blob: 7c2d437238b2a71dbf0b05944861f81360e130f6 [file] [log] [blame]
/*
* Copyright (C) 2018 Google Limited.
*
* This file is released under the GPL.
*/
#include "dm.h"
#include "dm-bufio.h"
#include "dm-core.h"
#include <linux/crc32.h>
#include <linux/module.h>
#define DM_MSG_PREFIX "bow"
struct log_entry {
u64 source;
u64 dest;
u32 size;
u32 checksum;
} __packed;
struct log_sector {
u32 magic;
u16 header_version;
u16 header_size;
u32 block_size;
u32 count;
u32 sequence;
sector_t sector0;
struct log_entry entries[];
} __packed;
/*
* MAGIC is BOW in ascii
*/
#define MAGIC 0x00574f42
#define HEADER_VERSION 0x0100
/*
* A sorted set of ranges representing the state of the data on the device.
* Use an rb_tree for fast lookup of a given sector
* Consecutive ranges are always of different type - operations on this
* set must merge matching consecutive ranges.
*
* Top range is always of type TOP
*/
struct bow_range {
struct rb_node node;
sector_t sector;
enum {
INVALID, /* Type not set */
SECTOR0, /* First sector - holds log record */
SECTOR0_CURRENT,/* Live contents of sector0 */
UNCHANGED, /* Original contents */
TRIMMED, /* Range has been trimmed */
CHANGED, /* Range has been changed */
BACKUP, /* Range is being used as a backup */
TOP, /* Final range - sector is size of device */
} type;
struct list_head trimmed_list; /* list of TRIMMED ranges */
};
static const char * const readable_type[] = {
"Invalid",
"Sector0",
"Sector0_current",
"Unchanged",
"Free",
"Changed",
"Backup",
"Top",
};
enum state {
TRIM,
CHECKPOINT,
COMMITTED,
};
struct bow_context {
struct dm_dev *dev;
u32 block_size;
u32 block_shift;
struct workqueue_struct *workqueue;
struct dm_bufio_client *bufio;
struct mutex ranges_lock; /* Hold to access this struct and/or ranges */
struct rb_root ranges;
struct dm_kobject_holder kobj_holder; /* for sysfs attributes */
atomic_t state; /* One of the enum state values above */
u64 trims_total;
struct log_sector *log_sector;
struct list_head trimmed_list;
bool forward_trims;
};
sector_t range_top(struct bow_range *br)
{
return container_of(rb_next(&br->node), struct bow_range, node)
->sector;
}
u64 range_size(struct bow_range *br)
{
return (range_top(br) - br->sector) * SECTOR_SIZE;
}
static sector_t bvec_top(struct bvec_iter *bi_iter)
{
return bi_iter->bi_sector + bi_iter->bi_size / SECTOR_SIZE;
}
/*
* Find the first range that overlaps with bi_iter
* bi_iter is set to the size of the overlapping sub-range
*/
static struct bow_range *find_first_overlapping_range(struct rb_root *ranges,
struct bvec_iter *bi_iter)
{
struct rb_node *node = ranges->rb_node;
struct bow_range *br;
while (node) {
br = container_of(node, struct bow_range, node);
if (br->sector <= bi_iter->bi_sector
&& bi_iter->bi_sector < range_top(br))
break;
if (bi_iter->bi_sector < br->sector)
node = node->rb_left;
else
node = node->rb_right;
}
WARN_ON(!node);
if (!node)
return NULL;
if (range_top(br) - bi_iter->bi_sector
< bi_iter->bi_size >> SECTOR_SHIFT)
bi_iter->bi_size = (range_top(br) - bi_iter->bi_sector)
<< SECTOR_SHIFT;
return br;
}
void add_before(struct rb_root *ranges, struct bow_range *new_br,
struct bow_range *existing)
{
struct rb_node *parent = &(existing->node);
struct rb_node **link = &(parent->rb_left);
while (*link) {
parent = *link;
link = &((*link)->rb_right);
}
rb_link_node(&new_br->node, parent, link);
rb_insert_color(&new_br->node, ranges);
}
/*
* Given a range br returned by find_first_overlapping_range, split br into a
* leading range, a range matching the bi_iter and a trailing range.
* Leading and trailing may end up size 0 and will then be deleted. The
* new range matching the bi_iter is then returned and should have its type
* and type specific fields populated.
