blob: 3ea4be64e06c06dff86e002b77c4dc09f0256e7a [file] [log] [blame]
/* Copyright (c) 2014-2017, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/clk.h>
#include <linux/regulator/consumer.h>
#include <linux/interrupt.h>
#include <linux/of_gpio.h>
#include <linux/delay.h>
#include <linux/msm-bus-board.h>
#include <linux/msm-bus.h>
#include <linux/dma-mapping.h>
#include <soc/qcom/subsystem_restart.h>
#include <soc/qcom/ramdump.h>
#include <soc/qcom/scm.h>
#include <soc/qcom/smem.h>
#include "peripheral-loader.h"
#define XO_FREQ 19200000
#define PROXY_TIMEOUT_MS 10000
#define MAX_SSR_REASON_LEN 256U
#define STOP_ACK_TIMEOUT_MS 1000
#define CRASH_STOP_ACK_TO_MS 200
#define ERR_READY 0
#define PBL_DONE 1
#define desc_to_data(d) container_of(d, struct pil_tz_data, desc)
#define subsys_to_data(d) container_of(d, struct pil_tz_data, subsys_desc)
/**
* struct reg_info - regulator info
* @reg: regulator handle
* @uV: voltage in uV
* @uA: current in uA
*/
struct reg_info {
struct regulator *reg;
int uV;
int uA;
};
/**
* struct pil_tz_data
* @regs: regulators that should be always on when the subsystem is
* brought out of reset
* @proxy_regs: regulators that should be on during pil proxy voting
* @clks: clocks that should be always on when the subsystem is
* brought out of reset
* @proxy_clks: clocks that should be on during pil proxy voting
* @reg_count: the number of always on regulators
* @proxy_reg_count: the number of proxy voting regulators
* @clk_count: the number of always on clocks
* @proxy_clk_count: the number of proxy voting clocks
* @smem_id: the smem id used for read the subsystem crash reason
* @ramdump_dev: ramdump device pointer
* @pas_id: the PAS id for tz
* @bus_client: bus client id
* @enable_bus_scaling: set to true if PIL needs to vote for
* bus bandwidth
* @keep_proxy_regs_on: If set, during proxy unvoting, PIL removes the
* voltage/current vote for proxy regulators but leaves
* them enabled.
* @stop_ack: state of completion of stop ack
* @desc: PIL descriptor
* @subsys: subsystem device pointer
* @subsys_desc: subsystem descriptor
* @u32 bits_arr[2]: array of bit positions in SCSR registers
*/
struct pil_tz_data {
struct reg_info *regs;
struct reg_info *proxy_regs;
struct clk **clks;
struct clk **proxy_clks;
int reg_count;
int proxy_reg_count;
int clk_count;
int proxy_clk_count;
int smem_id;
void *ramdump_dev;
u32 pas_id;
u32 bus_client;
bool enable_bus_scaling;
bool keep_proxy_regs_on;
struct completion stop_ack;
struct pil_desc desc;
struct subsys_device *subsys;
struct subsys_desc subsys_desc;
void __iomem *irq_status;
void __iomem *irq_clear;
void __iomem *irq_mask;
void __iomem *err_status;
void __iomem *err_status_spare;
u32 bits_arr[2];
};
enum scm_cmd {
PAS_INIT_IMAGE_CMD = 1,
PAS_MEM_SETUP_CMD,
PAS_AUTH_AND_RESET_CMD = 5,
PAS_SHUTDOWN_CMD,
};
enum pas_id {
PAS_MODEM,
PAS_Q6,
PAS_DSPS,
PAS_TZAPPS,
PAS_MODEM_SW,
PAS_MODEM_FW,
PAS_WCNSS,
PAS_SECAPP,
PAS_GSS,
PAS_VIDC,
PAS_VPU,
PAS_BCSS,
};
static struct msm_bus_paths scm_pas_bw_tbl[] = {
{
.vectors = (struct msm_bus_vectors[]){
{
.src = MSM_BUS_MASTER_SPS,
.dst = MSM_BUS_SLAVE_EBI_CH0,
},
},
.num_paths = 1,
},
{
.vectors = (struct msm_bus_vectors[]){
{
.src = MSM_BUS_MASTER_SPS,
.dst = MSM_BUS_SLAVE_EBI_CH0,
.ib = 492 * 8 * 1000000UL,
.ab = 492 * 8 * 100000UL,
},
},
.num_paths = 1,
},
};
static struct msm_bus_scale_pdata scm_pas_bus_pdata = {
.usecase = scm_pas_bw_tbl,
.num_usecases = ARRAY_SIZE(scm_pas_bw_tbl),
