| #include <linux/cgroup.h> |
| #include <linux/err.h> |
| #include <linux/kernel.h> |
| #include <linux/percpu.h> |
| #include <linux/printk.h> |
| #include <linux/rcupdate.h> |
| #include <linux/slab.h> |
| |
| #include <trace/events/sched.h> |
| |
| #include "sched.h" |
| #include "tune.h" |
| |
| #ifdef CONFIG_CGROUP_SCHEDTUNE |
| bool schedtune_initialized = false; |
| #endif |
| |
| unsigned int sysctl_sched_cfs_boost __read_mostly; |
| |
| extern struct reciprocal_value schedtune_spc_rdiv; |
| struct target_nrg schedtune_target_nrg; |
| |
| /* Performance Boost region (B) threshold params */ |
| static int perf_boost_idx; |
| |
| /* Performance Constraint region (C) threshold params */ |
| static int perf_constrain_idx; |
| |
| /** |
| * Performance-Energy (P-E) Space thresholds constants |
| */ |
| struct threshold_params { |
| int nrg_gain; |
| int cap_gain; |
| }; |
| |
| /* |
| * System specific P-E space thresholds constants |
| */ |
| static struct threshold_params |
| threshold_gains[] = { |
| { 0, 5 }, /* < 10% */ |
| { 1, 5 }, /* < 20% */ |
| { 2, 5 }, /* < 30% */ |
| { 3, 5 }, /* < 40% */ |
| { 4, 5 }, /* < 50% */ |
| { 5, 4 }, /* < 60% */ |
| { 5, 3 }, /* < 70% */ |
| { 5, 2 }, /* < 80% */ |
| { 5, 1 }, /* < 90% */ |
| { 5, 0 } /* <= 100% */ |
| }; |
| |
| static int |
| __schedtune_accept_deltas(int nrg_delta, int cap_delta, |
| int perf_boost_idx, int perf_constrain_idx) |
| { |
| int payoff = -INT_MAX; |
| int gain_idx = -1; |
| |
| /* Performance Boost (B) region */ |
| if (nrg_delta >= 0 && cap_delta > 0) |
| gain_idx = perf_boost_idx; |
| /* Performance Constraint (C) region */ |
| else if (nrg_delta < 0 && cap_delta <= 0) |
| gain_idx = perf_constrain_idx; |
| |
| /* Default: reject schedule candidate */ |
| if (gain_idx == -1) |
| return payoff; |
| |
| /* |
| * Evaluate "Performance Boost" vs "Energy Increase" |
| * |
| * - Performance Boost (B) region |
| * |
| * Condition: nrg_delta > 0 && cap_delta > 0 |
| * Payoff criteria: |
| * cap_gain / nrg_gain < cap_delta / nrg_delta = |
| * cap_gain * nrg_delta < cap_delta * nrg_gain |
| * Note that since both nrg_gain and nrg_delta are positive, the |
| * inequality does not change. Thus: |
| * |
| * payoff = (cap_delta * nrg_gain) - (cap_gain * nrg_delta) |
| * |
| * - Performance Constraint (C) region |
| * |
| * Condition: nrg_delta < 0 && cap_delta < 0 |
| * payoff criteria: |
| * cap_gain / nrg_gain > cap_delta / nrg_delta = |
| * cap_gain * nrg_delta < cap_delta * nrg_gain |
| * Note that since nrg_gain > 0 while nrg_delta < 0, the |
| * inequality change. Thus: |
| * |
| * payoff = (cap_delta * nrg_gain) - (cap_gain * nrg_delta) |
| * |
| * This means that, in case of same positive defined {cap,nrg}_gain |
| * for both the B and C regions, we can use the same payoff formula |
| * where a positive value represents the accept condition. |
| */ |
| payoff = cap_delta * threshold_gains[gain_idx].nrg_gain; |
| payoff -= nrg_delta * threshold_gains[gain_idx].cap_gain; |
| |
| return payoff; |
| } |
| |
| #ifdef CONFIG_CGROUP_SCHEDTUNE |
| |
| /* |
| * EAS scheduler tunables for task groups. |
| * |
| * When CGroup support is enabled, we have to synchronize two different |
| * paths: |
| * - slow path: where CGroups are created/updated/removed |
| * - fast path: where tasks in a CGroups are accounted |
| * |
| * The slow path tracks (a limited number of) CGroups and maps each on a |
| * "boost_group" index. The fastpath accounts tasks currently RUNNABLE on each |
| * "boost_group". |
| * |
| * Once a new CGroup is created, a boost group idx is assigned and the |
