blob: 41c246367cd7454b3749c65f6b900e6b8caf6e75 [file] [log] [blame]
/*
* SWIOTLB-based DMA API implementation
*
* Copyright (C) 2012 ARM Ltd.
* Author: Catalin Marinas <catalin.marinas@arm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/gfp.h>
#include <linux/acpi.h>
#include <linux/bootmem.h>
#include <linux/cache.h>
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/genalloc.h>
#include <linux/dma-mapping.h>
#include <linux/dma-contiguous.h>
#include <linux/mm.h>
#include <linux/iommu.h>
#include <linux/vmalloc.h>
#include <linux/swiotlb.h>
#include <linux/io.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/dma-iommu.h>
#include <linux/dma-mapping-fast.h>
#include <linux/msm_dma_iommu_mapping.h>
static int swiotlb __ro_after_init;
static pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot,
bool coherent)
{
if (attrs & DMA_ATTR_STRONGLY_ORDERED)
return pgprot_noncached(prot);
else if (!coherent || (attrs & DMA_ATTR_WRITE_COMBINE))
return pgprot_writecombine(prot);
return prot;
}
static bool is_dma_coherent(struct device *dev, unsigned long attrs)
{
bool is_coherent;
if (attrs & DMA_ATTR_FORCE_COHERENT)
is_coherent = true;
else if (attrs & DMA_ATTR_FORCE_NON_COHERENT)
is_coherent = false;
else if (is_device_dma_coherent(dev))
is_coherent = true;
else
is_coherent = false;
return is_coherent;
}
static struct gen_pool *atomic_pool;
#define NO_KERNEL_MAPPING_DUMMY 0x2222
#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
static int __init early_coherent_pool(char *p)
{
atomic_pool_size = memparse(p, &p);
return 0;
}
early_param("coherent_pool", early_coherent_pool);
static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags)
{
unsigned long val;
void *ptr = NULL;
if (!atomic_pool) {
WARN(1, "coherent pool not initialised!\n");
return NULL;
}
val = gen_pool_alloc(atomic_pool, size);
if (val) {
phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
*ret_page = phys_to_page(phys);
ptr = (void *)val;
memset(ptr, 0, size);
}
return ptr;
}
static bool __in_atomic_pool(void *start, size_t size)
{
return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
}
static int __free_from_pool(void *start, size_t size)
{
if (!__in_atomic_pool(start, size))
return 0;
gen_pool_free(atomic_pool, (unsigned long)start, size);
return 1;
}
static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
void *data)
{
struct page *page = virt_to_page(addr);
pgprot_t prot = *(pgprot_t *)data;
set_pte(pte, mk_pte(page, prot));
return 0;
}
static int __dma_clear_pte(pte_t *pte, pgtable_t token, unsigned long addr,
void *data)
{
pte_clear(&init_mm, addr, pte);
return 0;
}
static void __dma_remap(struct page *page, size_t size, pgprot_t prot,
bool no_kernel_map)
{
unsigned long start = (unsigned long) page_address(page);
unsigned long end = start + size;
int (*func)(pte_t *pte, pgtable_t token, unsigned long addr,
void *data);
if (no_kernel_map)
func = __dma_clear_pte;
else
func = __dma_update_pte;
apply_to_page_range(&init_mm, start, size, func, &prot);
/* ensure prot is applied before returning */
mb();
flush_tlb_kernel_range(start, end);
}
static void *__dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flags,
unsigned long attrs)
{
void *addr;
if (IS_ENABLED(CONFIG_ZONE_DMA) &&
dev->coherent_dma_mask <= DMA_BIT_MASK(32))
flags |= GFP_DMA;
if (dev_get_cma_area(dev) && gfpflags_allow_blocking(flags)) {
struct page *page;
page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
get_order(size));
if (!page)
return NULL;
*dma_handle = phys_to_dma(dev, page_to_phys(page));
addr = page_address(page);
memset(addr, 0, size);
} else {
addr = swiotlb_alloc_coherent(dev, size, dma_handle, flags);
}
if (addr && ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) ||
(attrs & DMA_ATTR_STRONGLY_ORDERED))) {
/*
* flush the caches here because we can't later
*/
__dma_flush_area(addr, size);
__dma_remap(virt_to_page(addr), size, __pgprot(0), true);
}
return addr;
}
static void __dma_free_coherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle,
unsigned long attrs)
{
bool freed;
phys_addr_t paddr = dma_to_phys(dev, dma_handle);
size = PAGE_ALIGN(size);
if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) ||
(attrs & DMA_ATTR_STRONGLY_ORDERED))
__dma_remap(phys_to_page(paddr), size, PAGE_KERNEL, false);
freed = dma_release_from_contiguous(dev,
phys_to_page(paddr),
size >> PAGE_SHIFT);
if (!freed)
swiotlb_free_coherent(dev, size, vaddr, dma_handle);
}
static void *__dma_alloc(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flags,
unsigned long attrs)
{
struct page *page;
void *ptr, *coherent_ptr;
bool coherent = is_dma_coherent(dev, attrs);
size = PAGE_ALIGN(size);
if (!coherent && !gfpflags_allow_blocking(flags)) {
struct page *page = NULL;
void *addr = __alloc_from_pool(size, &page, flags);
if (addr)
*dma_handle = phys_to_dma(dev, page_to_phys(page));
return addr;
}
ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs);
if (!ptr)
goto no_mem;
/* no need for non-cacheable mapping if coherent */
if (coherent)
return ptr;
if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) {
coherent_ptr = (void *)NO_KERNEL_MAPPING_DUMMY;
} else {
pgprot_t prot;
if (!(attrs & DMA_ATTR_STRONGLY_ORDERED))
/* remove any dirty cache lines on the kernel alias */
__dma_flush_area(ptr, size);
/* create a coherent mapping */
page = virt_to_page(ptr);
prot = __get_dma_pgprot(attrs, __pgprot(PROT_NORMAL_NC), false);
coherent_ptr = dma_common_contiguous_remap(
page, size, VM_USERMAP, prot,
__builtin_return_address(0));
if (!coherent_ptr)
goto no_map;
}
return coherent_ptr;
no_map:
__dma_free_coherent(dev, size, ptr, *dma_handle, attrs);
no_mem:
*dma_handle = DMA_ERROR_CODE;
return NULL;
}
static void __dma_free(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle,
unsigned long attrs)
{
void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle));
size = PAGE_ALIGN(size);
if (!is_dma_coherent(dev, attrs)) {
if (__free_from_pool(vaddr, size))
return;
if (!(attrs & DMA_ATTR_NO_KERNEL_MAPPING))
vunmap(vaddr);
}
__dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs);
}
static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
unsigned long attrs)
{
dma_addr_t dev_addr;
dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
if (!is_dma_coherent(dev, attrs))
__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
return dev_addr;
}
static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr,
size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
if (!is_dma_coherent(dev, attrs))
__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
swiotlb_unmap_page(dev, dev_addr, size, dir, attrs);
}
static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
int nelems, enum dma_data_direction dir,
unsigned long attrs)
{
struct scatterlist *sg;
int i, ret;
ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs);
if (!is_dma_coherent(dev, attrs))
for_each_sg(sgl, sg, ret, i)
__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
sg->length, dir);
return ret;
}
static void __swiotlb_unmap_sg_attrs(struct device *dev,
struct scatterlist *sgl, int nelems,
enum dma_data_direction dir,
unsigned long attrs)
{
struct scatterlist *sg;
int i;
if (!is_dma_coherent(dev, attrs))
for_each_sg(sgl, sg, nelems, i)
__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
sg->length, dir);
swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs);
}
static void __swiotlb_sync_single_for_cpu(struct device *dev,
dma_addr_t dev_addr, size_t size,
enum dma_data_direction dir)
{
if (!is_device_dma_coherent(dev))