.name = "scm_pas",
};
static uint32_t scm_perf_client;
static int scm_pas_bw_count;
static DEFINE_MUTEX(scm_pas_bw_mutex);
static int scm_pas_enable_bw(void)
{
int ret = 0;
if (!scm_perf_client)
return -EINVAL;
mutex_lock(&scm_pas_bw_mutex);
if (!scm_pas_bw_count) {
ret = msm_bus_scale_client_update_request(scm_perf_client, 1);
if (ret)
goto err_bus;
scm_pas_bw_count++;
}
mutex_unlock(&scm_pas_bw_mutex);
return ret;
err_bus:
pr_err("scm-pas; Bandwidth request failed (%d)\n", ret);
msm_bus_scale_client_update_request(scm_perf_client, 0);
mutex_unlock(&scm_pas_bw_mutex);
return ret;
}
static void scm_pas_disable_bw(void)
{
mutex_lock(&scm_pas_bw_mutex);
if (scm_pas_bw_count-- == 1)
msm_bus_scale_client_update_request(scm_perf_client, 0);
mutex_unlock(&scm_pas_bw_mutex);
}
static void scm_pas_init(int id)
{
static int is_inited;
if (is_inited)
return;
scm_pas_bw_tbl[0].vectors[0].src = id;
scm_pas_bw_tbl[1].vectors[0].src = id;
scm_perf_client = msm_bus_scale_register_client(&scm_pas_bus_pdata);
if (!scm_perf_client)
pr_warn("scm-pas: Unable to register bus client\n");
is_inited = 1;
}
static int of_read_clocks(struct device *dev, struct clk ***clks_ref,
const char *propname)
{
long clk_count;
int i, len;
struct clk **clks;
if (!of_find_property(dev->of_node, propname, &len))
return 0;
clk_count = of_property_count_strings(dev->of_node, propname);
if (IS_ERR_VALUE(clk_count)) {
dev_err(dev, "Failed to get clock names\n");
return -EINVAL;
}
clks = devm_kzalloc(dev, sizeof(struct clk *) * clk_count,
GFP_KERNEL);
if (!clks)
return -ENOMEM;
for (i = 0; i < clk_count; i++) {
const char *clock_name;
char clock_freq_name[50];
u32 clock_rate = XO_FREQ;
of_property_read_string_index(dev->of_node,
propname, i,
&clock_name);
snprintf(clock_freq_name, ARRAY_SIZE(clock_freq_name),
"qcom,%s-freq", clock_name);
if (of_find_property(dev->of_node, clock_freq_name, &len))
if (of_property_read_u32(dev->of_node, clock_freq_name,
&clock_rate)) {
dev_err(dev, "Failed to read %s clock's freq\n",
clock_freq_name);
return -EINVAL;
}
clks[i] = devm_clk_get(dev, clock_name);
if (IS_ERR(clks[i])) {
int rc = PTR_ERR(clks[i]);
if (rc != -EPROBE_DEFER)
dev_err(dev, "Failed to get %s clock\n",
clock_name);
return rc;
}
/* Make sure rate-settable clocks' rates are set */
if (clk_get_rate(clks[i]) == 0)
clk_set_rate(clks[i], clk_round_rate(clks[i],
clock_rate));
}
*clks_ref = clks;
return clk_count;
}
static int of_read_regs(struct device *dev, struct reg_info **regs_ref,
const char *propname)
{
long reg_count;
int i, len, rc;
struct reg_info *regs;
if (!of_find_property(dev->of_node, propname, &len))
return 0;
reg_count = of_property_count_strings(dev->of_node, propname);
if (IS_ERR_VALUE(reg_count)) {
dev_err(dev, "Failed to get regulator names\n");
return -EINVAL;
}
regs = devm_kzalloc(dev, sizeof(struct reg_info) * reg_count,
GFP_KERNEL);
if (!regs)
return -ENOMEM;
for (i = 0; i < reg_count; i++) {
const char *reg_name;
char reg_uV_uA_name[50];
u32 vdd_uV_uA[2];
of_property_read_string_index(dev->of_node,
propname, i,
&reg_name);
regs[i].reg = devm_regulator_get(dev, reg_name);
if (IS_ERR(regs[i].reg)) {
int rc = PTR_ERR(regs[i].reg);
if (rc != -EPROBE_DEFER)
dev_err(dev, "Failed to get %s\n regulator",
reg_name);
return rc;
}
/*
* Read the voltage and current values for the corresponding
* regulator. The device tree property name is "qcom," +
* "regulator_name" + "-uV-uA".