| * corresponding "boost_group" marked as valid on each CPU. |
| * Once a CGroup is release, the corresponding "boost_group" is marked as |
| * invalid on each CPU. The CPU boost value (boost_max) is aggregated by |
| * considering only valid boost_groups with a non null tasks counter. |
| * |
| * .:: Locking strategy |
| * |
| * The fast path uses a spin lock for each CPU boost_group which protects the |
| * tasks counter. |
| * |
| * The "valid" and "boost" values of each CPU boost_group is instead |
| * protected by the RCU lock provided by the CGroups callbacks. Thus, only the |
| * slow path can access and modify the boost_group attribtues of each CPU. |
| * The fast path will catch up the most updated values at the next scheduling |
| * event (i.e. enqueue/dequeue). |
| * |
| * | |
| * SLOW PATH | FAST PATH |
| * CGroup add/update/remove | Scheduler enqueue/dequeue events |
| * | |
| * | |
| * | DEFINE_PER_CPU(struct boost_groups) |
| * | +--------------+----+---+----+----+ |
| * | | idle | | | | | |
| * | | boost_max | | | | | |
| * | +---->lock | | | | | |
| * struct schedtune allocated_groups | | | group[ ] | | | | | |
| * +------------------------------+ +-------+ | | +--+---------+-+----+---+----+----+ |
| * | idx | | | | | | valid | |
| * | boots / prefer_idle | | | | | | boost | |
| * | perf_{boost/constraints}_idx | <---------+(*) | | | | tasks | <------------+ |
| * | css | +-------+ | | +---------+ | |
| * +-+----------------------------+ | | | | | | | |
| * ^ | | | | | | | |
| * | +-------+ | | +---------+ | |
| * | | | | | | | | |
| * | | | | | | | | |
| * | +-------+ | | +---------+ | |
| * | zmalloc | | | | | | | |
| * | | | | | | | | |
| * | +-------+ | | +---------+ | |
| * + BOOSTGROUPS_COUNT | | BOOSTGROUPS_COUNT | |
| * schedtune_boostgroup_init() | + | |
| * | schedtune_{en,de}queue_task() | |
| * | + |
| * | schedtune_tasks_update() |
| * | |
| */ |
| |
| /* SchdTune tunables for a group of tasks */ |
| struct schedtune { |
| /* SchedTune CGroup subsystem */ |
| struct cgroup_subsys_state css; |
| |
| /* Boost group allocated ID */ |
| int idx; |
| |
| /* Boost value for tasks on that SchedTune CGroup */ |
| int boost; |
| |
| /* Performance Boost (B) region threshold params */ |
| int perf_boost_idx; |
| |
| /* Performance Constraint (C) region threshold params */ |
| int perf_constrain_idx; |
| |
| /* Hint to bias scheduling of tasks on that SchedTune CGroup |
| * towards idle CPUs */ |
| int prefer_idle; |
| }; |
| |
| static inline struct schedtune *css_st(struct cgroup_subsys_state *css) |
| { |
| return css ? container_of(css, struct schedtune, css) : NULL; |
| } |
| |
| static inline struct schedtune *task_schedtune(struct task_struct *tsk) |
| { |
| return css_st(task_css(tsk, schedtune_cgrp_id)); |
| } |
| |
| static inline struct schedtune *parent_st(struct schedtune *st) |
| { |
| return css_st(st->css.parent); |
| } |
| |
| /* |
| * SchedTune root control group |
| * The root control group is used to defined a system-wide boosting tuning, |
| * which is applied to all tasks in the system. |
| * Task specific boost tuning could be specified by creating and |
| * configuring a child control group under the root one. |
| * By default, system-wide boosting is disabled, i.e. no boosting is applied |
| * to tasks which are not into a child control group. |
| */ |
| static struct schedtune |
| root_schedtune = { |
| .boost = 0, |
| .perf_boost_idx = 0, |
| .perf_constrain_idx = 0, |
| .prefer_idle = 0, |
| }; |
| |
| int |
| schedtune_accept_deltas(int nrg_delta, int cap_delta, |
| struct task_struct *task) |
| { |
| struct schedtune *ct; |
