| /* |
| * cp1emu.c: a MIPS coprocessor 1 (FPU) instruction emulator |
| * |
| * MIPS floating point support |
| * Copyright (C) 1994-2000 Algorithmics Ltd. |
| * |
| * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com |
| * Copyright (C) 2000 MIPS Technologies, Inc. |
| * |
| * This program is free software; you can distribute it and/or modify it |
| * under the terms of the GNU General Public License (Version 2) as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write to the Free Software Foundation, Inc., |
| * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| * A complete emulator for MIPS coprocessor 1 instructions. This is |
| * required for #float(switch) or #float(trap), where it catches all |
| * COP1 instructions via the "CoProcessor Unusable" exception. |
| * |
| * More surprisingly it is also required for #float(ieee), to help out |
| * the hardware FPU at the boundaries of the IEEE-754 representation |
| * (denormalised values, infinities, underflow, etc). It is made |
| * quite nasty because emulation of some non-COP1 instructions is |
| * required, e.g. in branch delay slots. |
| * |
| * Note if you know that you won't have an FPU, then you'll get much |
| * better performance by compiling with -msoft-float! |
| */ |
| #include <linux/sched.h> |
| #include <linux/debugfs.h> |
| #include <linux/percpu-defs.h> |
| #include <linux/perf_event.h> |
| |
| #include <asm/branch.h> |
| #include <asm/inst.h> |
| #include <asm/ptrace.h> |
| #include <asm/signal.h> |
| #include <asm/uaccess.h> |
| |
| #include <asm/cpu-info.h> |
| #include <asm/processor.h> |
| #include <asm/fpu_emulator.h> |
| #include <asm/fpu.h> |
| #include <asm/mips-r2-to-r6-emul.h> |
| |
| #include "ieee754.h" |
| |
| /* Function which emulates a floating point instruction. */ |
| |
| static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *, |
| mips_instruction); |
| |
| static int fpux_emu(struct pt_regs *, |
| struct mips_fpu_struct *, mips_instruction, void *__user *); |
| |
| /* Control registers */ |
| |
| #define FPCREG_RID 0 /* $0 = revision id */ |
| #define FPCREG_FCCR 25 /* $25 = fccr */ |
| #define FPCREG_FEXR 26 /* $26 = fexr */ |
| #define FPCREG_FENR 28 /* $28 = fenr */ |
| #define FPCREG_CSR 31 /* $31 = csr */ |
| |
| /* convert condition code register number to csr bit */ |
| const unsigned int fpucondbit[8] = { |
| FPU_CSR_COND, |
| FPU_CSR_COND1, |
| FPU_CSR_COND2, |
| FPU_CSR_COND3, |
| FPU_CSR_COND4, |
| FPU_CSR_COND5, |
| FPU_CSR_COND6, |
| FPU_CSR_COND7 |
| }; |
| |
| /* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */ |
| static const int sd_format[] = {16, 17, 0, 0, 0, 0, 0, 0}; |
| static const int sdps_format[] = {16, 17, 22, 0, 0, 0, 0, 0}; |
| static const int dwl_format[] = {17, 20, 21, 0, 0, 0, 0, 0}; |
| static const int swl_format[] = {16, 20, 21, 0, 0, 0, 0, 0}; |
| |
| /* |
| * This functions translates a 32-bit microMIPS instruction |
| * into a 32-bit MIPS32 instruction. Returns 0 on success |
| * and SIGILL otherwise. |
| */ |
| static int microMIPS32_to_MIPS32(union mips_instruction *insn_ptr) |
| { |
| union mips_instruction insn = *insn_ptr; |
| union mips_instruction mips32_insn = insn; |
| int func, fmt, op; |
| |
| switch (insn.mm_i_format.opcode) { |
| case mm_ldc132_op: |
| mips32_insn.mm_i_format.opcode = ldc1_op; |
| mips32_insn.mm_i_format.rt = insn.mm_i_format.rs; |
| mips32_insn.mm_i_format.rs = insn.mm_i_format.rt; |
| break; |
| case mm_lwc132_op: |
| mips32_insn.mm_i_format.opcode = lwc1_op; |
| mips32_insn.mm_i_format.rt = insn.mm_i_format.rs; |
| mips32_insn.mm_i_format.rs = insn.mm_i_format.rt; |
| break; |
| case mm_sdc132_op: |
| mips32_insn.mm_i_format.opcode = sdc1_op; |
| mips32_insn.mm_i_format.rt = insn.mm_i_format.rs; |
| mips32_insn.mm_i_format.rs = insn.mm_i_format.rt; |
| break; |
| case mm_swc132_op: |
| mips32_insn.mm_i_format.opcode = swc1_op; |
| mips32_insn.mm_i_format.rt = insn.mm_i_format.rs; |
| mips32_insn.mm_i_format.rs = insn.mm_i_format.rt; |
| break; |
| case mm_pool32i_op: |
| /* NOTE: offset is << by 1 if in microMIPS mode. */ |
| if ((insn.mm_i_format.rt == mm_bc1f_op) || |
| (insn.mm_i_format.rt == mm_bc1t_op)) { |
| mips32_insn.fb_format.opcode = cop1_op; |
| mips32_insn.fb_format.bc = bc_op; |
| mips32_insn.fb_format.flag = |
| (insn.mm_i_format.rt == mm_bc1t_op) ? 1 : 0; |
| } else |
| return SIGILL; |
| break; |
| case mm_pool32f_op: |
| switch (insn.mm_fp0_format.func) { |
| case mm_32f_01_op: |
| case mm_32f_11_op: |
| case mm_32f_02_op: |
| case mm_32f_12_op: |
| case mm_32f_41_op: |
| case mm_32f_51_op: |
| case mm_32f_42_op: |
| case mm_32f_52_op: |
| op = insn.mm_fp0_format.func; |
| if (op == mm_32f_01_op) |
| func = madd_s_op; |
| else if (op == mm_32f_11_op) |
| func = madd_d_op; |
| else if (op == mm_32f_02_op) |
| func = nmadd_s_op; |
| else if (op == mm_32f_12_op) |
| func = nmadd_d_op; |
| else if (op == mm_32f_41_op) |
| func = msub_s_op; |
| else if (op == mm_32f_51_op) |
| func = msub_d_op; |
| else if (op == mm_32f_42_op) |
| func = nmsub_s_op; |
| else |
| func = nmsub_d_op; |
| mips32_insn.fp6_format.opcode = cop1x_op; |
| mips32_insn.fp6_format.fr = insn.mm_fp6_format.fr; |
| mips32_insn.fp6_format.ft = insn.mm_fp6_format.ft; |
| mips32_insn.fp6_format.fs = insn.mm_fp6_format.fs; |
| mips32_insn.fp6_format.fd = insn.mm_fp6_format.fd; |
| mips32_insn.fp6_format.func = func; |
| break; |
| case mm_32f_10_op: |
| func = -1; /* Invalid */ |
| op = insn.mm_fp5_format.op & 0x7; |
| if (op == mm_ldxc1_op) |
| func = ldxc1_op; |
| else if (op == mm_sdxc1_op) |
| func = sdxc1_op; |
| else if (op == mm_lwxc1_op) |
| func = lwxc1_op; |
| else if (op == mm_swxc1_op) |
| func = swxc1_op; |
| |
| if (func != -1) { |
| mips32_insn.r_format.opcode = cop1x_op; |
| mips32_insn.r_format.rs = |
| insn.mm_fp5_format.base; |
| mips32_insn.r_format.rt = |
| insn.mm_fp5_format.index; |
| mips32_insn.r_format.rd = 0; |
| mips32_insn.r_format.re = insn.mm_fp5_format.fd; |
| mips32_insn.r_format.func = func; |
| } else |
| return SIGILL; |
| break; |
| case mm_32f_40_op: |
| op = -1; /* Invalid */ |
| if (insn.mm_fp2_format.op == mm_fmovt_op) |
| op = 1; |
| else if (insn.mm_fp2_format.op == mm_fmovf_op) |
| op = 0; |
| if (op != -1) { |
| mips32_insn.fp0_format.opcode = cop1_op; |
| mips32_insn.fp0_format.fmt = |
| sdps_format[insn.mm_fp2_format.fmt]; |
| mips32_insn.fp0_format.ft = |
| (insn.mm_fp2_format.cc<<2) + op; |
| mips32_insn.fp0_format.fs = |
| insn.mm_fp2_format.fs; |
| mips32_insn.fp0_format.fd = |
| insn.mm_fp2_format.fd; |
| mips32_insn.fp0_format.func = fmovc_op; |
| } else |
| return SIGILL; |
| break; |
| case mm_32f_60_op: |
| func = -1; /* Invalid */ |
| if (insn.mm_fp0_format.op == mm_fadd_op) |
| func = fadd_op; |
| else if (insn.mm_fp0_format.op == mm_fsub_op) |
| func = fsub_op; |
| else if (insn.mm_fp0_format.op == mm_fmul_op) |
| func = fmul_op; |
| else if (insn.mm_fp0_format.op == mm_fdiv_op) |
| func = fdiv_op; |
| if (func != -1) { |
| mips32_insn.fp0_format.opcode = cop1_op; |
| mips32_insn.fp0_format.fmt = |
| sdps_format[insn.mm_fp0_format.fmt]; |
| mips32_insn.fp0_format.ft = |
| insn.mm_fp0_format.ft; |
| mips32_insn.fp0_format.fs = |
| insn.mm_fp0_format.fs; |
| mips32_insn.fp0_format.fd = |
| insn.mm_fp0_format.fd; |
| mips32_insn.fp0_format.func = func; |
| } else |
| return SIGILL; |
| break; |
| case mm_32f_70_op: |
| func = -1; /* Invalid */ |
| if (insn.mm_fp0_format.op == mm_fmovn_op) |
| func = fmovn_op; |
| else if (insn.mm_fp0_format.op == mm_fmovz_op) |
| func = fmovz_op; |
| if (func != -1) { |
| mips32_insn.fp0_format.opcode = cop1_op; |
| mips32_insn.fp0_format.fmt = |
| sdps_format[insn.mm_fp0_format.fmt]; |
| mips32_insn.fp0_format.ft = |
| insn.mm_fp0_format.ft; |
| mips32_insn.fp0_format.fs = |
| insn.mm_fp0_format.fs; |
| mips32_insn.fp0_format.fd = |
| insn.mm_fp0_format.fd; |
| mips32_insn.fp0_format.func = func; |
| } else |
| return SIGILL; |
| break; |
| case mm_32f_73_op: /* POOL32FXF */ |
| switch (insn.mm_fp1_format.op) { |
| case mm_movf0_op: |
| case mm_movf1_op: |
| case mm_movt0_op: |
| case mm_movt1_op: |
| if ((insn.mm_fp1_format.op & 0x7f) == |
| mm_movf0_op) |
| op = 0; |
| else |
| op = 1; |
| mips32_insn.r_format.opcode = spec_op; |
| mips32_insn.r_format.rs = insn.mm_fp4_format.fs; |
| mips32_insn.r_format.rt = |
| (insn.mm_fp4_format.cc << 2) + op; |
| mips32_insn.r_format.rd = insn.mm_fp4_format.rt; |
| mips32_insn.r_format.re = 0; |
| mips32_insn.r_format.func = movc_op; |
| break; |
| case mm_fcvtd0_op: |
| case mm_fcvtd1_op: |
| case mm_fcvts0_op: |
| case mm_fcvts1_op: |