__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
}
static void __swiotlb_sync_single_for_device(struct device *dev,
dma_addr_t dev_addr, size_t size,
enum dma_data_direction dir)
{
swiotlb_sync_single_for_device(dev, dev_addr, size, dir);
if (!is_device_dma_coherent(dev))
__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
}
static void __swiotlb_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sgl, int nelems,
enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
if (!is_device_dma_coherent(dev))
for_each_sg(sgl, sg, nelems, i)
__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
sg->length, dir);
swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir);
}
static void __swiotlb_sync_sg_for_device(struct device *dev,
struct scatterlist *sgl, int nelems,
enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
swiotlb_sync_sg_for_device(dev, sgl, nelems, dir);
if (!is_device_dma_coherent(dev))
for_each_sg(sgl, sg, nelems, i)
__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
sg->length, dir);
}
static int __swiotlb_mmap(struct device *dev,
struct vm_area_struct *vma,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
unsigned long attrs)
{
int ret = -ENXIO;
unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >>
PAGE_SHIFT;
unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT;
unsigned long off = vma->vm_pgoff;
vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
is_dma_coherent(dev, attrs));
if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
return ret;
if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
ret = remap_pfn_range(vma, vma->vm_start,
pfn + off,
vma->vm_end - vma->vm_start,
vma->vm_page_prot);
}
return ret;
}
static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
void *cpu_addr, dma_addr_t handle, size_t size,
unsigned long attrs)
{
int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
if (!ret)
sg_set_page(sgt->sgl, phys_to_page(dma_to_phys(dev, handle)),
PAGE_ALIGN(size), 0);
return ret;
}
static int __swiotlb_dma_supported(struct device *hwdev, u64 mask)
{
if (swiotlb)
return swiotlb_dma_supported(hwdev, mask);
return 1;
}
static void *arm64_dma_remap(struct device *dev, void *cpu_addr,
dma_addr_t handle, size_t size,
unsigned long attrs)
{
struct page *page = phys_to_page(dma_to_phys(dev, handle));
bool coherent = is_device_dma_coherent(dev);
pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
unsigned long offset = handle & ~PAGE_MASK;
struct vm_struct *area;
unsigned long addr;
size = PAGE_ALIGN(size + offset);
/*
* DMA allocation can be mapped to user space, so lets
* set VM_USERMAP flags too.
*/
area = get_vm_area(size, VM_USERMAP);
if (!area)
return NULL;
addr = (unsigned long)area->addr;
area->phys_addr = __pfn_to_phys(page_to_pfn(page));
if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
vunmap((void *)addr);
return NULL;
}
return (void *)addr + offset;
}
static void arm64_dma_unremap(struct device *dev, void *remapped_addr,
size_t size)
{
struct vm_struct *area;
size = PAGE_ALIGN(size);
remapped_addr = (void *)((unsigned long)remapped_addr & PAGE_MASK);
area = find_vm_area(remapped_addr);
if (!area) {
WARN(1, "trying to free invalid coherent area: %p\n",
remapped_addr);
return;
}
vunmap(remapped_addr);
flush_tlb_kernel_range((unsigned long)remapped_addr,
(unsigned long)(remapped_addr + size));
}
static int __swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t addr)
{
if (swiotlb)
return swiotlb_dma_mapping_error(hwdev, addr);
return 0;
}
static struct dma_map_ops swiotlb_dma_ops = {
.alloc = __dma_alloc,
.free = __dma_free,
.mmap = __swiotlb_mmap,
.get_sgtable = __swiotlb_get_sgtable,
.map_page = __swiotlb_map_page,
.unmap_page = __swiotlb_unmap_page,
.map_sg = __swiotlb_map_sg_attrs,
.unmap_sg = __swiotlb_unmap_sg_attrs,
.sync_single_for_cpu = __swiotlb_sync_single_for_cpu,
.sync_single_for_device = __swiotlb_sync_single_for_device,
.sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu,
.sync_sg_for_device = __swiotlb_sync_sg_for_device,
.dma_supported = __swiotlb_dma_supported,
.mapping_error = __swiotlb_dma_mapping_error,
.remap = arm64_dma_remap,
.unremap = arm64_dma_unremap,
};
static int __init atomic_pool_init(void)
{
pgprot_t prot = __pgprot(PROT_NORMAL_NC);
unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT;
struct page *page;
void *addr;
unsigned int pool_size_order = get_order(atomic_pool_size);
if (dev_get_cma_area(NULL))
page = dma_alloc_from_contiguous(NULL, nr_pages,
pool_size_order);
else
page = alloc_pages(GFP_DMA, pool_size_order);
if (page) {
int ret;
void *page_addr = page_address(page);
memset(page_addr, 0, atomic_pool_size);
__dma_flush_area(page_addr, atomic_pool_size);
atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
if (!atomic_pool)
goto free_page;
addr = dma_common_contiguous_remap(page, atomic_pool_size,
VM_USERMAP, prot, atomic_pool_init);
if (!addr)
goto destroy_genpool;
ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr,
page_to_phys(page),
atomic_pool_size, -1);
if (ret)
goto remove_mapping;
gen_pool_set_algo(atomic_pool,
gen_pool_first_fit_order_align,
(void *)PAGE_SHIFT);
pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n",
atomic_pool_size / 1024);
return 0;
}
goto out;
remove_mapping:
dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP, false);
destroy_genpool:
gen_pool_destroy(atomic_pool);
atomic_pool = NULL;
free_page:
if (!dma_release_from_contiguous(NULL, page, nr_pages))
__free_pages(page, pool_size_order);
out:
pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
atomic_pool_size / 1024);
return -ENOMEM;
}
/********************************************
* The following APIs are for dummy DMA ops *
********************************************/
static void *__dummy_alloc(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flags,
unsigned long attrs)
{
WARN(1, "dma alloc failure, device may be missing a call to arch_setup_dma_ops");
return NULL;
}
static void __dummy_free(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle,
unsigned long attrs)
{
}
static int __dummy_mmap(struct device *dev,
struct vm_area_struct *vma,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
unsigned long attrs)
{
return -ENXIO;
}
static dma_addr_t __dummy_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
unsigned long attrs)
{
return DMA_ERROR_CODE;
}
static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr,
size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
}
static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl,
int nelems, enum dma_data_direction dir,
unsigned long attrs)
{
return 0;
}
static void __dummy_unmap_sg(struct device *dev,
struct scatterlist *sgl, int nelems,
enum dma_data_direction dir,
unsigned long attrs)
{
}
static void __dummy_sync_single(struct device *dev,
dma_addr_t dev_addr, size_t size,
enum dma_data_direction dir)
{
}
static void __dummy_sync_sg(struct device *dev,
struct scatterlist *sgl, int nelems,
enum dma_data_direction dir)
{
}
static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
{
return 1;
}
static int __dummy_dma_supported(struct device *hwdev, u64 mask)
{
return 0;
}
struct dma_map_ops dummy_dma_ops = {
.alloc = __dummy_alloc,
.free = __dummy_free,
.mmap = __dummy_mmap,
.map_page = __dummy_map_page,
.unmap_page = __dummy_unmap_page,
.map_sg = __dummy_map_sg,
.unmap_sg = __dummy_unmap_sg,
.sync_single_for_cpu = __dummy_sync_single,
.sync_single_for_device = __dummy_sync_single,
.sync_sg_for_cpu = __dummy_sync_sg,
.sync_sg_for_device = __dummy_sync_sg,
.mapping_error = __dummy_mapping_error,