* If bi_iter runs off the end of the range, bi_iter is truncated accordingly
*/
static int split_range(struct bow_context *bc, struct bow_range **br,
struct bvec_iter *bi_iter)
{
struct bow_range *new_br;
if (bi_iter->bi_sector < (*br)->sector) {
WARN_ON(true);
return -EIO;
}
if (bi_iter->bi_sector > (*br)->sector) {
struct bow_range *leading_br =
kzalloc(sizeof(*leading_br), GFP_KERNEL);
if (!leading_br)
return -ENOMEM;
*leading_br = **br;
if (leading_br->type == TRIMMED)
list_add(&leading_br->trimmed_list, &bc->trimmed_list);
add_before(&bc->ranges, leading_br, *br);
(*br)->sector = bi_iter->bi_sector;
}
if (bvec_top(bi_iter) >= range_top(*br)) {
bi_iter->bi_size = (range_top(*br) - (*br)->sector)
* SECTOR_SIZE;
return 0;
}
/* new_br will be the beginning, existing br will be the tail */
new_br = kzalloc(sizeof(*new_br), GFP_KERNEL);
if (!new_br)
return -ENOMEM;
new_br->sector = (*br)->sector;
(*br)->sector = bvec_top(bi_iter);
add_before(&bc->ranges, new_br, *br);
*br = new_br;
return 0;
}
/*
* Sets type of a range. May merge range into surrounding ranges
* Since br may be invalidated, always sets br to NULL to prevent
* usage after this is called
*/
static void set_type(struct bow_context *bc, struct bow_range **br, int type)
{
struct bow_range *prev = container_of(rb_prev(&(*br)->node),
struct bow_range, node);
struct bow_range *next = container_of(rb_next(&(*br)->node),
struct bow_range, node);
if ((*br)->type == TRIMMED) {
bc->trims_total -= range_size(*br);
list_del(&(*br)->trimmed_list);
}
if (type == TRIMMED) {
bc->trims_total += range_size(*br);
list_add(&(*br)->trimmed_list, &bc->trimmed_list);
}
(*br)->type = type;
if (next->type == type) {
if (type == TRIMMED)
list_del(&next->trimmed_list);
rb_erase(&next->node, &bc->ranges);
kfree(next);
}
if (prev->type == type) {
if (type == TRIMMED)
list_del(&(*br)->trimmed_list);
rb_erase(&(*br)->node, &bc->ranges);
kfree(*br);
}
*br = NULL;
}
static struct bow_range *find_free_range(struct bow_context *bc)
{
if (list_empty(&bc->trimmed_list)) {
DMERR("Unable to find free space to back up to");
return NULL;
}
return list_first_entry(&bc->trimmed_list, struct bow_range,
trimmed_list);
}
static sector_t sector_to_page(struct bow_context const *bc, sector_t sector)
{
WARN_ON((sector & (((sector_t)1 << (bc->block_shift - SECTOR_SHIFT)) - 1))
!= 0);
return sector >> (bc->block_shift - SECTOR_SHIFT);
}
static int copy_data(struct bow_context const *bc,
struct bow_range *source, struct bow_range *dest,
u32 *checksum)
{
int i;
if (range_size(source) != range_size(dest)) {
WARN_ON(1);
return -EIO;
}
if (checksum)
*checksum = sector_to_page(bc, source->sector);
for (i = 0; i < range_size(source) >> bc->block_shift; ++i) {
struct dm_buffer *read_buffer, *write_buffer;
u8 *read, *write;
sector_t page = sector_to_page(bc, source->sector) + i;
read = dm_bufio_read(bc->bufio, page, &read_buffer);
if (IS_ERR(read)) {
DMERR("Cannot read page %llu",
(unsigned long long)page);
return PTR_ERR(read);
}
if (checksum)
*checksum = crc32(*checksum, read, bc->block_size);
write = dm_bufio_new(bc->bufio,
sector_to_page(bc, dest->sector) + i,
&write_buffer);
if (IS_ERR(write)) {
DMERR("Cannot write sector");
dm_bufio_release(read_buffer);
return PTR_ERR(write);
}
memcpy(write, read, bc->block_size);
dm_bufio_mark_buffer_dirty(write_buffer);
dm_bufio_release(write_buffer);