| if ((insn.mm_fp1_format.op & 0x7f) == |
| mm_fcvtd0_op) { |
| func = fcvtd_op; |
| fmt = swl_format[insn.mm_fp3_format.fmt]; |
| } else { |
| func = fcvts_op; |
| fmt = dwl_format[insn.mm_fp3_format.fmt]; |
| } |
| mips32_insn.fp0_format.opcode = cop1_op; |
| mips32_insn.fp0_format.fmt = fmt; |
| mips32_insn.fp0_format.ft = 0; |
| mips32_insn.fp0_format.fs = |
| insn.mm_fp3_format.fs; |
| mips32_insn.fp0_format.fd = |
| insn.mm_fp3_format.rt; |
| mips32_insn.fp0_format.func = func; |
| break; |
| case mm_fmov0_op: |
| case mm_fmov1_op: |
| case mm_fabs0_op: |
| case mm_fabs1_op: |
| case mm_fneg0_op: |
| case mm_fneg1_op: |
| if ((insn.mm_fp1_format.op & 0x7f) == |
| mm_fmov0_op) |
| func = fmov_op; |
| else if ((insn.mm_fp1_format.op & 0x7f) == |
| mm_fabs0_op) |
| func = fabs_op; |
| else |
| func = fneg_op; |
| mips32_insn.fp0_format.opcode = cop1_op; |
| mips32_insn.fp0_format.fmt = |
| sdps_format[insn.mm_fp3_format.fmt]; |
| mips32_insn.fp0_format.ft = 0; |
| mips32_insn.fp0_format.fs = |
| insn.mm_fp3_format.fs; |
| mips32_insn.fp0_format.fd = |
| insn.mm_fp3_format.rt; |
| mips32_insn.fp0_format.func = func; |
| break; |
| case mm_ffloorl_op: |
| case mm_ffloorw_op: |
| case mm_fceill_op: |
| case mm_fceilw_op: |
| case mm_ftruncl_op: |
| case mm_ftruncw_op: |
| case mm_froundl_op: |
| case mm_froundw_op: |
| case mm_fcvtl_op: |
| case mm_fcvtw_op: |
| if (insn.mm_fp1_format.op == mm_ffloorl_op) |
| func = ffloorl_op; |
| else if (insn.mm_fp1_format.op == mm_ffloorw_op) |
| func = ffloor_op; |
| else if (insn.mm_fp1_format.op == mm_fceill_op) |
| func = fceill_op; |
| else if (insn.mm_fp1_format.op == mm_fceilw_op) |
| func = fceil_op; |
| else if (insn.mm_fp1_format.op == mm_ftruncl_op) |
| func = ftruncl_op; |
| else if (insn.mm_fp1_format.op == mm_ftruncw_op) |
| func = ftrunc_op; |
| else if (insn.mm_fp1_format.op == mm_froundl_op) |
| func = froundl_op; |
| else if (insn.mm_fp1_format.op == mm_froundw_op) |
| func = fround_op; |
| else if (insn.mm_fp1_format.op == mm_fcvtl_op) |
| func = fcvtl_op; |
| else |
| func = fcvtw_op; |
| mips32_insn.fp0_format.opcode = cop1_op; |
| mips32_insn.fp0_format.fmt = |
| sd_format[insn.mm_fp1_format.fmt]; |
| mips32_insn.fp0_format.ft = 0; |
| mips32_insn.fp0_format.fs = |
| insn.mm_fp1_format.fs; |
| mips32_insn.fp0_format.fd = |
| insn.mm_fp1_format.rt; |
| mips32_insn.fp0_format.func = func; |
| break; |
| case mm_frsqrt_op: |
| case mm_fsqrt_op: |
| case mm_frecip_op: |
| if (insn.mm_fp1_format.op == mm_frsqrt_op) |
| func = frsqrt_op; |
| else if (insn.mm_fp1_format.op == mm_fsqrt_op) |
| func = fsqrt_op; |
| else |
| func = frecip_op; |
| mips32_insn.fp0_format.opcode = cop1_op; |
| mips32_insn.fp0_format.fmt = |
| sdps_format[insn.mm_fp1_format.fmt]; |
| mips32_insn.fp0_format.ft = 0; |
| mips32_insn.fp0_format.fs = |
| insn.mm_fp1_format.fs; |
| mips32_insn.fp0_format.fd = |
| insn.mm_fp1_format.rt; |
| mips32_insn.fp0_format.func = func; |
| break; |
| case mm_mfc1_op: |
| case mm_mtc1_op: |
| case mm_cfc1_op: |
| case mm_ctc1_op: |
| case mm_mfhc1_op: |
| case mm_mthc1_op: |
| if (insn.mm_fp1_format.op == mm_mfc1_op) |
| op = mfc_op; |
| else if (insn.mm_fp1_format.op == mm_mtc1_op) |
| op = mtc_op; |
| else if (insn.mm_fp1_format.op == mm_cfc1_op) |
| op = cfc_op; |
| else if (insn.mm_fp1_format.op == mm_ctc1_op) |
| op = ctc_op; |
| else if (insn.mm_fp1_format.op == mm_mfhc1_op) |
| op = mfhc_op; |
| else |
| op = mthc_op; |
| mips32_insn.fp1_format.opcode = cop1_op; |
| mips32_insn.fp1_format.op = op; |
| mips32_insn.fp1_format.rt = |
| insn.mm_fp1_format.rt; |
| mips32_insn.fp1_format.fs = |
| insn.mm_fp1_format.fs; |
| mips32_insn.fp1_format.fd = 0; |
| mips32_insn.fp1_format.func = 0; |
| break; |
| default: |
| return SIGILL; |
| } |
| break; |
| case mm_32f_74_op: /* c.cond.fmt */ |
| mips32_insn.fp0_format.opcode = cop1_op; |
| mips32_insn.fp0_format.fmt = |
| sdps_format[insn.mm_fp4_format.fmt]; |
| mips32_insn.fp0_format.ft = insn.mm_fp4_format.rt; |
| mips32_insn.fp0_format.fs = insn.mm_fp4_format.fs; |
| mips32_insn.fp0_format.fd = insn.mm_fp4_format.cc << 2; |
| mips32_insn.fp0_format.func = |
| insn.mm_fp4_format.cond | MM_MIPS32_COND_FC; |
| break; |
| default: |
| return SIGILL; |
| } |
| break; |
| default: |
| return SIGILL; |
| } |
| |
| *insn_ptr = mips32_insn; |
| return 0; |
| } |
| |
| /* |
| * Redundant with logic already in kernel/branch.c, |
| * embedded in compute_return_epc. At some point, |
| * a single subroutine should be used across both |
| * modules. |
| */ |
| int isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn, |
| unsigned long *contpc) |
| { |
| union mips_instruction insn = (union mips_instruction)dec_insn.insn; |
| unsigned int fcr31; |
| unsigned int bit = 0; |
| |
| switch (insn.i_format.opcode) { |
| case spec_op: |
| switch (insn.r_format.func) { |
| case jalr_op: |
| if (insn.r_format.rd != 0) { |
| regs->regs[insn.r_format.rd] = |
| regs->cp0_epc + dec_insn.pc_inc + |
| dec_insn.next_pc_inc; |
| } |
| /* Fall through */ |
| case jr_op: |
| /* For R6, JR already emulated in jalr_op */ |
| if (NO_R6EMU && insn.r_format.func == jr_op) |
| break; |
| *contpc = regs->regs[insn.r_format.rs]; |
| return 1; |
| } |
| break; |
| case bcond_op: |
| switch (insn.i_format.rt) { |
| case bltzal_op: |
| case bltzall_op: |
| if (NO_R6EMU && (insn.i_format.rs || |
| insn.i_format.rt == bltzall_op)) |
| break; |
| |
| regs->regs[31] = regs->cp0_epc + |
| dec_insn.pc_inc + |
| dec_insn.next_pc_inc; |
| /* Fall through */ |
| case bltzl_op: |
| if (NO_R6EMU) |
| break; |
| case bltz_op: |
| if ((long)regs->regs[insn.i_format.rs] < 0) |
| *contpc = regs->cp0_epc + |
| dec_insn.pc_inc + |
| (insn.i_format.simmediate << 2); |
| else |
| *contpc = regs->cp0_epc + |
| dec_insn.pc_inc + |
| dec_insn.next_pc_inc; |
| return 1; |
| case bgezal_op: |
| case bgezall_op: |
| if (NO_R6EMU && (insn.i_format.rs || |
| insn.i_format.rt == bgezall_op)) |
| break; |
| |
| regs->regs[31] = regs->cp0_epc + |
| dec_insn.pc_inc + |
| dec_insn.next_pc_inc; |
| /* Fall through */ |
| case bgezl_op: |
| if (NO_R6EMU) |
| break; |
| case bgez_op: |
| if ((long)regs->regs[insn.i_format.rs] >= 0) |
| *contpc = regs->cp0_epc + |
| dec_insn.pc_inc + |
| (insn.i_format.simmediate << 2); |
| else |
| *contpc = regs->cp0_epc + |
| dec_insn.pc_inc + |
| dec_insn.next_pc_inc; |
| return 1; |
| } |
| break; |
| case jalx_op: |
| set_isa16_mode(bit); |
| case jal_op: |
| regs->regs[31] = regs->cp0_epc + |
| dec_insn.pc_inc + |
| dec_insn.next_pc_inc; |
| /* Fall through */ |
| case j_op: |
| *contpc = regs->cp0_epc + dec_insn.pc_inc; |
| *contpc >>= 28; |
| *contpc <<= 28; |
| *contpc |= (insn.j_format.target << 2); |
| /* Set microMIPS mode bit: XOR for jalx. */ |
| *contpc ^= bit; |
| return 1; |
| case beql_op: |
| if (NO_R6EMU) |
| break; |
| case beq_op: |
| if (regs->regs[insn.i_format.rs] == |
| regs->regs[insn.i_format.rt]) |
| *contpc = regs->cp0_epc + |
| dec_insn.pc_inc + |
| (insn.i_format.simmediate << 2); |
| else |
| *contpc = regs->cp0_epc + |
| dec_insn.pc_inc + |
| dec_insn.next_pc_inc; |
| return 1; |
| case bnel_op: |
| if (NO_R6EMU) |
| break; |
| case bne_op: |
| if (regs->regs[insn.i_format.rs] != |
| regs->regs[insn.i_format.rt]) |
| *contpc = regs->cp0_epc + |
| dec_insn.pc_inc + |
| (insn.i_format.simmediate << 2); |
| else |
| *contpc = regs->cp0_epc + |
| dec_insn.pc_inc + |
| dec_insn.next_pc_inc; |
| return 1; |
| case blezl_op: |
| if (!insn.i_format.rt && NO_R6EMU) |
| break; |
| case blez_op: |
| |
| /* |
| * Compact branches for R6 for the |
| * blez and blezl opcodes. |
| * BLEZ | rs = 0 | rt != 0 == BLEZALC |
| * BLEZ | rs = rt != 0 == BGEZALC |
| * BLEZ | rs != 0 | rt != 0 == BGEUC |
| * BLEZL | rs = 0 | rt != 0 == BLEZC |
| * BLEZL | rs = rt != 0 == BGEZC |
| * BLEZL | rs != 0 | rt != 0 == BGEC |
| * |
| * For real BLEZ{,L}, rt is always 0. |
| */ |
| if (cpu_has_mips_r6 && insn.i_format.rt) { |
| if ((insn.i_format.opcode == blez_op) && |
| ((!insn.i_format.rs && insn.i_format.rt) || |
| (insn.i_format.rs == insn.i_format.rt))) |
| regs->regs[31] = regs->cp0_epc + |
| dec_insn.pc_inc; |
| *contpc = regs->cp0_epc + dec_insn.pc_inc + |
| dec_insn.next_pc_inc; |
| |
| return 1; |
| } |
| if ((long)regs->regs[insn.i_format.rs] <= 0) |
| *contpc = regs->cp0_epc + |
| dec_insn.pc_inc + |
| (insn.i_format.simmediate << 2); |
| else |
| *contpc = regs->cp0_epc + |
| dec_insn.pc_inc + |
| dec_insn.next_pc_inc; |
| return 1; |
| case bgtzl_op: |
| if (!insn.i_format.rt && NO_R6EMU) |
| break; |
| case bgtz_op: |
| /* |