| int perf_boost_idx; |
| int perf_constrain_idx; |
| |
| /* Optimal (O) region */ |
| if (nrg_delta < 0 && cap_delta > 0) { |
| trace_sched_tune_filter(nrg_delta, cap_delta, 0, 0, 1, 0); |
| return INT_MAX; |
| } |
| |
| /* Suboptimal (S) region */ |
| if (nrg_delta > 0 && cap_delta < 0) { |
| trace_sched_tune_filter(nrg_delta, cap_delta, 0, 0, -1, 5); |
| return -INT_MAX; |
| } |
| |
| /* Get task specific perf Boost/Constraints indexes */ |
| rcu_read_lock(); |
| ct = task_schedtune(task); |
| perf_boost_idx = ct->perf_boost_idx; |
| perf_constrain_idx = ct->perf_constrain_idx; |
| rcu_read_unlock(); |
| |
| return __schedtune_accept_deltas(nrg_delta, cap_delta, |
| perf_boost_idx, perf_constrain_idx); |
| } |
| |
| /* |
| * Maximum number of boost groups to support |
| * When per-task boosting is used we still allow only limited number of |
| * boost groups for two main reasons: |
| * 1. on a real system we usually have only few classes of workloads which |
| * make sense to boost with different values (e.g. background vs foreground |
| * tasks, interactive vs low-priority tasks) |
| * 2. a limited number allows for a simpler and more memory/time efficient |
| * implementation especially for the computation of the per-CPU boost |
| * value |
| */ |
| #define BOOSTGROUPS_COUNT 5 |
| |
| /* Array of configured boostgroups */ |
| static struct schedtune *allocated_group[BOOSTGROUPS_COUNT] = { |
| &root_schedtune, |
| NULL, |
| }; |
| |
| /* SchedTune boost groups |
| * Keep track of all the boost groups which impact on CPU, for example when a |
| * CPU has two RUNNABLE tasks belonging to two different boost groups and thus |
| * likely with different boost values. |
| * Since on each system we expect only a limited number of boost groups, here |
| * we use a simple array to keep track of the metrics required to compute the |
| * maximum per-CPU boosting value. |
| */ |
| struct boost_groups { |
| /* Maximum boost value for all RUNNABLE tasks on a CPU */ |
| int boost_max; |
| struct { |
| /* True when this boost group maps an actual cgroup */ |
| bool valid; |
| /* The boost for tasks on that boost group */ |
| int boost; |
| /* Count of RUNNABLE tasks on that boost group */ |
| unsigned tasks; |
| } group[BOOSTGROUPS_COUNT]; |
| /* CPU's boost group locking */ |
| raw_spinlock_t lock; |
| }; |
| |
| /* Boost groups affecting each CPU in the system */ |
| DEFINE_PER_CPU(struct boost_groups, cpu_boost_groups); |
| |
| static void |
| schedtune_cpu_update(int cpu) |
| { |
| struct boost_groups *bg; |
| int boost_max; |
| int idx; |
| |
| bg = &per_cpu(cpu_boost_groups, cpu); |
| |
| /* The root boost group is always active */ |
| boost_max = bg->group[0].boost; |
| for (idx = 1; idx < BOOSTGROUPS_COUNT; ++idx) { |
| |
| /* Ignore non boostgroups not mapping a cgroup */ |
| if (!bg->group[idx].valid) |
| continue; |
| |
| /* |
| * A boost group affects a CPU only if it has |
| * RUNNABLE tasks on that CPU |
| */ |
| if (bg->group[idx].tasks == 0) |
| continue; |
| |
| boost_max = max(boost_max, bg->group[idx].boost); |
| } |
| |
| /* Ensures boost_max is non-negative when all cgroup boost values |
| * are neagtive. Avoids under-accounting of cpu capacity which may cause |
| * task stacking and frequency spikes.*/ |
| boost_max = max(boost_max, 0); |
| bg->boost_max = boost_max; |
| } |
| |
| static int |
| schedtune_boostgroup_update(int idx, int boost) |
| { |
| struct boost_groups *bg; |
| int cur_boost_max; |
| int old_boost; |
| int cpu; |
| |
| /* Update per CPU boost groups */ |
| for_each_possible_cpu(cpu) { |
| bg = &per_cpu(cpu_boost_groups, cpu); |