.dma_supported = __dummy_dma_supported,
};
EXPORT_SYMBOL(dummy_dma_ops);
static int __init arm64_dma_init(void)
{
if (swiotlb_force == SWIOTLB_FORCE ||
max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
swiotlb = 1;
return atomic_pool_init();
}
arch_initcall(arm64_dma_init);
#define PREALLOC_DMA_DEBUG_ENTRIES 4096
static int __init dma_debug_do_init(void)
{
dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
return 0;
}
fs_initcall(dma_debug_do_init);
#ifdef CONFIG_IOMMU_DMA
#include <linux/dma-iommu.h>
#include <linux/platform_device.h>
#include <linux/amba/bus.h>
/* Thankfully, all cache ops are by VA so we can ignore phys here */
static void flush_page(struct device *dev, const void *virt, phys_addr_t phys)
{
__dma_flush_area(virt, PAGE_SIZE);
}
static void *__iommu_alloc_attrs(struct device *dev, size_t size,
dma_addr_t *handle, gfp_t gfp,
unsigned long attrs)
{
bool coherent = is_dma_coherent(dev, attrs);
int ioprot = dma_direction_to_prot(DMA_BIDIRECTIONAL, coherent);
size_t iosize = size;
void *addr;
if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n"))
return NULL;
size = PAGE_ALIGN(size);
/*
* Some drivers rely on this, and we probably don't want the
* possibility of stale kernel data being read by devices anyway.
*/
gfp |= __GFP_ZERO;
if (gfpflags_allow_blocking(gfp)) {
struct page **pages;
pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot,
handle, flush_page);
if (!pages)
return NULL;
addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
__builtin_return_address(0));
if (!addr)
iommu_dma_free(dev, pages, iosize, handle);
} else {
struct page *page;
/*
* In atomic context we can't remap anything, so we'll only
* get the virtually contiguous buffer we need by way of a
* physically contiguous allocation.
*/
if (coherent) {
page = alloc_pages(gfp, get_order(size));
addr = page ? page_address(page) : NULL;
} else {
addr = __alloc_from_pool(size, &page, gfp);
}
if (!addr)
return NULL;
*handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
if (iommu_dma_mapping_error(dev, *handle)) {
if (coherent)
__free_pages(page, get_order(size));
else
__free_from_pool(addr, size);
addr = NULL;
}
}
return addr;
}
static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
dma_addr_t handle, unsigned long attrs)
{
size_t iosize = size;
size = PAGE_ALIGN(size);
/*
* @cpu_addr will be one of 3 things depending on how it was allocated:
* - A remapped array of pages from iommu_dma_alloc(), for all
* non-atomic allocations.
* - A non-cacheable alias from the atomic pool, for atomic
* allocations by non-coherent devices.
* - A normal lowmem address, for atomic allocations by
* coherent devices.
* Hence how dodgy the below logic looks...
*/
if (__in_atomic_pool(cpu_addr, size)) {
iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
__free_from_pool(cpu_addr, size);
} else if (is_vmalloc_addr(cpu_addr)){
struct vm_struct *area = find_vm_area(cpu_addr);
if (WARN_ON(!area || !area->pages))
return;
iommu_dma_free(dev, area->pages, iosize, &handle);
dma_common_free_remap(cpu_addr, size, VM_USERMAP, false);
} else {
iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
__free_pages(virt_to_page(cpu_addr), get_order(size));
}
}
static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
unsigned long attrs)
{
struct vm_struct *area;
int ret;
vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
is_dma_coherent(dev, attrs));
if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
return ret;
area = find_vm_area(cpu_addr);
if (WARN_ON(!area || !area->pages))
return -ENXIO;
return iommu_dma_mmap(area->pages, size, vma);
}
static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
void *cpu_addr, dma_addr_t dma_addr,
size_t size, unsigned long attrs)
{
unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
struct vm_struct *area = find_vm_area(cpu_addr);
if (WARN_ON(!area || !area->pages))
return -ENXIO;
return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size,
GFP_KERNEL);
}
static void __iommu_sync_single_for_cpu(struct device *dev,
dma_addr_t dev_addr, size_t size,
enum dma_data_direction dir)
{
phys_addr_t phys;
if (is_device_dma_coherent(dev))
return;
phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
__dma_unmap_area(phys_to_virt(phys), size, dir);
}
static void __iommu_sync_single_for_device(struct device *dev,
dma_addr_t dev_addr, size_t size,
enum dma_data_direction dir)
{
phys_addr_t phys;
if (is_device_dma_coherent(dev))
return;
phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
__dma_map_area(phys_to_virt(phys), size, dir);
}
static dma_addr_t __iommu_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
unsigned long attrs)
{
bool coherent = is_dma_coherent(dev, attrs);
int prot = dma_direction_to_prot(dir, coherent);
dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot);
if (!iommu_dma_mapping_error(dev, dev_addr) &&
(attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
__iommu_sync_single_for_device(dev, dev_addr, size, dir);
return dev_addr;
}
static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr,
size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
__iommu_sync_single_for_cpu(dev, dev_addr, size, dir);
iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs);
}
static void __iommu_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sgl, int nelems,
enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
if (is_device_dma_coherent(dev))
return;
for_each_sg(sgl, sg, nelems, i)
__dma_unmap_area(sg_virt(sg), sg->length, dir);
}
static void __iommu_sync_sg_for_device(struct device *dev,
struct scatterlist *sgl, int nelems,
enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
if (is_device_dma_coherent(dev))
return;
for_each_sg(sgl, sg, nelems, i)
__dma_map_area(sg_virt(sg), sg->length, dir);
}
static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
int nelems, enum dma_data_direction dir,
unsigned long attrs)
{
bool coherent = is_dma_coherent(dev, attrs);
if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
__iommu_sync_sg_for_device(dev, sgl, nelems, dir);
return iommu_dma_map_sg(dev, sgl, nelems,
dma_direction_to_prot(dir, coherent));
}
static void __iommu_unmap_sg_attrs(struct device *dev,
struct scatterlist *sgl, int nelems,
enum dma_data_direction dir,
unsigned long attrs)
{
if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
__iommu_sync_sg_for_cpu(dev, sgl, nelems, dir);
iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs);
}
static struct dma_map_ops iommu_dma_ops = {
.alloc = __iommu_alloc_attrs,
.free = __iommu_free_attrs,
.mmap = __iommu_mmap_attrs,
.get_sgtable = __iommu_get_sgtable,
.map_page = __iommu_map_page,
.unmap_page = __iommu_unmap_page,
.map_sg = __iommu_map_sg_attrs,
.unmap_sg = __iommu_unmap_sg_attrs,
.sync_single_for_cpu = __iommu_sync_single_for_cpu,
.sync_single_for_device = __iommu_sync_single_for_device,
.sync_sg_for_cpu = __iommu_sync_sg_for_cpu,
.sync_sg_for_device = __iommu_sync_sg_for_device,
.map_resource = iommu_dma_map_resource,
.unmap_resource = iommu_dma_unmap_resource,
.dma_supported = iommu_dma_supported,
.mapping_error = iommu_dma_mapping_error,
};
/*
* TODO: Right now __iommu_setup_dma_ops() gets called too early to do
* everything it needs to - the device is only partially created and the
* IOMMU driver hasn't seen it yet, so it can't have a group. Thus we
* need this delayed attachment dance. Once IOMMU probe ordering is sorted
* to move the arch_setup_dma_ops() call later, all the notifier bits below
* become unnecessary, and will go away.