| * Compact branches for R6 for the |
| * bgtz and bgtzl opcodes. |
| * BGTZ | rs = 0 | rt != 0 == BGTZALC |
| * BGTZ | rs = rt != 0 == BLTZALC |
| * BGTZ | rs != 0 | rt != 0 == BLTUC |
| * BGTZL | rs = 0 | rt != 0 == BGTZC |
| * BGTZL | rs = rt != 0 == BLTZC |
| * BGTZL | rs != 0 | rt != 0 == BLTC |
| * |
| * *ZALC varint for BGTZ &&& rt != 0 |
| * For real GTZ{,L}, rt is always 0. |
| */ |
| if (cpu_has_mips_r6 && insn.i_format.rt) { |
| if ((insn.i_format.opcode == blez_op) && |
| ((!insn.i_format.rs && insn.i_format.rt) || |
| (insn.i_format.rs == insn.i_format.rt))) |
| regs->regs[31] = regs->cp0_epc + |
| dec_insn.pc_inc; |
| *contpc = regs->cp0_epc + dec_insn.pc_inc + |
| dec_insn.next_pc_inc; |
| |
| return 1; |
| } |
| |
| if ((long)regs->regs[insn.i_format.rs] > 0) |
| *contpc = regs->cp0_epc + |
| dec_insn.pc_inc + |
| (insn.i_format.simmediate << 2); |
| else |
| *contpc = regs->cp0_epc + |
| dec_insn.pc_inc + |
| dec_insn.next_pc_inc; |
| return 1; |
| case pop10_op: |
| case pop30_op: |
| if (!cpu_has_mips_r6) |
| break; |
| if (insn.i_format.rt && !insn.i_format.rs) |
| regs->regs[31] = regs->cp0_epc + 4; |
| *contpc = regs->cp0_epc + dec_insn.pc_inc + |
| dec_insn.next_pc_inc; |
| |
| return 1; |
| #ifdef CONFIG_CPU_CAVIUM_OCTEON |
| case lwc2_op: /* This is bbit0 on Octeon */ |
| if ((regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) == 0) |
| *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2); |
| else |
| *contpc = regs->cp0_epc + 8; |
| return 1; |
| case ldc2_op: /* This is bbit032 on Octeon */ |
| if ((regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) == 0) |
| *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2); |
| else |
| *contpc = regs->cp0_epc + 8; |
| return 1; |
| case swc2_op: /* This is bbit1 on Octeon */ |
| if (regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) |
| *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2); |
| else |
| *contpc = regs->cp0_epc + 8; |
| return 1; |
| case sdc2_op: /* This is bbit132 on Octeon */ |
| if (regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) |
| *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2); |
| else |
| *contpc = regs->cp0_epc + 8; |
| return 1; |
| #else |
| case bc6_op: |
| /* |
| * Only valid for MIPS R6 but we can still end up |
| * here from a broken userland so just tell emulator |
| * this is not a branch and let it break later on. |
| */ |
| if (!cpu_has_mips_r6) |
| break; |
| *contpc = regs->cp0_epc + dec_insn.pc_inc + |
| dec_insn.next_pc_inc; |
| |
| return 1; |
| case balc6_op: |
| if (!cpu_has_mips_r6) |
| break; |
| regs->regs[31] = regs->cp0_epc + 4; |
| *contpc = regs->cp0_epc + dec_insn.pc_inc + |
| dec_insn.next_pc_inc; |
| |
| return 1; |
| case pop66_op: |
| if (!cpu_has_mips_r6) |
| break; |
| *contpc = regs->cp0_epc + dec_insn.pc_inc + |
| dec_insn.next_pc_inc; |
| |
| return 1; |
| case pop76_op: |
| if (!cpu_has_mips_r6) |
| break; |
| if (!insn.i_format.rs) |
| regs->regs[31] = regs->cp0_epc + 4; |
| *contpc = regs->cp0_epc + dec_insn.pc_inc + |
| dec_insn.next_pc_inc; |
| |
| return 1; |
| #endif |
| case cop0_op: |
| case cop1_op: |
| /* Need to check for R6 bc1nez and bc1eqz branches */ |
| if (cpu_has_mips_r6 && |
| ((insn.i_format.rs == bc1eqz_op) || |
| (insn.i_format.rs == bc1nez_op))) { |
| bit = 0; |
| switch (insn.i_format.rs) { |
| case bc1eqz_op: |
| if (get_fpr32(¤t->thread.fpu.fpr[insn.i_format.rt], 0) & 0x1) |
| bit = 1; |
| break; |
| case bc1nez_op: |
| if (!(get_fpr32(¤t->thread.fpu.fpr[insn.i_format.rt], 0) & 0x1)) |
| bit = 1; |
| break; |
| } |
| if (bit) |
| *contpc = regs->cp0_epc + |
| dec_insn.pc_inc + |
| (insn.i_format.simmediate << 2); |
| else |
| *contpc = regs->cp0_epc + |
| dec_insn.pc_inc + |
| dec_insn.next_pc_inc; |
| |
| return 1; |
| } |
| /* R2/R6 compatible cop1 instruction. Fall through */ |
| case cop2_op: |
| case cop1x_op: |
| if (insn.i_format.rs == bc_op) { |
| preempt_disable(); |
| if (is_fpu_owner()) |
| fcr31 = read_32bit_cp1_register(CP1_STATUS); |
| else |
| fcr31 = current->thread.fpu.fcr31; |
| preempt_enable(); |
| |
| bit = (insn.i_format.rt >> 2); |
| bit += (bit != 0); |
| bit += 23; |
| switch (insn.i_format.rt & 3) { |
| case 0: /* bc1f */ |
| case 2: /* bc1fl */ |
| if (~fcr31 & (1 << bit)) |
| *contpc = regs->cp0_epc + |
| dec_insn.pc_inc + |
| (insn.i_format.simmediate << 2); |
| else |
| *contpc = regs->cp0_epc + |
| dec_insn.pc_inc + |
| dec_insn.next_pc_inc; |
| return 1; |
| case 1: /* bc1t */ |
| case 3: /* bc1tl */ |
| if (fcr31 & (1 << bit)) |
| *contpc = regs->cp0_epc + |
| dec_insn.pc_inc + |
| (insn.i_format.simmediate << 2); |
| else |
| *contpc = regs->cp0_epc + |
| dec_insn.pc_inc + |
| dec_insn.next_pc_inc; |
| return 1; |
| } |
| } |
| break; |
| } |
| return 0; |
| } |
| |
| /* |
| * In the Linux kernel, we support selection of FPR format on the |
| * basis of the Status.FR bit. If an FPU is not present, the FR bit |
| * is hardwired to zero, which would imply a 32-bit FPU even for |
| * 64-bit CPUs so we rather look at TIF_32BIT_FPREGS. |
| * FPU emu is slow and bulky and optimizing this function offers fairly |
| * sizeable benefits so we try to be clever and make this function return |
| * a constant whenever possible, that is on 64-bit kernels without O32 |
| * compatibility enabled and on 32-bit without 64-bit FPU support. |
| */ |
| static inline int cop1_64bit(struct pt_regs *xcp) |
| { |
| if (IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_MIPS32_O32)) |
| return 1; |
| else if (IS_ENABLED(CONFIG_32BIT) && |
| !IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT)) |
| return 0; |
| |
| return !test_thread_flag(TIF_32BIT_FPREGS); |
| } |
| |
| static inline bool hybrid_fprs(void) |
| { |
| return test_thread_flag(TIF_HYBRID_FPREGS); |
| } |
| |
| #define SIFROMREG(si, x) \ |
| do { \ |
| if (cop1_64bit(xcp) && !hybrid_fprs()) \ |
| (si) = (int)get_fpr32(&ctx->fpr[x], 0); \ |
| else \ |
| (si) = (int)get_fpr32(&ctx->fpr[(x) & ~1], (x) & 1); \ |
| } while (0) |
| |
| #define SITOREG(si, x) \ |
| do { \ |
| if (cop1_64bit(xcp) && !hybrid_fprs()) { \ |
| unsigned i; \ |
| set_fpr32(&ctx->fpr[x], 0, si); \ |
| for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val32); i++) \ |
| set_fpr32(&ctx->fpr[x], i, 0); \ |
| } else { \ |
| set_fpr32(&ctx->fpr[(x) & ~1], (x) & 1, si); \ |
| } \ |
| } while (0) |
| |
| #define SIFROMHREG(si, x) ((si) = (int)get_fpr32(&ctx->fpr[x], 1)) |
| |
| #define SITOHREG(si, x) \ |
| do { \ |
| unsigned i; \ |
| set_fpr32(&ctx->fpr[x], 1, si); \ |
| for (i = 2; i < ARRAY_SIZE(ctx->fpr[x].val32); i++) \ |
| set_fpr32(&ctx->fpr[x], i, 0); \ |
| } while (0) |
| |
| #define DIFROMREG(di, x) \ |
| ((di) = get_fpr64(&ctx->fpr[(x) & ~(cop1_64bit(xcp) == 0)], 0)) |
| |
| #define DITOREG(di, x) \ |
| do { \ |
| unsigned fpr, i; \ |
| fpr = (x) & ~(cop1_64bit(xcp) == 0); \ |
| set_fpr64(&ctx->fpr[fpr], 0, di); \ |
| for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val64); i++) \ |
| set_fpr64(&ctx->fpr[fpr], i, 0); \ |
| } while (0) |
| |
| #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x) |
| #define SPTOREG(sp, x) SITOREG((sp).bits, x) |
| #define DPFROMREG(dp, x) DIFROMREG((dp).bits, x) |
| #define DPTOREG(dp, x) DITOREG((dp).bits, x) |
| |
| /* |
| * Emulate a CFC1 instruction. |
| */ |
| static inline void cop1_cfc(struct pt_regs *xcp, struct mips_fpu_struct *ctx, |
| mips_instruction ir) |
| { |
| u32 fcr31 = ctx->fcr31; |
| u32 value = 0; |
| |
| switch (MIPSInst_RD(ir)) { |
| case FPCREG_CSR: |
| value = fcr31; |
| pr_debug("%p gpr[%d]<-csr=%08x\n", |
| (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); |
| break; |
| |
| case FPCREG_FENR: |
| if (!cpu_has_mips_r) |
| break; |
| value = (fcr31 >> (FPU_CSR_FS_S - MIPS_FENR_FS_S)) & |
| MIPS_FENR_FS; |
| value |= fcr31 & (FPU_CSR_ALL_E | FPU_CSR_RM); |
| pr_debug("%p gpr[%d]<-enr=%08x\n", |
| (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); |
| break; |
| |
| case FPCREG_FEXR: |
| if (!cpu_has_mips_r) |
| break; |
| value = fcr31 & (FPU_CSR_ALL_X | FPU_CSR_ALL_S); |
| pr_debug("%p gpr[%d]<-exr=%08x\n", |
| (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); |
| break; |
| |
| case FPCREG_FCCR: |
| if (!cpu_has_mips_r) |
| break; |
| value = (fcr31 >> (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) & |
| MIPS_FCCR_COND0; |
| value |= (fcr31 >> (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) & |
| (MIPS_FCCR_CONDX & ~MIPS_FCCR_COND0); |
| pr_debug("%p gpr[%d]<-ccr=%08x\n", |
| (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); |
| break; |
| |
| case FPCREG_RID: |
