc3_msm *mdwc)
{
/* Flush processing any pending events before handling new ones */
flush_delayed_work(&mdwc->sm_work);
if (mdwc->id_state == DWC3_ID_FLOAT) {
dev_dbg(mdwc->dev, "XCVR: ID set\n");
set_bit(ID, &mdwc->inputs);
} else {
dev_dbg(mdwc->dev, "XCVR: ID clear\n");
clear_bit(ID, &mdwc->inputs);
}
if (mdwc->vbus_active && !mdwc->in_restart) {
dev_dbg(mdwc->dev, "XCVR: BSV set\n");
set_bit(B_SESS_VLD, &mdwc->inputs);
} else {
dev_dbg(mdwc->dev, "XCVR: BSV clear\n");
clear_bit(B_SESS_VLD, &mdwc->inputs);
}
if (mdwc->suspend) {
dev_dbg(mdwc->dev, "XCVR: SUSP set\n");
set_bit(B_SUSPEND, &mdwc->inputs);
} else {
dev_dbg(mdwc->dev, "XCVR: SUSP clear\n");
clear_bit(B_SUSPEND, &mdwc->inputs);
}
schedule_delayed_work(&mdwc->sm_work, 0);
}
static void dwc3_resume_work(struct work_struct *w)
{
struct dwc3_msm *mdwc = container_of(w, struct dwc3_msm, resume_work);
struct dwc3 *dwc = platform_get_drvdata(mdwc->dwc3);
union extcon_property_value val;
unsigned int extcon_id;
struct extcon_dev *edev = NULL;
int ret = 0;
dev_dbg(mdwc->dev, "%s: dwc3 resume work\n", __func__);
if (mdwc->vbus_active) {
edev = mdwc->extcon_vbus;
extcon_id = EXTCON_USB;
} else if (mdwc->id_state == DWC3_ID_GROUND) {
edev = mdwc->extcon_id;
extcon_id = EXTCON_USB_HOST;
}
/* Check speed and Type-C polarity values in order to configure PHY */
if (edev && extcon_get_state(edev, extcon_id)) {
ret = extcon_get_property(edev, extcon_id,
EXTCON_PROP_USB_SS, &val);
/* Use default dwc->maximum_speed if speed isn't reported */
if (!ret)
dwc->maximum_speed = (val.intval == 0) ?
USB_SPEED_HIGH : USB_SPEED_SUPER;
if (dwc->maximum_speed > dwc->max_hw_supp_speed)
dwc->maximum_speed = dwc->max_hw_supp_speed;
if (override_usb_speed &&
is_valid_usb_speed(dwc, override_usb_speed)) {
dwc->maximum_speed = override_usb_speed;
dbg_event(0xFF, "override_speed", override_usb_speed);
}
dbg_event(0xFF, "speed", dwc->maximum_speed);
ret = extcon_get_property(edev, extcon_id,
EXTCON_PROP_USB_TYPEC_POLARITY, &val);
if (ret)
mdwc->typec_orientation = ORIENTATION_NONE;
else
mdwc->typec_orientation = val.intval ?
ORIENTATION_CC2 : ORIENTATION_CC1;
dbg_event(0xFF, "cc_state", mdwc->typec_orientation);
}
/*
* exit LPM first to meet resume timeline from device side.
* resume_pending flag would prevent calling
* dwc3_msm_resume() in case we are here due to system
* wide resume without usb cable connected. This flag is set
* only in case of power event irq in lpm.
*/
if (mdwc->resume_pending) {
dwc3_msm_resume(mdwc);
mdwc->resume_pending = false;
}
if (atomic_read(&mdwc->pm_suspended)) {
dbg_event(0xFF, "RWrk PMSus", 0);
/* let pm resume kick in resume work later */
return;
}
dwc3_ext_event_notify(mdwc);
}
static void dwc3_pwr_event_handler(struct dwc3_msm *mdwc)
{
struct dwc3 *dwc = platform_get_drvdata(mdwc->dwc3);
u32 irq_stat, irq_clear = 0;
irq_stat = dwc3_msm_read_reg(mdwc->base, PWR_EVNT_IRQ_STAT_REG);
dev_dbg(mdwc->dev, "%s irq_stat=%X\n", __func__, irq_stat);
/* Check for P3 events */
if ((irq_stat & PWR_EVNT_POWERDOWN_OUT_P3_MASK) &&
(irq_stat & PWR_EVNT_POWERDOWN_IN_P3_MASK)) {
/* Can't tell if entered or exit P3, so check LINKSTATE */
u32 ls = dwc3_msm_read_reg_field(mdwc->base,
DWC3_GDBGLTSSM, DWC3_GDBGLTSSM_LINKSTATE_MASK);
dev_dbg(mdwc->dev, "%s link state = 0x%04x\n", __func__, ls);
atomic_set(&mdwc->in_p3, ls == DWC3_LINK_STATE_U3);
irq_stat &= ~(PWR_EVNT_POWERDOWN_OUT_P3_MASK |
PWR_EVNT_POWERDOWN_IN_P3_MASK);
irq_clear |= (PWR_EVNT_POWERDOWN_OUT_P3_MASK |
PWR_EVNT_POWERDOWN_IN_P3_MASK);
} else if (irq_stat & PWR_EVNT_POWERDOWN_OUT_P3_MASK) {
atomic_set(&mdwc->in_p3, 0);
irq_stat &= ~PWR_EVNT_POWERDOWN_OUT_P3_MASK;
irq_clear |= PWR_EVNT_POWERDOWN_OUT_P3_MASK;
} else if (irq_stat & PWR_EVNT_POWERDOWN_IN_P3_MASK) {
atomic_set(&mdwc->in_p3, 1);
irq_stat &= ~PWR_EVNT_POWERDOWN_IN_P3_MASK;
irq_clear |= PWR_EVNT_POWERDOWN_IN_P3_MASK;
}
/* Clear L2 exit */
if (irq_stat & PWR_EVNT_LPM_OUT_L2_MASK) {
irq_stat &= ~PWR_EVNT_LPM_OUT_L2_MASK;
irq_stat |= PWR_EVNT_LPM_OUT_L2_MASK;
}
/* Handle exit from L1 events */
if (irq_stat & PWR_EVNT_LPM_OUT_L1_MASK) {
dev_dbg(mdwc->dev, "%s: handling PWR_EVNT_LPM_OUT_L1_MASK\n",
__func__);
if (usb_gadget_wakeup(&dwc->gadget))
dev_err(mdwc->dev, "%s failed to take dwc out of L1\n",
__func__);
irq_stat &= ~PWR_EVNT_LPM_OUT_L1_MASK;
irq_clear |= PWR_EVNT_LPM_OUT_L1_MASK;
}
/* Unhandled events */
if (irq_stat)
dev_dbg(mdwc->dev, "%s: unexpected PWR_EVNT, irq_stat=%X\n",
__func__, irq_stat);
dwc3_msm_write_reg(mdwc->base, PWR_EVNT_IRQ_STAT_REG, irq_clear);
}
static irqreturn_t msm_dwc3_pwr_irq_thread(int irq, void *_mdwc)
{
struct dwc3_msm *mdwc = _mdwc;
struct dwc3 *dwc = platform_get_drvdata(mdwc->dwc3);
dev_dbg(mdwc->dev, "%s\n", __func__);
if (atomic_read(&dwc->in_lpm))
dwc3_resume_work(&mdwc->resume_work);
else
dwc3_pwr_event_handler(mdwc);
dbg_event(0xFF, "PWR IRQ", atomic_read(&dwc->in_lpm));
return IRQ_HANDLED;
}
static irqreturn_t msm_dwc3_pwr_irq(int irq, void *data)
{
struct dwc3_msm *mdwc = data;
struct dwc3 *dwc = platform_get_drvdata(mdwc->dwc3);
dwc->t_pwr_evt_irq = ktime_get();
dev_dbg(mdwc->dev, "%s received\n", __func__);
/*
* When in Low Power Mode, can't read PWR_EVNT_IRQ_STAT_REG to acertain
* which interrupts have been triggered, as the clocks are disabled.
* Resume controller by waking up pwr event irq thread.After re-enabling
* clocks, dwc3_msm_resume will call dwc3_pwr_event_handler to handle
* all other power events.
