blob: 1bdc8e324706c525ac4c32d50ba0bccdd1d62be5 [file] [log] [blame]
/*
* arch/arm/kernel/topology.c
*
* Copyright (C) 2011 Linaro Limited.
* Written by: Vincent Guittot
*
* based on arch/sh/kernel/topology.c
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/percpu.h>
#include <linux/node.h>
#include <linux/nodemask.h>
#include <linux/of.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <asm/cputype.h>
#include <asm/topology.h>
/*
* cpu capacity scale management
*/
/*
* cpu capacity table
* This per cpu data structure describes the relative capacity of each core.
* On a heteregenous system, cores don't have the same computation capacity
* and we reflect that difference in the cpu_capacity field so the scheduler
* can take this difference into account during load balance. A per cpu
* structure is preferred because each CPU updates its own cpu_capacity field
* during the load balance except for idle cores. One idle core is selected
* to run the rebalance_domains for all idle cores and the cpu_capacity can be
* updated during this sequence.
*/
static DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
unsigned long scale_cpu_capacity(struct sched_domain *sd, int cpu)
{
#ifdef CONFIG_CPU_FREQ
unsigned long max_freq_scale = cpufreq_scale_max_freq_capacity(cpu);
return per_cpu(cpu_scale, cpu) * max_freq_scale >> SCHED_CAPACITY_SHIFT;
#else
return per_cpu(cpu_scale, cpu);
#endif
}
static void set_capacity_scale(unsigned int cpu, unsigned long capacity)
{
per_cpu(cpu_scale, cpu) = capacity;
}
static int __init get_cpu_for_node(struct device_node *node)
{
struct device_node *cpu_node;
int cpu;
cpu_node = of_parse_phandle(node, "cpu", 0);
if (!cpu_node)
return -EINVAL;
for_each_possible_cpu(cpu) {
if (of_get_cpu_node(cpu, NULL) == cpu_node) {
of_node_put(cpu_node);
return cpu;
}
}
pr_crit("Unable to find CPU node for %s\n", cpu_node->full_name);
of_node_put(cpu_node);
return -EINVAL;
}
static int __init parse_core(struct device_node *core, int cluster_id,
int core_id)
{
char name[10];
bool leaf = true;
int i = 0;
int cpu;
struct device_node *t;
do {
snprintf(name, sizeof(name), "thread%d", i);
t = of_get_child_by_name(core, name);
if (t) {
leaf = false;
cpu = get_cpu_for_node(t);
if (cpu >= 0) {
cpu_topology[cpu].socket_id = cluster_id;
cpu_topology[cpu].core_id = core_id;
cpu_topology[cpu].thread_id = i;
} else {
pr_err("%s: Can't get CPU for thread\n",
t->full_name);
of_node_put(t);
return -EINVAL;
}
of_node_put(t);
}
i++;
} while (t);
cpu = get_cpu_for_node(core);
if (cpu >= 0) {
if (!leaf) {
pr_err("%s: Core has both threads and CPU\n",
core->full_name);
return -EINVAL;
}
cpu_topology[cpu].socket_id = cluster_id;
cpu_topology[cpu].core_id = core_id;
} else if (leaf) {
pr_err("%s: Can't get CPU for leaf core\n", core->full_name);
return -EINVAL;
}
return 0;
}
static int __init parse_cluster(struct device_node *cluster, int depth)
{
static int cluster_id __initdata;
char name[10];
bool leaf = true;
bool has_cores = false;
struct device_node *c;
int core_id = 0;
int i, ret;
/*
* First check for child clusters; we currently ignore any
* information about the nesting of clusters and present the
* scheduler with a flat list of them.