| |
| /* CGroups are never associated to non active cgroups */ |
| BUG_ON(!bg->group[idx].valid); |
| |
| /* |
| * Keep track of current boost values to compute the per CPU |
| * maximum only when it has been affected by the new value of |
| * the updated boost group |
| */ |
| cur_boost_max = bg->boost_max; |
| old_boost = bg->group[idx].boost; |
| |
| /* Update the boost value of this boost group */ |
| bg->group[idx].boost = boost; |
| |
| /* Check if this update increase current max */ |
| if (boost > cur_boost_max && bg->group[idx].tasks) { |
| bg->boost_max = boost; |
| trace_sched_tune_boostgroup_update(cpu, 1, bg->boost_max); |
| continue; |
| } |
| |
| /* Check if this update has decreased current max */ |
| if (cur_boost_max == old_boost && old_boost > boost) { |
| schedtune_cpu_update(cpu); |
| trace_sched_tune_boostgroup_update(cpu, -1, bg->boost_max); |
| continue; |
| } |
| |
| trace_sched_tune_boostgroup_update(cpu, 0, bg->boost_max); |
| } |
| |
| return 0; |
| } |
| |
| #define ENQUEUE_TASK 1 |
| #define DEQUEUE_TASK -1 |
| |
| static inline void |
| schedtune_tasks_update(struct task_struct *p, int cpu, int idx, int task_count) |
| { |
| struct boost_groups *bg = &per_cpu(cpu_boost_groups, cpu); |
| int tasks = bg->group[idx].tasks + task_count; |
| |
| /* Update boosted tasks count while avoiding to make it negative */ |
| bg->group[idx].tasks = max(0, tasks); |
| |
| trace_sched_tune_tasks_update(p, cpu, tasks, idx, |
| bg->group[idx].boost, bg->boost_max); |
| |
| /* Boost group activation or deactivation on that RQ */ |
| if (tasks == 1 || tasks == 0) |
| schedtune_cpu_update(cpu); |
| } |
| |
| /* |
| * NOTE: This function must be called while holding the lock on the CPU RQ |
| */ |
| void schedtune_enqueue_task(struct task_struct *p, int cpu) |
| { |
| struct boost_groups *bg = &per_cpu(cpu_boost_groups, cpu); |
| unsigned long irq_flags; |
| struct schedtune *st; |
| int idx; |
| |
| if (!unlikely(schedtune_initialized)) |
| return; |
| |
| /* |
| * When a task is marked PF_EXITING by do_exit() it's going to be |
| * dequeued and enqueued multiple times in the exit path. |
| * Thus we avoid any further update, since we do not want to change |
| * CPU boosting while the task is exiting. |
| */ |
| if (p->flags & PF_EXITING) |
| return; |
| |
| /* |
| * Boost group accouting is protected by a per-cpu lock and requires |
| * interrupt to be disabled to avoid race conditions for example on |
| * do_exit()::cgroup_exit() and task migration. |
| */ |
| raw_spin_lock_irqsave(&bg->lock, irq_flags); |
| rcu_read_lock(); |
| |
| st = task_schedtune(p); |
| idx = st->idx; |
| |
| schedtune_tasks_update(p, cpu, idx, ENQUEUE_TASK); |
| |
| rcu_read_unlock(); |
| raw_spin_unlock_irqrestore(&bg->lock, irq_flags); |
| } |
| |
| int schedtune_can_attach(struct cgroup_taskset *tset) |
| { |
| struct task_struct *task; |
| struct cgroup_subsys_state *css; |
| struct boost_groups *bg; |
| struct rq_flags irq_flags; |
| unsigned int cpu; |
| struct rq *rq; |
| int src_bg; /* Source boost group index */ |
| int dst_bg; /* Destination boost group index */ |
| int tasks; |
| |
| if (!unlikely(schedtune_initialized)) |
| return 0; |
| |
| |
| cgroup_taskset_for_each(task, css, tset) { |
| |
| /* |
| * Lock the CPU's RQ the task is enqueued to avoid race |
| * conditions with migration code while the task is being |
| * accounted |
| */ |
| rq = lock_rq_of(task, &irq_flags); |
| |
| if (!task->on_rq) { |
| unlock_rq_of(rq, task, &irq_flags); |
| continue; |
| } |
| |
| /* |
| * Boost group accouting is protected by a per-cpu lock and requires |