| value = boot_cpu_data.fpu_id; |
| break; |
| |
| default: |
| break; |
| } |
| |
| if (MIPSInst_RT(ir)) |
| xcp->regs[MIPSInst_RT(ir)] = value; |
| } |
| |
| /* |
| * Emulate a CTC1 instruction. |
| */ |
| static inline void cop1_ctc(struct pt_regs *xcp, struct mips_fpu_struct *ctx, |
| mips_instruction ir) |
| { |
| u32 fcr31 = ctx->fcr31; |
| u32 value; |
| u32 mask; |
| |
| if (MIPSInst_RT(ir) == 0) |
| value = 0; |
| else |
| value = xcp->regs[MIPSInst_RT(ir)]; |
| |
| switch (MIPSInst_RD(ir)) { |
| case FPCREG_CSR: |
| pr_debug("%p gpr[%d]->csr=%08x\n", |
| (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); |
| |
| /* Preserve read-only bits. */ |
| mask = boot_cpu_data.fpu_msk31; |
| fcr31 = (value & ~mask) | (fcr31 & mask); |
| break; |
| |
| case FPCREG_FENR: |
| if (!cpu_has_mips_r) |
| break; |
| pr_debug("%p gpr[%d]->enr=%08x\n", |
| (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); |
| fcr31 &= ~(FPU_CSR_FS | FPU_CSR_ALL_E | FPU_CSR_RM); |
| fcr31 |= (value << (FPU_CSR_FS_S - MIPS_FENR_FS_S)) & |
| FPU_CSR_FS; |
| fcr31 |= value & (FPU_CSR_ALL_E | FPU_CSR_RM); |
| break; |
| |
| case FPCREG_FEXR: |
| if (!cpu_has_mips_r) |
| break; |
| pr_debug("%p gpr[%d]->exr=%08x\n", |
| (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); |
| fcr31 &= ~(FPU_CSR_ALL_X | FPU_CSR_ALL_S); |
| fcr31 |= value & (FPU_CSR_ALL_X | FPU_CSR_ALL_S); |
| break; |
| |
| case FPCREG_FCCR: |
| if (!cpu_has_mips_r) |
| break; |
| pr_debug("%p gpr[%d]->ccr=%08x\n", |
| (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); |
| fcr31 &= ~(FPU_CSR_CONDX | FPU_CSR_COND); |
| fcr31 |= (value << (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) & |
| FPU_CSR_COND; |
| fcr31 |= (value << (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) & |
| FPU_CSR_CONDX; |
| break; |
| |
| default: |
| break; |
| } |
| |
| ctx->fcr31 = fcr31; |
| } |
| |
| /* |
| * Emulate the single floating point instruction pointed at by EPC. |
| * Two instructions if the instruction is in a branch delay slot. |
| */ |
| |
| static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx, |
| struct mm_decoded_insn dec_insn, void *__user *fault_addr) |
| { |
| unsigned long contpc = xcp->cp0_epc + dec_insn.pc_inc; |
| unsigned int cond, cbit, bit0; |
| mips_instruction ir; |
| int likely, pc_inc; |
| union fpureg *fpr; |
| u32 __user *wva; |
| u64 __user *dva; |
| u32 wval; |
| u64 dval; |
| int sig; |
| |
| /* |
| * These are giving gcc a gentle hint about what to expect in |
| * dec_inst in order to do better optimization. |
| */ |
| if (!cpu_has_mmips && dec_insn.micro_mips_mode) |
| unreachable(); |
| |
| /* XXX NEC Vr54xx bug workaround */ |
| if (delay_slot(xcp)) { |
| if (dec_insn.micro_mips_mode) { |
| if (!mm_isBranchInstr(xcp, dec_insn, &contpc)) |
| clear_delay_slot(xcp); |
| } else { |
| if (!isBranchInstr(xcp, dec_insn, &contpc)) |
| clear_delay_slot(xcp); |
| } |
| } |
| |
| if (delay_slot(xcp)) { |
| /* |
| * The instruction to be emulated is in a branch delay slot |
| * which means that we have to emulate the branch instruction |
| * BEFORE we do the cop1 instruction. |
| * |
| * This branch could be a COP1 branch, but in that case we |
| * would have had a trap for that instruction, and would not |
| * come through this route. |
| * |
| * Linux MIPS branch emulator operates on context, updating the |
| * cp0_epc. |
| */ |
| ir = dec_insn.next_insn; /* process delay slot instr */ |
| pc_inc = dec_insn.next_pc_inc; |
| } else { |
| ir = dec_insn.insn; /* process current instr */ |
| pc_inc = dec_insn.pc_inc; |
| } |
| |
| /* |
| * Since microMIPS FPU instructios are a subset of MIPS32 FPU |
| * instructions, we want to convert microMIPS FPU instructions |
| * into MIPS32 instructions so that we could reuse all of the |
| * FPU emulation code. |
| * |
| * NOTE: We cannot do this for branch instructions since they |
| * are not a subset. Example: Cannot emulate a 16-bit |
| * aligned target address with a MIPS32 instruction. |
| */ |
| if (dec_insn.micro_mips_mode) { |
| /* |
| * If next instruction is a 16-bit instruction, then it |
| * it cannot be a FPU instruction. This could happen |
| * since we can be called for non-FPU instructions. |
| */ |
| if ((pc_inc == 2) || |
| (microMIPS32_to_MIPS32((union mips_instruction *)&ir) |
| == SIGILL)) |
| return SIGILL; |
| } |
| |
| emul: |
| perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0); |
| MIPS_FPU_EMU_INC_STATS(emulated); |
| switch (MIPSInst_OPCODE(ir)) { |
| case ldc1_op: |
| dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] + |
| MIPSInst_SIMM(ir)); |
| MIPS_FPU_EMU_INC_STATS(loads); |
| |
| if (!access_ok(VERIFY_READ, dva, sizeof(u64))) { |
| MIPS_FPU_EMU_INC_STATS(errors); |
| *fault_addr = dva; |
| return SIGBUS; |
| } |
| if (__get_user(dval, dva)) { |
| MIPS_FPU_EMU_INC_STATS(errors); |
| *fault_addr = dva; |
| return SIGSEGV; |
| } |
| DITOREG(dval, MIPSInst_RT(ir)); |
| break; |
| |
| case sdc1_op: |
| dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] + |
| MIPSInst_SIMM(ir)); |
| MIPS_FPU_EMU_INC_STATS(stores); |
| DIFROMREG(dval, MIPSInst_RT(ir)); |
| if (!access_ok(VERIFY_WRITE, dva, sizeof(u64))) { |
| MIPS_FPU_EMU_INC_STATS(errors); |
| *fault_addr = dva; |
| return SIGBUS; |
| } |
| if (__put_user(dval, dva)) { |
| MIPS_FPU_EMU_INC_STATS(errors); |
| *fault_addr = dva; |
| return SIGSEGV; |
| } |
| break; |
| |
| case lwc1_op: |
| wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] + |
| MIPSInst_SIMM(ir)); |
| MIPS_FPU_EMU_INC_STATS(loads); |
| if (!access_ok(VERIFY_READ, wva, sizeof(u32))) { |
| MIPS_FPU_EMU_INC_STATS(errors); |
| *fault_addr = wva; |
| return SIGBUS; |
| } |
| if (__get_user(wval, wva)) { |
| MIPS_FPU_EMU_INC_STATS(errors); |
| *fault_addr = wva; |
| return SIGSEGV; |
| } |
| SITOREG(wval, MIPSInst_RT(ir)); |
| break; |
| |
| case swc1_op: |
| wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] + |
| MIPSInst_SIMM(ir)); |
| MIPS_FPU_EMU_INC_STATS(stores); |
| SIFROMREG(wval, MIPSInst_RT(ir)); |
| if (!access_ok(VERIFY_WRITE, wva, sizeof(u32))) { |
| MIPS_FPU_EMU_INC_STATS(errors); |
| *fault_addr = wva; |
| return SIGBUS; |
| } |
| if (__put_user(wval, wva)) { |
| MIPS_FPU_EMU_INC_STATS(errors); |
| *fault_addr = wva; |
| return SIGSEGV; |
| } |
| break; |
| |
| case cop1_op: |
| switch (MIPSInst_RS(ir)) { |
| case dmfc_op: |
| if (!cpu_has_mips_3_4_5 && !cpu_has_mips64) |
| return SIGILL; |
| |
| /* copregister fs -> gpr[rt] */ |
| if (MIPSInst_RT(ir) != 0) { |
| DIFROMREG(xcp->regs[MIPSInst_RT(ir)], |
| MIPSInst_RD(ir)); |
| } |
| break; |
| |
| case dmtc_op: |
| if (!cpu_has_mips_3_4_5 && !cpu_has_mips64) |
| return SIGILL; |
| |
| /* copregister fs <- rt */ |
| DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir)); |
| break; |
| |
| case mfhc_op: |
| if (!cpu_has_mips_r2_r6) |
| goto sigill; |
| |
| /* copregister rd -> gpr[rt] */ |
| if (MIPSInst_RT(ir) != 0) { |
| SIFROMHREG(xcp->regs[MIPSInst_RT(ir)], |
| MIPSInst_RD(ir)); |
| } |
| break; |
| |
| case mthc_op: |
| if (!cpu_has_mips_r2_r6) |
| goto sigill; |
| |
| /* copregister rd <- gpr[rt] */ |
| SITOHREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir)); |
| break; |
| |
| case mfc_op: |
| /* copregister rd -> gpr[rt] */ |
| if (MIPSInst_RT(ir) != 0) { |
| SIFROMREG(xcp->regs[MIPSInst_RT(ir)], |
| MIPSInst_RD(ir)); |
| } |
| break; |
| |
| case mtc_op: |
| /* copregister rd <- rt */ |
| SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir)); |
| break; |
| |
| case cfc_op: |
| /* cop control register rd -> gpr[rt] */ |
| cop1_cfc(xcp, ctx, ir); |
| break; |
| |
| case ctc_op: |
| /* copregister rd <- rt */ |
| cop1_ctc(xcp, ctx, ir); |
| if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) { |
| return SIGFPE; |
| } |
| break; |
| |
| case bc1eqz_op: |
| case bc1nez_op: |
| if (!cpu_has_mips_r6 || delay_slot(xcp)) |
| return SIGILL; |
| |
| cond = likely = 0; |
| fpr = ¤t->thread.fpu.fpr[MIPSInst_RT(ir)]; |
| bit0 = get_fpr32(fpr, 0) & 0x1; |
| switch (MIPSInst_RS(ir)) { |
| case bc1eqz_op: |
| cond = bit0 == 0; |
| break; |
| case bc1nez_op: |
| cond = bit0 != 0; |
| break; |
| } |
| goto branch_common; |
| |
| case bc_op: |
| if (delay_slot(xcp)) |
| return SIGILL; |
| |
| if (cpu_has_mips_4_5_r) |
| cbit = fpucondbit[MIPSInst_RT(ir) >> 2]; |
| else |
| cbit = FPU_CSR_COND; |
| cond = ctx->fcr31 & cbit; |
| |
| likely = 0; |
| switch (MIPSInst_RT(ir) & 3) { |
| case bcfl_op: |
| if (cpu_has_mips_2_3_4_5_r) |
| likely = 1; |
| /* Fall through */ |
| case bcf_op: |
| cond = !cond; |
| break; |
| case bctl_op: |
| if (cpu_has_mips_2_3_4_5_r) |