dm_bufio_release(read_buffer);
}
dm_bufio_write_dirty_buffers(bc->bufio);
return 0;
}
/****** logging functions ******/
static int add_log_entry(struct bow_context *bc, sector_t source, sector_t dest,
unsigned int size, u32 checksum);
static int backup_log_sector(struct bow_context *bc)
{
struct bow_range *first_br, *free_br;
struct bvec_iter bi_iter;
u32 checksum = 0;
int ret;
first_br = container_of(rb_first(&bc->ranges), struct bow_range, node);
if (first_br->type != SECTOR0) {
WARN_ON(1);
return -EIO;
}
if (range_size(first_br) != bc->block_size) {
WARN_ON(1);
return -EIO;
}
free_br = find_free_range(bc);
/* No space left - return this error to userspace */
if (!free_br)
return -ENOSPC;
bi_iter.bi_sector = free_br->sector;
bi_iter.bi_size = bc->block_size;
ret = split_range(bc, &free_br, &bi_iter);
if (ret)
return ret;
if (bi_iter.bi_size != bc->block_size) {
WARN_ON(1);
return -EIO;
}
ret = copy_data(bc, first_br, free_br, &checksum);
if (ret)
return ret;
bc->log_sector->count = 0;
bc->log_sector->sequence++;
ret = add_log_entry(bc, first_br->sector, free_br->sector,
range_size(first_br), checksum);
if (ret)
return ret;
set_type(bc, &free_br, BACKUP);
return 0;
}
static int add_log_entry(struct bow_context *bc, sector_t source, sector_t dest,
unsigned int size, u32 checksum)
{
struct dm_buffer *sector_buffer;
u8 *sector;
if (sizeof(struct log_sector)
+ sizeof(struct log_entry) * (bc->log_sector->count + 1)
> bc->block_size) {
int ret = backup_log_sector(bc);
if (ret)
return ret;
}
sector = dm_bufio_new(bc->bufio, 0, &sector_buffer);
if (IS_ERR(sector)) {
DMERR("Cannot write boot sector");
dm_bufio_release(sector_buffer);
return -ENOSPC;
}
bc->log_sector->entries[bc->log_sector->count].source = source;
bc->log_sector->entries[bc->log_sector->count].dest = dest;
bc->log_sector->entries[bc->log_sector->count].size = size;
bc->log_sector->entries[bc->log_sector->count].checksum = checksum;
bc->log_sector->count++;
memcpy(sector, bc->log_sector, bc->block_size);
dm_bufio_mark_buffer_dirty(sector_buffer);
dm_bufio_release(sector_buffer);
dm_bufio_write_dirty_buffers(bc->bufio);
return 0;
}
static int prepare_log(struct bow_context *bc)
{
struct bow_range *free_br, *first_br;
struct bvec_iter bi_iter;
u32 checksum = 0;
int ret;
/* Carve out first sector as log sector */
first_br = container_of(rb_first(&bc->ranges), struct bow_range, node);
if (first_br->type != UNCHANGED) {
WARN_ON(1);
return -EIO;
}
if (range_size(first_br) < bc->block_size) {
WARN_ON(1);
return -EIO;
}
bi_iter.bi_sector = 0;
bi_iter.bi_size = bc->block_size;
ret = split_range(bc, &first_br, &bi_iter);
if (ret)
return ret;
first_br->type = SECTOR0;
if (range_size(first_br) != bc->block_size) {
WARN_ON(1);
return -EIO;
}
/* Find free sector for active sector0 reads/writes */
free_br = find_free_range(bc);
if (!free_br)
return -ENOSPC;
bi_iter.bi_sector = free_br->sector;
bi_iter.bi_size = bc->block_size;
ret = split_range(bc, &free_br, &bi_iter);
if (ret)
return ret;
free_br->type = SECTOR0_CURRENT;
/* Copy data */
ret = copy_data(bc, first_br, free_br, NULL);
if (ret)
return ret;
bc->log_sector->sector0 = free_br->sector;
/* Find free sector to back up original sector zero */
free_br = find_free_range(bc);
if (!free_br)
return -ENOSPC;
bi_iter.bi_sector = free_br->sector;
bi_iter.bi_size = bc->block_size;
ret = split_range(bc, &free_br, &bi_iter);