*/
struct iommu_dma_notifier_data {
struct list_head list;
struct device *dev;
const struct iommu_ops *ops;
u64 dma_base;
u64 size;
};
static LIST_HEAD(iommu_dma_masters);
static DEFINE_MUTEX(iommu_dma_notifier_lock);
static bool do_iommu_attach(struct device *dev, const struct iommu_ops *ops,
u64 dma_base, u64 size)
{
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
/*
* If the IOMMU driver has the DMA domain support that we require,
* then the IOMMU core will have already configured a group for this
* device, and allocated the default domain for that group.
*/
if (!domain || iommu_dma_init_domain(domain, dma_base, size, dev)) {
pr_debug("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
dev_name(dev));
return false;
}
dev->archdata.dma_ops = &iommu_dma_ops;
return true;
}
static void queue_iommu_attach(struct device *dev, const struct iommu_ops *ops,
u64 dma_base, u64 size)
{
struct iommu_dma_notifier_data *iommudata;
iommudata = kzalloc(sizeof(*iommudata), GFP_KERNEL);
if (!iommudata)
return;
iommudata->dev = dev;
iommudata->ops = ops;
iommudata->dma_base = dma_base;
iommudata->size = size;
mutex_lock(&iommu_dma_notifier_lock);
list_add(&iommudata->list, &iommu_dma_masters);
mutex_unlock(&iommu_dma_notifier_lock);
}
static int __iommu_attach_notifier(struct notifier_block *nb,
unsigned long action, void *data)
{
struct iommu_dma_notifier_data *master, *tmp;
if (action != BUS_NOTIFY_BIND_DRIVER)
return 0;
mutex_lock(&iommu_dma_notifier_lock);
list_for_each_entry_safe(master, tmp, &iommu_dma_masters, list) {
if (data == master->dev && do_iommu_attach(master->dev,
master->ops, master->dma_base, master->size)) {
list_del(&master->list);
kfree(master);
break;
}
}
mutex_unlock(&iommu_dma_notifier_lock);
return 0;
}
static int __init register_iommu_dma_ops_notifier(struct bus_type *bus)
{
struct notifier_block *nb = kzalloc(sizeof(*nb), GFP_KERNEL);
int ret;
if (!nb)
return -ENOMEM;
nb->notifier_call = __iommu_attach_notifier;
ret = bus_register_notifier(bus, nb);
if (ret) {
pr_warn("Failed to register DMA domain notifier; IOMMU DMA ops unavailable on bus '%s'\n",
bus->name);
kfree(nb);
}
return ret;
}
static int __init __iommu_dma_init(void)
{
int ret;
ret = iommu_dma_init();
if (!ret)
ret = register_iommu_dma_ops_notifier(&platform_bus_type);
if (!ret)
ret = register_iommu_dma_ops_notifier(&amba_bustype);
#ifdef CONFIG_PCI
if (!ret)
ret = register_iommu_dma_ops_notifier(&pci_bus_type);
#endif
return ret;
}
arch_initcall(__iommu_dma_init);
static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
const struct iommu_ops *ops)
{
struct iommu_group *group;
if (!ops)
return;
/*
* TODO: As a concession to the future, we're ready to handle being
* called both early and late (i.e. after bus_add_device). Once all
* the platform bus code is reworked to call us late and the notifier
* junk above goes away, move the body of do_iommu_attach here.
*/
group = iommu_group_get(dev);
if (group) {
do_iommu_attach(dev, ops, dma_base, size);
iommu_group_put(group);
} else {
queue_iommu_attach(dev, ops, dma_base, size);
}
}
void arch_teardown_dma_ops(struct device *dev)
{
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
if (WARN_ON(domain))
iommu_detach_device(domain, dev);
dev->archdata.dma_ops = NULL;
}
#else
static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
const struct iommu_ops *iommu)
{ }
#endif /* CONFIG_IOMMU_DMA */
void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
const struct iommu_ops *iommu, bool coherent)
{
if (!dev->archdata.dma_ops)
dev->archdata.dma_ops = &swiotlb_dma_ops;
dev->archdata.dma_coherent = coherent;
__iommu_setup_dma_ops(dev, dma_base, size, iommu);
}
EXPORT_SYMBOL(arch_setup_dma_ops);
#ifdef CONFIG_ARM64_DMA_USE_IOMMU
static int __get_iommu_pgprot(unsigned long attrs, int prot,
bool coherent)
{
if (!(attrs & DMA_ATTR_EXEC_MAPPING))
prot |= IOMMU_NOEXEC;
if (attrs & DMA_ATTR_IOMMU_USE_UPSTREAM_HINT)
prot |= IOMMU_USE_UPSTREAM_HINT;
if (coherent)
prot |= IOMMU_CACHE;
return prot;
}
/*
* Make an area consistent for devices.
* Note: Drivers should NOT use this function directly, as it will break
* platforms with CONFIG_DMABOUNCE.
* Use the driver DMA support - see dma-mapping.h (dma_sync_*)
*/
static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
size_t size, enum dma_data_direction dir)
{
__dma_map_area(page_address(page) + off, size, dir);
}
static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
size_t size, enum dma_data_direction dir)
{
__dma_unmap_area(page_address(page) + off, size, dir);
/*
* Mark the D-cache clean for this page to avoid extra flushing.