| likely = 1; |
| /* Fall through */ |
| case bct_op: |
| break; |
| } |
| branch_common: |
| set_delay_slot(xcp); |
| if (cond) { |
| /* |
| * Branch taken: emulate dslot instruction |
| */ |
| unsigned long bcpc; |
| |
| /* |
| * Remember EPC at the branch to point back |
| * at so that any delay-slot instruction |
| * signal is not silently ignored. |
| */ |
| bcpc = xcp->cp0_epc; |
| xcp->cp0_epc += dec_insn.pc_inc; |
| |
| contpc = MIPSInst_SIMM(ir); |
| ir = dec_insn.next_insn; |
| if (dec_insn.micro_mips_mode) { |
| contpc = (xcp->cp0_epc + (contpc << 1)); |
| |
| /* If 16-bit instruction, not FPU. */ |
| if ((dec_insn.next_pc_inc == 2) || |
| (microMIPS32_to_MIPS32((union mips_instruction *)&ir) == SIGILL)) { |
| |
| /* |
| * Since this instruction will |
| * be put on the stack with |
| * 32-bit words, get around |
| * this problem by putting a |
| * NOP16 as the second one. |
| */ |
| if (dec_insn.next_pc_inc == 2) |
| ir = (ir & (~0xffff)) | MM_NOP16; |
| |
| /* |
| * Single step the non-CP1 |
| * instruction in the dslot. |
| */ |
| sig = mips_dsemul(xcp, ir, |
| bcpc, contpc); |
| if (sig < 0) |
| break; |
| if (sig) |
| xcp->cp0_epc = bcpc; |
| /* |
| * SIGILL forces out of |
| * the emulation loop. |
| */ |
| return sig ? sig : SIGILL; |
| } |
| } else |
| contpc = (xcp->cp0_epc + (contpc << 2)); |
| |
| switch (MIPSInst_OPCODE(ir)) { |
| case lwc1_op: |
| case swc1_op: |
| goto emul; |
| |
| case ldc1_op: |
| case sdc1_op: |
| if (cpu_has_mips_2_3_4_5_r) |
| goto emul; |
| |
| goto bc_sigill; |
| |
| case cop1_op: |
| goto emul; |
| |
| case cop1x_op: |
| if (cpu_has_mips_4_5_64_r2_r6) |
| /* its one of ours */ |
| goto emul; |
| |
| goto bc_sigill; |
| |
| case spec_op: |
| switch (MIPSInst_FUNC(ir)) { |
| case movc_op: |
| if (cpu_has_mips_4_5_r) |
| goto emul; |
| |
| goto bc_sigill; |
| } |
| break; |
| |
| bc_sigill: |
| xcp->cp0_epc = bcpc; |
| return SIGILL; |
| } |
| |
| /* |
| * Single step the non-cp1 |
| * instruction in the dslot |
| */ |
| sig = mips_dsemul(xcp, ir, bcpc, contpc); |
| if (sig < 0) |
| break; |
| if (sig) |
| xcp->cp0_epc = bcpc; |
| /* SIGILL forces out of the emulation loop. */ |
| return sig ? sig : SIGILL; |
| } else if (likely) { /* branch not taken */ |
| /* |
| * branch likely nullifies |
| * dslot if not taken |
| */ |
| xcp->cp0_epc += dec_insn.pc_inc; |
| contpc += dec_insn.pc_inc; |
| /* |
| * else continue & execute |
| * dslot as normal insn |
| */ |
| } |
| break; |
| |
| default: |
| if (!(MIPSInst_RS(ir) & 0x10)) |
| return SIGILL; |
| |
| /* a real fpu computation instruction */ |
| if ((sig = fpu_emu(xcp, ctx, ir))) |
| return sig; |
| } |
| break; |
| |
| case cop1x_op: |
| if (!cpu_has_mips_4_5_64_r2_r6) |
| return SIGILL; |
| |
| sig = fpux_emu(xcp, ctx, ir, fault_addr); |
| if (sig) |
| return sig; |
| break; |
| |
| case spec_op: |
| if (!cpu_has_mips_4_5_r) |
| return SIGILL; |
| |
| if (MIPSInst_FUNC(ir) != movc_op) |
| return SIGILL; |
| cond = fpucondbit[MIPSInst_RT(ir) >> 2]; |
| if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0)) |
| xcp->regs[MIPSInst_RD(ir)] = |
| xcp->regs[MIPSInst_RS(ir)]; |
| break; |
| default: |
| sigill: |
| return SIGILL; |
| } |
| |
| /* we did it !! */ |
| xcp->cp0_epc = contpc; |
| clear_delay_slot(xcp); |
| |
| return 0; |
| } |
| |
| /* |
| * Conversion table from MIPS compare ops 48-63 |
| * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig); |
| */ |
| static const unsigned char cmptab[8] = { |
| 0, /* cmp_0 (sig) cmp_sf */ |
| IEEE754_CUN, /* cmp_un (sig) cmp_ngle */ |
| IEEE754_CEQ, /* cmp_eq (sig) cmp_seq */ |
| IEEE754_CEQ | IEEE754_CUN, /* cmp_ueq (sig) cmp_ngl */ |
| IEEE754_CLT, /* cmp_olt (sig) cmp_lt */ |
| IEEE754_CLT | IEEE754_CUN, /* cmp_ult (sig) cmp_nge */ |
| IEEE754_CLT | IEEE754_CEQ, /* cmp_ole (sig) cmp_le */ |
| IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN, /* cmp_ule (sig) cmp_ngt */ |
| }; |
| |
| static const unsigned char negative_cmptab[8] = { |
| 0, /* Reserved */ |
| IEEE754_CLT | IEEE754_CGT | IEEE754_CEQ, |
| IEEE754_CLT | IEEE754_CGT | IEEE754_CUN, |
| IEEE754_CLT | IEEE754_CGT, |
| /* Reserved */ |
| }; |
| |
| |
| /* |
| * Additional MIPS4 instructions |
| */ |
| |
| #define DEF3OP(name, p, f1, f2, f3) \ |
| static union ieee754##p fpemu_##p##_##name(union ieee754##p r, \ |
| union ieee754##p s, union ieee754##p t) \ |
| { \ |
| struct _ieee754_csr ieee754_csr_save; \ |
| s = f1(s, t); \ |
| ieee754_csr_save = ieee754_csr; \ |
| s = f2(s, r); \ |
| ieee754_csr_save.cx |= ieee754_csr.cx; \ |
| ieee754_csr_save.sx |= ieee754_csr.sx; \ |
| s = f3(s); \ |
| ieee754_csr.cx |= ieee754_csr_save.cx; \ |
| ieee754_csr.sx |= ieee754_csr_save.sx; \ |
| return s; \ |
| } |
| |
| static union ieee754dp fpemu_dp_recip(union ieee754dp d) |
| { |
| return ieee754dp_div(ieee754dp_one(0), d); |
| } |
| |
| static union ieee754dp fpemu_dp_rsqrt(union ieee754dp d) |
| { |
| return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d)); |
| } |
| |
| static union ieee754sp fpemu_sp_recip(union ieee754sp s) |
| { |
| return ieee754sp_div(ieee754sp_one(0), s); |
| } |
| |
| static union ieee754sp fpemu_sp_rsqrt(union ieee754sp s) |
| { |
| return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s)); |
| } |
| |
| DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, ); |
| DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, ); |
| DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg); |
| DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg); |
| DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, ); |
| DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, ); |
| DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg); |
| DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg); |
| |
| static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx, |
| mips_instruction ir, void *__user *fault_addr) |
| { |
| unsigned rcsr = 0; /* resulting csr */ |
| |
| MIPS_FPU_EMU_INC_STATS(cp1xops); |
| |
| switch (MIPSInst_FMA_FFMT(ir)) { |
| case s_fmt:{ /* 0 */ |
| |
| union ieee754sp(*handler) (union ieee754sp, union ieee754sp, union ieee754sp); |
| union ieee754sp fd, fr, fs, ft; |
| u32 __user *va; |
| u32 val; |
| |
| switch (MIPSInst_FUNC(ir)) { |
| case lwxc1_op: |
| va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] + |
| xcp->regs[MIPSInst_FT(ir)]); |
| |
| MIPS_FPU_EMU_INC_STATS(loads); |
| if (!access_ok(VERIFY_READ, va, sizeof(u32))) { |
| MIPS_FPU_EMU_INC_STATS(errors); |
| *fault_addr = va; |
| return SIGBUS; |
| } |
| if (__get_user(val, va)) { |
| MIPS_FPU_EMU_INC_STATS(errors); |
| *fault_addr = va; |
| return SIGSEGV; |
| } |
| SITOREG(val, MIPSInst_FD(ir)); |
| break; |
| |
| case swxc1_op: |
| va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] + |
| xcp->regs[MIPSInst_FT(ir)]); |
| |
| MIPS_FPU_EMU_INC_STATS(stores); |
| |
| SIFROMREG(val, MIPSInst_FS(ir)); |
| if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) { |
| MIPS_FPU_EMU_INC_STATS(errors); |
| *fault_addr = va; |
| return SIGBUS; |
| } |
| if (put_user(val, va)) { |
| MIPS_FPU_EMU_INC_STATS(errors); |
| *fault_addr = va; |
| return SIGSEGV; |
| } |
| break; |
| |
| case madd_s_op: |
| handler = fpemu_sp_madd; |
| goto scoptop; |
| case msub_s_op: |
| handler = fpemu_sp_msub; |
| goto scoptop; |
| case nmadd_s_op: |
| handler = fpemu_sp_nmadd; |
| goto scoptop; |
| case nmsub_s_op: |
| handler = fpemu_sp_nmsub; |
| goto scoptop; |
| |
| scoptop: |
| SPFROMREG(fr, MIPSInst_FR(ir)); |
| SPFROMREG(fs, MIPSInst_FS(ir)); |
| SPFROMREG(ft, MIPSInst_FT(ir)); |
| fd = (*handler) (fr, fs, ft); |
| SPTOREG(fd, MIPSInst_FD(ir)); |
| |
| copcsr: |
| if (ieee754_cxtest(IEEE754_INEXACT)) { |
| MIPS_FPU_EMU_INC_STATS(ieee754_inexact); |
| rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S; |
| } |
| if (ieee754_cxtest(IEEE754_UNDERFLOW)) { |
| MIPS_FPU_EMU_INC_STATS(ieee754_underflow); |
| rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S; |
| } |
| if (ieee754_cxtest(IEEE754_OVERFLOW)) { |
| MIPS_FPU_EMU_INC_STATS(ieee754_overflow); |
| rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S; |
| } |
| if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) { |
| MIPS_FPU_EMU_INC_STATS(ieee754_invalidop); |
| rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S; |
| } |
| |
| ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr; |
| if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) { |
| /*printk ("SIGFPE: FPU csr = %08x\n", |
| ctx->fcr31); */ |
| return SIGFPE; |
| } |
| |
| break; |
| |
| default: |
| return SIGILL; |
| } |
| break; |
| } |
| |
| case d_fmt:{ /* 1 */ |