| * interrupt to be disabled to avoid race conditions on... |
| */ |
| cpu = cpu_of(rq); |
| bg = &per_cpu(cpu_boost_groups, cpu); |
| raw_spin_lock(&bg->lock); |
| |
| dst_bg = css_st(css)->idx; |
| src_bg = task_schedtune(task)->idx; |
| |
| /* |
| * Current task is not changing boostgroup, which can |
| * happen when the new hierarchy is in use. |
| */ |
| if (unlikely(dst_bg == src_bg)) { |
| raw_spin_unlock(&bg->lock); |
| unlock_rq_of(rq, task, &irq_flags); |
| continue; |
| } |
| |
| /* |
| * This is the case of a RUNNABLE task which is switching its |
| * current boost group. |
| */ |
| |
| /* Move task from src to dst boost group */ |
| tasks = bg->group[src_bg].tasks - 1; |
| bg->group[src_bg].tasks = max(0, tasks); |
| bg->group[dst_bg].tasks += 1; |
| |
| raw_spin_unlock(&bg->lock); |
| unlock_rq_of(rq, task, &irq_flags); |
| |
| /* Update CPU boost group */ |
| if (bg->group[src_bg].tasks == 0 || bg->group[dst_bg].tasks == 1) |
| schedtune_cpu_update(task_cpu(task)); |
| |
| } |
| |
| return 0; |
| } |
| |
| void schedtune_cancel_attach(struct cgroup_taskset *tset) |
| { |
| /* This can happen only if SchedTune controller is mounted with |
| * other hierarchies ane one of them fails. Since usually SchedTune is |
| * mouted on its own hierarcy, for the time being we do not implement |
| * a proper rollback mechanism */ |
| WARN(1, "SchedTune cancel attach not implemented"); |
| } |
| |
| /* |
| * NOTE: This function must be called while holding the lock on the CPU RQ |
| */ |
| void schedtune_dequeue_task(struct task_struct *p, int cpu) |
| { |
| struct boost_groups *bg = &per_cpu(cpu_boost_groups, cpu); |
| unsigned long irq_flags; |
| struct schedtune *st; |
| int idx; |
| |
| if (!unlikely(schedtune_initialized)) |
| return; |
| |
| /* |
| * When a task is marked PF_EXITING by do_exit() it's going to be |
| * dequeued and enqueued multiple times in the exit path. |
| * Thus we avoid any further update, since we do not want to change |
| * CPU boosting while the task is exiting. |
| * The last dequeue is already enforce by the do_exit() code path |
| * via schedtune_exit_task(). |
| */ |
| if (p->flags & PF_EXITING) |
| return; |
| |
| /* |
| * Boost group accouting is protected by a per-cpu lock and requires |
| * interrupt to be disabled to avoid race conditions on... |
| */ |
| raw_spin_lock_irqsave(&bg->lock, irq_flags); |
| rcu_read_lock(); |
| |
| st = task_schedtune(p); |
| idx = st->idx; |
| |
| schedtune_tasks_update(p, cpu, idx, DEQUEUE_TASK); |
| |
| rcu_read_unlock(); |
| raw_spin_unlock_irqrestore(&bg->lock, irq_flags); |
| } |
| |
| void schedtune_exit_task(struct task_struct *tsk) |
| { |
| struct schedtune *st; |
| struct rq_flags irq_flags; |
| unsigned int cpu; |
| struct rq *rq; |
| int idx; |
| |
| if (!unlikely(schedtune_initialized)) |
| return; |
| |
| rq = lock_rq_of(tsk, &irq_flags); |
| rcu_read_lock(); |
| |
| cpu = cpu_of(rq); |
| st = task_schedtune(tsk); |
| idx = st->idx; |
| schedtune_tasks_update(tsk, cpu, idx, DEQUEUE_TASK); |
| |
| rcu_read_unlock(); |
| unlock_rq_of(rq, tsk, &irq_flags); |
| } |
| |
| int schedtune_cpu_boost(int cpu) |
| { |
| struct boost_groups *bg; |
| |
| bg = &per_cpu(cpu_boost_groups, cpu); |
| return bg->boost_max; |
| } |
| |
| int schedtune_task_boost(struct task_struct *p) |
| { |
| struct schedtune *st; |
| int task_boost; |
| |
| if (!unlikely(schedtune_initialized)) |
| return 0; |
| |
| /* Get task boost value */ |
| rcu_read_lock(); |
| st = task_schedtune(p); |
| task_boost = st->boost; |
| rcu_read_unlock(); |
| |
| return task_boost; |
| } |
| |