*/
if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
set_bit(PG_dcache_clean, &page->flags);
}
/* IOMMU */
static void __dma_clear_buffer(struct page *page, size_t size,
unsigned long attrs, bool is_coherent)
{
/*
* Ensure that the allocated pages are zeroed, and that any data
* lurking in the kernel direct-mapped region is invalidated.
*/
void *ptr = page_address(page);
if (!(attrs & DMA_ATTR_SKIP_ZEROING))
memset(ptr, 0, size);
if (!is_coherent)
__dma_flush_area(ptr, size);
}
static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
size_t size)
{
unsigned int order = get_order(size);
unsigned int align = 0;
unsigned int count, start;
unsigned long flags;
if (order > CONFIG_ARM64_DMA_IOMMU_ALIGNMENT)
order = CONFIG_ARM64_DMA_IOMMU_ALIGNMENT;
count = PAGE_ALIGN(size) >> PAGE_SHIFT;
align = (1 << order) - 1;
spin_lock_irqsave(&mapping->lock, flags);
start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
count, align);
if (start > mapping->bits) {
spin_unlock_irqrestore(&mapping->lock, flags);
return DMA_ERROR_CODE;
}
bitmap_set(mapping->bitmap, start, count);
spin_unlock_irqrestore(&mapping->lock, flags);
return mapping->base + (start << PAGE_SHIFT);
}
static inline void __free_iova(struct dma_iommu_mapping *mapping,
dma_addr_t addr, size_t size)
{
unsigned int start = (addr - mapping->base) >> PAGE_SHIFT;
unsigned int count = size >> PAGE_SHIFT;
unsigned long flags;
spin_lock_irqsave(&mapping->lock, flags);
bitmap_clear(mapping->bitmap, start, count);
spin_unlock_irqrestore(&mapping->lock, flags);
}
static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
gfp_t gfp, unsigned long attrs)
{
struct page **pages;
size_t count = size >> PAGE_SHIFT;
size_t array_size = count * sizeof(struct page *);
int i = 0;
bool is_coherent = is_dma_coherent(dev, attrs);
if (array_size <= PAGE_SIZE)
pages = kzalloc(array_size, gfp);
else
pages = vzalloc(array_size);
if (!pages)
return NULL;
if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
unsigned long order = get_order(size);
struct page *page;
page = dma_alloc_from_contiguous(dev, count, order);
if (!page)
goto error;
__dma_clear_buffer(page, size, attrs, is_coherent);
for (i = 0; i < count; i++)
pages[i] = page + i;
return pages;
}
/*
* IOMMU can map any pages, so himem can also be used here
*/
gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
while (count) {
int j, order = __fls(count);
pages[i] = alloc_pages(gfp, order);
while (!pages[i] && order)
pages[i] = alloc_pages(gfp, --order);
if (!pages[i])
goto error;
if (order) {
split_page(pages[i], order);
j = 1 << order;
while (--j)
pages[i + j] = pages[i] + j;
}
__dma_clear_buffer(pages[i], PAGE_SIZE << order, attrs,
is_coherent);
i += 1 << order;
count -= 1 << order;
}
return pages;
error:
while (i--)
if (pages[i])
__free_pages(pages[i], 0);
if (array_size <= PAGE_SIZE)
kfree(pages);
else
vfree(pages);
return NULL;
}
static int __iommu_free_buffer(struct device *dev, struct page **pages,
size_t size, unsigned long attrs)
{
int count = size >> PAGE_SHIFT;
int array_size = count * sizeof(struct page *);
int i;
if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
dma_release_from_contiguous(dev, pages[0], count);
} else {
for (i = 0; i < count; i++)
if (pages[i])
__free_pages(pages[i], 0);
}
if (array_size <= PAGE_SIZE)
kfree(pages);
else
vfree(pages);
return 0;
}
/*
* Create a CPU mapping for a specified pages
*/
static void *
__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
const void *caller)
{
return dma_common_pages_remap(pages, size, VM_USERMAP, prot, caller);
}
/*
* Create a mapping in device IO address space for specified pages
*/
static dma_addr_t __iommu_create_mapping(struct device *dev,
struct page **pages, size_t size,
unsigned long attrs)
{
struct dma_iommu_mapping *mapping = dev->archdata.mapping;
unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
dma_addr_t dma_addr, iova;
int i, ret;
int prot = IOMMU_READ | IOMMU_WRITE;
dma_addr = __alloc_iova(mapping, size);
if (dma_addr == DMA_ERROR_CODE)
return dma_addr;
prot = __get_iommu_pgprot(attrs, prot,
is_dma_coherent(dev, attrs));
iova = dma_addr;
for (i = 0; i < count; ) {
unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
phys_addr_t phys = page_to_phys(pages[i]);
unsigned int len, j;
for (j = i + 1; j < count; j++, next_pfn++)
if (page_to_pfn(pages[j]) != next_pfn)
break;
len = (j - i) << PAGE_SHIFT;
ret = iommu_map(mapping->domain, iova, phys, len, prot);
if (ret < 0)
goto fail;
iova += len;
i = j;
}
return dma_addr;
fail:
iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
__free_iova(mapping, dma_addr, size);
return DMA_ERROR_CODE;
}
static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova,
size_t size)
{
struct dma_iommu_mapping *mapping = dev->archdata.mapping;
/*
* add optional in-page offset from iova to size and align
* result to page size
*/
size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
iova &= PAGE_MASK;
iommu_unmap(mapping->domain, iova, size);
__free_iova(mapping, iova, size);
return 0;
}
static struct page **__atomic_get_pages(void *addr)
{
struct page *page;
phys_addr_t phys;
phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
page = phys_to_page(phys);
return (struct page **)page;
}
static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
{
struct vm_struct *area;
if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
return __atomic_get_pages(cpu_addr);
if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
return cpu_addr;
area = find_vm_area(cpu_addr);
if (area)
return area->pages;
return NULL;
}
static void *__iommu_alloc_atomic(struct device *dev, size_t size,
dma_addr_t *handle, gfp_t gfp,
unsigned long attrs)
{
struct page *page;
struct page **pages;
size_t count = size >> PAGE_SHIFT;
size_t array_size = count * sizeof(struct page *);
int i;
void *addr;
bool coherent = is_dma_coherent(dev, attrs);
if (array_size <= PAGE_SIZE)
pages = kzalloc(array_size, gfp);
else
pages = vzalloc(array_size);
if (!pages)
return NULL;
if (coherent) {
page = alloc_pages(gfp, get_order(size));
addr = page ? page_address(page) : NULL;
} else {
addr = __alloc_from_pool(size, &page, gfp);
}
if (!addr)
goto err_free;
for (i = 0; i < count ; i++)
pages[i] = page + i;
*handle = __iommu_create_mapping(dev, pages, size, attrs);
if (*handle == DMA_ERROR_CODE)
goto err_mapping;
kvfree(pages);
return addr;
err_mapping:
if (coherent)
__free_pages(page, get_order(size));
else
__free_from_pool(addr, size);
err_free:
kvfree(pages);
return NULL;
}
static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
dma_addr_t handle, size_t size)
{
__iommu_remove_mapping(dev, handle, size);
__free_from_pool(cpu_addr, size);
}
static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
{
bool coherent = is_dma_coherent(dev, attrs);
pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
struct page **pages;
void *addr = NULL;
*handle = DMA_ERROR_CODE;
size = PAGE_ALIGN(size);
if (!gfpflags_allow_blocking(gfp))
return __iommu_alloc_atomic(dev, size, handle, gfp, attrs);
/*
* Following is a work-around (a.k.a. hack) to prevent pages
* with __GFP_COMP being passed to split_page() which cannot
* handle them. The real problem is that this flag probably
* should be 0 on ARM as it is not supported on this
* platform; see CONFIG_HUGETLBFS.