| union ieee754dp(*handler) (union ieee754dp, union ieee754dp, union ieee754dp); |
| union ieee754dp fd, fr, fs, ft; |
| u64 __user *va; |
| u64 val; |
| |
| switch (MIPSInst_FUNC(ir)) { |
| case ldxc1_op: |
| va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] + |
| xcp->regs[MIPSInst_FT(ir)]); |
| |
| MIPS_FPU_EMU_INC_STATS(loads); |
| if (!access_ok(VERIFY_READ, va, sizeof(u64))) { |
| MIPS_FPU_EMU_INC_STATS(errors); |
| *fault_addr = va; |
| return SIGBUS; |
| } |
| if (__get_user(val, va)) { |
| MIPS_FPU_EMU_INC_STATS(errors); |
| *fault_addr = va; |
| return SIGSEGV; |
| } |
| DITOREG(val, MIPSInst_FD(ir)); |
| break; |
| |
| case sdxc1_op: |
| va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] + |
| xcp->regs[MIPSInst_FT(ir)]); |
| |
| MIPS_FPU_EMU_INC_STATS(stores); |
| DIFROMREG(val, MIPSInst_FS(ir)); |
| if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) { |
| MIPS_FPU_EMU_INC_STATS(errors); |
| *fault_addr = va; |
| return SIGBUS; |
| } |
| if (__put_user(val, va)) { |
| MIPS_FPU_EMU_INC_STATS(errors); |
| *fault_addr = va; |
| return SIGSEGV; |
| } |
| break; |
| |
| case madd_d_op: |
| handler = fpemu_dp_madd; |
| goto dcoptop; |
| case msub_d_op: |
| handler = fpemu_dp_msub; |
| goto dcoptop; |
| case nmadd_d_op: |
| handler = fpemu_dp_nmadd; |
| goto dcoptop; |
| case nmsub_d_op: |
| handler = fpemu_dp_nmsub; |
| goto dcoptop; |
| |
| dcoptop: |
| DPFROMREG(fr, MIPSInst_FR(ir)); |
| DPFROMREG(fs, MIPSInst_FS(ir)); |
| DPFROMREG(ft, MIPSInst_FT(ir)); |
| fd = (*handler) (fr, fs, ft); |
| DPTOREG(fd, MIPSInst_FD(ir)); |
| goto copcsr; |
| |
| default: |
| return SIGILL; |
| } |
| break; |
| } |
| |
| case 0x3: |
| if (MIPSInst_FUNC(ir) != pfetch_op) |
| return SIGILL; |
| |
| /* ignore prefx operation */ |
| break; |
| |
| default: |
| return SIGILL; |
| } |
| |
| return 0; |
| } |
| |
| |
| |
| /* |
| * Emulate a single COP1 arithmetic instruction. |
| */ |
| static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx, |
| mips_instruction ir) |
| { |
| int rfmt; /* resulting format */ |
| unsigned rcsr = 0; /* resulting csr */ |
| unsigned int oldrm; |
| unsigned int cbit; |
| unsigned cond; |
| union { |
| union ieee754dp d; |
| union ieee754sp s; |
| int w; |
| s64 l; |
| } rv; /* resulting value */ |
| u64 bits; |
| |
| MIPS_FPU_EMU_INC_STATS(cp1ops); |
| switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) { |
| case s_fmt: { /* 0 */ |
| union { |
| union ieee754sp(*b) (union ieee754sp, union ieee754sp); |
| union ieee754sp(*u) (union ieee754sp); |
| } handler; |
| union ieee754sp fd, fs, ft; |
| |
| switch (MIPSInst_FUNC(ir)) { |
| /* binary ops */ |
| case fadd_op: |
| handler.b = ieee754sp_add; |
| goto scopbop; |
| case fsub_op: |
| handler.b = ieee754sp_sub; |
| goto scopbop; |
| case fmul_op: |
| handler.b = ieee754sp_mul; |
| goto scopbop; |
| case fdiv_op: |
| handler.b = ieee754sp_div; |
| goto scopbop; |
| |
| /* unary ops */ |
| case fsqrt_op: |
| if (!cpu_has_mips_2_3_4_5_r) |
| return SIGILL; |
| |
| handler.u = ieee754sp_sqrt; |
| goto scopuop; |
| |
| /* |
| * Note that on some MIPS IV implementations such as the |
| * R5000 and R8000 the FSQRT and FRECIP instructions do not |
| * achieve full IEEE-754 accuracy - however this emulator does. |
| */ |
| case frsqrt_op: |
| if (!cpu_has_mips_4_5_64_r2_r6) |
| return SIGILL; |
| |
| handler.u = fpemu_sp_rsqrt; |
| goto scopuop; |
| |
| case frecip_op: |
| if (!cpu_has_mips_4_5_64_r2_r6) |
| return SIGILL; |
| |
| handler.u = fpemu_sp_recip; |
| goto scopuop; |
| |
| case fmovc_op: |
| if (!cpu_has_mips_4_5_r) |
| return SIGILL; |
| |
| cond = fpucondbit[MIPSInst_FT(ir) >> 2]; |
| if (((ctx->fcr31 & cond) != 0) != |
| ((MIPSInst_FT(ir) & 1) != 0)) |
| return 0; |
| SPFROMREG(rv.s, MIPSInst_FS(ir)); |
| break; |
| |
| case fmovz_op: |
| if (!cpu_has_mips_4_5_r) |
| return SIGILL; |
| |
| if (xcp->regs[MIPSInst_FT(ir)] != 0) |
| return 0; |
| SPFROMREG(rv.s, MIPSInst_FS(ir)); |
| break; |
| |
| case fmovn_op: |
| if (!cpu_has_mips_4_5_r) |
| return SIGILL; |
| |
| if (xcp->regs[MIPSInst_FT(ir)] == 0) |
| return 0; |
| SPFROMREG(rv.s, MIPSInst_FS(ir)); |
| break; |
| |
| case fseleqz_op: |
| if (!cpu_has_mips_r6) |
| return SIGILL; |
| |
| SPFROMREG(rv.s, MIPSInst_FT(ir)); |
| if (rv.w & 0x1) |
| rv.w = 0; |
| else |
| SPFROMREG(rv.s, MIPSInst_FS(ir)); |
| break; |
| |
| case fselnez_op: |
| if (!cpu_has_mips_r6) |
| return SIGILL; |
| |
| SPFROMREG(rv.s, MIPSInst_FT(ir)); |
| if (rv.w & 0x1) |
| SPFROMREG(rv.s, MIPSInst_FS(ir)); |
| else |
| rv.w = 0; |
| break; |
| |
| case fmaddf_op: { |
| union ieee754sp ft, fs, fd; |
| |
| if (!cpu_has_mips_r6) |
| return SIGILL; |
| |
| SPFROMREG(ft, MIPSInst_FT(ir)); |
| SPFROMREG(fs, MIPSInst_FS(ir)); |
| SPFROMREG(fd, MIPSInst_FD(ir)); |
| rv.s = ieee754sp_maddf(fd, fs, ft); |
| break; |
| } |
| |
| case fmsubf_op: { |
| union ieee754sp ft, fs, fd; |
| |
| if (!cpu_has_mips_r6) |
| return SIGILL; |
| |
| SPFROMREG(ft, MIPSInst_FT(ir)); |
| SPFROMREG(fs, MIPSInst_FS(ir)); |
| SPFROMREG(fd, MIPSInst_FD(ir)); |
| rv.s = ieee754sp_msubf(fd, fs, ft); |
| break; |
| } |
| |
| case frint_op: { |
| union ieee754sp fs; |
| |
| if (!cpu_has_mips_r6) |
| return SIGILL; |
| |
| SPFROMREG(fs, MIPSInst_FS(ir)); |
| rv.l = ieee754sp_tlong(fs); |
| rv.s = ieee754sp_flong(rv.l); |
| goto copcsr; |
| } |
| |
| case fclass_op: { |
| union ieee754sp fs; |
| |
| if (!cpu_has_mips_r6) |
| return SIGILL; |
| |
| SPFROMREG(fs, MIPSInst_FS(ir)); |
| rv.w = ieee754sp_2008class(fs); |
| rfmt = w_fmt; |
| break; |
| } |
| |
| case fmin_op: { |
| union ieee754sp fs, ft; |
| |
| if (!cpu_has_mips_r6) |
| return SIGILL; |
| |
| SPFROMREG(ft, MIPSInst_FT(ir)); |
| SPFROMREG(fs, MIPSInst_FS(ir)); |
| rv.s = ieee754sp_fmin(fs, ft); |
| break; |
| } |
| |
| case fmina_op: { |
| union ieee754sp fs, ft; |
| |
| if (!cpu_has_mips_r6) |
| return SIGILL; |
| |
| SPFROMREG(ft, MIPSInst_FT(ir)); |
| SPFROMREG(fs, MIPSInst_FS(ir)); |
| rv.s = ieee754sp_fmina(fs, ft); |
| break; |
| } |
| |
| case fmax_op: { |
| union ieee754sp fs, ft; |
| |
| if (!cpu_has_mips_r6) |
| return SIGILL; |
| |
| SPFROMREG(ft, MIPSInst_FT(ir)); |
| SPFROMREG(fs, MIPSInst_FS(ir)); |
| rv.s = ieee754sp_fmax(fs, ft); |
| break; |
| } |
| |
| case fmaxa_op: { |
| union ieee754sp fs, ft; |
| |
| if (!cpu_has_mips_r6) |
| return SIGILL; |
| |
| SPFROMREG(ft, MIPSInst_FT(ir)); |
| SPFROMREG(fs, MIPSInst_FS(ir)); |
| rv.s = ieee754sp_fmaxa(fs, ft); |
| break; |
| } |
| |
| case fabs_op: |
| handler.u = ieee754sp_abs; |
| goto scopuop; |
| |
| case fneg_op: |
| handler.u = ieee754sp_neg; |
| goto scopuop; |
| |
| case fmov_op: |
| /* an easy one */ |
| SPFROMREG(rv.s, MIPSInst_FS(ir)); |
| goto copcsr; |
| |
| /* binary op on handler */ |
| scopbop: |
| SPFROMREG(fs, MIPSInst_FS(ir)); |
| SPFROMREG(ft, MIPSInst_FT(ir)); |
| |
| rv.s = (*handler.b) (fs, ft); |
| goto copcsr; |
| scopuop: |
| SPFROMREG(fs, MIPSInst_FS(ir)); |
| rv.s = (*handler.u) (fs); |
| goto copcsr; |
| copcsr: |
| if (ieee754_cxtest(IEEE754_INEXACT)) { |
| MIPS_FPU_EMU_INC_STATS(ieee754_inexact); |
| rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S; |
| } |
| if (ieee754_cxtest(IEEE754_UNDERFLOW)) { |
| MIPS_FPU_EMU_INC_STATS(ieee754_underflow); |
| rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S; |
| } |
| if (ieee754_cxtest(IEEE754_OVERFLOW)) { |
| MIPS_FPU_EMU_INC_STATS(ieee754_overflow); |
| rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S; |
| } |
| if (ieee754_cxtest(IEEE754_ZERO_DIVIDE)) { |
| MIPS_FPU_EMU_INC_STATS(ieee754_zerodiv); |
| rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S; |
| } |
| if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) { |
| MIPS_FPU_EMU_INC_STATS(ieee754_invalidop); |
| rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S; |
| } |
| break; |
| |
| /* unary conv ops */ |
| case fcvts_op: |
| return SIGILL; /* not defined */ |
| |
| case fcvtd_op: |
| SPFROMREG(fs, MIPSInst_FS(ir)); |
| rv.d = ieee754dp_fsp(fs); |
| rfmt = d_fmt; |
| goto copcsr; |
| |
| case fcvtw_op: |
| SPFROMREG(fs, MIPSInst_FS(ir)); |
| rv.w = ieee754sp_tint(fs); |
| rfmt = w_fmt; |
| goto copcsr; |
| |
| case fround_op: |
| case ftrunc_op: |
| case fceil_op: |
| case ffloor_op: |
| if (!cpu_has_mips_2_3_4_5_r) |
| return SIGILL; |
| |
| oldrm = ieee754_csr.rm; |
| SPFROMREG(fs, MIPSInst_FS(ir)); |
| ieee754_csr.rm = MIPSInst_FUNC(ir); |
| rv.w = ieee754sp_tint(fs); |
| ieee754_csr.rm = oldrm; |
| rfmt = w_fmt; |
| goto copcsr; |
| |
| case fsel_op: |
| if (!cpu_has_mips_r6) |
| return SIGILL; |
| |
| SPFROMREG(fd, MIPSInst_FD(ir)); |
| if (fd.bits & 0x1) |