if (ret)
return ret;
/* Back up */
ret = copy_data(bc, first_br, free_br, &checksum);
if (ret)
return ret;
/*
* Set up our replacement boot sector - it will get written when we
* add the first log entry, which we do immediately
*/
bc->log_sector->magic = MAGIC;
bc->log_sector->header_version = HEADER_VERSION;
bc->log_sector->header_size = sizeof(*bc->log_sector);
bc->log_sector->block_size = bc->block_size;
bc->log_sector->count = 0;
bc->log_sector->sequence = 0;
/* Add log entry */
ret = add_log_entry(bc, first_br->sector, free_br->sector,
range_size(first_br), checksum);
if (ret)
return ret;
set_type(bc, &free_br, BACKUP);
return 0;
}
static struct bow_range *find_sector0_current(struct bow_context *bc)
{
struct bvec_iter bi_iter;
bi_iter.bi_sector = bc->log_sector->sector0;
bi_iter.bi_size = bc->block_size;
return find_first_overlapping_range(&bc->ranges, &bi_iter);
}
/****** sysfs interface functions ******/
static ssize_t state_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
struct bow_context *bc = container_of(kobj, struct bow_context,
kobj_holder.kobj);
return scnprintf(buf, PAGE_SIZE, "%d\n", atomic_read(&bc->state));
}
static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count)
{
struct bow_context *bc = container_of(kobj, struct bow_context,
kobj_holder.kobj);
enum state state, original_state;
int ret;
state = buf[0] - '0';
if (state < TRIM || state > COMMITTED) {
DMERR("State value %d out of range", state);
return -EINVAL;
}
mutex_lock(&bc->ranges_lock);
original_state = atomic_read(&bc->state);
if (state != original_state + 1) {
DMERR("Invalid state change from %d to %d",
original_state, state);
ret = -EINVAL;
goto bad;
}
DMINFO("Switching to state %s", state == CHECKPOINT ? "Checkpoint"
: state == COMMITTED ? "Committed" : "Unknown");
if (state == CHECKPOINT) {
ret = prepare_log(bc);
if (ret) {
DMERR("Failed to switch to checkpoint state");
goto bad;
}
} else if (state == COMMITTED) {
struct bow_range *br = find_sector0_current(bc);
struct bow_range *sector0_br =
container_of(rb_first(&bc->ranges), struct bow_range,
node);
ret = copy_data(bc, br, sector0_br, 0);
if (ret) {
DMERR("Failed to switch to committed state");
goto bad;
}
}
atomic_inc(&bc->state);
ret = count;
bad:
mutex_unlock(&bc->ranges_lock);
return ret;
}
static ssize_t free_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
struct bow_context *bc = container_of(kobj, struct bow_context,
kobj_holder.kobj);
u64 trims_total;
mutex_lock(&bc->ranges_lock);
trims_total = bc->trims_total;
mutex_unlock(&bc->ranges_lock);
return scnprintf(buf, PAGE_SIZE, "%llu\n", trims_total);
}
static struct kobj_attribute attr_state = __ATTR_RW(state);
static struct kobj_attribute attr_free = __ATTR_RO(free);
static struct attribute *bow_attrs[] = {
&attr_state.attr,
&attr_free.attr,
NULL
};
static struct kobj_type bow_ktype = {
.sysfs_ops = &kobj_sysfs_ops,
.default_attrs = bow_attrs,
.release = dm_kobject_release
};
/****** constructor/destructor ******/
static void dm_bow_dtr(struct dm_target *ti)
{
struct bow_context *bc = (struct bow_context *) ti->private;
struct kobject *kobj;
while (rb_first(&bc->ranges)) {
struct bow_range *br = container_of(rb_first(&bc->ranges),
struct bow_range, node);
rb_erase(&br->node, &bc->ranges);
kfree(br);
}
if (bc->workqueue)
destroy_workqueue(bc->workqueue);
if (bc->bufio)