*/
if (atomic_read(&dwc->in_lpm)) {
/* set this to call dwc3_msm_resume() */
mdwc->resume_pending = true;
return IRQ_WAKE_THREAD;
}
dwc3_pwr_event_handler(mdwc);
return IRQ_HANDLED;
}
static int dwc3_cpu_notifier_cb(struct notifier_block *nfb,
unsigned long action, void *hcpu)
{
uint32_t cpu = (uintptr_t)hcpu;
struct dwc3_msm *mdwc =
container_of(nfb, struct dwc3_msm, dwc3_cpu_notifier);
if (cpu == cpu_to_affin && action == CPU_ONLINE) {
pr_debug("%s: cpu online:%u irq:%d\n", __func__,
cpu_to_affin, mdwc->irq_to_affin);
irq_set_affinity(mdwc->irq_to_affin, get_cpu_mask(cpu));
}
return NOTIFY_OK;
}
static void dwc3_otg_sm_work(struct work_struct *w);
static int dwc3_msm_get_clk_gdsc(struct dwc3_msm *mdwc)
{
int ret;
mdwc->dwc3_gdsc = devm_regulator_get(mdwc->dev, "USB3_GDSC");
if (IS_ERR(mdwc->dwc3_gdsc))
mdwc->dwc3_gdsc = NULL;
mdwc->xo_clk = devm_clk_get(mdwc->dev, "xo");
if (IS_ERR(mdwc->xo_clk)) {
dev_err(mdwc->dev, "%s unable to get TCXO buffer handle\n",
__func__);
ret = PTR_ERR(mdwc->xo_clk);
return ret;
}
clk_set_rate(mdwc->xo_clk, 19200000);
mdwc->iface_clk = devm_clk_get(mdwc->dev, "iface_clk");
if (IS_ERR(mdwc->iface_clk)) {
dev_err(mdwc->dev, "failed to get iface_clk\n");
ret = PTR_ERR(mdwc->iface_clk);
return ret;
}
/*
* DWC3 Core requires its CORE CLK (aka master / bus clk) to
* run at 125Mhz in SSUSB mode and >60MHZ for HSUSB mode.
* On newer platform it can run at 150MHz as well.
*/
mdwc->core_clk = devm_clk_get(mdwc->dev, "core_clk");
if (IS_ERR(mdwc->core_clk)) {
dev_err(mdwc->dev, "failed to get core_clk\n");
ret = PTR_ERR(mdwc->core_clk);
return ret;
}
mdwc->core_reset = devm_reset_control_get(mdwc->dev, "core_reset");
if (IS_ERR(mdwc->core_reset)) {
dev_err(mdwc->dev, "failed to get core_reset\n");
return PTR_ERR(mdwc->core_reset);
}
if (of_property_read_u32(mdwc->dev->of_node, "qcom,core-clk-rate",
(u32 *)&mdwc->core_clk_rate)) {
dev_err(mdwc->dev, "USB core-clk-rate is not present\n");
return -EINVAL;
}
mdwc->core_clk_rate = clk_round_rate(mdwc->core_clk,
mdwc->core_clk_rate);
dev_dbg(mdwc->dev, "USB core frequency = %ld\n",
mdwc->core_clk_rate);
ret = clk_set_rate(mdwc->core_clk, mdwc->core_clk_rate);
if (ret)
dev_err(mdwc->dev, "fail to set core_clk freq:%d\n", ret);
if (of_property_read_u32(mdwc->dev->of_node, "qcom,core-clk-rate-hs",
(u32 *)&mdwc->core_clk_rate_hs)) {
dev_dbg(mdwc->dev, "USB core-clk-rate-hs is not present\n");
mdwc->core_clk_rate_hs = mdwc->core_clk_rate;
}
mdwc->sleep_clk = devm_clk_get(mdwc->dev, "sleep_clk");
if (IS_ERR(mdwc->sleep_clk)) {
dev_err(mdwc->dev, "failed to get sleep_clk\n");
ret = PTR_ERR(mdwc->sleep_clk);
return ret;
}
clk_set_rate(mdwc->sleep_clk, 32000);
mdwc->utmi_clk_rate = 19200000;
mdwc->utmi_clk = devm_clk_get(mdwc->dev, "utmi_clk");
if (IS_ERR(mdwc->utmi_clk)) {
dev_err(mdwc->dev, "failed to get utmi_clk\n");
ret = PTR_ERR(mdwc->utmi_clk);
return ret;
}
clk_set_rate(mdwc->utmi_clk, mdwc->utmi_clk_rate);
mdwc->bus_aggr_clk = devm_clk_get(mdwc->dev, "bus_aggr_clk");
if (IS_ERR(mdwc->bus_aggr_clk))
mdwc->bus_aggr_clk = NULL;
mdwc->noc_aggr_clk = devm_clk_get(mdwc->dev, "noc_aggr_clk");
if (IS_ERR(mdwc->noc_aggr_clk))
mdwc->noc_aggr_clk = NULL;
if (of_property_match_string(mdwc->dev->of_node,
"clock-names", "cfg_ahb_clk") >= 0) {
mdwc->cfg_ahb_clk = devm_clk_get(mdwc->dev, "cfg_ahb_clk");
if (IS_ERR(mdwc->cfg_ahb_clk)) {
ret = PTR_ERR(mdwc->cfg_ahb_clk);
mdwc->cfg_ahb_clk = NULL;
if (ret != -EPROBE_DEFER)
dev_err(mdwc->dev,
"failed to get cfg_ahb_clk ret %d\n",
ret);
return ret;
}
}
return 0;
}
static int dwc3_msm_id_notifier(struct notifier_block *nb,
unsigned long event, void *ptr)
{
struct dwc3_msm *mdwc = container_of(nb, struct dwc3_msm, id_nb);
struct dwc3 *dwc = platform_get_drvdata(mdwc->dwc3);
enum dwc3_id_state id;
id = event ? DWC3_ID_GROUND : DWC3_ID_FLOAT;
dev_dbg(mdwc->dev, "host:%ld (id:%d) event received\n", event, id);
if (mdwc->id_state != id) {
mdwc->id_state = id;
dbg_event(0xFF, "id_state", mdwc->id_state);
queue_work(mdwc->dwc3_wq, &mdwc->resume_work);
}
return NOTIFY_DONE;
}
static void check_for_sdp_connection(struct work_struct *w)
{
struct dwc3_msm *mdwc =
container_of(w, struct dwc3_msm, sdp_check.work);
struct dwc3 *dwc = platform_get_drvdata(mdwc->dwc3);
if (!mdwc->vbus_active)
return;
/* floating D+/D- lines detected */
if (dwc->gadget.state < USB_STATE_DEFAULT &&
dwc3_gadget_get_link_state(dwc) != DWC3_LINK_STATE_CMPLY) {
mdwc->vbus_active = 0;
dbg_event(0xFF, "Q RW SPD CHK", mdwc->vbus_active);
queue_work(mdwc->dwc3_wq, &mdwc->resume_work);
}
}
static int dwc3_msm_vbus_notifier(struct notifier_block *nb,
unsigned long event, void *ptr)
{
struct dwc3_msm *mdwc = container_of(nb, struct dwc3_msm, vbus_nb);
struct dwc3 *dwc = platform_get_drvdata(mdwc->dwc3);
dev_dbg(mdwc->dev, "vbus:%ld event received\n", event);
if (mdwc->vbus_active == event)
return NOTIFY_DONE;
mdwc->vbus_active = event;
if (dwc->is_drd && !mdwc->in_restart)
queue_work(mdwc->dwc3_wq, &mdwc->resume_work);
return NOTIFY_DONE;
}
/*
* Handle EUD based soft detach/attach event
*
* @nb - notifier handler
* @event - event information i.e. soft detach/attach event
* @ptr - extcon_dev pointer
*
* @return int - NOTIFY_DONE always due to EUD
*/
static int dwc3_msm_eud_notifier(struct notifier_block *nb,
unsigned long event, void *ptr)
{
struct dwc3_msm *mdwc = container_of(nb, struct dwc3_msm, eud_event_nb);
struct dwc3 *dwc = platform_get_drvdata(mdwc->dwc3);
dbg_event(0xFF, "EUD_NB", event);
dev_dbg(mdwc->dev, "eud:%ld event received\n", event);
if (mdwc->vbus_active == event)
return NOTIFY_DONE;
mdwc->vbus_active = event;
if (dwc->is_drd && !mdwc->in_restart)
queue_work(mdwc->dwc3_wq, &mdwc->resume_work);
return NOTIFY_DONE;
}
static int dwc3_msm_extcon_register(struct dwc3_msm *mdwc)
{
struct device_node *node = mdwc->dev->of_node;
struct extcon_dev *edev;
int ret = 0;
if (!of_property_read_bool(node, "extcon"))
return 0;
/* Use first phandle (mandatory) for USB vbus status notification */
edev = extcon_get_edev_by_phandle(mdwc->dev, 0);
if (IS_ERR(edev) && PTR_ERR(edev) != -ENODEV)
return PTR_ERR(edev);
if (!IS_ERR(edev)) {
mdwc->extcon_vbus = edev;
mdwc->vbus_nb.notifier_call = dwc3_msm_vbus_notifier;
ret = extcon_register_notifier(edev, EXTCON_USB,