| SPFROMREG(rv.s, MIPSInst_FT(ir)); |
| else |
| SPFROMREG(rv.s, MIPSInst_FS(ir)); |
| break; |
| |
| case fcvtl_op: |
| if (!cpu_has_mips_3_4_5_64_r2_r6) |
| return SIGILL; |
| |
| SPFROMREG(fs, MIPSInst_FS(ir)); |
| rv.l = ieee754sp_tlong(fs); |
| rfmt = l_fmt; |
| goto copcsr; |
| |
| case froundl_op: |
| case ftruncl_op: |
| case fceill_op: |
| case ffloorl_op: |
| if (!cpu_has_mips_3_4_5_64_r2_r6) |
| return SIGILL; |
| |
| oldrm = ieee754_csr.rm; |
| SPFROMREG(fs, MIPSInst_FS(ir)); |
| ieee754_csr.rm = MIPSInst_FUNC(ir); |
| rv.l = ieee754sp_tlong(fs); |
| ieee754_csr.rm = oldrm; |
| rfmt = l_fmt; |
| goto copcsr; |
| |
| default: |
| if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) { |
| unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op; |
| union ieee754sp fs, ft; |
| |
| SPFROMREG(fs, MIPSInst_FS(ir)); |
| SPFROMREG(ft, MIPSInst_FT(ir)); |
| rv.w = ieee754sp_cmp(fs, ft, |
| cmptab[cmpop & 0x7], cmpop & 0x8); |
| rfmt = -1; |
| if ((cmpop & 0x8) && ieee754_cxtest |
| (IEEE754_INVALID_OPERATION)) |
| rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S; |
| else |
| goto copcsr; |
| |
| } else |
| return SIGILL; |
| break; |
| } |
| break; |
| } |
| |
| case d_fmt: { |
| union ieee754dp fd, fs, ft; |
| union { |
| union ieee754dp(*b) (union ieee754dp, union ieee754dp); |
| union ieee754dp(*u) (union ieee754dp); |
| } handler; |
| |
| switch (MIPSInst_FUNC(ir)) { |
| /* binary ops */ |
| case fadd_op: |
| handler.b = ieee754dp_add; |
| goto dcopbop; |
| case fsub_op: |
| handler.b = ieee754dp_sub; |
| goto dcopbop; |
| case fmul_op: |
| handler.b = ieee754dp_mul; |
| goto dcopbop; |
| case fdiv_op: |
| handler.b = ieee754dp_div; |
| goto dcopbop; |
| |
| /* unary ops */ |
| case fsqrt_op: |
| if (!cpu_has_mips_2_3_4_5_r) |
| return SIGILL; |
| |
| handler.u = ieee754dp_sqrt; |
| goto dcopuop; |
| /* |
| * Note that on some MIPS IV implementations such as the |
| * R5000 and R8000 the FSQRT and FRECIP instructions do not |
| * achieve full IEEE-754 accuracy - however this emulator does. |
| */ |
| case frsqrt_op: |
| if (!cpu_has_mips_4_5_64_r2_r6) |
| return SIGILL; |
| |
| handler.u = fpemu_dp_rsqrt; |
| goto dcopuop; |
| case frecip_op: |
| if (!cpu_has_mips_4_5_64_r2_r6) |
| return SIGILL; |
| |
| handler.u = fpemu_dp_recip; |
| goto dcopuop; |
| case fmovc_op: |
| if (!cpu_has_mips_4_5_r) |
| return SIGILL; |
| |
| cond = fpucondbit[MIPSInst_FT(ir) >> 2]; |
| if (((ctx->fcr31 & cond) != 0) != |
| ((MIPSInst_FT(ir) & 1) != 0)) |
| return 0; |
| DPFROMREG(rv.d, MIPSInst_FS(ir)); |
| break; |
| case fmovz_op: |
| if (!cpu_has_mips_4_5_r) |
| return SIGILL; |
| |
| if (xcp->regs[MIPSInst_FT(ir)] != 0) |
| return 0; |
| DPFROMREG(rv.d, MIPSInst_FS(ir)); |
| break; |
| case fmovn_op: |
| if (!cpu_has_mips_4_5_r) |
| return SIGILL; |
| |
| if (xcp->regs[MIPSInst_FT(ir)] == 0) |
| return 0; |
| DPFROMREG(rv.d, MIPSInst_FS(ir)); |
| break; |
| |
| case fseleqz_op: |
| if (!cpu_has_mips_r6) |
| return SIGILL; |
| |
| DPFROMREG(rv.d, MIPSInst_FT(ir)); |
| if (rv.l & 0x1) |
| rv.l = 0; |
| else |
| DPFROMREG(rv.d, MIPSInst_FS(ir)); |
| break; |
| |
| case fselnez_op: |
| if (!cpu_has_mips_r6) |
| return SIGILL; |
| |
| DPFROMREG(rv.d, MIPSInst_FT(ir)); |
| if (rv.l & 0x1) |
| DPFROMREG(rv.d, MIPSInst_FS(ir)); |
| else |
| rv.l = 0; |
| break; |
| |
| case fmaddf_op: { |
| union ieee754dp ft, fs, fd; |
| |
| if (!cpu_has_mips_r6) |
| return SIGILL; |
| |
| DPFROMREG(ft, MIPSInst_FT(ir)); |
| DPFROMREG(fs, MIPSInst_FS(ir)); |
| DPFROMREG(fd, MIPSInst_FD(ir)); |
| rv.d = ieee754dp_maddf(fd, fs, ft); |
| break; |
| } |
| |
| case fmsubf_op: { |
| union ieee754dp ft, fs, fd; |
| |
| if (!cpu_has_mips_r6) |
| return SIGILL; |
| |
| DPFROMREG(ft, MIPSInst_FT(ir)); |
| DPFROMREG(fs, MIPSInst_FS(ir)); |
| DPFROMREG(fd, MIPSInst_FD(ir)); |
| rv.d = ieee754dp_msubf(fd, fs, ft); |
| break; |
| } |
| |
| case frint_op: { |
| union ieee754dp fs; |
| |
| if (!cpu_has_mips_r6) |
| return SIGILL; |
| |
| DPFROMREG(fs, MIPSInst_FS(ir)); |
| rv.l = ieee754dp_tlong(fs); |
| rv.d = ieee754dp_flong(rv.l); |
| goto copcsr; |
| } |
| |
| case fclass_op: { |
| union ieee754dp fs; |
| |
| if (!cpu_has_mips_r6) |
| return SIGILL; |
| |
| DPFROMREG(fs, MIPSInst_FS(ir)); |
| rv.w = ieee754dp_2008class(fs); |
| rfmt = w_fmt; |
| break; |
| } |
| |
| case fmin_op: { |
| union ieee754dp fs, ft; |
| |
| if (!cpu_has_mips_r6) |
| return SIGILL; |
| |
| DPFROMREG(ft, MIPSInst_FT(ir)); |
| DPFROMREG(fs, MIPSInst_FS(ir)); |
| rv.d = ieee754dp_fmin(fs, ft); |
| break; |
| } |
| |
| case fmina_op: { |
| union ieee754dp fs, ft; |
| |
| if (!cpu_has_mips_r6) |
| return SIGILL; |
| |
| DPFROMREG(ft, MIPSInst_FT(ir)); |
| DPFROMREG(fs, MIPSInst_FS(ir)); |
| rv.d = ieee754dp_fmina(fs, ft); |
| break; |
| } |
| |
| case fmax_op: { |
| union ieee754dp fs, ft; |
| |
| if (!cpu_has_mips_r6) |
| return SIGILL; |
| |
| DPFROMREG(ft, MIPSInst_FT(ir)); |
| DPFROMREG(fs, MIPSInst_FS(ir)); |
| rv.d = ieee754dp_fmax(fs, ft); |
| break; |
| } |
| |
| case fmaxa_op: { |
| union ieee754dp fs, ft; |
| |
| if (!cpu_has_mips_r6) |
| return SIGILL; |
| |
| DPFROMREG(ft, MIPSInst_FT(ir)); |
| DPFROMREG(fs, MIPSInst_FS(ir)); |
| rv.d = ieee754dp_fmaxa(fs, ft); |
| break; |
| } |
| |
| case fabs_op: |
| handler.u = ieee754dp_abs; |
| goto dcopuop; |
| |
| case fneg_op: |
| handler.u = ieee754dp_neg; |
| goto dcopuop; |
| |
| case fmov_op: |
| /* an easy one */ |
| DPFROMREG(rv.d, MIPSInst_FS(ir)); |
| goto copcsr; |
| |
| /* binary op on handler */ |
| dcopbop: |
| DPFROMREG(fs, MIPSInst_FS(ir)); |
| DPFROMREG(ft, MIPSInst_FT(ir)); |
| |
| rv.d = (*handler.b) (fs, ft); |
| goto copcsr; |
| dcopuop: |
| DPFROMREG(fs, MIPSInst_FS(ir)); |
| rv.d = (*handler.u) (fs); |
| goto copcsr; |
| |
| /* |
| * unary conv ops |
| */ |
| case fcvts_op: |
| DPFROMREG(fs, MIPSInst_FS(ir)); |
| rv.s = ieee754sp_fdp(fs); |
| rfmt = s_fmt; |
| goto copcsr; |
| |
| case fcvtd_op: |
| return SIGILL; /* not defined */ |
| |
| case fcvtw_op: |
| DPFROMREG(fs, MIPSInst_FS(ir)); |
| rv.w = ieee754dp_tint(fs); /* wrong */ |
| rfmt = w_fmt; |
| goto copcsr; |
| |
| case fround_op: |
| case ftrunc_op: |
| case fceil_op: |
| case ffloor_op: |
| if (!cpu_has_mips_2_3_4_5_r) |
| return SIGILL; |
| |
| oldrm = ieee754_csr.rm; |
| DPFROMREG(fs, MIPSInst_FS(ir)); |
| ieee754_csr.rm = MIPSInst_FUNC(ir); |
| rv.w = ieee754dp_tint(fs); |
| ieee754_csr.rm = oldrm; |
| rfmt = w_fmt; |
| goto copcsr; |
| |
| case fsel_op: |
| if (!cpu_has_mips_r6) |
| return SIGILL; |
| |
| DPFROMREG(fd, MIPSInst_FD(ir)); |
| if (fd.bits & 0x1) |
| DPFROMREG(rv.d, MIPSInst_FT(ir)); |
| else |
| DPFROMREG(rv.d, MIPSInst_FS(ir)); |
| break; |
| |
| case fcvtl_op: |
| if (!cpu_has_mips_3_4_5_64_r2_r6) |
| return SIGILL; |
| |
| DPFROMREG(fs, MIPSInst_FS(ir)); |
| rv.l = ieee754dp_tlong(fs); |
| rfmt = l_fmt; |
| goto copcsr; |
| |
| case froundl_op: |
| case ftruncl_op: |
| case fceill_op: |
| case ffloorl_op: |
| if (!cpu_has_mips_3_4_5_64_r2_r6) |
| return SIGILL; |
| |
| oldrm = ieee754_csr.rm; |
| DPFROMREG(fs, MIPSInst_FS(ir)); |
| ieee754_csr.rm = MIPSInst_FUNC(ir); |
| rv.l = ieee754dp_tlong(fs); |
| ieee754_csr.rm = oldrm; |
| rfmt = l_fmt; |
| goto copcsr; |
| |
| default: |
| if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) { |
| unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op; |
| union ieee754dp fs, ft; |
| |
| DPFROMREG(fs, MIPSInst_FS(ir)); |
| DPFROMREG(ft, MIPSInst_FT(ir)); |
| rv.w = ieee754dp_cmp(fs, ft, |
| cmptab[cmpop & 0x7], cmpop & 0x8); |
| rfmt = -1; |
| if ((cmpop & 0x8) |
| && |
| ieee754_cxtest |
| (IEEE754_INVALID_OPERATION)) |
| rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S; |
| else |
| goto copcsr; |
| |
| } |
| else { |
| return SIGILL; |
| } |
| break; |
| } |
| break; |
| } |
| |
| case w_fmt: { |
| union ieee754dp fs; |
| |
| switch (MIPSInst_FUNC(ir)) { |
| case fcvts_op: |
| /* convert word to single precision real */ |
| SPFROMREG(fs, MIPSInst_FS(ir)); |
| rv.s = ieee754sp_fint(fs.bits); |
| rfmt = s_fmt; |
| goto copcsr; |
| case fcvtd_op: |
| /* convert word to double precision real */ |
| SPFROMREG(fs, MIPSInst_FS(ir)); |
| rv.d = ieee754dp_fint(fs.bits); |
| rfmt = d_fmt; |
| goto copcsr; |
| default: { |
| /* Emulating the new CMP.condn.fmt R6 instruction */ |
| #define CMPOP_MASK 0x7 |
| #define SIGN_BIT (0x1 << 3) |
| #define PREDICATE_BIT (0x1 << 4) |
| |
| int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK; |
| int sig = MIPSInst_FUNC(ir) & SIGN_BIT; |
| union ieee754sp fs, ft; |
| |
| /* This is an R6 only instruction */ |
| if (!cpu_has_mips_r6 || |