*/
i = 0;
do {
snprintf(name, sizeof(name), "cluster%d", i);
c = of_get_child_by_name(cluster, name);
if (c) {
leaf = false;
ret = parse_cluster(c, depth + 1);
of_node_put(c);
if (ret != 0)
return ret;
}
i++;
} while (c);
/* Now check for cores */
i = 0;
do {
snprintf(name, sizeof(name), "core%d", i);
c = of_get_child_by_name(cluster, name);
if (c) {
has_cores = true;
if (depth == 0) {
pr_err("%s: cpu-map children should be clusters\n",
c->full_name);
of_node_put(c);
return -EINVAL;
}
if (leaf) {
ret = parse_core(c, cluster_id, core_id++);
} else {
pr_err("%s: Non-leaf cluster with core %s\n",
cluster->full_name, name);
ret = -EINVAL;
}
of_node_put(c);
if (ret != 0)
return ret;
}
i++;
} while (c);
if (leaf && !has_cores)
pr_warn("%s: empty cluster\n", cluster->full_name);
if (leaf)
cluster_id++;
return 0;
}
static DEFINE_PER_CPU(unsigned long, cpu_efficiency) = SCHED_CAPACITY_SCALE;
unsigned long arch_get_cpu_efficiency(int cpu)
{
return per_cpu(cpu_efficiency, cpu);
}
#ifdef CONFIG_OF
struct cpu_efficiency {
const char *compatible;
unsigned long efficiency;
};
/*
* Table of relative efficiency of each processors
* The efficiency value must fit in 20bit and the final
* cpu_scale value must be in the range
* 0 < cpu_scale < 3*SCHED_CAPACITY_SCALE/2
* in order to return at most 1 when DIV_ROUND_CLOSEST
* is used to compute the capacity of a CPU.
* Processors that are not defined in the table,
* use the default SCHED_CAPACITY_SCALE value for cpu_scale.
*/
static const struct cpu_efficiency table_efficiency[] = {
{"arm,cortex-a15", 3891},
{"arm,cortex-a7", 2048},
{NULL, },
};
static unsigned long *__cpu_capacity;
#define cpu_capacity(cpu) __cpu_capacity[cpu]
static unsigned long middle_capacity = 1;
/*
* Iterate all CPUs' descriptor in DT and compute the efficiency
* (as per table_efficiency). Also calculate a middle efficiency
* as close as possible to (max{eff_i} - min{eff_i}) / 2
* This is later used to scale the cpu_capacity field such that an
* 'average' CPU is of middle capacity. Also see the comments near
* table_efficiency[] and update_cpu_capacity().
*/
static int __init parse_dt_topology(void)
{
const struct cpu_efficiency *cpu_eff;
struct device_node *cn = NULL, *map;
unsigned long min_capacity = ULONG_MAX;
unsigned long max_capacity = 0;
unsigned long capacity = 0;
int cpu = 0, ret = 0;
__cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity),
GFP_NOWAIT);
cn = of_find_node_by_path("/cpus");
if (!cn) {
pr_err("No CPU information found in DT\n");
return 0;
}
/*
* When topology is provided cpu-map is essentially a root
* cluster with restricted subnodes.
*/
map = of_get_child_by_name(cn, "cpu-map");
if (!map)
goto out;
ret = parse_cluster(map, 0);
if (ret != 0)
goto out_map;
/*
* Check that all cores are in the topology; the SMP code will
* only mark cores described in the DT as possible.