*/
rc = snprintf(reg_uV_uA_name, ARRAY_SIZE(reg_uV_uA_name),
"qcom,%s-uV-uA", reg_name);
if (rc < strlen(reg_name) + 6) {
dev_err(dev, "Failed to hold reg_uV_uA_name\n");
return -EINVAL;
}
if (!of_find_property(dev->of_node, reg_uV_uA_name, &len))
continue;
len /= sizeof(vdd_uV_uA[0]);
/* There should be two entries: one for uV and one for uA */
if (len != 2) {
dev_err(dev, "Missing uV/uA value\n");
return -EINVAL;
}
rc = of_property_read_u32_array(dev->of_node, reg_uV_uA_name,
vdd_uV_uA, len);
if (rc) {
dev_err(dev, "Failed to read uV/uA values(rc:%d)\n",
rc);
return rc;
}
regs[i].uV = vdd_uV_uA[0];
regs[i].uA = vdd_uV_uA[1];
}
*regs_ref = regs;
return reg_count;
}
static int of_read_bus_pdata(struct platform_device *pdev,
struct pil_tz_data *d)
{
struct msm_bus_scale_pdata *pdata;
pdata = msm_bus_cl_get_pdata(pdev);
if (!pdata)
return -EINVAL;
d->bus_client = msm_bus_scale_register_client(pdata);
if (!d->bus_client)
pr_warn("%s: Unable to register bus client\n", __func__);
return 0;
}
static int piltz_resc_init(struct platform_device *pdev, struct pil_tz_data *d)
{
int len, count, rc;
struct device *dev = &pdev->dev;
count = of_read_clocks(dev, &d->clks, "qcom,active-clock-names");
if (count < 0) {
dev_err(dev, "Failed to setup clocks.\n");
return count;
}
d->clk_count = count;
count = of_read_clocks(dev, &d->proxy_clks, "qcom,proxy-clock-names");
if (count < 0) {
dev_err(dev, "Failed to setup proxy clocks.\n");
return count;
}
d->proxy_clk_count = count;
count = of_read_regs(dev, &d->regs, "qcom,active-reg-names");
if (count < 0) {
dev_err(dev, "Failed to setup regulators.\n");
return count;
}
d->reg_count = count;
count = of_read_regs(dev, &d->proxy_regs, "qcom,proxy-reg-names");
if (count < 0) {
dev_err(dev, "Failed to setup proxy regulators.\n");
return count;
}
d->proxy_reg_count = count;
if (of_find_property(dev->of_node, "qcom,msm-bus,name", &len)) {
d->enable_bus_scaling = true;
rc = of_read_bus_pdata(pdev, d);
if (rc) {
dev_err(dev, "Failed to setup bus scaling client.\n");
return rc;
}
}
return 0;
}
static int enable_regulators(struct pil_tz_data *d, struct device *dev,
struct reg_info *regs, int reg_count,
bool reg_no_enable)
{
int i, rc = 0;
for (i = 0; i < reg_count; i++) {
if (regs[i].uV > 0) {
rc = regulator_set_voltage(regs[i].reg,
regs[i].uV, INT_MAX);
if (rc) {
dev_err(dev, "Failed to request voltage(rc:%d)\n",
rc);
goto err_voltage;
}
}
if (regs[i].uA > 0) {
rc = regulator_set_load(regs[i].reg,
regs[i].uA);
if (rc < 0) {
dev_err(dev, "Failed to set regulator mode(rc:%d)\n",
rc);
goto err_mode;
}
}
if (d->keep_proxy_regs_on && reg_no_enable)
continue;
rc = regulator_enable(regs[i].reg);
if (rc) {
dev_err(dev, "Regulator enable failed(rc:%d)\n", rc);
goto err_enable;
}
}
return 0;
err_enable:
if (regs[i].uA > 0) {
regulator_set_voltage(regs[i].reg, 0, INT_MAX);
regulator_set_load(regs[i].reg, 0);
}
err_mode:
if (regs[i].uV > 0)
regulator_set_voltage(regs[i].reg, 0, INT_MAX);
err_voltage:
for (i--; i >= 0; i--) {
if (regs[i].uV > 0)
regulator_set_voltage(regs[i].reg, 0, INT_MAX);
if (regs[i].uA > 0)
regulator_set_load(regs[i].reg, 0);
if (d->keep_proxy_regs_on && reg_no_enable)
continue;
regulator_disable(regs[i].reg);
}
return rc;
}
static void disable_regulators(struct pil_tz_data *d, struct reg_info *regs,
int reg_count, bool reg_no_disable)
{
int i;
for (i = 0; i < reg_count; i++) {
if (regs[i].uV > 0)
regulator_set_voltage(regs[i].reg, 0, INT_MAX);