| (MIPSInst_FUNC(ir) & 0x20)) |
| return SIGILL; |
| |
| /* fmt is w_fmt for single precision so fix it */ |
| rfmt = s_fmt; |
| /* default to false */ |
| rv.w = 0; |
| |
| /* CMP.condn.S */ |
| SPFROMREG(fs, MIPSInst_FS(ir)); |
| SPFROMREG(ft, MIPSInst_FT(ir)); |
| |
| /* positive predicates */ |
| if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) { |
| if (ieee754sp_cmp(fs, ft, cmptab[cmpop], |
| sig)) |
| rv.w = -1; /* true, all 1s */ |
| if ((sig) && |
| ieee754_cxtest(IEEE754_INVALID_OPERATION)) |
| rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S; |
| else |
| goto copcsr; |
| } else { |
| /* negative predicates */ |
| switch (cmpop) { |
| case 1: |
| case 2: |
| case 3: |
| if (ieee754sp_cmp(fs, ft, |
| negative_cmptab[cmpop], |
| sig)) |
| rv.w = -1; /* true, all 1s */ |
| if (sig && |
| ieee754_cxtest(IEEE754_INVALID_OPERATION)) |
| rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S; |
| else |
| goto copcsr; |
| break; |
| default: |
| /* Reserved R6 ops */ |
| pr_err("Reserved MIPS R6 CMP.condn.S operation\n"); |
| return SIGILL; |
| } |
| } |
| break; |
| } |
| } |
| } |
| |
| case l_fmt: |
| |
| if (!cpu_has_mips_3_4_5_64_r2_r6) |
| return SIGILL; |
| |
| DIFROMREG(bits, MIPSInst_FS(ir)); |
| |
| switch (MIPSInst_FUNC(ir)) { |
| case fcvts_op: |
| /* convert long to single precision real */ |
| rv.s = ieee754sp_flong(bits); |
| rfmt = s_fmt; |
| goto copcsr; |
| case fcvtd_op: |
| /* convert long to double precision real */ |
| rv.d = ieee754dp_flong(bits); |
| rfmt = d_fmt; |
| goto copcsr; |
| default: { |
| /* Emulating the new CMP.condn.fmt R6 instruction */ |
| int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK; |
| int sig = MIPSInst_FUNC(ir) & SIGN_BIT; |
| union ieee754dp fs, ft; |
| |
| if (!cpu_has_mips_r6 || |
| (MIPSInst_FUNC(ir) & 0x20)) |
| return SIGILL; |
| |
| /* fmt is l_fmt for double precision so fix it */ |
| rfmt = d_fmt; |
| /* default to false */ |
| rv.l = 0; |
| |
| /* CMP.condn.D */ |
| DPFROMREG(fs, MIPSInst_FS(ir)); |
| DPFROMREG(ft, MIPSInst_FT(ir)); |
| |
| /* positive predicates */ |
| if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) { |
| if (ieee754dp_cmp(fs, ft, |
| cmptab[cmpop], sig)) |
| rv.l = -1LL; /* true, all 1s */ |
| if (sig && |
| ieee754_cxtest(IEEE754_INVALID_OPERATION)) |
| rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S; |
| else |
| goto copcsr; |
| } else { |
| /* negative predicates */ |
| switch (cmpop) { |
| case 1: |
| case 2: |
| case 3: |
| if (ieee754dp_cmp(fs, ft, |
| negative_cmptab[cmpop], |
| sig)) |
| rv.l = -1LL; /* true, all 1s */ |
| if (sig && |
| ieee754_cxtest(IEEE754_INVALID_OPERATION)) |
| rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S; |
| else |
| goto copcsr; |
| break; |
| default: |
| /* Reserved R6 ops */ |
| pr_err("Reserved MIPS R6 CMP.condn.D operation\n"); |
| return SIGILL; |
| } |
| } |
| break; |
| } |
| } |
| default: |
| return SIGILL; |
| } |
| |
| /* |
| * Update the fpu CSR register for this operation. |
| * If an exception is required, generate a tidy SIGFPE exception, |
| * without updating the result register. |
| * Note: cause exception bits do not accumulate, they are rewritten |
| * for each op; only the flag/sticky bits accumulate. |
| */ |
| ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr; |
| if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) { |
| /*printk ("SIGFPE: FPU csr = %08x\n",ctx->fcr31); */ |
| return SIGFPE; |
| } |
| |
| /* |
| * Now we can safely write the result back to the register file. |
| */ |
| switch (rfmt) { |
| case -1: |
| |
| if (cpu_has_mips_4_5_r) |
| cbit = fpucondbit[MIPSInst_FD(ir) >> 2]; |
| else |
| cbit = FPU_CSR_COND; |
| if (rv.w) |
| ctx->fcr31 |= cbit; |
| else |
| ctx->fcr31 &= ~cbit; |
| break; |
| |
| case d_fmt: |
| DPTOREG(rv.d, MIPSInst_FD(ir)); |
| break; |
| case s_fmt: |
| SPTOREG(rv.s, MIPSInst_FD(ir)); |
| break; |
| case w_fmt: |
| SITOREG(rv.w, MIPSInst_FD(ir)); |
| break; |
| case l_fmt: |
| if (!cpu_has_mips_3_4_5_64_r2_r6) |
| return SIGILL; |
| |
| DITOREG(rv.l, MIPSInst_FD(ir)); |
| break; |
| default: |
| return SIGILL; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Emulate FPU instructions. |
| * |
| * If we use FPU hardware, then we have been typically called to handle |
| * an unimplemented operation, such as where an operand is a NaN or |
| * denormalized. In that case exit the emulation loop after a single |
| * iteration so as to let hardware execute any subsequent instructions. |
| * |
| * If we have no FPU hardware or it has been disabled, then continue |
| * emulating floating-point instructions until one of these conditions |
| * has occurred: |
| * |
| * - a non-FPU instruction has been encountered, |
| * |
| * - an attempt to emulate has ended with a signal, |
| * |
| * - the ISA mode has been switched. |
| * |
| * We need to terminate the emulation loop if we got switched to the |
| * MIPS16 mode, whether supported or not, so that we do not attempt |
| * to emulate a MIPS16 instruction as a regular MIPS FPU instruction. |
| * Similarly if we got switched to the microMIPS mode and only the |
| * regular MIPS mode is supported, so that we do not attempt to emulate |
| * a microMIPS instruction as a regular MIPS FPU instruction. Or if |
| * we got switched to the regular MIPS mode and only the microMIPS mode |
| * is supported, so that we do not attempt to emulate a regular MIPS |
| * instruction that should cause an Address Error exception instead. |
| * For simplicity we always terminate upon an ISA mode switch. |
| */ |
| int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx, |
| int has_fpu, void *__user *fault_addr) |
| { |
| unsigned long oldepc, prevepc; |
| struct mm_decoded_insn dec_insn; |
| u16 instr[4]; |
| u16 *instr_ptr; |
| int sig = 0; |
| |
| oldepc = xcp->cp0_epc; |
| do { |
| prevepc = xcp->cp0_epc; |
| |
| if (get_isa16_mode(prevepc) && cpu_has_mmips) { |
| /* |
| * Get next 2 microMIPS instructions and convert them |
| * into 32-bit instructions. |
| */ |
| if ((get_user(instr[0], (u16 __user *)msk_isa16_mode(xcp->cp0_epc))) || |
| (get_user(instr[1], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 2))) || |
| (get_user(instr[2], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 4))) || |
| (get_user(instr[3], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 6)))) { |
| MIPS_FPU_EMU_INC_STATS(errors); |
| return SIGBUS; |
| } |
| instr_ptr = instr; |
| |
| /* Get first instruction. */ |
| if (mm_insn_16bit(*instr_ptr)) { |
| /* Duplicate the half-word. */ |
| dec_insn.insn = (*instr_ptr << 16) | |
| (*instr_ptr); |
| /* 16-bit instruction. */ |
| dec_insn.pc_inc = 2; |
| instr_ptr += 1; |
| } else { |
| dec_insn.insn = (*instr_ptr << 16) | |
| *(instr_ptr+1); |
| /* 32-bit instruction. */ |
| dec_insn.pc_inc = 4; |
| instr_ptr += 2; |
| } |
| /* Get second instruction. */ |
| if (mm_insn_16bit(*instr_ptr)) { |
| /* Duplicate the half-word. */ |
| dec_insn.next_insn = (*instr_ptr << 16) | |
| (*instr_ptr); |
| /* 16-bit instruction. */ |
| dec_insn.next_pc_inc = 2; |
| } else { |
| dec_insn.next_insn = (*instr_ptr << 16) | |
| *(instr_ptr+1); |
| /* 32-bit instruction. */ |
| dec_insn.next_pc_inc = 4; |
| } |
| dec_insn.micro_mips_mode = 1; |
| } else { |
| if ((get_user(dec_insn.insn, |
| (mips_instruction __user *) xcp->cp0_epc)) || |
| (get_user(dec_insn.next_insn, |
| (mips_instruction __user *)(xcp->cp0_epc+4)))) { |
| MIPS_FPU_EMU_INC_STATS(errors); |
| return SIGBUS; |
| } |
| dec_insn.pc_inc = 4; |
| dec_insn.next_pc_inc = 4; |
| dec_insn.micro_mips_mode = 0; |
| } |
| |
| if ((dec_insn.insn == 0) || |
| ((dec_insn.pc_inc == 2) && |
| ((dec_insn.insn & 0xffff) == MM_NOP16))) |
| xcp->cp0_epc += dec_insn.pc_inc; /* Skip NOPs */ |
| else { |
| /* |
| * The 'ieee754_csr' is an alias of ctx->fcr31. |
| * No need to copy ctx->fcr31 to ieee754_csr. |
| */ |
| sig = cop1Emulate(xcp, ctx, dec_insn, fault_addr); |
| } |
| |
| if (has_fpu) |
| break; |
| if (sig) |
| break; |
| /* |
| * We have to check for the ISA bit explicitly here, |
| * because `get_isa16_mode' may return 0 if support |
| * for code compression has been globally disabled, |
| * or otherwise we may produce the wrong signal or |
| * even proceed successfully where we must not. |
| */ |
| if ((xcp->cp0_epc ^ prevepc) & 0x1) |
| break; |
| |
| cond_resched(); |
| } while (xcp->cp0_epc > prevepc); |
| |
| /* SIGILL indicates a non-fpu instruction */ |
| if (sig == SIGILL && xcp->cp0_epc != oldepc) |
| /* but if EPC has advanced, then ignore it */ |
| sig = 0; |
| |
| return sig; |
| } |