*/
gfp &= ~(__GFP_COMP);
pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
if (!pages)
return NULL;
*handle = __iommu_create_mapping(dev, pages, size, attrs);
if (*handle == DMA_ERROR_CODE)
goto err_buffer;
if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
return pages;
addr = __iommu_alloc_remap(pages, size, gfp, prot,
__builtin_return_address(0));
if (!addr)
goto err_mapping;
return addr;
err_mapping:
__iommu_remove_mapping(dev, *handle, size);
err_buffer:
__iommu_free_buffer(dev, pages, size, attrs);
return NULL;
}
static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
unsigned long attrs)
{
unsigned long uaddr = vma->vm_start;
unsigned long usize = vma->vm_end - vma->vm_start;
struct page **pages = __iommu_get_pages(cpu_addr, attrs);
bool coherent = is_dma_coherent(dev, attrs);
vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
coherent);
if (!pages)
return -ENXIO;
do {
int ret = vm_insert_page(vma, uaddr, *pages++);
if (ret) {
pr_err("Remapping memory failed: %d\n", ret);
return ret;
}
uaddr += PAGE_SIZE;
usize -= PAGE_SIZE;
} while (usize > 0);
return 0;
}
/*
* free a page as defined by the above mapping.
* Must not be called with IRQs disabled.
*/
void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
dma_addr_t handle, unsigned long attrs)
{
struct page **pages;
size = PAGE_ALIGN(size);
if (__in_atomic_pool(cpu_addr, size)) {
__iommu_free_atomic(dev, cpu_addr, handle, size);
return;
}
pages = __iommu_get_pages(cpu_addr, attrs);
if (!pages) {
WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
return;
}
if (!(attrs & DMA_ATTR_NO_KERNEL_MAPPING))
dma_common_free_remap(cpu_addr, size, VM_USERMAP, true);
__iommu_remove_mapping(dev, handle, size);
__iommu_free_buffer(dev, pages, size, attrs);
}
int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
void *cpu_addr, dma_addr_t dma_addr,
size_t size, unsigned long attrs)
{
unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
struct page **pages = __iommu_get_pages(cpu_addr, attrs);
if (!pages)
return -ENXIO;
return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
GFP_KERNEL);
}
static int __dma_direction_to_prot(enum dma_data_direction dir)
{
int prot;
switch (dir) {
case DMA_BIDIRECTIONAL:
prot = IOMMU_READ | IOMMU_WRITE;
break;
case DMA_TO_DEVICE:
prot = IOMMU_READ;
break;
case DMA_FROM_DEVICE:
prot = IOMMU_WRITE;
break;
default:
prot = 0;
}
return prot;
}
/**
* arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
* @dev: valid struct device pointer
* @sg: list of buffers
* @nents: number of buffers to map
* @dir: DMA transfer direction
*
* Map a set of buffers described by scatterlist in streaming mode for DMA.
* The scatter gather list elements are merged together (if possible) and
* tagged with the appropriate dma address and length. They are obtained via
* sg_dma_{address,length}.
*/
int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir, unsigned long attrs)
{
struct scatterlist *s;
int ret, i;
struct dma_iommu_mapping *mapping = dev->archdata.mapping;
unsigned int total_length = 0, current_offset = 0;
dma_addr_t iova;
int prot = __dma_direction_to_prot(dir);
for_each_sg(sg, s, nents, i)
total_length += s->length;
iova = __alloc_iova(mapping, total_length);
if (iova == DMA_ERROR_CODE) {
dev_err(dev, "Couldn't allocate iova for sg %p\n", sg);
return 0;
}
prot = __get_iommu_pgprot(attrs, prot,
is_dma_coherent(dev, attrs));
ret = iommu_map_sg(mapping->domain, iova, sg, nents, prot);
if (ret != total_length) {
__free_iova(mapping, iova, total_length);
return 0;
}
for_each_sg(sg, s, nents, i) {
s->dma_address = iova + current_offset;
s->dma_length = total_length - current_offset;
current_offset += s->length;
}
return nents;
}
/**
* arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
* @dev: valid struct device pointer
* @sg: list of buffers
* @nents: number of buffers to unmap (same as was passed to dma_map_sg)
* @dir: DMA transfer direction (same as was passed to dma_map_sg)
*
* Unmap a set of streaming mode DMA translations. Again, CPU access
* rules concerning calls here are the same as for dma_unmap_single().