| int schedtune_prefer_idle(struct task_struct *p) |
| { |
| struct schedtune *st; |
| int prefer_idle; |
| |
| if (!unlikely(schedtune_initialized)) |
| return 0; |
| |
| /* Get prefer_idle value */ |
| rcu_read_lock(); |
| st = task_schedtune(p); |
| prefer_idle = st->prefer_idle; |
| rcu_read_unlock(); |
| |
| return prefer_idle; |
| } |
| |
| static u64 |
| prefer_idle_read(struct cgroup_subsys_state *css, struct cftype *cft) |
| { |
| struct schedtune *st = css_st(css); |
| |
| return st->prefer_idle; |
| } |
| |
| static int |
| prefer_idle_write(struct cgroup_subsys_state *css, struct cftype *cft, |
| u64 prefer_idle) |
| { |
| struct schedtune *st = css_st(css); |
| st->prefer_idle = !!prefer_idle; |
| |
| return 0; |
| } |
| |
| static s64 |
| boost_read(struct cgroup_subsys_state *css, struct cftype *cft) |
| { |
| struct schedtune *st = css_st(css); |
| |
| return st->boost; |
| } |
| |
| static int |
| boost_write(struct cgroup_subsys_state *css, struct cftype *cft, |
| s64 boost) |
| { |
| struct schedtune *st = css_st(css); |
| unsigned threshold_idx; |
| int boost_pct; |
| |
| if (boost < -100 || boost > 100) |
| return -EINVAL; |
| boost_pct = boost; |
| |
| /* |
| * Update threshold params for Performance Boost (B) |
| * and Performance Constraint (C) regions. |
| * The current implementatio uses the same cuts for both |
| * B and C regions. |
| */ |
| threshold_idx = clamp(boost_pct, 0, 99) / 10; |
| st->perf_boost_idx = threshold_idx; |
| st->perf_constrain_idx = threshold_idx; |
| |
| st->boost = boost; |
| if (css == &root_schedtune.css) { |
| sysctl_sched_cfs_boost = boost; |
| perf_boost_idx = threshold_idx; |
| perf_constrain_idx = threshold_idx; |
| } |
| |
| /* Update CPU boost */ |
| schedtune_boostgroup_update(st->idx, st->boost); |
| |
| trace_sched_tune_config(st->boost); |
| |
| return 0; |
| } |
| |
| static struct cftype files[] = { |
| { |
| .name = "boost", |
| .read_s64 = boost_read, |
| .write_s64 = boost_write, |
| }, |
| { |
| .name = "prefer_idle", |
| .read_u64 = prefer_idle_read, |
| .write_u64 = prefer_idle_write, |
| }, |
| { } /* terminate */ |
| }; |
| |
| static void |
| schedtune_boostgroup_init(struct schedtune *st, int idx) |
| { |
| struct boost_groups *bg; |
| int cpu; |
| |
| /* Initialize per CPUs boost group support */ |
| for_each_possible_cpu(cpu) { |
| bg = &per_cpu(cpu_boost_groups, cpu); |
| bg->group[idx].boost = 0; |
| bg->group[idx].valid = true; |
| } |
| |
| /* Keep track of allocated boost groups */ |
| allocated_group[idx] = st; |
| st->idx = idx; |
| } |
| |
| static struct cgroup_subsys_state * |
| schedtune_css_alloc(struct cgroup_subsys_state *parent_css) |
| { |
| struct schedtune *st; |
| int idx; |
| |
| if (!parent_css) |
| return &root_schedtune.css; |
| |
| /* Allow only single level hierachies */ |
| if (parent_css != &root_schedtune.css) { |
| pr_err("Nested SchedTune boosting groups not allowed\n"); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| /* Allow only a limited number of boosting groups */ |
| for (idx = 1; idx < BOOSTGROUPS_COUNT; ++idx) |
| if (!allocated_group[idx]) |
| break; |
| if (idx == BOOSTGROUPS_COUNT) { |
| pr_err("Trying to create more than %d SchedTune boosting groups\n", |
| BOOSTGROUPS_COUNT); |
| return ERR_PTR(-ENOSPC); |
| } |
| |
| st = kzalloc(sizeof(*st), GFP_KERNEL); |
| if (!st) |
| goto out; |
| |
| /* Initialize per CPUs boost group support */ |
| schedtune_boostgroup_init(st, idx); |
| |
| return &st->css; |
| |
| out: |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| static void |
| schedtune_boostgroup_release(struct schedtune *st) |