if (regs[i].uA > 0)
regulator_set_load(regs[i].reg, 0);
if (d->keep_proxy_regs_on && reg_no_disable)
continue;
regulator_disable(regs[i].reg);
}
}
static int prepare_enable_clocks(struct device *dev, struct clk **clks,
int clk_count)
{
int rc = 0;
int i;
for (i = 0; i < clk_count; i++) {
rc = clk_prepare_enable(clks[i]);
if (rc) {
dev_err(dev, "Clock enable failed(rc:%d)\n", rc);
goto err;
}
}
return 0;
err:
for (i--; i >= 0; i--)
clk_disable_unprepare(clks[i]);
return rc;
}
static void disable_unprepare_clocks(struct clk **clks, int clk_count)
{
int i;
for (i = --clk_count; i >= 0; i--)
clk_disable_unprepare(clks[i]);
}
static int pil_make_proxy_vote(struct pil_desc *pil)
{
struct pil_tz_data *d = desc_to_data(pil);
int rc;
if (d->subsys_desc.no_auth)
return 0;
if (d->bus_client) {
rc = msm_bus_scale_client_update_request(d->bus_client, 1);
if (rc) {
dev_err(pil->dev, "bandwidth request failed(rc:%d)\n",
rc);
return rc;
}
} else
WARN(d->enable_bus_scaling, "Bus scaling not set up for %s!\n",
d->subsys_desc.name);
rc = enable_regulators(d, pil->dev, d->proxy_regs,
d->proxy_reg_count, false);
if (rc)
return rc;
rc = prepare_enable_clocks(pil->dev, d->proxy_clks,
d->proxy_clk_count);
if (rc)
goto err_clks;
return 0;
err_clks:
disable_regulators(d, d->proxy_regs, d->proxy_reg_count, false);
return rc;
}
static void pil_remove_proxy_vote(struct pil_desc *pil)
{
struct pil_tz_data *d = desc_to_data(pil);
if (d->subsys_desc.no_auth)
return;
disable_unprepare_clocks(d->proxy_clks, d->proxy_clk_count);
disable_regulators(d, d->proxy_regs, d->proxy_reg_count, true);
if (d->bus_client)
msm_bus_scale_client_update_request(d->bus_client, 0);
else
WARN(d->enable_bus_scaling, "Bus scaling not set up for %s!\n",
d->subsys_desc.name);
}
static int pil_init_image_trusted(struct pil_desc *pil,
const u8 *metadata, size_t size)
{
struct pil_tz_data *d = desc_to_data(pil);
struct pas_init_image_req {
u32 proc;
u32 image_addr;
} request;
u32 scm_ret = 0;
void *mdata_buf;
dma_addr_t mdata_phys;
int ret;
unsigned long attrs = 0;
struct device dev = {0};
struct scm_desc desc = {0};
if (d->subsys_desc.no_auth)
return 0;
ret = scm_pas_enable_bw();
if (ret)
return ret;
arch_setup_dma_ops(&dev, 0, 0, NULL, 0);
dev.coherent_dma_mask =
DMA_BIT_MASK(sizeof(dma_addr_t) * 8);
attrs |= DMA_ATTR_STRONGLY_ORDERED;
mdata_buf = dma_alloc_attrs(&dev, size, &mdata_phys, GFP_KERNEL,
attrs);
if (!mdata_buf) {
pr_err("scm-pas: Allocation for metadata failed.\n");
scm_pas_disable_bw();
return -ENOMEM;
}
memcpy(mdata_buf, metadata, size);
request.proc = d->pas_id;
request.image_addr = mdata_phys;
if (!is_scm_armv8()) {
ret = scm_call(SCM_SVC_PIL, PAS_INIT_IMAGE_CMD, &request,
sizeof(request), &scm_ret, sizeof(scm_ret));
} else {
desc.args[0] = d->pas_id;
desc.args[1] = mdata_phys;
desc.arginfo = SCM_ARGS(2, SCM_VAL, SCM_RW);
ret = scm_call2(SCM_SIP_FNID(SCM_SVC_PIL, PAS_INIT_IMAGE_CMD),
&desc);
scm_ret = desc.ret[0];
}
dma_free_attrs(&dev, size, mdata_buf, mdata_phys, attrs);
scm_pas_disable_bw();
if (ret)
return ret;
return scm_ret;
}
static int pil_mem_setup_trusted(struct pil_desc *pil, phys_addr_t addr,
size_t size)
{
struct pil_tz_data *d = desc_to_data(pil);
struct pas_init_image_req {
u32 proc;
u32 start_addr;
u32 len;
} request;
u32 scm_ret = 0;
int ret;
struct scm_desc desc = {0};
if (d->subsys_desc.no_auth)
return 0;
request.proc = d->pas_id;
request.start_addr = addr;
request.len = size;