&mdwc->vbus_nb);
if (ret < 0) {
dev_err(mdwc->dev, "failed to register notifier for USB\n");
return ret;
}
}
/* Use second phandle (optional) for USB ID status notification */
if (of_count_phandle_with_args(node, "extcon", NULL) > 1) {
edev = extcon_get_edev_by_phandle(mdwc->dev, 1);
if (IS_ERR(edev) && PTR_ERR(edev) != -ENODEV) {
ret = PTR_ERR(edev);
goto err;
}
}
if (!IS_ERR(edev)) {
mdwc->extcon_id = edev;
mdwc->id_nb.notifier_call = dwc3_msm_id_notifier;
mdwc->host_restart_nb.notifier_call =
dwc3_restart_usb_host_mode;
ret = extcon_register_notifier(edev, EXTCON_USB_HOST,
&mdwc->id_nb);
if (ret < 0) {
dev_err(mdwc->dev, "failed to register notifier for USB-HOST\n");
goto err;
}
ret = extcon_register_blocking_notifier(edev, EXTCON_USB_HOST,
&mdwc->host_restart_nb);
if (ret < 0) {
dev_err(mdwc->dev, "failed to register blocking notifier\n");
goto err1;
}
}
edev = NULL;
/* Use third phandle (optional) for EUD based detach/attach events */
if (of_count_phandle_with_args(node, "extcon", NULL) > 2) {
edev = extcon_get_edev_by_phandle(mdwc->dev, 2);
if (IS_ERR(edev) && PTR_ERR(edev) != -ENODEV) {
ret = PTR_ERR(edev);
goto err1;
}
}
if (!IS_ERR_OR_NULL(edev)) {
mdwc->extcon_eud = edev;
mdwc->eud_event_nb.notifier_call = dwc3_msm_eud_notifier;
ret = extcon_register_notifier(edev, EXTCON_USB,
&mdwc->eud_event_nb);
if (ret < 0) {
dev_err(mdwc->dev, "failed to register notifier for EUD-USB\n");
goto err2;
}
}
return 0;
err2:
if (mdwc->extcon_id)
extcon_unregister_blocking_notifier(mdwc->extcon_id,
EXTCON_USB_HOST, &mdwc->host_restart_nb);
err1:
if (mdwc->extcon_id)
extcon_unregister_notifier(mdwc->extcon_id, EXTCON_USB_HOST,
&mdwc->id_nb);
err:
if (mdwc->extcon_vbus)
extcon_unregister_notifier(mdwc->extcon_vbus, EXTCON_USB,
&mdwc->vbus_nb);
return ret;
}
#define SMMU_BASE 0x10000000 /* Device address range base */
#define SMMU_SIZE 0x40000000 /* Device address range size */
static int dwc3_msm_init_iommu(struct dwc3_msm *mdwc)
{
struct device_node *node = mdwc->dev->of_node;
int atomic_ctx = 1, s1_bypass;
int ret;
if (!of_property_read_bool(node, "iommus"))
return 0;
mdwc->iommu_map = arm_iommu_create_mapping(&platform_bus_type,
SMMU_BASE, SMMU_SIZE);
if (IS_ERR_OR_NULL(mdwc->iommu_map)) {
ret = PTR_ERR(mdwc->iommu_map) ?: -ENODEV;
dev_err(mdwc->dev, "Failed to create IOMMU mapping (%d)\n",
ret);
return ret;
}
dev_dbg(mdwc->dev, "IOMMU mapping created: %pK\n", mdwc->iommu_map);
ret = iommu_domain_set_attr(mdwc->iommu_map->domain, DOMAIN_ATTR_ATOMIC,
&atomic_ctx);
if (ret) {
dev_err(mdwc->dev, "IOMMU set atomic attribute failed (%d)\n",
ret);
goto release_mapping;
}
s1_bypass = of_property_read_bool(node, "qcom,smmu-s1-bypass");
ret = iommu_domain_set_attr(mdwc->iommu_map->domain,
DOMAIN_ATTR_S1_BYPASS, &s1_bypass);
if (ret) {
dev_err(mdwc->dev, "IOMMU set s1 bypass (%d) failed (%d)\n",
s1_bypass, ret);
goto release_mapping;
}
ret = arm_iommu_attach_device(mdwc->dev, mdwc->iommu_map);
if (ret) {
dev_err(mdwc->dev, "IOMMU attach failed (%d)\n", ret);
goto release_mapping;
}
dev_dbg(mdwc->dev, "attached to IOMMU\n");
return 0;
release_mapping:
arm_iommu_release_mapping(mdwc->iommu_map);
mdwc->iommu_map = NULL;
return ret;
}
static ssize_t mode_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct dwc3_msm *mdwc = dev_get_drvdata(dev);
if (mdwc->vbus_active)
return snprintf(buf, PAGE_SIZE, "peripheral\n");
if (mdwc->id_state == DWC3_ID_GROUND)
return snprintf(buf, PAGE_SIZE, "host\n");
return snprintf(buf, PAGE_SIZE, "none\n");
}
static ssize_t mode_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct dwc3_msm *mdwc = dev_get_drvdata(dev);
if (sysfs_streq(buf, "peripheral")) {
mdwc->vbus_active = true;
mdwc->id_state = DWC3_ID_FLOAT;
} else if (sysfs_streq(buf, "host")) {
mdwc->vbus_active = false;
mdwc->id_state = DWC3_ID_GROUND;
} else {
mdwc->vbus_active = false;
mdwc->id_state = DWC3_ID_FLOAT;
}
dwc3_ext_event_notify(mdwc);
return count;
}
static DEVICE_ATTR_RW(mode);
static void msm_dwc3_perf_vote_work(struct work_struct *w);
static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct dwc3_msm *mdwc = dev_get_drvdata(dev);
struct dwc3 *dwc = platform_get_drvdata(mdwc->dwc3);
return snprintf(buf, PAGE_SIZE, "%s\n",
usb_speed_string(dwc->max_hw_supp_speed));
}
static ssize_t speed_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct dwc3_msm *mdwc = dev_get_drvdata(dev);
struct dwc3 *dwc = platform_get_drvdata(mdwc->dwc3);
enum usb_device_speed req_speed = USB_SPEED_UNKNOWN;
if (sysfs_streq(buf, "high"))
req_speed = USB_SPEED_HIGH;
else if (sysfs_streq(buf, "super"))
req_speed = USB_SPEED_SUPER;
if (req_speed != USB_SPEED_UNKNOWN &&
req_speed != dwc->max_hw_supp_speed) {
dwc->maximum_speed = dwc->max_hw_supp_speed = req_speed;
schedule_work(&mdwc->restart_usb_work);
}
return count;
}
static DEVICE_ATTR_RW(speed);
static int dwc3_msm_probe(struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node, *dwc3_node;
struct device *dev = &pdev->dev;
union power_supply_propval pval = {0};
struct dwc3_msm *mdwc;
struct dwc3 *dwc;
struct resource *res;
void __iomem *tcsr;
bool host_mode;
int ret = 0, i;
int ext_hub_reset_gpio;
u32 val;
unsigned long irq_type;
mdwc = devm_kzalloc(&pdev->dev, sizeof(*mdwc), GFP_KERNEL);
if (!mdwc)
return -ENOMEM;
if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64))) {
dev_err(&pdev->dev, "setting DMA mask to 64 failed.\n");
if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32))) {
dev_err(&pdev->dev, "setting DMA mask to 32 failed.\n");
return -EOPNOTSUPP;
}
}
platform_set_drvdata(pdev, mdwc);
mdwc->dev = &pdev->dev;
INIT_LIST_HEAD(&mdwc->req_complete_list);
INIT_WORK(&mdwc->resume_work, dwc3_resume_work);
INIT_WORK(&mdwc->restart_usb_work, dwc3_restart_usb_work);
INIT_WORK(&mdwc->vbus_draw_work, dwc3_msm_vbus_draw_work);
INIT_DELAYED_WORK(&mdwc->sm_work, dwc3_otg_sm_work);
INIT_DELAYED_WORK(&mdwc->perf_vote_work, msm_dwc3_perf_vote_work);
INIT_DELAYED_WORK(&mdwc->sdp_check, check_for_sdp_connection);
mdwc->dwc3_wq = alloc_ordered_workqueue("dwc3_wq", 0);
if (!mdwc->dwc3_wq) {
pr_err("%s: Unable to create workqueue dwc3_wq\n", __func__);
return -ENOMEM;
}
/* Get all clks and gdsc reference */
ret = dwc3_msm_get_clk_gdsc(mdwc);
if (ret) {
dev_err(&pdev->dev, "error getting clock or gdsc.\n");