dm_bufio_client_destroy(bc->bufio);
kobj = &bc->kobj_holder.kobj;
if (kobj->state_initialized) {
kobject_put(kobj);
wait_for_completion(dm_get_completion_from_kobject(kobj));
}
kfree(bc->log_sector);
kfree(bc);
}
static int dm_bow_ctr(struct dm_target *ti, unsigned int argc, char **argv)
{
struct bow_context *bc;
struct bow_range *br;
int ret;
struct mapped_device *md = dm_table_get_md(ti->table);
if (argc != 1) {
ti->error = "Invalid argument count";
return -EINVAL;
}
bc = kzalloc(sizeof(*bc), GFP_KERNEL);
if (!bc) {
ti->error = "Cannot allocate bow context";
return -ENOMEM;
}
ti->num_flush_bios = 1;
ti->num_discard_bios = 1;
ti->num_write_same_bios = 1;
ti->private = bc;
ret = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table),
&bc->dev);
if (ret) {
ti->error = "Device lookup failed";
goto bad;
}
if (bc->dev->bdev->bd_queue->limits.max_discard_sectors == 0) {
bc->dev->bdev->bd_queue->limits.discard_granularity = 1 << 12;
bc->dev->bdev->bd_queue->limits.max_hw_discard_sectors = 1 << 15;
bc->dev->bdev->bd_queue->limits.max_discard_sectors = 1 << 15;
bc->forward_trims = false;
} else {
bc->dev->bdev->bd_queue->limits.discard_granularity = 1 << 12;
bc->forward_trims = true;
}
bc->block_size = bc->dev->bdev->bd_queue->limits.logical_block_size;
bc->block_shift = ilog2(bc->block_size);
bc->log_sector = kzalloc(bc->block_size, GFP_KERNEL);
if (!bc->log_sector) {
ti->error = "Cannot allocate log sector";
goto bad;
}
init_completion(&bc->kobj_holder.completion);
ret = kobject_init_and_add(&bc->kobj_holder.kobj, &bow_ktype,
&disk_to_dev(dm_disk(md))->kobj, "%s",
"bow");
if (ret) {
ti->error = "Cannot create sysfs node";
goto bad;
}
mutex_init(&bc->ranges_lock);
bc->ranges = RB_ROOT;
bc->bufio = dm_bufio_client_create(bc->dev->bdev, bc->block_size, 1, 0,
NULL, NULL);
if (IS_ERR(bc->bufio)) {
ti->error = "Cannot initialize dm-bufio";
ret = PTR_ERR(bc->bufio);
bc->bufio = NULL;
goto bad;
}
bc->workqueue = alloc_workqueue("dm-bow",
WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM
| WQ_UNBOUND, num_online_cpus());
if (!bc->workqueue) {
ti->error = "Cannot allocate workqueue";
ret = -ENOMEM;
goto bad;
}
INIT_LIST_HEAD(&bc->trimmed_list);
br = kzalloc(sizeof(*br), GFP_KERNEL);
if (!br) {
ti->error = "Cannot allocate ranges";
ret = -ENOMEM;
goto bad;
}
br->sector = ti->len;
br->type = TOP;
rb_link_node(&br->node, NULL, &bc->ranges.rb_node);
rb_insert_color(&br->node, &bc->ranges);
br = kzalloc(sizeof(*br), GFP_KERNEL);
if (!br) {
ti->error = "Cannot allocate ranges";
ret = -ENOMEM;
goto bad;
}
br->sector = 0;
br->type = UNCHANGED;
rb_link_node(&br->node, bc->ranges.rb_node,
&bc->ranges.rb_node->rb_left);
rb_insert_color(&br->node, &bc->ranges);
ti->discards_supported = true;
return 0;
bad:
dm_bow_dtr(ti);
return ret;
}
/****** Handle writes ******/
static int prepare_unchanged_range(struct bow_context *bc, struct bow_range *br,
struct bvec_iter *bi_iter,
bool record_checksum)
{
struct bow_range *backup_br;
struct bvec_iter backup_bi;
sector_t log_source, log_dest;
unsigned int log_size;
u32 checksum = 0;
int ret;
int original_type;
sector_t sector0;
/* Find a free range */
backup_br = find_free_range(bc);
if (!backup_br)
return -ENOSPC;
/* Carve out a backup range. This may be smaller than the br given */
backup_bi.bi_sector = backup_br->sector;
backup_bi.bi_size = min(range_size(backup_br), (u64) bi_iter->bi_size);