if (!is_scm_armv8()) {
ret = scm_call(SCM_SVC_PIL, PAS_MEM_SETUP_CMD, &request,
sizeof(request), &scm_ret, sizeof(scm_ret));
} else {
desc.args[0] = d->pas_id;
desc.args[1] = addr;
desc.args[2] = size;
desc.arginfo = SCM_ARGS(3);
ret = scm_call2(SCM_SIP_FNID(SCM_SVC_PIL, PAS_MEM_SETUP_CMD),
&desc);
scm_ret = desc.ret[0];
}
if (ret)
return ret;
return scm_ret;
}
static int pil_auth_and_reset(struct pil_desc *pil)
{
struct pil_tz_data *d = desc_to_data(pil);
int rc;
u32 proc, scm_ret = 0;
struct scm_desc desc = {0};
if (d->subsys_desc.no_auth)
return 0;
desc.args[0] = proc = d->pas_id;
desc.arginfo = SCM_ARGS(1);
rc = scm_pas_enable_bw();
if (rc)
return rc;
rc = enable_regulators(d, pil->dev, d->regs, d->reg_count, false);
if (rc)
return rc;
rc = prepare_enable_clocks(pil->dev, d->clks, d->clk_count);
if (rc)
goto err_clks;
if (!is_scm_armv8()) {
rc = scm_call(SCM_SVC_PIL, PAS_AUTH_AND_RESET_CMD, &proc,
sizeof(proc), &scm_ret, sizeof(scm_ret));
} else {
rc = scm_call2(SCM_SIP_FNID(SCM_SVC_PIL,
PAS_AUTH_AND_RESET_CMD), &desc);
scm_ret = desc.ret[0];
}
scm_pas_disable_bw();
if (rc)
goto err_reset;
return scm_ret;
err_reset:
disable_unprepare_clocks(d->clks, d->clk_count);
err_clks:
disable_regulators(d, d->regs, d->reg_count, false);
return rc;
}
static int pil_shutdown_trusted(struct pil_desc *pil)
{
struct pil_tz_data *d = desc_to_data(pil);
u32 proc, scm_ret = 0;
int rc;
struct scm_desc desc = {0};
if (d->subsys_desc.no_auth)
return 0;
desc.args[0] = proc = d->pas_id;
desc.arginfo = SCM_ARGS(1);
if (d->bus_client) {
rc = msm_bus_scale_client_update_request(d->bus_client, 1);
if (rc) {
dev_err(pil->dev, "bandwidth request failed(rc:%d)\n",
rc);
return rc;
}
} else
WARN(d->enable_bus_scaling, "Bus scaling not set up for %s!\n",
d->subsys_desc.name);
rc = enable_regulators(d, pil->dev, d->proxy_regs,
d->proxy_reg_count, true);
if (rc)
goto err_regulators;
rc = prepare_enable_clocks(pil->dev, d->proxy_clks,
d->proxy_clk_count);
if (rc)
goto err_clks;
if (!is_scm_armv8()) {
rc = scm_call(SCM_SVC_PIL, PAS_SHUTDOWN_CMD, &proc,
sizeof(proc), &scm_ret, sizeof(scm_ret));
} else {
rc = scm_call2(SCM_SIP_FNID(SCM_SVC_PIL, PAS_SHUTDOWN_CMD),
&desc);
scm_ret = desc.ret[0];
}
disable_unprepare_clocks(d->proxy_clks, d->proxy_clk_count);
disable_regulators(d, d->proxy_regs, d->proxy_reg_count, false);
if (d->bus_client)
msm_bus_scale_client_update_request(d->bus_client, 0);
else
WARN(d->enable_bus_scaling, "Bus scaling not set up for %s!\n",
d->subsys_desc.name);
if (rc)
return rc;
disable_unprepare_clocks(d->clks, d->clk_count);
disable_regulators(d, d->regs, d->reg_count, false);
return scm_ret;
err_clks:
disable_regulators(d, d->proxy_regs, d->proxy_reg_count, false);
err_regulators:
if (d->bus_client)
msm_bus_scale_client_update_request(d->bus_client, 0);
else
WARN(d->enable_bus_scaling, "Bus scaling not set up for %s!\n",
d->subsys_desc.name);
return rc;
}
static int pil_deinit_image_trusted(struct pil_desc *pil)
{
struct pil_tz_data *d = desc_to_data(pil);
u32 proc, scm_ret = 0;
int rc;
struct scm_desc desc = {0};
if (d->subsys_desc.no_auth)
return 0;
desc.args[0] = proc = d->pas_id;
desc.arginfo = SCM_ARGS(1);
if (!is_scm_armv8()) {
rc = scm_call(SCM_SVC_PIL, PAS_SHUTDOWN_CMD, &proc,
sizeof(proc), &scm_ret, sizeof(scm_ret));
} else {
rc = scm_call2(SCM_SIP_FNID(SCM_SVC_PIL, PAS_SHUTDOWN_CMD),
&desc);
scm_ret = desc.ret[0];
}
if (rc)
return rc;
return scm_ret;
}