goto err;
}
mdwc->id_state = DWC3_ID_FLOAT;
set_bit(ID, &mdwc->inputs);
mdwc->charging_disabled = of_property_read_bool(node,
"qcom,charging-disabled");
ret = of_property_read_u32(node, "qcom,lpm-to-suspend-delay-ms",
&mdwc->lpm_to_suspend_delay);
if (ret) {
dev_dbg(&pdev->dev, "setting lpm_to_suspend_delay to zero.\n");
mdwc->lpm_to_suspend_delay = 0;
}
memcpy(mdwc->wakeup_irq, usb_irq_info, sizeof(usb_irq_info));
for (i = 0; i < USB_MAX_IRQ; i++) {
irq_type = IRQF_TRIGGER_RISING | IRQF_EARLY_RESUME |
IRQF_ONESHOT;
mdwc->wakeup_irq[i].irq = platform_get_irq_byname(pdev,
mdwc->wakeup_irq[i].name);
if (mdwc->wakeup_irq[i].irq < 0) {
/* pwr_evnt_irq is only mandatory irq */
if (!strcmp(mdwc->wakeup_irq[i].name,
"pwr_event_irq")) {
dev_err(&pdev->dev, "get_irq for %s failed\n\n",
mdwc->wakeup_irq[i].name);
ret = -EINVAL;
goto err;
}
mdwc->wakeup_irq[i].irq = 0;
} else {
irq_set_status_flags(mdwc->wakeup_irq[i].irq,
IRQ_NOAUTOEN);
/* ss_phy_irq is level trigger interrupt */
if (!strcmp(mdwc->wakeup_irq[i].name, "ss_phy_irq"))
irq_type = IRQF_TRIGGER_HIGH | IRQF_ONESHOT |
IRQ_TYPE_LEVEL_HIGH | IRQF_EARLY_RESUME;
ret = devm_request_threaded_irq(&pdev->dev,
mdwc->wakeup_irq[i].irq,
msm_dwc3_pwr_irq,
msm_dwc3_pwr_irq_thread,
irq_type,
mdwc->wakeup_irq[i].name, mdwc);
if (ret) {
dev_err(&pdev->dev, "irq req %s failed: %d\n\n",
mdwc->wakeup_irq[i].name, ret);
goto err;
}
}
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "tcsr_base");
if (!res) {
dev_dbg(&pdev->dev, "missing TCSR memory resource\n");
} else {
tcsr = devm_ioremap_nocache(&pdev->dev, res->start,
resource_size(res));
if (IS_ERR_OR_NULL(tcsr)) {
dev_dbg(&pdev->dev, "tcsr ioremap failed\n");
} else {
/* Enable USB3 on the primary USB port. */
writel_relaxed(0x1, tcsr);
/*
* Ensure that TCSR write is completed before
* USB registers initialization.
*/
mb();
}
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "core_base");
if (!res) {
dev_err(&pdev->dev, "missing memory base resource\n");
ret = -ENODEV;
goto err;
}
mdwc->base = devm_ioremap_nocache(&pdev->dev, res->start,
resource_size(res));
if (!mdwc->base) {
dev_err(&pdev->dev, "ioremap failed\n");
ret = -ENODEV;
goto err;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"ahb2phy_base");
if (res) {
mdwc->ahb2phy_base = devm_ioremap_nocache(&pdev->dev,
res->start, resource_size(res));
if (IS_ERR_OR_NULL(mdwc->ahb2phy_base)) {
dev_err(dev, "couldn't find ahb2phy_base addr.\n");
mdwc->ahb2phy_base = NULL;
} else {
/*
* On some targets cfg_ahb_clk depends upon usb gdsc
* regulator. If cfg_ahb_clk is enabled without
* turning on usb gdsc regulator clk is stuck off.
*/
dwc3_msm_config_gdsc(mdwc, 1);
clk_prepare_enable(mdwc->cfg_ahb_clk);
/* Configure AHB2PHY for one wait state read/write*/
val = readl_relaxed(mdwc->ahb2phy_base +
PERIPH_SS_AHB2PHY_TOP_CFG);
if (val != ONE_READ_WRITE_WAIT) {
writel_relaxed(ONE_READ_WRITE_WAIT,
mdwc->ahb2phy_base +
PERIPH_SS_AHB2PHY_TOP_CFG);
/* complete above write before using USB PHY */
mb();
}
clk_disable_unprepare(mdwc->cfg_ahb_clk);
dwc3_msm_config_gdsc(mdwc, 0);
}
}
if (of_get_property(pdev->dev.of_node, "qcom,usb-dbm", NULL)) {
mdwc->dbm = usb_get_dbm_by_phandle(&pdev->dev, "qcom,usb-dbm");
if (IS_ERR(mdwc->dbm)) {
dev_err(&pdev->dev, "unable to get dbm device\n");
ret = -EPROBE_DEFER;
goto err;
}
/*
* Add power event if the dbm indicates coming out of L1
* by interrupt
*/
if (dbm_l1_lpm_interrupt(mdwc->dbm)) {
if (!mdwc->wakeup_irq[PWR_EVNT_IRQ].irq) {
dev_err(&pdev->dev,
"need pwr_event_irq exiting L1\n");
ret = -EINVAL;
goto err;
}
}
}
ext_hub_reset_gpio = of_get_named_gpio(node,
"qcom,ext-hub-reset-gpio", 0);
if (gpio_is_valid(ext_hub_reset_gpio)
&& (!devm_gpio_request(&pdev->dev, ext_hub_reset_gpio,
"qcom,ext-hub-reset-gpio"))) {
/* reset external hub */
gpio_direction_output(ext_hub_reset_gpio, 1);
/*
* Hub reset should be asserted for minimum 5microsec
* before deasserting.
*/
usleep_range(5, 1000);
gpio_direction_output(ext_hub_reset_gpio, 0);
}
if (of_property_read_u32(node, "qcom,dwc-usb3-msm-tx-fifo-size",
&mdwc->tx_fifo_size))
dev_err(&pdev->dev,
"unable to read platform data tx fifo size\n");
mdwc->disable_host_mode_pm = of_property_read_bool(node,
"qcom,disable-host-mode-pm");
mdwc->use_pdc_interrupts = of_property_read_bool(node,
"qcom,use-pdc-interrupts");
dwc3_set_notifier(&dwc3_msm_notify_event);
ret = dwc3_msm_init_iommu(mdwc);
if (ret)
goto err;
/* Assumes dwc3 is the first DT child of dwc3-msm */
dwc3_node = of_get_next_available_child(node, NULL);
if (!dwc3_node) {
dev_err(&pdev->dev, "failed to find dwc3 child\n");
ret = -ENODEV;
goto uninit_iommu;
}
ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
if (ret) {
dev_err(&pdev->dev,
"failed to add create dwc3 core\n");
of_node_put(dwc3_node);
goto uninit_iommu;
}
mdwc->dwc3 = of_find_device_by_node(dwc3_node);
of_node_put(dwc3_node);
if (!mdwc->dwc3) {
dev_err(&pdev->dev, "failed to get dwc3 platform device\n");
goto put_dwc3;
}
mdwc->hs_phy = devm_usb_get_phy_by_phandle(&mdwc->dwc3->dev,
"usb-phy", 0);
if (IS_ERR(mdwc->hs_phy)) {
dev_err(&pdev->dev, "unable to get hsphy device\n");
ret = PTR_ERR(mdwc->hs_phy);
goto put_dwc3;
}
mdwc->ss_phy = devm_usb_get_phy_by_phandle(&mdwc->dwc3->dev,
"usb-phy", 1);
if (IS_ERR(mdwc->ss_phy)) {
dev_err(&pdev->dev, "unable to get ssphy device\n");
ret = PTR_ERR(mdwc->ss_phy);
goto put_dwc3;
}
mdwc->bus_scale_table = msm_bus_cl_get_pdata(pdev);
if (mdwc->bus_scale_table) {
mdwc->bus_perf_client =
msm_bus_scale_register_client(mdwc->bus_scale_table);
}
dwc = platform_get_drvdata(mdwc->dwc3);
if (!dwc) {
dev_err(&pdev->dev, "Failed to get dwc3 device\n");
goto put_dwc3;
}
mdwc->irq_to_affin = platform_get_irq(mdwc->dwc3, 0);
mdwc->dwc3_cpu_notifier.notifier_call = dwc3_cpu_notifier_cb;
if (cpu_to_affin)
register_cpu_notifier(&mdwc->dwc3_cpu_notifier);
ret = of_property_read_u32(node, "qcom,num-gsi-evt-buffs",
&mdwc->num_gsi_event_buffers);
/* IOMMU will be reattached upon each resume/connect */
if (mdwc->iommu_map)
arm_iommu_detach_device(mdwc->dev);
/*
* Clocks and regulators will not be turned on until the first time
* runtime PM resume is called. This is to allow for booting up with
* charger already connected so as not to disturb PHY line states.