ret = split_range(bc, &backup_br, &backup_bi);
if (ret)
return ret;
/*
* Carve out a changed range. This will not be smaller than the backup
* br since the backup br is smaller than the source range and iterator
*/
bi_iter->bi_size = backup_bi.bi_size;
ret = split_range(bc, &br, bi_iter);
if (ret)
return ret;
if (range_size(br) != range_size(backup_br)) {
WARN_ON(1);
return -EIO;
}
/* Copy data over */
ret = copy_data(bc, br, backup_br, record_checksum ? &checksum : NULL);
if (ret)
return ret;
/* Add an entry to the log */
log_source = br->sector;
log_dest = backup_br->sector;
log_size = range_size(br);
/*
* Set the types. Note that since set_type also amalgamates ranges
* we have to set both sectors to their final type before calling
* set_type on either
*/
original_type = br->type;
sector0 = backup_br->sector;
bc->trims_total -= range_size(backup_br);
if (backup_br->type == TRIMMED)
list_del(&backup_br->trimmed_list);
backup_br->type = br->type == SECTOR0_CURRENT ? SECTOR0_CURRENT
: BACKUP;
br->type = CHANGED;
set_type(bc, &backup_br, backup_br->type);
/*
* Add the log entry after marking the backup sector, since adding a log
* can cause another backup
*/
ret = add_log_entry(bc, log_source, log_dest, log_size, checksum);
if (ret) {
br->type = original_type;
return ret;
}
/* Now it is safe to mark this backup successful */
if (original_type == SECTOR0_CURRENT)
bc->log_sector->sector0 = sector0;
set_type(bc, &br, br->type);
return ret;
}
static int prepare_free_range(struct bow_context *bc, struct bow_range *br,
struct bvec_iter *bi_iter)
{
int ret;
ret = split_range(bc, &br, bi_iter);
if (ret)
return ret;
set_type(bc, &br, CHANGED);
return 0;
}
static int prepare_changed_range(struct bow_context *bc, struct bow_range *br,
struct bvec_iter *bi_iter)
{
/* Nothing to do ... */
return 0;
}
static int prepare_one_range(struct bow_context *bc,
struct bvec_iter *bi_iter)
{
struct bow_range *br = find_first_overlapping_range(&bc->ranges,
bi_iter);
switch (br->type) {
case CHANGED:
return prepare_changed_range(bc, br, bi_iter);
case TRIMMED:
return prepare_free_range(bc, br, bi_iter);
case UNCHANGED:
case BACKUP:
return prepare_unchanged_range(bc, br, bi_iter, true);
/*
* We cannot track the checksum for the active sector0, since it
* may change at any point.
*/
case SECTOR0_CURRENT:
return prepare_unchanged_range(bc, br, bi_iter, false);
case SECTOR0: /* Handled in the dm_bow_map */
case TOP: /* Illegal - top is off the end of the device */
default:
WARN_ON(1);
return -EIO;
}
}
struct write_work {
struct work_struct work;
struct bow_context *bc;
struct bio *bio;
};
static void bow_write(struct work_struct *work)
{
struct write_work *ww = container_of(work, struct write_work, work);
struct bow_context *bc = ww->bc;
struct bio *bio = ww->bio;
struct bvec_iter bi_iter = bio->bi_iter;
int ret = 0;
kfree(ww);
mutex_lock(&bc->ranges_lock);
do {
ret = prepare_one_range(bc, &bi_iter);
bi_iter.bi_sector += bi_iter.bi_size / SECTOR_SIZE;
bi_iter.bi_size = bio->bi_iter.bi_size
- (bi_iter.bi_sector - bio->bi_iter.bi_sector)
* SECTOR_SIZE;
} while (!ret && bi_iter.bi_size);
mutex_unlock(&bc->ranges_lock);
if (!ret) {
bio->bi_bdev = bc->dev->bdev;
submit_bio(bio);
} else {
DMERR("Write failure with error %d", -ret);
bio->bi_error = ret;
bio_endio(bio);
}
}
static int queue_write(struct bow_context *bc, struct bio *bio)