*/
for_each_possible_cpu(cpu)
if (cpu_topology[cpu].socket_id == -1)
ret = -EINVAL;
for_each_possible_cpu(cpu) {
const u32 *rate;
int len;
u32 efficiency;
/* too early to use cpu->of_node */
cn = of_get_cpu_node(cpu, NULL);
if (!cn) {
pr_err("missing device node for CPU %d\n", cpu);
continue;
}
/*
* The CPU efficiency value passed from the device tree
* overrides the value defined in the table_efficiency[]
*/
if (of_property_read_u32(cn, "efficiency", &efficiency) < 0) {
for (cpu_eff = table_efficiency;
cpu_eff->compatible; cpu_eff++)
if (of_device_is_compatible(cn,
cpu_eff->compatible))
break;
if (cpu_eff->compatible == NULL)
continue;
efficiency = cpu_eff->efficiency;
}
per_cpu(cpu_efficiency, cpu) = efficiency;
rate = of_get_property(cn, "clock-frequency", &len);
if (!rate || len != 4) {
pr_err("%s missing clock-frequency property\n",
cn->full_name);
continue;
}
capacity = ((be32_to_cpup(rate)) >> 20) * efficiency;
/* Save min capacity of the system */
if (capacity < min_capacity)
min_capacity = capacity;
/* Save max capacity of the system */
if (capacity > max_capacity)
max_capacity = capacity;
cpu_capacity(cpu) = capacity;
}
/* If min and max capacities are equals, we bypass the update of the
* cpu_scale because all CPUs have the same capacity. Otherwise, we
* compute a middle_capacity factor that will ensure that the capacity
* of an 'average' CPU of the system will be as close as possible to
* SCHED_CAPACITY_SCALE, which is the default value, but with the
* constraint explained near table_efficiency[].
*/
if (4*max_capacity < (3*(max_capacity + min_capacity)))
middle_capacity = (min_capacity + max_capacity)
>> (SCHED_CAPACITY_SHIFT+1);
else
middle_capacity = ((max_capacity / 3)
>> (SCHED_CAPACITY_SHIFT-1)) + 1;
out_map:
of_node_put(map);
out:
of_node_put(cn);
return ret;
}
static const struct sched_group_energy * const cpu_core_energy(int cpu);
/*
* Look for a customed capacity of a CPU in the cpu_capacity table during the
* boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
* function returns directly for SMP system.
*/
static void update_cpu_capacity(unsigned int cpu)
{
unsigned long capacity = SCHED_CAPACITY_SCALE;
if (cpu_core_energy(cpu)) {
int max_cap_idx = cpu_core_energy(cpu)->nr_cap_states - 1;
capacity = cpu_core_energy(cpu)->cap_states[max_cap_idx].cap;
}
set_capacity_scale(cpu, capacity);
pr_info("CPU%u: update cpu_capacity %lu\n",
cpu, arch_scale_cpu_capacity(NULL, cpu));
}
#else
static inline int parse_dt_topology(void) {}
static inline void update_cpu_capacity(unsigned int cpuid) {}
#endif
/*
* cpu topology table
*/
struct cputopo_arm cpu_topology[NR_CPUS];
EXPORT_SYMBOL_GPL(cpu_topology);
const struct cpumask *cpu_coregroup_mask(int cpu)
{
return &cpu_topology[cpu].core_sibling;
}
/*
* The current assumption is that we can power gate each core independently.
* This will be superseded by DT binding once available.
*/
const struct cpumask *cpu_corepower_mask(int cpu)
{
return &cpu_topology[cpu].thread_sibling;
}
static void update_siblings_masks(unsigned int cpuid)
{
struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
int cpu;
/* update core and thread sibling masks */
for_each_possible_cpu(cpu) {
cpu_topo = &cpu_topology[cpu];
if (cpuid_topo->socket_id != cpu_topo->socket_id)
continue;
cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
if (cpu != cpuid)
cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
if (cpuid_topo->core_id != cpu_topo->core_id)
continue;
cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
if (cpu != cpuid)
cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
}
smp_wmb(); /* Ensure mask is updated*/
}
/*
* store_cpu_topology is called at boot when only one cpu is running
* and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
* which prevents simultaneous write access to cpu_topology array
*/
void store_cpu_topology(unsigned int cpuid)
{
struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid];
unsigned int mpidr;
if (cpuid_topo->core_id != -1)
goto topology_populated;
mpidr = read_cpuid_mpidr();
/* create cpu topology mapping */
if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
/*
* This is a multiprocessor system
* multiprocessor format & multiprocessor mode field are set
*/
if (mpidr & MPIDR_MT_BITMASK) {
/* core performance interdependency */
cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
} else {
/* largely independent cores */
cpuid_topo->thread_id = -1;
cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
}
} else {
/*
* This is an uniprocessor system
* we are in multiprocessor format but uniprocessor system
* or in the old uniprocessor format
*/
cpuid_topo->thread_id = -1;
cpuid_topo->core_id = 0;
cpuid_topo->socket_id = -1;
}
pr_info("CPU%u: thread %d, cpu %d, cluster %d, mpidr %x\n",
cpuid, cpu_topology[cpuid].thread_id,
cpu_topology[cpuid].core_id,
cpu_topology[cpuid].socket_id, mpidr);
topology_populated:
update_siblings_masks(cpuid);
update_cpu_capacity(cpuid);
}
/*
* ARM TC2 specific energy cost model data. There are no unit requirements for
* the data. Data can be normalized to any reference point, but the
* normalization must be consistent. That is, one bogo-joule/watt must be the
* same quantity for all data, but we don't care what it is.