*/
mdwc->lpm_flags = MDWC3_POWER_COLLAPSE | MDWC3_SS_PHY_SUSPEND;
atomic_set(&dwc->in_lpm, 1);
pm_runtime_set_autosuspend_delay(mdwc->dev, 1000);
pm_runtime_use_autosuspend(mdwc->dev);
device_init_wakeup(mdwc->dev, 1);
if (of_property_read_bool(node, "qcom,disable-dev-mode-pm"))
pm_runtime_get_noresume(mdwc->dev);
ret = dwc3_msm_extcon_register(mdwc);
if (ret)
goto put_dwc3;
ret = of_property_read_u32(node, "qcom,pm-qos-latency",
&mdwc->pm_qos_latency);
if (ret) {
dev_dbg(&pdev->dev, "setting pm-qos-latency to zero.\n");
mdwc->pm_qos_latency = 0;
}
mdwc->usb_psy = power_supply_get_by_name("usb");
if (!mdwc->usb_psy) {
dev_warn(mdwc->dev, "Could not get usb power_supply\n");
pval.intval = -EINVAL;
} else {
power_supply_get_property(mdwc->usb_psy,
POWER_SUPPLY_PROP_PRESENT, &pval);
}
/* Update initial VBUS/ID state from extcon */
if (mdwc->extcon_vbus && extcon_get_state(mdwc->extcon_vbus,
EXTCON_USB))
dwc3_msm_vbus_notifier(&mdwc->vbus_nb, true, mdwc->extcon_vbus);
else if (mdwc->extcon_id && extcon_get_state(mdwc->extcon_id,
EXTCON_USB_HOST))
dwc3_msm_id_notifier(&mdwc->id_nb, true, mdwc->extcon_id);
else if (!pval.intval) {
/* USB cable is not connected */
schedule_delayed_work(&mdwc->sm_work, 0);
} else {
if (pval.intval > 0)
dev_info(mdwc->dev, "charger detection in progress\n");
}
device_create_file(&pdev->dev, &dev_attr_mode);
device_create_file(&pdev->dev, &dev_attr_speed);
host_mode = usb_get_dr_mode(&mdwc->dwc3->dev) == USB_DR_MODE_HOST;
if (!dwc->is_drd && host_mode) {
dev_dbg(&pdev->dev, "DWC3 in host only mode\n");
mdwc->id_state = DWC3_ID_GROUND;
dwc3_ext_event_notify(mdwc);
}
return 0;
put_dwc3:
if (mdwc->bus_perf_client)
msm_bus_scale_unregister_client(mdwc->bus_perf_client);
uninit_iommu:
if (mdwc->iommu_map) {
arm_iommu_detach_device(mdwc->dev);
arm_iommu_release_mapping(mdwc->iommu_map);
}
of_platform_depopulate(&pdev->dev);
err:
destroy_workqueue(mdwc->dwc3_wq);
return ret;
}
static int dwc3_msm_remove(struct platform_device *pdev)
{
struct dwc3_msm *mdwc = platform_get_drvdata(pdev);
struct dwc3 *dwc = platform_get_drvdata(mdwc->dwc3);
int ret_pm;
device_remove_file(&pdev->dev, &dev_attr_mode);
if (cpu_to_affin)
unregister_cpu_notifier(&mdwc->dwc3_cpu_notifier);
/*
* In case of system suspend, pm_runtime_get_sync fails.
* Hence turn ON the clocks manually.
*/
ret_pm = pm_runtime_get_sync(mdwc->dev);
dbg_event(0xFF, "Remov gsyn", ret_pm);
if (ret_pm < 0) {
dev_err(mdwc->dev,
"pm_runtime_get_sync failed with %d\n", ret_pm);
if (mdwc->noc_aggr_clk)
clk_prepare_enable(mdwc->noc_aggr_clk);
clk_prepare_enable(mdwc->utmi_clk);
clk_prepare_enable(mdwc->core_clk);
clk_prepare_enable(mdwc->iface_clk);
clk_prepare_enable(mdwc->sleep_clk);
if (mdwc->bus_aggr_clk)
clk_prepare_enable(mdwc->bus_aggr_clk);
clk_prepare_enable(mdwc->xo_clk);
}
cancel_delayed_work_sync(&mdwc->perf_vote_work);
cancel_delayed_work_sync(&mdwc->sm_work);
if (mdwc->hs_phy)
mdwc->hs_phy->flags &= ~PHY_HOST_MODE;
of_platform_depopulate(&pdev->dev);
dbg_event(0xFF, "Remov put", 0);
pm_runtime_disable(mdwc->dev);
pm_runtime_barrier(mdwc->dev);
pm_runtime_put_sync(mdwc->dev);
pm_runtime_set_suspended(mdwc->dev);
device_wakeup_disable(mdwc->dev);
if (mdwc->bus_perf_client)
msm_bus_scale_unregister_client(mdwc->bus_perf_client);
if (!IS_ERR_OR_NULL(mdwc->vbus_reg))
regulator_disable(mdwc->vbus_reg);
if (mdwc->wakeup_irq[HS_PHY_IRQ].irq)
disable_irq(mdwc->wakeup_irq[HS_PHY_IRQ].irq);
if (mdwc->wakeup_irq[DP_HS_PHY_IRQ].irq)
disable_irq(mdwc->wakeup_irq[DP_HS_PHY_IRQ].irq);
if (mdwc->wakeup_irq[DM_HS_PHY_IRQ].irq)
disable_irq(mdwc->wakeup_irq[DM_HS_PHY_IRQ].irq);
if (mdwc->wakeup_irq[SS_PHY_IRQ].irq)
disable_irq(mdwc->wakeup_irq[SS_PHY_IRQ].irq);
disable_irq(mdwc->wakeup_irq[PWR_EVNT_IRQ].irq);
clk_disable_unprepare(mdwc->utmi_clk);
clk_set_rate(mdwc->core_clk, 19200000);
clk_disable_unprepare(mdwc->core_clk);
clk_disable_unprepare(mdwc->iface_clk);
clk_disable_unprepare(mdwc->sleep_clk);
clk_disable_unprepare(mdwc->xo_clk);
clk_put(mdwc->xo_clk);
dwc3_msm_config_gdsc(mdwc, 0);
if (mdwc->iommu_map) {
if (!atomic_read(&dwc->in_lpm))
arm_iommu_detach_device(mdwc->dev);
arm_iommu_release_mapping(mdwc->iommu_map);
}
return 0;
}
static int dwc3_msm_host_notifier(struct notifier_block *nb,
unsigned long event, void *ptr)
{
struct dwc3_msm *mdwc = container_of(nb, struct dwc3_msm, host_nb);
struct dwc3 *dwc = platform_get_drvdata(mdwc->dwc3);
struct usb_device *udev = ptr;
union power_supply_propval pval;
unsigned int max_power;
if (event != USB_DEVICE_ADD && event != USB_DEVICE_REMOVE)
return NOTIFY_DONE;
if (!mdwc->usb_psy) {
mdwc->usb_psy = power_supply_get_by_name("usb");
if (!mdwc->usb_psy)
return NOTIFY_DONE;
}
/*
* For direct-attach devices, new udev is direct child of root hub
* i.e. dwc -> xhci -> root_hub -> udev
* root_hub's udev->parent==NULL, so traverse struct device hierarchy
*/
if (udev->parent && !udev->parent->parent &&
udev->dev.parent->parent == &dwc->xhci->dev) {
if (event == USB_DEVICE_ADD && udev->actconfig) {
if (!dwc3_msm_is_ss_rhport_connected(mdwc)) {
/*
* Core clock rate can be reduced only if root
* hub SS port is not enabled/connected.