static struct pil_reset_ops pil_ops_trusted = {
.init_image = pil_init_image_trusted,
.mem_setup = pil_mem_setup_trusted,
.auth_and_reset = pil_auth_and_reset,
.shutdown = pil_shutdown_trusted,
.proxy_vote = pil_make_proxy_vote,
.proxy_unvote = pil_remove_proxy_vote,
.deinit_image = pil_deinit_image_trusted,
};
static void log_failure_reason(const struct pil_tz_data *d)
{
u32 size;
char *smem_reason, reason[MAX_SSR_REASON_LEN];
const char *name = d->subsys_desc.name;
if (d->smem_id == -1)
return;
smem_reason = smem_get_entry_no_rlock(d->smem_id, &size, 0,
SMEM_ANY_HOST_FLAG);
if (!smem_reason || !size) {
pr_err("%s SFR: (unknown, smem_get_entry_no_rlock failed).\n",
name);
return;
}
if (!smem_reason[0]) {
pr_err("%s SFR: (unknown, empty string found).\n", name);
return;
}
strlcpy(reason, smem_reason, min(size, MAX_SSR_REASON_LEN));
pr_err("%s subsystem failure reason: %s.\n", name, reason);
smem_reason[0] = '\0';
wmb();
}
static int subsys_shutdown(const struct subsys_desc *subsys, bool force_stop)
{
struct pil_tz_data *d = subsys_to_data(subsys);
int ret;
if (!subsys_get_crash_status(d->subsys) && force_stop &&
subsys->force_stop_gpio) {
gpio_set_value(subsys->force_stop_gpio, 1);
ret = wait_for_completion_timeout(&d->stop_ack,
msecs_to_jiffies(STOP_ACK_TIMEOUT_MS));
if (!ret)
pr_warn("Timed out on stop ack from %s.\n",
subsys->name);
gpio_set_value(subsys->force_stop_gpio, 0);
}
pil_shutdown(&d->desc);
return 0;
}
static int subsys_powerup(const struct subsys_desc *subsys)
{
struct pil_tz_data *d = subsys_to_data(subsys);
int ret = 0;
if (subsys->stop_ack_irq)
reinit_completion(&d->stop_ack);
d->desc.fw_name = subsys->fw_name;
ret = pil_boot(&d->desc);
return ret;
}
static int subsys_ramdump(int enable, const struct subsys_desc *subsys)
{
struct pil_tz_data *d = subsys_to_data(subsys);
if (!enable)
return 0;
return pil_do_ramdump(&d->desc, d->ramdump_dev);
}
static void subsys_free_memory(const struct subsys_desc *subsys)
{
struct pil_tz_data *d = subsys_to_data(subsys);
pil_free_memory(&d->desc);
}
static void subsys_crash_shutdown(const struct subsys_desc *subsys)
{
struct pil_tz_data *d = subsys_to_data(subsys);
if (subsys->force_stop_gpio > 0 &&
!subsys_get_crash_status(d->subsys)) {
gpio_set_value(subsys->force_stop_gpio, 1);
mdelay(CRASH_STOP_ACK_TO_MS);
}
}
static irqreturn_t subsys_err_fatal_intr_handler (int irq, void *dev_id)
{
struct pil_tz_data *d = subsys_to_data(dev_id);
pr_err("Fatal error on %s!\n", d->subsys_desc.name);
if (subsys_get_crash_status(d->subsys)) {
pr_err("%s: Ignoring error fatal, restart in progress\n",
d->subsys_desc.name);
return IRQ_HANDLED;
}
subsys_set_crash_status(d->subsys, CRASH_STATUS_ERR_FATAL);
log_failure_reason(d);
subsystem_restart_dev(d->subsys);
return IRQ_HANDLED;
}
static irqreturn_t subsys_wdog_bite_irq_handler(int irq, void *dev_id)
{
struct pil_tz_data *d = subsys_to_data(dev_id);
if (subsys_get_crash_status(d->subsys))
return IRQ_HANDLED;
pr_err("Watchdog bite received from %s!\n", d->subsys_desc.name);
if (d->subsys_desc.system_debug &&
!gpio_get_value(d->subsys_desc.err_fatal_gpio))
panic("%s: System ramdump requested. Triggering device restart!\n",
__func__);
subsys_set_crash_status(d->subsys, CRASH_STATUS_WDOG_BITE);
log_failure_reason(d);
subsystem_restart_dev(d->subsys);
return IRQ_HANDLED;
}
static irqreturn_t subsys_stop_ack_intr_handler(int irq, void *dev_id)
{
struct pil_tz_data *d = subsys_to_data(dev_id);