*/
static struct idle_state idle_states_cluster_a7[] = {
{ .power = 25 }, /* arch_cpu_idle() (active idle) = WFI */
{ .power = 25 }, /* WFI */
{ .power = 10 }, /* cluster-sleep-l */
};
static struct idle_state idle_states_cluster_a15[] = {
{ .power = 70 }, /* arch_cpu_idle() (active idle) = WFI */
{ .power = 70 }, /* WFI */
{ .power = 25 }, /* cluster-sleep-b */
};
static struct capacity_state cap_states_cluster_a7[] = {
/* Cluster only power */
{ .cap = 150, .power = 2967, }, /* 350 MHz */
{ .cap = 172, .power = 2792, }, /* 400 MHz */
{ .cap = 215, .power = 2810, }, /* 500 MHz */
{ .cap = 258, .power = 2815, }, /* 600 MHz */
{ .cap = 301, .power = 2919, }, /* 700 MHz */
{ .cap = 344, .power = 2847, }, /* 800 MHz */
{ .cap = 387, .power = 3917, }, /* 900 MHz */
{ .cap = 430, .power = 4905, }, /* 1000 MHz */
};
static struct capacity_state cap_states_cluster_a15[] = {
/* Cluster only power */
{ .cap = 426, .power = 7920, }, /* 500 MHz */
{ .cap = 512, .power = 8165, }, /* 600 MHz */
{ .cap = 597, .power = 8172, }, /* 700 MHz */
{ .cap = 682, .power = 8195, }, /* 800 MHz */
{ .cap = 768, .power = 8265, }, /* 900 MHz */
{ .cap = 853, .power = 8446, }, /* 1000 MHz */
{ .cap = 938, .power = 11426, }, /* 1100 MHz */
{ .cap = 1024, .power = 15200, }, /* 1200 MHz */
};
static struct sched_group_energy energy_cluster_a7 = {
.nr_idle_states = ARRAY_SIZE(idle_states_cluster_a7),
.idle_states = idle_states_cluster_a7,
.nr_cap_states = ARRAY_SIZE(cap_states_cluster_a7),
.cap_states = cap_states_cluster_a7,
};
static struct sched_group_energy energy_cluster_a15 = {
.nr_idle_states = ARRAY_SIZE(idle_states_cluster_a15),
.idle_states = idle_states_cluster_a15,
.nr_cap_states = ARRAY_SIZE(cap_states_cluster_a15),
.cap_states = cap_states_cluster_a15,
};
static struct idle_state idle_states_core_a7[] = {
{ .power = 0 }, /* arch_cpu_idle (active idle) = WFI */
{ .power = 0 }, /* WFI */
{ .power = 0 }, /* cluster-sleep-l */
};
static struct idle_state idle_states_core_a15[] = {
{ .power = 0 }, /* arch_cpu_idle (active idle) = WFI */
{ .power = 0 }, /* WFI */
{ .power = 0 }, /* cluster-sleep-b */
};
static struct capacity_state cap_states_core_a7[] = {
/* Power per cpu */
{ .cap = 150, .power = 187, }, /* 350 MHz */
{ .cap = 172, .power = 275, }, /* 400 MHz */
{ .cap = 215, .power = 334, }, /* 500 MHz */
{ .cap = 258, .power = 407, }, /* 600 MHz */
{ .cap = 301, .power = 447, }, /* 700 MHz */
{ .cap = 344, .power = 549, }, /* 800 MHz */
{ .cap = 387, .power = 761, }, /* 900 MHz */
{ .cap = 430, .power = 1024, }, /* 1000 MHz */
};
static struct capacity_state cap_states_core_a15[] = {