*/
clk_set_rate(mdwc->core_clk,
mdwc->core_clk_rate_hs);
dev_dbg(mdwc->dev,
"set hs core clk rate %ld\n",
mdwc->core_clk_rate_hs);
mdwc->max_rh_port_speed = USB_SPEED_HIGH;
} else {
mdwc->max_rh_port_speed = USB_SPEED_SUPER;
}
if (udev->speed >= USB_SPEED_SUPER)
max_power = udev->actconfig->desc.bMaxPower * 8;
else
max_power = udev->actconfig->desc.bMaxPower * 2;
dev_dbg(mdwc->dev, "%s configured bMaxPower:%d (mA)\n",
dev_name(&udev->dev), max_power);
/* inform PMIC of max power so it can optimize boost */
pval.intval = max_power * 1000;
power_supply_set_property(mdwc->usb_psy,
POWER_SUPPLY_PROP_BOOST_CURRENT, &pval);
} else {
pval.intval = 0;
power_supply_set_property(mdwc->usb_psy,
POWER_SUPPLY_PROP_BOOST_CURRENT, &pval);
/* set rate back to default core clk rate */
clk_set_rate(mdwc->core_clk, mdwc->core_clk_rate);
dev_dbg(mdwc->dev, "set core clk rate %ld\n",
mdwc->core_clk_rate);
mdwc->max_rh_port_speed = USB_SPEED_UNKNOWN;
}
}
return NOTIFY_DONE;
}
static void msm_dwc3_perf_vote_update(struct dwc3_msm *mdwc, bool perf_mode)
{
static bool curr_perf_mode;
int latency = mdwc->pm_qos_latency;
if ((curr_perf_mode == perf_mode) || !latency)
return;
if (perf_mode)
pm_qos_update_request(&mdwc->pm_qos_req_dma, latency);
else
pm_qos_update_request(&mdwc->pm_qos_req_dma,
PM_QOS_DEFAULT_VALUE);
curr_perf_mode = perf_mode;
pr_debug("%s: latency updated to: %d\n", __func__,
perf_mode ? latency : PM_QOS_DEFAULT_VALUE);
}
static void msm_dwc3_perf_vote_work(struct work_struct *w)
{
struct dwc3_msm *mdwc = container_of(w, struct dwc3_msm,
perf_vote_work.work);
struct dwc3 *dwc = platform_get_drvdata(mdwc->dwc3);
static unsigned long last_irq_cnt;
bool in_perf_mode = false;
if (dwc->irq_cnt - last_irq_cnt >= PM_QOS_THRESHOLD)
in_perf_mode = true;
pr_debug("%s: in_perf_mode:%u, interrupts in last sample:%lu\n",
__func__, in_perf_mode, (dwc->irq_cnt - last_irq_cnt));
last_irq_cnt = dwc->irq_cnt;
msm_dwc3_perf_vote_update(mdwc, in_perf_mode);
schedule_delayed_work(&mdwc->perf_vote_work,
msecs_to_jiffies(1000 * PM_QOS_SAMPLE_SEC));
}
#define VBUS_REG_CHECK_DELAY (msecs_to_jiffies(1000))
/**
* dwc3_otg_start_host - helper function for starting/stoping the host
* controller driver.
*
* @mdwc: Pointer to the dwc3_msm structure.
* @on: start / stop the host controller driver.
*
* Returns 0 on success otherwise negative errno.
*/
static int dwc3_otg_start_host(struct dwc3_msm *mdwc, int on)
{
struct dwc3 *dwc = platform_get_drvdata(mdwc->dwc3);
int ret = 0;
/*
* The vbus_reg pointer could have multiple values
* NULL: regulator_get() hasn't been called, or was previously deferred
* IS_ERR: regulator could not be obtained, so skip using it
* Valid pointer otherwise
*/
if (!mdwc->vbus_reg) {
mdwc->vbus_reg = devm_regulator_get_optional(mdwc->dev,
"vbus_dwc3");
if (IS_ERR(mdwc->vbus_reg) &&
PTR_ERR(mdwc->vbus_reg) == -EPROBE_DEFER) {
/* regulators may not be ready, so retry again later */
mdwc->vbus_reg = NULL;
return -EPROBE_DEFER;
}
}
if (on) {
dev_dbg(mdwc->dev, "%s: turn on host\n", __func__);
mdwc->hs_phy->flags |= PHY_HOST_MODE;
if (dwc->maximum_speed == USB_SPEED_SUPER) {
mdwc->ss_phy->flags |= PHY_HOST_MODE;
usb_phy_notify_connect(mdwc->ss_phy,
USB_SPEED_SUPER);
}
usb_phy_notify_connect(mdwc->hs_phy, USB_SPEED_HIGH);
pm_runtime_get_sync(mdwc->dev);
dbg_event(0xFF, "StrtHost gync",
atomic_read(&mdwc->dev->power.usage_count));
if (!IS_ERR(mdwc->vbus_reg))
ret = regulator_enable(mdwc->vbus_reg);
if (ret) {
dev_err(mdwc->dev, "unable to enable vbus_reg\n");
mdwc->hs_phy->flags &= ~PHY_HOST_MODE;
mdwc->ss_phy->flags &= ~PHY_HOST_MODE;
pm_runtime_put_sync(mdwc->dev);
dbg_event(0xFF, "vregerr psync",
atomic_read(&mdwc->dev->power.usage_count));
return ret;
}
dwc3_set_mode(dwc, DWC3_GCTL_PRTCAP_HOST);
mdwc->host_nb.notifier_call = dwc3_msm_host_notifier;
usb_register_notify(&mdwc->host_nb);
mdwc->usbdev_nb.notifier_call = msm_dwc3_usbdev_notify;
usb_register_atomic_notify(&mdwc->usbdev_nb);
ret = dwc3_host_init(dwc);
if (ret) {
dev_err(mdwc->dev,
"%s: failed to add XHCI pdev ret=%d\n",
__func__, ret);
if (!IS_ERR(mdwc->vbus_reg))
regulator_disable(mdwc->vbus_reg);
mdwc->hs_phy->flags &= ~PHY_HOST_MODE;
mdwc->ss_phy->flags &= ~PHY_HOST_MODE;
pm_runtime_put_sync(mdwc->dev);
dbg_event(0xFF, "pdeverr psync",
atomic_read(&mdwc->dev->power.usage_count));
usb_unregister_notify(&mdwc->host_nb);
return ret;
}
/*
* In some cases it is observed that USB PHY is not going into
* suspend with host mode suspend functionality. Hence disable
* XHCI's runtime PM here if disable_host_mode_pm is set.
*/
if (mdwc->disable_host_mode_pm)
pm_runtime_disable(&dwc->xhci->dev);
mdwc->in_host_mode = true;
dwc3_usb3_phy_suspend(dwc, true);
/* xHCI should have incremented child count as necessary */
dbg_event(0xFF, "StrtHost psync",
atomic_read(&mdwc->dev->power.usage_count));
pm_runtime_mark_last_busy(mdwc->dev);
pm_runtime_put_sync_autosuspend(mdwc->dev);
#ifdef CONFIG_SMP
mdwc->pm_qos_req_dma.type = PM_QOS_REQ_AFFINE_IRQ;
mdwc->pm_qos_req_dma.irq = dwc->irq;
#endif
pm_qos_add_request(&mdwc->pm_qos_req_dma,
PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
/* start in perf mode for better performance initially */
msm_dwc3_perf_vote_update(mdwc, true);
schedule_delayed_work(&mdwc->perf_vote_work,
msecs_to_jiffies(1000 * PM_QOS_SAMPLE_SEC));
} else {
dev_dbg(mdwc->dev, "%s: turn off host\n", __func__);
usb_unregister_atomic_notify(&mdwc->usbdev_nb);
if (!IS_ERR(mdwc->vbus_reg))
ret = regulator_disable(mdwc->vbus_reg);
if (ret) {
dev_err(mdwc->dev, "unable to disable vbus_reg\n");
return ret;
}
cancel_delayed_work_sync(&mdwc->perf_vote_work);
msm_dwc3_perf_vote_update(mdwc, false);
pm_qos_remove_request(&mdwc->pm_qos_req_dma);
pm_runtime_get_sync(mdwc->dev);
dbg_event(0xFF, "StopHost gsync",
atomic_read(&mdwc->dev->power.usage_count));
usb_phy_notify_disconnect(mdwc->hs_phy, USB_SPEED_HIGH);
if (mdwc->ss_phy->flags & PHY_HOST_MODE) {
usb_phy_notify_disconnect(mdwc->ss_phy,
USB_SPEED_SUPER);
mdwc->ss_phy->flags &= ~PHY_HOST_MODE;
}
mdwc->hs_phy->flags &= ~PHY_HOST_MODE;
dwc3_host_exit(dwc);
usb_unregister_notify(&mdwc->host_nb);
dwc3_usb3_phy_suspend(dwc, false);
mdwc->in_host_mode = false;
pm_runtime_mark_last_busy(mdwc->dev);
pm_runtime_put_sync_autosuspend(mdwc->dev);
dbg_event(0xFF, "StopHost psync",
atomic_read(&mdwc->dev->power.usage_count));
}
return 0;
}
static void dwc3_override_vbus_status(struct dwc3_msm *mdwc, bool vbus_present)
{
struct dwc3 *dwc = platform_get_drvdata(mdwc->dwc3);
/* Update OTG VBUS Valid from HSPHY to controller */
dwc3_msm_write_readback(mdwc->base, HS_PHY_CTRL_REG,
vbus_present ? UTMI_OTG_VBUS_VALID | SW_SESSVLD_SEL :
UTMI_OTG_VBUS_VALID,
vbus_present ? UTMI_OTG_VBUS_VALID | SW_SESSVLD_SEL : 0);
/* Update only if Super Speed is supported */
if (dwc->maximum_speed == USB_SPEED_SUPER) {
/* Update VBUS Valid from SSPHY to controller */
dwc3_msm_write_readback(mdwc->base, SS_PHY_CTRL_REG,
LANE0_PWR_PRESENT,
vbus_present ? LANE0_PWR_PRESENT : 0);
}
}
/**
* dwc3_otg_start_peripheral - bind/unbind the peripheral controller.