pr_info("Received stop ack interrupt from %s\n", d->subsys_desc.name);
complete(&d->stop_ack);
return IRQ_HANDLED;
}
static void clear_pbl_done(struct pil_tz_data *d)
{
uint32_t err_value;
err_value = __raw_readl(d->err_status);
pr_debug("PBL_DONE received from %s!\n", d->subsys_desc.name);
if (err_value) {
uint32_t rmb_err_spare0;
uint32_t rmb_err_spare1;
uint32_t rmb_err_spare2;
rmb_err_spare2 = __raw_readl(d->err_status_spare);
rmb_err_spare1 = __raw_readl(d->err_status_spare-4);
rmb_err_spare0 = __raw_readl(d->err_status_spare-8);
pr_err("PBL error status register: 0x%08x\n", err_value);
pr_err("PBL error status spare0 register: 0x%08x\n",
rmb_err_spare0);
pr_err("PBL error status spare1 register: 0x%08x\n",
rmb_err_spare1);
pr_err("PBL error status spare2 register: 0x%08x\n",
rmb_err_spare2);
}
__raw_writel(BIT(d->bits_arr[PBL_DONE]), d->irq_clear);
}
static void clear_err_ready(struct pil_tz_data *d)
{
pr_debug("Subsystem error services up received from %s\n",
d->subsys_desc.name);
__raw_writel(BIT(d->bits_arr[ERR_READY]), d->irq_clear);
complete_err_ready(d->subsys);
}
static void clear_wdog(struct pil_tz_data *d)
{
/* Check crash status to know if device is restarting*/
if (!subsys_get_crash_status(d->subsys)) {
pr_err("wdog bite received from %s!\n", d->subsys_desc.name);
__raw_writel(BIT(d->bits_arr[ERR_READY]), d->irq_clear);
subsys_set_crash_status(d->subsys, CRASH_STATUS_WDOG_BITE);
log_failure_reason(d);
subsystem_restart_dev(d->subsys);
}
}
static irqreturn_t subsys_generic_handler(int irq, void *dev_id)
{
struct pil_tz_data *d = subsys_to_data(dev_id);
uint32_t status_val, err_value;
err_value = __raw_readl(d->err_status_spare);
status_val = __raw_readl(d->irq_status);
if ((status_val & BIT(d->bits_arr[ERR_READY])) && !err_value)
clear_err_ready(d);
if ((status_val & BIT(d->bits_arr[ERR_READY])) &&
err_value == 0x44554d50)
clear_wdog(d);
if (status_val & BIT(d->bits_arr[PBL_DONE]))
clear_pbl_done(d);
return IRQ_HANDLED;
}
static void mask_scsr_irqs(struct pil_tz_data *d)
{
uint32_t mask_val;
/* Masking all interrupts not handled by HLOS */
mask_val = ~0;
__raw_writel(mask_val & ~BIT(d->bits_arr[ERR_READY]) &
~BIT(d->bits_arr[PBL_DONE]), d->irq_mask);
}
static int pil_tz_driver_probe(struct platform_device *pdev)
{
struct pil_tz_data *d;
struct resource *res;
u32 proxy_timeout;
int len, rc;
d = devm_kzalloc(&pdev->dev, sizeof(*d), GFP_KERNEL);
if (!d)
return -ENOMEM;
platform_set_drvdata(pdev, d);
if (of_property_read_bool(pdev->dev.of_node, "qcom,pil-no-auth"))
d->subsys_desc.no_auth = true;
d->keep_proxy_regs_on = of_property_read_bool(pdev->dev.of_node,
"qcom,keep-proxy-regs-on");
rc = of_property_read_string(pdev->dev.of_node, "qcom,firmware-name",
&d->desc.name);
if (rc)
return rc;
/* Defaulting smem_id to be not present */
d->smem_id = -1;
if (of_find_property(pdev->dev.of_node, "qcom,smem-id", &len)) {
rc = of_property_read_u32(pdev->dev.of_node, "qcom,smem-id",
&d->smem_id);
if (rc) {
dev_err(&pdev->dev, "Failed to get the smem_id(rc:%d)\n",
rc);
return rc;
}
}
d->desc.dev = &pdev->dev;
d->desc.owner = THIS_MODULE;
d->desc.ops = &pil_ops_trusted;
d->desc.proxy_timeout = PROXY_TIMEOUT_MS;
d->desc.clear_fw_region = true;
rc = of_property_read_u32(pdev->dev.of_node, "qcom,proxy-timeout-ms",
&proxy_timeout);
if (!rc)
d->desc.proxy_timeout = proxy_timeout;
if (!d->subsys_desc.no_auth) {
rc = piltz_resc_init(pdev, d);
if (rc)
return rc;
