blob: 21efe92a713523707ede86d2d33725f29f9d04df [file] [log] [blame]
/*
* libata-bmdma.c - helper library for PCI IDE BMDMA
*
* Maintained by: Jeff Garzik <jgarzik@pobox.com>
* Please ALWAYS copy linux-ide@vger.kernel.org
* on emails.
*
* Copyright 2003-2006 Red Hat, Inc. All rights reserved.
* Copyright 2003-2006 Jeff Garzik
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
* libata documentation is available via 'make {ps|pdf}docs',
* as Documentation/DocBook/libata.*
*
* Hardware documentation available from http://www.t13.org/ and
* http://www.sata-io.org/
*
*/
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/libata.h>
#include "libata.h"
/**
* ata_irq_on - Enable interrupts on a port.
* @ap: Port on which interrupts are enabled.
*
* Enable interrupts on a legacy IDE device using MMIO or PIO,
* wait for idle, clear any pending interrupts.
*
* LOCKING:
* Inherited from caller.
*/
u8 ata_irq_on(struct ata_port *ap)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
u8 tmp;
ap->ctl &= ~ATA_NIEN;
ap->last_ctl = ap->ctl;
if (ap->flags & ATA_FLAG_MMIO)
writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
else
outb(ap->ctl, ioaddr->ctl_addr);
tmp = ata_wait_idle(ap);
ap->ops->irq_clear(ap);
return tmp;
}
/**
* ata_tf_load_pio - send taskfile registers to host controller
* @ap: Port to which output is sent
* @tf: ATA taskfile register set
*
* Outputs ATA taskfile to standard ATA host controller.
*
* LOCKING:
* Inherited from caller.
*/
static void ata_tf_load_pio(struct ata_port *ap, const struct ata_taskfile *tf)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
if (tf->ctl != ap->last_ctl) {
outb(tf->ctl, ioaddr->ctl_addr);
ap->last_ctl = tf->ctl;
ata_wait_idle(ap);
}
if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
outb(tf->hob_feature, ioaddr->feature_addr);
outb(tf->hob_nsect, ioaddr->nsect_addr);
outb(tf->hob_lbal, ioaddr->lbal_addr);
outb(tf->hob_lbam, ioaddr->lbam_addr);
outb(tf->hob_lbah, ioaddr->lbah_addr);
VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
tf->hob_feature,
tf->hob_nsect,
tf->hob_lbal,
tf->hob_lbam,
tf->hob_lbah);
}
if (is_addr) {
outb(tf->feature, ioaddr->feature_addr);
outb(tf->nsect, ioaddr->nsect_addr);
outb(tf->lbal, ioaddr->lbal_addr);
outb(tf->lbam, ioaddr->lbam_addr);
outb(tf->lbah, ioaddr->lbah_addr);
VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
tf->feature,
tf->nsect,
tf->lbal,
tf->lbam,
tf->lbah);
}
if (tf->flags & ATA_TFLAG_DEVICE) {
outb(tf->device, ioaddr->device_addr);
VPRINTK("device 0x%X\n", tf->device);
}
ata_wait_idle(ap);
}
/**
* ata_tf_load_mmio - send taskfile registers to host controller
* @ap: Port to which output is sent
* @tf: ATA taskfile register set
*
* Outputs ATA taskfile to standard ATA host controller using MMIO.
*
* LOCKING:
* Inherited from caller.
*/
static void ata_tf_load_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
if (tf->ctl != ap->last_ctl) {
writeb(tf->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
ap->last_ctl = tf->ctl;
ata_wait_idle(ap);
}
if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
writeb(tf->hob_feature, (void __iomem *) ioaddr->feature_addr);
writeb(tf->hob_nsect, (void __iomem *) ioaddr->nsect_addr);
writeb(tf->hob_lbal, (void __iomem *) ioaddr->lbal_addr);
writeb(tf->hob_lbam, (void __iomem *) ioaddr->lbam_addr);
writeb(tf->hob_lbah, (void __iomem *) ioaddr->lbah_addr);
VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
tf->hob_feature,
tf->hob_nsect,
tf->hob_lbal,
tf->hob_lbam,
tf->hob_lbah);
}
if (is_addr) {
writeb(tf->feature, (void __iomem *) ioaddr->feature_addr);
writeb(tf->nsect, (void __iomem *) ioaddr->nsect_addr);
writeb(tf->lbal, (void __iomem *) ioaddr->lbal_addr);
writeb(tf->lbam, (void __iomem *) ioaddr->lbam_addr);
writeb(tf->lbah, (void __iomem *) ioaddr->lbah_addr);
VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
tf->feature,
tf->nsect,
tf->lbal,
tf->lbam,
tf->lbah);
}
if (tf->flags & ATA_TFLAG_DEVICE) {
writeb(tf->device, (void __iomem *) ioaddr->device_addr);
VPRINTK("device 0x%X\n", tf->device);
}
ata_wait_idle(ap);
}
/**
* ata_tf_load - send taskfile registers to host controller
* @ap: Port to which output is sent
* @tf: ATA taskfile register set
*
* Outputs ATA taskfile to standard ATA host controller using MMIO
* or PIO as indicated by the ATA_FLAG_MMIO flag.