*
* @mdwc: Pointer to the dwc3_msm structure.
* @on: Turn ON/OFF the gadget.
*
* Returns 0 on success otherwise negative errno.
*/
static int dwc3_otg_start_peripheral(struct dwc3_msm *mdwc, int on)
{
struct dwc3 *dwc = platform_get_drvdata(mdwc->dwc3);
pm_runtime_get_sync(mdwc->dev);
dbg_event(0xFF, "StrtGdgt gsync",
atomic_read(&mdwc->dev->power.usage_count));
if (on) {
dev_dbg(mdwc->dev, "%s: turn on gadget %s\n",
__func__, dwc->gadget.name);
dwc3_override_vbus_status(mdwc, true);
usb_phy_notify_connect(mdwc->hs_phy, USB_SPEED_HIGH);
usb_phy_notify_connect(mdwc->ss_phy, USB_SPEED_SUPER);
/*
* Core reset is not required during start peripheral. Only
* DBM reset is required, hence perform only DBM reset here.
*/
dwc3_msm_block_reset(mdwc, false);
dwc3_set_mode(dwc, DWC3_GCTL_PRTCAP_DEVICE);
usb_gadget_vbus_connect(&dwc->gadget);
#ifdef CONFIG_SMP
mdwc->pm_qos_req_dma.type = PM_QOS_REQ_AFFINE_IRQ;
mdwc->pm_qos_req_dma.irq = dwc->irq;
#endif
pm_qos_add_request(&mdwc->pm_qos_req_dma,
PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
/* start in perf mode for better performance initially */
msm_dwc3_perf_vote_update(mdwc, true);
schedule_delayed_work(&mdwc->perf_vote_work,
msecs_to_jiffies(1000 * PM_QOS_SAMPLE_SEC));
} else {
dev_dbg(mdwc->dev, "%s: turn off gadget %s\n",
__func__, dwc->gadget.name);
cancel_delayed_work_sync(&mdwc->perf_vote_work);
msm_dwc3_perf_vote_update(mdwc, false);
pm_qos_remove_request(&mdwc->pm_qos_req_dma);
usb_gadget_vbus_disconnect(&dwc->gadget);
usb_phy_notify_disconnect(mdwc->hs_phy, USB_SPEED_HIGH);
usb_phy_notify_disconnect(mdwc->ss_phy, USB_SPEED_SUPER);
dwc3_override_vbus_status(mdwc, false);
dwc3_usb3_phy_suspend(dwc, false);
}
pm_runtime_put_sync(mdwc->dev);
dbg_event(0xFF, "StopGdgt psync",
atomic_read(&mdwc->dev->power.usage_count));
return 0;
}
/* speed: 0 - USB_SPEED_HIGH, 1 - USB_SPEED_SUPER */
static int dwc3_restart_usb_host_mode(struct notifier_block *nb,
unsigned long event, void *ptr)
{
struct dwc3_msm *mdwc;
struct dwc3 *dwc;
int ret = -EINVAL, usb_speed;
mdwc = container_of(nb, struct dwc3_msm, host_restart_nb);
dwc = platform_get_drvdata(mdwc->dwc3);
usb_speed = (event == 0 ? USB_SPEED_HIGH : USB_SPEED_SUPER);
if (dwc->maximum_speed == usb_speed)
goto err;
dbg_event(0xFF, "stop_host_mode", dwc->maximum_speed);
ret = dwc3_otg_start_host(mdwc, 0);
if (ret)
goto err;
/*
* stop host mode functionality performs autosuspend with mdwc
* device, and it may take sometime to call PM runtime suspend.
* Hence call pm_runtime_suspend() API to invoke PM runtime
* suspend immediately to put USB controller and PHYs into suspend.
*/
ret = pm_runtime_suspend(mdwc->dev);
dbg_event(0xFF, "pm_runtime_sus", ret);
dwc->maximum_speed = usb_speed;
mdwc->otg_state = OTG_STATE_B_IDLE;
schedule_delayed_work(&mdwc->sm_work, 0);
dbg_event(0xFF, "complete_host_change", dwc->maximum_speed);
err:
return ret;
}
static int get_psy_type(struct dwc3_msm *mdwc)
{
union power_supply_propval pval = {0};
if (mdwc->charging_disabled)
return -EINVAL;
if (!mdwc->usb_psy) {
mdwc->usb_psy = power_supply_get_by_name("usb");
if (!mdwc->usb_psy) {
dev_err(mdwc->dev, "Could not get usb psy\n");
return -ENODEV;
}
}
power_supply_get_property(mdwc->usb_psy, POWER_SUPPLY_PROP_REAL_TYPE,
&pval);
return pval.intval;
}
static int dwc3_msm_gadget_vbus_draw(struct dwc3_msm *mdwc, unsigned int mA)
{
union power_supply_propval pval = {0};
int ret, psy_type;
psy_type = get_psy_type(mdwc);
if (psy_type == POWER_SUPPLY_TYPE_USB_FLOAT) {
pval.intval = -ETIMEDOUT;
goto set_prop;
}
if (mdwc->max_power == mA || psy_type != POWER_SUPPLY_TYPE_USB)
return 0;
dev_info(mdwc->dev, "Avail curr from USB = %u\n", mA);
/* Set max current limit in uA */
pval.intval = 1000 * mA;
set_prop:
ret = power_supply_set_property(mdwc->usb_psy,
POWER_SUPPLY_PROP_SDP_CURRENT_MAX, &pval);
if (ret) {
dev_dbg(mdwc->dev, "power supply error when setting property\n");
return ret;
}
mdwc->max_power = mA;
return 0;
}
/**
* dwc3_otg_sm_work - workqueue function.
*
* @w: Pointer to the dwc3 otg workqueue
*
* NOTE: After any change in otg_state, we must reschdule the state machine.
*/
static void dwc3_otg_sm_work(struct work_struct *w)
{
struct dwc3_msm *mdwc = container_of(w, struct dwc3_msm, sm_work.work);
struct dwc3 *dwc = NULL;
bool work = 0;
int ret = 0;
unsigned long delay = 0;
const char *state;
if (mdwc->dwc3)
dwc = platform_get_drvdata(mdwc->dwc3);
if (!dwc) {
dev_err(mdwc->dev, "dwc is NULL.\n");
return;
}
state = usb_otg_state_string(mdwc->otg_state);
dev_dbg(mdwc->dev, "%s state\n", state);
dbg_event(0xFF, state, 0);
/* Check OTG state */
switch (mdwc->otg_state) {
case OTG_STATE_UNDEFINED:
/* put controller and phy in suspend if no cable connected */
if (test_bit(ID, &mdwc->inputs) &&
!test_bit(B_SESS_VLD, &mdwc->inputs)) {
dbg_event(0xFF, "undef_id_!bsv", 0);
pm_runtime_set_active(mdwc->dev);
pm_runtime_enable(mdwc->dev);
pm_runtime_get_noresume(mdwc->dev);
dwc3_msm_resume(mdwc);
pm_runtime_put_sync(mdwc->dev);
dbg_event(0xFF, "Undef NoUSB",
atomic_read(&mdwc->dev->power.usage_count));
mdwc->otg_state = OTG_STATE_B_IDLE;
break;
}
dbg_event(0xFF, "Exit UNDEF", 0);
mdwc->otg_state = OTG_STATE_B_IDLE;
pm_runtime_set_suspended(mdwc->dev);
pm_runtime_enable(mdwc->dev);
/* fall-through */
case OTG_STATE_B_IDLE:
if (!test_bit(ID, &mdwc->inputs)) {
dev_dbg(mdwc->dev, "!id\n");
mdwc->otg_state = OTG_STATE_A_IDLE;
work = 1;
} else if (test_bit(B_SESS_VLD, &mdwc->inputs)) {
dev_dbg(mdwc->dev, "b_sess_vld\n");
if (get_psy_type(mdwc) == POWER_SUPPLY_TYPE_USB_FLOAT)
queue_delayed_work(mdwc->dwc3_wq,
&mdwc->sdp_check,
msecs_to_jiffies(SDP_CONNETION_CHECK_TIME));
/*
* Increment pm usage count upon cable connect. Count
* is decremented in OTG_STATE_B_PERIPHERAL state on
* cable disconnect or in bus suspend.