{
struct write_work *ww = kmalloc(sizeof(*ww), GFP_NOIO | __GFP_NORETRY
| __GFP_NOMEMALLOC | __GFP_NOWARN);
if (!ww) {
DMERR("Failed to allocate write_work");
return -ENOMEM;
}
INIT_WORK(&ww->work, bow_write);
ww->bc = bc;
ww->bio = bio;
queue_work(bc->workqueue, &ww->work);
return DM_MAPIO_SUBMITTED;
}
static int handle_sector0(struct bow_context *bc, struct bio *bio)
{
int ret = DM_MAPIO_REMAPPED;
if (bio->bi_iter.bi_size > bc->block_size) {
struct bio * split = bio_split(bio,
bc->block_size >> SECTOR_SHIFT,
GFP_NOIO,
fs_bio_set);
if (!split) {
DMERR("Failed to split bio");
bio->bi_error = -ENOMEM;
bio_endio(bio);
return DM_MAPIO_SUBMITTED;
}
bio_chain(split, bio);
split->bi_iter.bi_sector = bc->log_sector->sector0;
split->bi_bdev = bc->dev->bdev;
submit_bio(split);
if (bio_data_dir(bio) == WRITE)
ret = queue_write(bc, bio);
} else {
bio->bi_iter.bi_sector = bc->log_sector->sector0;
}
return ret;
}
static int add_trim(struct bow_context *bc, struct bio *bio)
{
struct bow_range *br;
struct bvec_iter bi_iter = bio->bi_iter;
DMDEBUG("add_trim: %llu, %u",
(unsigned long long)bio->bi_iter.bi_sector,
bio->bi_iter.bi_size);
do {
br = find_first_overlapping_range(&bc->ranges, &bi_iter);
switch (br->type) {
case UNCHANGED:
if (!split_range(bc, &br, &bi_iter))
set_type(bc, &br, TRIMMED);
break;
case TRIMMED:
/* Nothing to do */
break;
default:
/* No other case is legal in TRIM state */
WARN_ON(true);
break;
}
bi_iter.bi_sector += bi_iter.bi_size / SECTOR_SIZE;
bi_iter.bi_size = bio->bi_iter.bi_size
- (bi_iter.bi_sector - bio->bi_iter.bi_sector)
* SECTOR_SIZE;
} while (bi_iter.bi_size);
bio_endio(bio);
return DM_MAPIO_SUBMITTED;
}
static int remove_trim(struct bow_context *bc, struct bio *bio)
{
struct bow_range *br;
struct bvec_iter bi_iter = bio->bi_iter;
DMDEBUG("remove_trim: %llu, %u",
(unsigned long long)bio->bi_iter.bi_sector,
bio->bi_iter.bi_size);
do {
br = find_first_overlapping_range(&bc->ranges, &bi_iter);
switch (br->type) {
case UNCHANGED:
/* Nothing to do */
break;
case TRIMMED:
if (!split_range(bc, &br, &bi_iter))
set_type(bc, &br, UNCHANGED);
break;
default:
/* No other case is legal in TRIM state */
WARN_ON(true);
break;
}
bi_iter.bi_sector += bi_iter.bi_size / SECTOR_SIZE;
bi_iter.bi_size = bio->bi_iter.bi_size
- (bi_iter.bi_sector - bio->bi_iter.bi_sector)
* SECTOR_SIZE;
} while (bi_iter.bi_size);
return DM_MAPIO_REMAPPED;
}
int remap_unless_illegal_trim(struct bow_context *bc, struct bio *bio)
{
if (!bc->forward_trims && bio_op(bio) == REQ_OP_DISCARD) {
bio->bi_error = -EINVAL;
bio_endio(bio);
return DM_MAPIO_SUBMITTED;
} else {
bio->bi_bdev = bc->dev->bdev;
return DM_MAPIO_REMAPPED;
}
}
/****** dm interface ******/
static int dm_bow_map(struct dm_target *ti, struct bio *bio)
{
int ret = DM_MAPIO_REMAPPED;
struct bow_context *bc = ti->private;
if (likely(bc->state.counter == COMMITTED))
return remap_unless_illegal_trim(bc, bio);
if (bio_data_dir(bio) == READ && bio->bi_iter.bi_sector != 0)
return remap_unless_illegal_trim(bc, bio);
if (atomic_read(&bc->state) != COMMITTED) {
enum state state;
mutex_lock(&bc->ranges_lock);
state = atomic_read(&bc->state);
if (state == TRIM) {
if (bio_op(bio) == REQ_OP_DISCARD)
ret = add_trim(bc, bio);
else if (bio_data_dir(bio) == WRITE)
ret = remove_trim(bc, bio);
else
/* pass-through */;
} else if (state == CHECKPOINT) {