/* Power per cpu */
{ .cap = 426, .power = 2021, }, /* 500 MHz */
{ .cap = 512, .power = 2312, }, /* 600 MHz */
{ .cap = 597, .power = 2756, }, /* 700 MHz */
{ .cap = 682, .power = 3125, }, /* 800 MHz */
{ .cap = 768, .power = 3524, }, /* 900 MHz */
{ .cap = 853, .power = 3846, }, /* 1000 MHz */
{ .cap = 938, .power = 5177, }, /* 1100 MHz */
{ .cap = 1024, .power = 6997, }, /* 1200 MHz */
};
static struct sched_group_energy energy_core_a7 = {
.nr_idle_states = ARRAY_SIZE(idle_states_core_a7),
.idle_states = idle_states_core_a7,
.nr_cap_states = ARRAY_SIZE(cap_states_core_a7),
.cap_states = cap_states_core_a7,
};
static struct sched_group_energy energy_core_a15 = {
.nr_idle_states = ARRAY_SIZE(idle_states_core_a15),
.idle_states = idle_states_core_a15,
.nr_cap_states = ARRAY_SIZE(cap_states_core_a15),
.cap_states = cap_states_core_a15,
};
/* sd energy functions */
static inline
const struct sched_group_energy * const cpu_cluster_energy(int cpu)
{
return cpu_topology[cpu].socket_id ? &energy_cluster_a7 :
&energy_cluster_a15;
}
static inline
const struct sched_group_energy * const cpu_core_energy(int cpu)
{
return cpu_topology[cpu].socket_id ? &energy_core_a7 :
&energy_core_a15;
}
static inline int cpu_corepower_flags(void)
{
return SD_SHARE_PKG_RESOURCES | SD_SHARE_POWERDOMAIN | \
SD_SHARE_CAP_STATES;
}
static struct sched_domain_topology_level arm_topology[] = {
#ifdef CONFIG_SCHED_MC
{ cpu_coregroup_mask, cpu_corepower_flags, cpu_core_energy, SD_INIT_NAME(MC) },
#endif
{ cpu_cpu_mask, NULL, cpu_cluster_energy, SD_INIT_NAME(DIE) },
{ NULL, },
};
static void __init reset_cpu_topology(void)
{
unsigned int cpu;
for_each_possible_cpu(cpu) {
struct cputopo_arm *cpu_topo = &cpu_topology[cpu];
cpu_topo->thread_id = -1;
cpu_topo->core_id = -1;
cpu_topo->socket_id = -1;
cpumask_clear(&cpu_topo->core_sibling);
cpumask_clear(&cpu_topo->thread_sibling);
}
smp_wmb();
}
static void __init reset_cpu_capacity(void)
{
unsigned int cpu;
for_each_possible_cpu(cpu)
set_capacity_scale(cpu, SCHED_CAPACITY_SCALE);
}
/*
* init_cpu_topology is called at boot when only one cpu is running
* which prevent simultaneous write access to cpu_topology array
*/
void __init init_cpu_topology(void)
{
unsigned int cpu;
/* init core mask and capacity */
reset_cpu_topology();
reset_cpu_capacity();
smp_wmb(); /* Ensure CPU topology and capacity are up to date */
if (parse_dt_topology()) {
reset_cpu_topology();
reset_cpu_capacity();
}
for_each_possible_cpu(cpu)
update_siblings_masks(cpu);
/* Set scheduler topology descriptor */
set_sched_topology(arm_topology);
}