| { |
| struct boost_groups *bg; |
| int cpu; |
| |
| /* Reset per CPUs boost group support */ |
| for_each_possible_cpu(cpu) { |
| bg = &per_cpu(cpu_boost_groups, cpu); |
| bg->group[st->idx].valid = false; |
| bg->group[st->idx].boost = 0; |
| } |
| |
| /* Keep track of allocated boost groups */ |
| allocated_group[st->idx] = NULL; |
| } |
| |
| static void |
| schedtune_css_free(struct cgroup_subsys_state *css) |
| { |
| struct schedtune *st = css_st(css); |
| |
| /* Release per CPUs boost group support */ |
| schedtune_boostgroup_release(st); |
| kfree(st); |
| } |
| |
| struct cgroup_subsys schedtune_cgrp_subsys = { |
| .css_alloc = schedtune_css_alloc, |
| .css_free = schedtune_css_free, |
| .can_attach = schedtune_can_attach, |
| .cancel_attach = schedtune_cancel_attach, |
| .legacy_cftypes = files, |
| .early_init = 1, |
| }; |
| |
| static inline void |
| schedtune_init_cgroups(void) |
| { |
| struct boost_groups *bg; |
| int cpu; |
| |
| /* Initialize the per CPU boost groups */ |
| for_each_possible_cpu(cpu) { |
| bg = &per_cpu(cpu_boost_groups, cpu); |
| memset(bg, 0, sizeof(struct boost_groups)); |
| bg->group[0].valid = true; |
| raw_spin_lock_init(&bg->lock); |
| } |
| |
| pr_info("schedtune: configured to support %d boost groups\n", |
| BOOSTGROUPS_COUNT); |
| |
| schedtune_initialized = true; |
| } |
| |
| #else /* CONFIG_CGROUP_SCHEDTUNE */ |
| |
| int |
| schedtune_accept_deltas(int nrg_delta, int cap_delta, |
| struct task_struct *task) |
| { |
| /* Optimal (O) region */ |
| if (nrg_delta < 0 && cap_delta > 0) { |
| trace_sched_tune_filter(nrg_delta, cap_delta, 0, 0, 1, 0); |
| return INT_MAX; |
| } |
| |
| /* Suboptimal (S) region */ |
| if (nrg_delta > 0 && cap_delta < 0) { |
| trace_sched_tune_filter(nrg_delta, cap_delta, 0, 0, -1, 5); |
| return -INT_MAX; |
| } |
| |
| return __schedtune_accept_deltas(nrg_delta, cap_delta, |
| perf_boost_idx, perf_constrain_idx); |
| } |
| |
| #endif /* CONFIG_CGROUP_SCHEDTUNE */ |
| |
| int |
| sysctl_sched_cfs_boost_handler(struct ctl_table *table, int write, |
| void __user *buffer, size_t *lenp, |
| loff_t *ppos) |
| { |
| int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
| unsigned threshold_idx; |
| int boost_pct; |
| |
| if (ret || !write) |
| return ret; |
| |
| if (sysctl_sched_cfs_boost < -100 || sysctl_sched_cfs_boost > 100) |
| return -EINVAL; |
| boost_pct = sysctl_sched_cfs_boost; |
| |
| /* |
| * Update threshold params for Performance Boost (B) |
| * and Performance Constraint (C) regions. |
| * The current implementatio uses the same cuts for both |
| * B and C regions. |
| */ |
| threshold_idx = clamp(boost_pct, 0, 99) / 10; |
| perf_boost_idx = threshold_idx; |
| perf_constrain_idx = threshold_idx; |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_SCHED_DEBUG |
| static void |
| schedtune_test_nrg(unsigned long delta_pwr) |
| { |
| unsigned long test_delta_pwr; |
| unsigned long test_norm_pwr; |
| int idx; |
| |
| /* |
| * Check normalization constants using some constant system |
| * energy values |
| */ |
| pr_info("schedtune: verify normalization constants...\n"); |
| for (idx = 0; idx < 6; ++idx) { |
| test_delta_pwr = delta_pwr >> idx; |
| |
| /* Normalize on max energy for target platform */ |
| test_norm_pwr = reciprocal_divide( |
| test_delta_pwr << SCHED_CAPACITY_SHIFT, |
| schedtune_target_nrg.rdiv); |
| |
| pr_info("schedtune: max_pwr/2^%d: %4lu => norm_pwr: %5lu\n", |
| idx, test_delta_pwr, test_norm_pwr); |
| } |
| } |
| #else |
| #define schedtune_test_nrg(delta_pwr) |
| #endif |
| |
| /* |
| * Compute the min/max power consumption of a cluster and all its CPUs |