if (bio->bi_iter.bi_sector == 0)
ret = handle_sector0(bc, bio);
else if (bio_data_dir(bio) == WRITE)
ret = queue_write(bc, bio);
else
/* pass-through */;
} else {
/* pass-through */
}
mutex_unlock(&bc->ranges_lock);
}
if (ret == DM_MAPIO_REMAPPED)
return remap_unless_illegal_trim(bc, bio);
return ret;
}
static void dm_bow_tablestatus(struct dm_target *ti, char *result,
unsigned int maxlen)
{
char *end = result + maxlen;
struct bow_context *bc = ti->private;
struct rb_node *i;
int trimmed_list_length = 0;
int trimmed_range_count = 0;
struct bow_range *br;
if (maxlen == 0)
return;
result[0] = 0;
list_for_each_entry(br, &bc->trimmed_list, trimmed_list)
if (br->type == TRIMMED) {
++trimmed_list_length;
} else {
scnprintf(result, end - result,
"ERROR: non-trimmed entry in trimmed_list");
return;
}
if (!rb_first(&bc->ranges)) {
scnprintf(result, end - result, "ERROR: Empty ranges");
return;
}
if (container_of(rb_first(&bc->ranges), struct bow_range, node)
->sector) {
scnprintf(result, end - result,
"ERROR: First range does not start at sector 0");
return;
}
for (i = rb_first(&bc->ranges); i; i = rb_next(i)) {
struct bow_range *br = container_of(i, struct bow_range, node);
result += scnprintf(result, end - result, "%s: %llu",
readable_type[br->type],
(unsigned long long)br->sector);
if (result >= end)
return;
result += scnprintf(result, end - result, "\n");
if (result >= end)
return;
if (br->type == TRIMMED)
++trimmed_range_count;
if (br->type == TOP) {
if (br->sector != ti->len) {
scnprintf(result, end - result,
"\nERROR: Top sector is incorrect");
}
if (&br->node != rb_last(&bc->ranges)) {
scnprintf(result, end - result,
"\nERROR: Top sector is not last");
}
break;
}
if (!rb_next(i)) {
scnprintf(result, end - result,
"\nERROR: Last range not of type TOP");
return;
}
if (br->sector > range_top(br)) {
scnprintf(result, end - result,
"\nERROR: sectors out of order");
return;
}
}
if (trimmed_range_count != trimmed_list_length)
scnprintf(result, end - result,
"\nERROR: not all trimmed ranges in trimmed list");
}
static void dm_bow_status(struct dm_target *ti, status_type_t type,
unsigned int status_flags, char *result,
unsigned int maxlen)
{
switch (type) {
case STATUSTYPE_INFO:
if (maxlen)
result[0] = 0;
break;
case STATUSTYPE_TABLE:
dm_bow_tablestatus(ti, result, maxlen);
break;
}
}
int dm_bow_prepare_ioctl(struct dm_target *ti, struct block_device **bdev,
fmode_t *mode)
{
struct bow_context *bc = ti->private;
struct dm_dev *dev = bc->dev;
*bdev = dev->bdev;
/* Only pass ioctls through if the device sizes match exactly. */
return ti->len != i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
}
static int dm_bow_iterate_devices(struct dm_target *ti,
iterate_devices_callout_fn fn, void *data)
{
struct bow_context *bc = ti->private;
return fn(ti, bc->dev, 0, ti->len, data);
}
static struct target_type bow_target = {
.name = "bow",
.version = {1, 1, 1},
.module = THIS_MODULE,
.ctr = dm_bow_ctr,
.dtr = dm_bow_dtr,
.map = dm_bow_map,
.status = dm_bow_status,
.prepare_ioctl = dm_bow_prepare_ioctl,
.iterate_devices = dm_bow_iterate_devices,
};
int __init dm_bow_init(void)
{
int r = dm_register_target(&bow_target);
if (r < 0)
DMERR("registering bow failed %d", r);
return r;
}
void dm_bow_exit(void)
{
dm_unregister_target(&bow_target);
}
MODULE_LICENSE("GPL");
module_init(dm_bow_init);
module_exit(dm_bow_exit);