*/
void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
enum dma_data_direction dir, unsigned long attrs)
{
struct dma_iommu_mapping *mapping = dev->archdata.mapping;
unsigned int total_length = sg_dma_len(sg);
dma_addr_t iova = sg_dma_address(sg);
total_length = PAGE_ALIGN((iova & ~PAGE_MASK) + total_length);
iova &= PAGE_MASK;
iommu_unmap(mapping->domain, iova, total_length);
__free_iova(mapping, iova, total_length);
}
/**
* arm_iommu_sync_sg_for_cpu
* @dev: valid struct device pointer
* @sg: list of buffers
* @nents: number of buffers to map (returned from dma_map_sg)
* @dir: DMA transfer direction (same as was passed to dma_map_sg)
*/
void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir)
{
struct scatterlist *s;
int i;
struct dma_iommu_mapping *mapping = dev->archdata.mapping;
dma_addr_t iova = sg_dma_address(sg);
bool iova_coherent = iommu_is_iova_coherent(mapping->domain, iova);
if (iova_coherent)
return;
for_each_sg(sg, s, nents, i)
__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
}
/**
* arm_iommu_sync_sg_for_device
* @dev: valid struct device pointer
* @sg: list of buffers
* @nents: number of buffers to map (returned from dma_map_sg)
* @dir: DMA transfer direction (same as was passed to dma_map_sg)
*/
void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir)
{
struct scatterlist *s;
int i;
struct dma_iommu_mapping *mapping = dev->archdata.mapping;
dma_addr_t iova = sg_dma_address(sg);
bool iova_coherent = iommu_is_iova_coherent(mapping->domain, iova);
if (iova_coherent)
return;
for_each_sg(sg, s, nents, i)
__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
}
/**
* arm_coherent_iommu_map_page
* @dev: valid struct device pointer
* @page: page that buffer resides in
* @offset: offset into page for start of buffer
* @size: size of buffer to map
* @dir: DMA transfer direction
*
* Coherent IOMMU aware version of arm_dma_map_page()
*/
static dma_addr_t arm_coherent_iommu_map_page(struct device *dev,
struct page *page, unsigned long offset, size_t size,
enum dma_data_direction dir, unsigned long attrs)
{
struct dma_iommu_mapping *mapping = dev->archdata.mapping;
dma_addr_t dma_addr;
int ret, prot, len, start_offset, map_offset;
map_offset = offset & ~PAGE_MASK;
start_offset = offset & PAGE_MASK;
len = PAGE_ALIGN(map_offset + size);
dma_addr = __alloc_iova(mapping, len);
if (dma_addr == DMA_ERROR_CODE)
return dma_addr;
prot = __dma_direction_to_prot(dir);
prot = __get_iommu_pgprot(attrs, prot,
is_dma_coherent(dev, attrs));
ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page) +
start_offset, len, prot);
if (ret < 0)
goto fail;
return dma_addr + map_offset;
fail:
__free_iova(mapping, dma_addr, len);
return DMA_ERROR_CODE;
}
/**
* arm_iommu_map_page
* @dev: valid struct device pointer
* @page: page that buffer resides in
* @offset: offset into page for start of buffer
* @size: size of buffer to map
* @dir: DMA transfer direction
*
* IOMMU aware version of arm_dma_map_page()
*/
static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
if (!is_dma_coherent(dev, attrs) &&
!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
__dma_page_cpu_to_dev(page, offset, size, dir);
return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
}
/**
* arm_iommu_unmap_page
* @dev: valid struct device pointer
* @handle: DMA address of buffer
* @size: size of buffer (same as passed to dma_map_page)
* @dir: DMA transfer direction (same as passed to dma_map_page)
*
* IOMMU aware version of arm_dma_unmap_page()
*/
static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
struct dma_iommu_mapping *mapping = dev->archdata.mapping;
dma_addr_t iova = handle & PAGE_MASK;
struct page *page = phys_to_page(iommu_iova_to_phys(
mapping->domain, iova));
int offset = handle & ~PAGE_MASK;
int len = PAGE_ALIGN(size + offset);
if (!(is_dma_coherent(dev, attrs) ||
(attrs & DMA_ATTR_SKIP_CPU_SYNC)))
__dma_page_dev_to_cpu(page, offset, size, dir);
iommu_unmap(mapping->domain, iova, len);
__free_iova(mapping, iova, len);
}
static void arm_iommu_sync_single_for_cpu(struct device *dev,
dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
struct dma_iommu_mapping *mapping = dev->archdata.mapping;
dma_addr_t iova = handle & PAGE_MASK;
struct page *page = phys_to_page(iommu_iova_to_phys(
mapping->domain, iova));
unsigned int offset = handle & ~PAGE_MASK;
bool iova_coherent = iommu_is_iova_coherent(mapping->domain, handle);
if (!iova_coherent)
__dma_page_dev_to_cpu(page, offset, size, dir);
}
static void arm_iommu_sync_single_for_device(struct device *dev,
dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
struct dma_iommu_mapping *mapping = dev->archdata.mapping;
dma_addr_t iova = handle & PAGE_MASK;
struct page *page = phys_to_page(iommu_iova_to_phys(
mapping->domain, iova));
unsigned int offset = handle & ~PAGE_MASK;
bool iova_coherent = iommu_is_iova_coherent(mapping->domain, handle);
if (!iova_coherent)
__dma_page_cpu_to_dev(page, offset, size, dir);
}
static dma_addr_t arm_iommu_dma_map_resource(
struct device *dev, phys_addr_t phys_addr,
size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
struct dma_iommu_mapping *mapping = dev->archdata.mapping;
size_t offset = phys_addr & ~PAGE_MASK;
size_t len = PAGE_ALIGN(size + offset);
dma_addr_t dma_addr;
int prot;
dma_addr = __alloc_iova(mapping, len);
if (dma_addr == DMA_ERROR_CODE)
return dma_addr;
prot = __dma_direction_to_prot(dir);
prot |= IOMMU_MMIO;
if (iommu_map(mapping->domain, dma_addr, phys_addr - offset,
len, prot)) {
__free_iova(mapping, dma_addr, len);
return DMA_ERROR_CODE;
}
return dma_addr + offset;
}
static void arm_iommu_dma_unmap_resource(
struct device *dev, dma_addr_t addr,
size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
struct dma_iommu_mapping *mapping = dev->archdata.mapping;
size_t offset = addr & ~PAGE_MASK;
size_t len = PAGE_ALIGN(size + offset);
iommu_unmap(mapping->domain, addr - offset, len);
__free_iova(mapping, addr - offset, len);
}
static int arm_iommu_mapping_error(struct device *dev,
dma_addr_t dma_addr)
{
return dma_addr == DMA_ERROR_CODE;
}
const struct dma_map_ops iommu_ops = {
.alloc = arm_iommu_alloc_attrs,
.free = arm_iommu_free_attrs,
.mmap = arm_iommu_mmap_attrs,
.get_sgtable = arm_iommu_get_sgtable,
.map_page = arm_iommu_map_page,
.unmap_page = arm_iommu_unmap_page,
.sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
.sync_single_for_device = arm_iommu_sync_single_for_device,
.map_sg = arm_iommu_map_sg,
.unmap_sg = arm_iommu_unmap_sg,
.sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
.sync_sg_for_device = arm_iommu_sync_sg_for_device,
.map_resource = arm_iommu_dma_map_resource,
.unmap_resource = arm_iommu_dma_unmap_resource,
.mapping_error = arm_iommu_mapping_error,
};
/**
* arm_iommu_create_mapping
* @bus: pointer to the bus holding the client device (for IOMMU calls)
* @base: start address of the valid IO address space
* @size: maximum size of the valid IO address space
*
* Creates a mapping structure which holds information about used/unused
* IO address ranges, which is required to perform memory allocation and
* mapping with IOMMU aware functions.
*
* Clients may use iommu_domain_set_attr() to set additional flags prior
* to calling arm_iommu_attach_device() to complete initialization.