| */ |
| static void |
| schedtune_add_cluster_nrg( |
| struct sched_domain *sd, |
| struct sched_group *sg, |
| struct target_nrg *ste) |
| { |
| struct sched_domain *sd2; |
| struct sched_group *sg2; |
| |
| struct cpumask *cluster_cpus; |
| char str[32]; |
| |
| unsigned long min_pwr; |
| unsigned long max_pwr; |
| int cpu; |
| |
| /* Get Cluster energy using EM data for the first CPU */ |
| cluster_cpus = sched_group_cpus(sg); |
| snprintf(str, 32, "CLUSTER[%*pbl]", |
| cpumask_pr_args(cluster_cpus)); |
| |
| min_pwr = sg->sge->idle_states[sg->sge->nr_idle_states - 1].power; |
| max_pwr = sg->sge->cap_states[sg->sge->nr_cap_states - 1].power; |
| pr_info("schedtune: %-17s min_pwr: %5lu max_pwr: %5lu\n", |
| str, min_pwr, max_pwr); |
| |
| /* |
| * Keep track of this cluster's energy in the computation of the |
| * overall system energy |
| */ |
| ste->min_power += min_pwr; |
| ste->max_power += max_pwr; |
| |
| /* Get CPU energy using EM data for each CPU in the group */ |
| for_each_cpu(cpu, cluster_cpus) { |
| /* Get a SD view for the specific CPU */ |
| for_each_domain(cpu, sd2) { |
| /* Get the CPU group */ |
| sg2 = sd2->groups; |
| min_pwr = sg2->sge->idle_states[sg2->sge->nr_idle_states - 1].power; |
| max_pwr = sg2->sge->cap_states[sg2->sge->nr_cap_states - 1].power; |
| |
| ste->min_power += min_pwr; |
| ste->max_power += max_pwr; |
| |
| snprintf(str, 32, "CPU[%d]", cpu); |
| pr_info("schedtune: %-17s min_pwr: %5lu max_pwr: %5lu\n", |
| str, min_pwr, max_pwr); |
| |
| /* |
| * Assume we have EM data only at the CPU and |
| * the upper CLUSTER level |
| */ |
| BUG_ON(!cpumask_equal( |
| sched_group_cpus(sg), |
| sched_group_cpus(sd2->parent->groups) |
| )); |
| break; |
| } |
| } |
| } |
| |
| /* |
| * Initialize the constants required to compute normalized energy. |
| * The values of these constants depends on the EM data for the specific |
| * target system and topology. |
| * Thus, this function is expected to be called by the code |
| * that bind the EM to the topology information. |
| */ |
| static int |
| schedtune_init(void) |
| { |
| struct target_nrg *ste = &schedtune_target_nrg; |
| unsigned long delta_pwr = 0; |
| struct sched_domain *sd; |
| struct sched_group *sg; |
| |
| pr_info("schedtune: init normalization constants...\n"); |
| ste->max_power = 0; |
| ste->min_power = 0; |
| |
| rcu_read_lock(); |
| |
| /* |
| * When EAS is in use, we always have a pointer to the highest SD |
| * which provides EM data. |
| */ |
| sd = rcu_dereference(per_cpu(sd_ea, cpumask_first(cpu_online_mask))); |
| if (!sd) { |
| pr_info("schedtune: no energy model data\n"); |
| goto nodata; |
| } |
| |
| sg = sd->groups; |
| do { |
| schedtune_add_cluster_nrg(sd, sg, ste); |
| } while (sg = sg->next, sg != sd->groups); |
| |
| rcu_read_unlock(); |
| |
| pr_info("schedtune: %-17s min_pwr: %5lu max_pwr: %5lu\n", |
| "SYSTEM", ste->min_power, ste->max_power); |
| |
| /* Compute normalization constants */ |
| delta_pwr = ste->max_power - ste->min_power; |
| ste->rdiv = reciprocal_value(delta_pwr); |
| pr_info("schedtune: using normalization constants mul: %u sh1: %u sh2: %u\n", |
| ste->rdiv.m, ste->rdiv.sh1, ste->rdiv.sh2); |
| |
| schedtune_test_nrg(delta_pwr); |
| |
| #ifdef CONFIG_CGROUP_SCHEDTUNE |
| schedtune_init_cgroups(); |
| #else |
| pr_info("schedtune: configured to support global boosting only\n"); |
| #endif |
| |
| schedtune_spc_rdiv = reciprocal_value(100); |
| |
| return 0; |
| |
| nodata: |
| pr_warning("schedtune: disabled!\n"); |
| rcu_read_unlock(); |
| return -EINVAL; |
| } |
| postcore_initcall(schedtune_init); |