rc = of_property_read_u32(pdev->dev.of_node, "qcom,pas-id",
&d->pas_id);
if (rc) {
dev_err(&pdev->dev, "Failed to find the pas_id(rc:%d)\n",
rc);
return rc;
}
scm_pas_init(MSM_BUS_MASTER_CRYPTO_CORE_0);
}
rc = pil_desc_init(&d->desc);
if (rc)
return rc;
init_completion(&d->stop_ack);
d->subsys_desc.name = d->desc.name;
d->subsys_desc.owner = THIS_MODULE;
d->subsys_desc.dev = &pdev->dev;
d->subsys_desc.shutdown = subsys_shutdown;
d->subsys_desc.powerup = subsys_powerup;
d->subsys_desc.ramdump = subsys_ramdump;
d->subsys_desc.free_memory = subsys_free_memory;
d->subsys_desc.crash_shutdown = subsys_crash_shutdown;
if (of_property_read_bool(pdev->dev.of_node,
"qcom,pil-generic-irq-handler")) {
d->subsys_desc.generic_handler = subsys_generic_handler;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"sp2soc_irq_status");
d->irq_status = devm_ioremap_resource(&pdev->dev, res);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"sp2soc_irq_clr");
d->irq_clear = devm_ioremap_resource(&pdev->dev, res);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"sp2soc_irq_mask");
d->irq_mask = devm_ioremap_resource(&pdev->dev, res);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"rmb_err");
d->err_status = devm_ioremap_resource(&pdev->dev, res);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"rmb_err_spare2");
d->err_status_spare = devm_ioremap_resource(&pdev->dev, res);
rc = of_property_read_u32_array(pdev->dev.of_node,
"qcom,spss-scsr-bits", d->bits_arr, sizeof(d->bits_arr)/
sizeof(d->bits_arr[0]));
if (rc)
dev_err(&pdev->dev, "Failed to read qcom,spss-scsr-bits");
mask_scsr_irqs(d);
} else {
d->subsys_desc.err_fatal_handler =
subsys_err_fatal_intr_handler;
d->subsys_desc.wdog_bite_handler = subsys_wdog_bite_irq_handler;
d->subsys_desc.stop_ack_handler = subsys_stop_ack_intr_handler;
}
d->desc.signal_aop = of_property_read_bool(pdev->dev.of_node,
"qcom,signal-aop");
if (d->desc.signal_aop) {
d->desc.cl.dev = &pdev->dev;
d->desc.cl.tx_block = true;
d->desc.cl.tx_tout = 1000;
d->desc.cl.knows_txdone = false;
d->desc.mbox = mbox_request_channel(&d->desc.cl, 0);
if (IS_ERR(d->desc.mbox)) {
rc = PTR_ERR(d->desc.mbox);
dev_err(&pdev->dev, "Failed to get mailbox channel %pK %d\n",
d->desc.mbox, rc);
goto err_ramdump;
}
}
d->ramdump_dev = create_ramdump_device(d->subsys_desc.name,
&pdev->dev);
if (!d->ramdump_dev) {
rc = -ENOMEM;
goto err_ramdump;
}
d->subsys = subsys_register(&d->subsys_desc);
if (IS_ERR(d->subsys)) {
rc = PTR_ERR(d->subsys);
goto err_subsys;
}
return 0;
err_subsys:
destroy_ramdump_device(d->ramdump_dev);
err_ramdump:
pil_desc_release(&d->desc);
return rc;
}
static int pil_tz_driver_exit(struct platform_device *pdev)
{
struct pil_tz_data *d = platform_get_drvdata(pdev);
subsys_unregister(d->subsys);
destroy_ramdump_device(d->ramdump_dev);
pil_desc_release(&d->desc);
return 0;
}
static const struct of_device_id pil_tz_match_table[] = {
{.compatible = "qcom,pil-tz-generic"},
{}
};
static struct platform_driver pil_tz_driver = {
.probe = pil_tz_driver_probe,
.remove = pil_tz_driver_exit,
.driver = {
.name = "subsys-pil-tz",
.of_match_table = pil_tz_match_table,
.owner = THIS_MODULE,
},
};
static int __init pil_tz_init(void)
{
return platform_driver_register(&pil_tz_driver);
}
module_init(pil_tz_init);
static void __exit pil_tz_exit(void)
{
platform_driver_unregister(&pil_tz_driver);
}
module_exit(pil_tz_exit);
MODULE_DESCRIPTION("Support for booting subsystems");
MODULE_LICENSE("GPL v2");