*/
pm_runtime_get_sync(mdwc->dev);
dbg_event(0xFF, "BIDLE gsync",
atomic_read(&mdwc->dev->power.usage_count));
dwc3_otg_start_peripheral(mdwc, 1);
mdwc->otg_state = OTG_STATE_B_PERIPHERAL;
work = 1;
} else {
dwc3_msm_gadget_vbus_draw(mdwc, 0);
dev_dbg(mdwc->dev, "Cable disconnected\n");
}
break;
case OTG_STATE_B_PERIPHERAL:
if (!test_bit(B_SESS_VLD, &mdwc->inputs) ||
!test_bit(ID, &mdwc->inputs)) {
dev_dbg(mdwc->dev, "!id || !bsv\n");
mdwc->otg_state = OTG_STATE_B_IDLE;
cancel_delayed_work_sync(&mdwc->sdp_check);
dwc3_otg_start_peripheral(mdwc, 0);
/*
* Decrement pm usage count upon cable disconnect
* which was incremented upon cable connect in
* OTG_STATE_B_IDLE state
*/
pm_runtime_put_sync(mdwc->dev);
dbg_event(0xFF, "!BSV psync",
atomic_read(&mdwc->dev->power.usage_count));
work = 1;
} else if (test_bit(B_SUSPEND, &mdwc->inputs) &&
test_bit(B_SESS_VLD, &mdwc->inputs)) {
dev_dbg(mdwc->dev, "BPER bsv && susp\n");
mdwc->otg_state = OTG_STATE_B_SUSPEND;
/*
* Decrement pm usage count upon bus suspend.
* Count was incremented either upon cable
* connect in OTG_STATE_B_IDLE or host
* initiated resume after bus suspend in
* OTG_STATE_B_SUSPEND state
*/
pm_runtime_mark_last_busy(mdwc->dev);
pm_runtime_put_autosuspend(mdwc->dev);
dbg_event(0xFF, "SUSP put",
atomic_read(&mdwc->dev->power.usage_count));
}
break;
case OTG_STATE_B_SUSPEND:
if (!test_bit(B_SESS_VLD, &mdwc->inputs)) {
dev_dbg(mdwc->dev, "BSUSP: !bsv\n");
mdwc->otg_state = OTG_STATE_B_IDLE;
cancel_delayed_work_sync(&mdwc->sdp_check);
dwc3_otg_start_peripheral(mdwc, 0);
} else if (!test_bit(B_SUSPEND, &mdwc->inputs)) {
dev_dbg(mdwc->dev, "BSUSP !susp\n");
mdwc->otg_state = OTG_STATE_B_PERIPHERAL;
/*
* Increment pm usage count upon host
* initiated resume. Count was decremented
* upon bus suspend in
* OTG_STATE_B_PERIPHERAL state.
*/
pm_runtime_get_sync(mdwc->dev);
dbg_event(0xFF, "!SUSP gsync",
atomic_read(&mdwc->dev->power.usage_count));
}
break;
case OTG_STATE_A_IDLE:
/* Switch to A-Device*/
if (test_bit(ID, &mdwc->inputs)) {
dev_dbg(mdwc->dev, "id\n");
mdwc->otg_state = OTG_STATE_B_IDLE;
mdwc->vbus_retry_count = 0;
work = 1;
} else {
mdwc->otg_state = OTG_STATE_A_HOST;
ret = dwc3_otg_start_host(mdwc, 1);
if ((ret == -EPROBE_DEFER) &&
mdwc->vbus_retry_count < 3) {
/*
* Get regulator failed as regulator driver is
* not up yet. Will try to start host after 1sec
*/
mdwc->otg_state = OTG_STATE_A_IDLE;
dev_dbg(mdwc->dev, "Unable to get vbus regulator. Retrying...\n");
delay = VBUS_REG_CHECK_DELAY;
work = 1;
mdwc->vbus_retry_count++;
} else if (ret) {
dev_err(mdwc->dev, "unable to start host\n");
mdwc->otg_state = OTG_STATE_A_IDLE;
goto ret;
}
}
break;
case OTG_STATE_A_HOST:
if (test_bit(ID, &mdwc->inputs) || mdwc->hc_died) {
dev_dbg(mdwc->dev, "id || hc_died\n");
dwc3_otg_start_host(mdwc, 0);
mdwc->otg_state = OTG_STATE_B_IDLE;
mdwc->vbus_retry_count = 0;
mdwc->hc_died = false;
work = 1;
} else {
dev_dbg(mdwc->dev, "still in a_host state. Resuming root hub.\n");
dbg_event(0xFF, "XHCIResume", 0);
if (dwc)
pm_runtime_resume(&dwc->xhci->dev);
}
break;
default:
dev_err(mdwc->dev, "%s: invalid otg-state\n", __func__);
}
if (work)
schedule_delayed_work(&mdwc->sm_work, delay);
ret:
return;
}
#ifdef CONFIG_PM_SLEEP
static int dwc3_msm_pm_suspend(struct device *dev)
{
int ret = 0;
struct dwc3_msm *mdwc = dev_get_drvdata(dev);
struct dwc3 *dwc = platform_get_drvdata(mdwc->dwc3);
dev_dbg(dev, "dwc3-msm PM suspend\n");
dbg_event(0xFF, "PM Sus", 0);
flush_workqueue(mdwc->dwc3_wq);
if (!atomic_read(&dwc->in_lpm)) {
dev_err(mdwc->dev, "Abort PM suspend!! (USB is outside LPM)\n");
return -EBUSY;
}
ret = dwc3_msm_suspend(mdwc);
if (!ret)
atomic_set(&mdwc->pm_suspended, 1);
return ret;
}
static int dwc3_msm_pm_resume(struct device *dev)
{
struct dwc3_msm *mdwc = dev_get_drvdata(dev);
struct dwc3 *dwc = platform_get_drvdata(mdwc->dwc3);
dev_dbg(dev, "dwc3-msm PM resume\n");
dbg_event(0xFF, "PM Res", 0);
/* flush to avoid race in read/write of pm_suspended */
flush_workqueue(mdwc->dwc3_wq);
atomic_set(&mdwc->pm_suspended, 0);
/* kick in otg state machine */
queue_work(mdwc->dwc3_wq, &mdwc->resume_work);
return 0;
}
#endif
#ifdef CONFIG_PM
static int dwc3_msm_runtime_idle(struct device *dev)
{
struct dwc3_msm *mdwc = dev_get_drvdata(dev);
struct dwc3 *dwc = platform_get_drvdata(mdwc->dwc3);
dev_dbg(dev, "DWC3-msm runtime idle\n");
dbg_event(0xFF, "RT Idle", 0);
return 0;
}
static int dwc3_msm_runtime_suspend(struct device *dev)
{
struct dwc3_msm *mdwc = dev_get_drvdata(dev);
struct dwc3 *dwc = platform_get_drvdata(mdwc->dwc3);
dev_dbg(dev, "DWC3-msm runtime suspend\n");
dbg_event(0xFF, "RT Sus", 0);
return dwc3_msm_suspend(mdwc);
}
static int dwc3_msm_runtime_resume(struct device *dev)
{
struct dwc3_msm *mdwc = dev_get_drvdata(dev);
struct dwc3 *dwc = platform_get_drvdata(mdwc->dwc3);
dev_dbg(dev, "DWC3-msm runtime resume\n");
dbg_event(0xFF, "RT Res", 0);
return dwc3_msm_resume(mdwc);
}
#endif
static const struct dev_pm_ops dwc3_msm_dev_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(dwc3_msm_pm_suspend, dwc3_msm_pm_resume)
SET_RUNTIME_PM_OPS(dwc3_msm_runtime_suspend, dwc3_msm_runtime_resume,
dwc3_msm_runtime_idle)
};
static const struct of_device_id of_dwc3_matach[] = {
{
.compatible = "qcom,dwc-usb3-msm",
},
{ },
};
MODULE_DEVICE_TABLE(of, of_dwc3_matach);
static struct platform_driver dwc3_msm_driver = {
.probe = dwc3_msm_probe,
.remove = dwc3_msm_remove,
.driver = {
.name = "msm-dwc3",
.pm = &dwc3_msm_dev_pm_ops,
.of_match_table = of_dwc3_matach,
},
};
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("DesignWare USB3 MSM Glue Layer");
static int dwc3_msm_init(void)
{
return platform_driver_register(&dwc3_msm_driver);
}
module_init(dwc3_msm_init);
static void __exit dwc3_msm_exit(void)
{
platform_driver_unregister(&dwc3_msm_driver);
}
module_exit(dwc3_msm_exit);