*/
struct dma_iommu_mapping *
arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size)
{
unsigned int bits = size >> PAGE_SHIFT;
struct dma_iommu_mapping *mapping;
if (!bits)
return ERR_PTR(-EINVAL);
mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
if (!mapping)
return ERR_PTR(-ENOMEM);
mapping->base = base;
mapping->bits = bits;
mapping->domain = iommu_domain_alloc(bus);
if (!mapping->domain)
goto err_domain_alloc;
mapping->init = false;
return mapping;
err_domain_alloc:
kfree(mapping);
return ERR_PTR(-ENOMEM);
}
EXPORT_SYMBOL(arm_iommu_create_mapping);
static int
bitmap_iommu_init_mapping(struct device *dev, struct dma_iommu_mapping *mapping)
{
unsigned int bitmap_size = BITS_TO_LONGS(mapping->bits) * sizeof(long);
mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL | __GFP_NOWARN |
__GFP_NORETRY);
if (!mapping->bitmap)
mapping->bitmap = vzalloc(bitmap_size);
if (!mapping->bitmap)
return -ENOMEM;
spin_lock_init(&mapping->lock);
mapping->ops = &iommu_ops;
return 0;
}
static void bitmap_iommu_release_mapping(struct kref *kref)
{
struct dma_iommu_mapping *mapping =
container_of(kref, struct dma_iommu_mapping, kref);
kfree(mapping->bitmap);
iommu_domain_free(mapping->domain);
kfree(mapping);
}
static void bypass_iommu_release_mapping(struct kref *kref)
{
struct dma_iommu_mapping *mapping =
container_of(kref, struct dma_iommu_mapping, kref);
iommu_domain_free(mapping->domain);
kfree(mapping);
}
static int upstream_iommu_init_mapping(struct device *dev,
struct dma_iommu_mapping *mapping)
{
struct iommu_domain *domain = mapping->domain;
dma_addr_t base = mapping->base;
u64 size = mapping->bits << PAGE_SHIFT;
if (iommu_get_dma_cookie(domain))
return -EINVAL;
if (iommu_dma_init_domain(domain, base, size, dev))
goto out_put_cookie;
mapping->ops = &iommu_dma_ops;
return 0;
out_put_cookie:
iommu_put_dma_cookie(domain);
return -EINVAL;
}
static void upstream_iommu_release_mapping(struct kref *kref)
{
struct dma_iommu_mapping *mapping =
container_of(kref, struct dma_iommu_mapping, kref);
iommu_put_dma_cookie(mapping->domain);
iommu_domain_free(mapping->domain);
kfree(mapping);
}
/*
* arm_iommu_release_mapping
* @mapping: allocted via arm_iommu_create_mapping()
*
* Frees all resources associated with the iommu mapping.
* The device associated with this mapping must be in the 'detached' state
*/
void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
{
int s1_bypass = 0, is_fast = 0, is_upstream = 0;
void (*release)(struct kref *kref);
if (!mapping)
return;
if (!mapping->init) {
iommu_domain_free(mapping->domain);
kfree(mapping);
return;
}
iommu_domain_get_attr(mapping->domain, DOMAIN_ATTR_S1_BYPASS,
&s1_bypass);
iommu_domain_get_attr(mapping->domain, DOMAIN_ATTR_FAST, &is_fast);
iommu_domain_get_attr(mapping->domain,
DOMAIN_ATTR_UPSTREAM_IOVA_ALLOCATOR,
&is_upstream);
if (s1_bypass)
release = bypass_iommu_release_mapping;
else if (is_fast)
release = fast_smmu_release_mapping;
else if (is_upstream)
release = upstream_iommu_release_mapping;
else
release = bitmap_iommu_release_mapping;
kref_put(&mapping->kref, release);
}
EXPORT_SYMBOL(arm_iommu_release_mapping);
static int arm_iommu_init_mapping(struct device *dev,
struct dma_iommu_mapping *mapping)
{
int err = -EINVAL;
int s1_bypass = 0, is_fast = 0, is_upstream = 0;
dma_addr_t iova_end;
if (mapping->init) {
kref_get(&mapping->kref);
return 0;
}
iova_end = mapping->base + (mapping->bits << PAGE_SHIFT) - 1;
if (iova_end > dma_get_mask(dev)) {
dev_err(dev, "dma mask %llx too small for requested iova range %pad to %pad\n",
dma_get_mask(dev), &mapping->base, &iova_end);
return -EINVAL;
}
iommu_domain_get_attr(mapping->domain, DOMAIN_ATTR_S1_BYPASS,
&s1_bypass);
iommu_domain_get_attr(mapping->domain, DOMAIN_ATTR_FAST, &is_fast);
iommu_domain_get_attr(mapping->domain,
DOMAIN_ATTR_UPSTREAM_IOVA_ALLOCATOR,
&is_upstream);
if (s1_bypass) {
mapping->ops = &swiotlb_dma_ops;
err = 0;
} else if (is_fast) {
err = fast_smmu_init_mapping(dev, mapping);
} else if (is_upstream) {
err = upstream_iommu_init_mapping(dev, mapping);
} else {
err = bitmap_iommu_init_mapping(dev, mapping);
}
if (!err) {
kref_init(&mapping->kref);
mapping->init = true;
}
return err;
}
/**
* arm_iommu_attach_device
* @dev: valid struct device pointer
* @mapping: io address space mapping structure (returned from
* arm_iommu_create_mapping)
*
* Attaches specified io address space mapping to the provided device,
* this replaces the dma operations (dma_map_ops pointer) with the
* IOMMU aware version.
*
* Clients are expected to call arm_iommu_attach_device() prior to sharing
* the dma_iommu_mapping structure with another device. This ensures
* initialization is complete.
*/
int arm_iommu_attach_device(struct device *dev,
struct dma_iommu_mapping *mapping)
{
int err;
struct iommu_domain *domain = mapping->domain;
struct iommu_group *group = dev->iommu_group;
if (!group) {
dev_err(dev, "No iommu associated with device\n");
return -EINVAL;
}
if (iommu_get_domain_for_dev(dev)) {
dev_err(dev, "Device already attached to other iommu_domain\n");
return -EINVAL;
}
err = iommu_attach_group(domain, group);
if (err)
return err;
err = arm_iommu_init_mapping(dev, mapping);
if (err) {
iommu_detach_group(domain, group);
return err;
}
dev->archdata.mapping = mapping;
set_dma_ops(dev, mapping->ops);
pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
return 0;
}
EXPORT_SYMBOL(arm_iommu_attach_device);
/**
* arm_iommu_detach_device
* @dev: valid struct device pointer
*
* Detaches the provided device from a previously attached map.
* This voids the dma operations (dma_map_ops pointer)
*/
void arm_iommu_detach_device(struct device *dev)
{
struct dma_iommu_mapping *mapping;
int s1_bypass = 0;
mapping = to_dma_iommu_mapping(dev);
if (!mapping) {
dev_warn(dev, "Not attached\n");
return;
}
if (!dev->iommu_group) {
dev_err(dev, "No iommu associated with device\n");
return;
}
iommu_domain_get_attr(mapping->domain, DOMAIN_ATTR_S1_BYPASS,
&s1_bypass);
/*
* ION defers dma_unmap calls. Ensure they have all completed prior to
* setting dma_ops to NULL.
*/
if (msm_dma_unmap_all_for_dev(dev))
dev_warn(dev, "IOMMU detach with outstanding mappings\n");
iommu_detach_group(mapping->domain, dev->iommu_group);
dev->archdata.mapping = NULL;
if (!s1_bypass)
set_dma_ops(dev, NULL);
pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
}
EXPORT_SYMBOL(arm_iommu_detach_device);
#endif