* Writes the control, feature, nsect, lbal, lbam, and lbah registers.
* Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect,
* hob_lbal, hob_lbam, and hob_lbah.
*
* This function waits for idle (!BUSY and !DRQ) after writing
* registers. If the control register has a new value, this
* function also waits for idle after writing control and before
* writing the remaining registers.
*
* May be used as the tf_load() entry in ata_port_operations.
*
* LOCKING:
* Inherited from caller.
*/
void ata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
{
if (ap->flags & ATA_FLAG_MMIO)
ata_tf_load_mmio(ap, tf);
else
ata_tf_load_pio(ap, tf);
}
/**
* ata_exec_command_pio - issue ATA command to host controller
* @ap: port to which command is being issued
* @tf: ATA taskfile register set
*
* Issues PIO write to ATA command register, with proper
* synchronization with interrupt handler / other threads.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
static void ata_exec_command_pio(struct ata_port *ap, const struct ata_taskfile *tf)
{
DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
outb(tf->command, ap->ioaddr.command_addr);
ata_pause(ap);
}
/**
* ata_exec_command_mmio - issue ATA command to host controller
* @ap: port to which command is being issued
* @tf: ATA taskfile register set
*
* Issues MMIO write to ATA command register, with proper
* synchronization with interrupt handler / other threads.
*
* FIXME: missing write posting for 400nS delay enforcement
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
static void ata_exec_command_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
{
DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
writeb(tf->command, (void __iomem *) ap->ioaddr.command_addr);
ata_pause(ap);
}
/**
* ata_exec_command - issue ATA command to host controller
* @ap: port to which command is being issued
* @tf: ATA taskfile register set
*
* Issues PIO/MMIO write to ATA command register, with proper
* synchronization with interrupt handler / other threads.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
void ata_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
{
if (ap->flags & ATA_FLAG_MMIO)
ata_exec_command_mmio(ap, tf);
else
ata_exec_command_pio(ap, tf);
}
/**
* ata_tf_read_pio - input device's ATA taskfile shadow registers
* @ap: Port from which input is read
* @tf: ATA taskfile register set for storing input
*
* Reads ATA taskfile registers for currently-selected device
* into @tf.
*
* LOCKING:
* Inherited from caller.
*/
static void ata_tf_read_pio(struct ata_port *ap, struct ata_taskfile *tf)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
tf->command = ata_check_status(ap);
tf->feature = inb(ioaddr->error_addr);
tf->nsect = inb(ioaddr->nsect_addr);
tf->lbal = inb(ioaddr->lbal_addr);
tf->lbam = inb(ioaddr->lbam_addr);
tf->lbah = inb(ioaddr->lbah_addr);
tf->device = inb(ioaddr->device_addr);
if (tf->flags & ATA_TFLAG_LBA48) {
outb(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
tf->hob_feature = inb(ioaddr->error_addr);
tf->hob_nsect = inb(ioaddr->nsect_addr);
tf->hob_lbal = inb(ioaddr->lbal_addr);
tf->hob_lbam = inb(ioaddr->lbam_addr);
tf->hob_lbah = inb(ioaddr->lbah_addr);
}
}
/**
* ata_tf_read_mmio - input device's ATA taskfile shadow registers
* @ap: Port from which input is read
* @tf: ATA taskfile register set for storing input
*
* Reads ATA taskfile registers for currently-selected device
* into @tf via MMIO.
*
* LOCKING:
* Inherited from caller.
*/
static void ata_tf_read_mmio(struct ata_port *ap, struct ata_taskfile *tf)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
tf->command = ata_check_status(ap);
tf->feature = readb((void __iomem *)ioaddr->error_addr);
tf->nsect = readb((void __iomem *)ioaddr->nsect_addr);
tf->lbal = readb((void __iomem *)ioaddr->lbal_addr);
tf->lbam = readb((void __iomem *)ioaddr->lbam_addr);
tf->lbah = readb((void __iomem *)ioaddr->lbah_addr);
tf->device = readb((void __iomem *)ioaddr->device_addr);
if (tf->flags & ATA_TFLAG_LBA48) {
writeb(tf->ctl | ATA_HOB, (void __iomem *) ap->ioaddr.ctl_addr);
tf->hob_feature = readb((void __iomem *)ioaddr->error_addr);
tf->hob_nsect = readb((void __iomem *)ioaddr->nsect_addr);
tf->hob_lbal = readb((void __iomem *)ioaddr->lbal_addr);
tf->hob_lbam = readb((void __iomem *)ioaddr->lbam_addr);
tf->hob_lbah = readb((void __iomem *)ioaddr->lbah_addr);
}
}
/**
* ata_tf_read - input device's ATA taskfile shadow registers
* @ap: Port from which input is read
* @tf: ATA taskfile register set for storing input
*
* Reads ATA taskfile registers for currently-selected device
* into @tf.
*
* Reads nsect, lbal, lbam, lbah, and device. If ATA_TFLAG_LBA48
* is set, also reads the hob registers.
*
* May be used as the tf_read() entry in ata_port_operations.
*
* LOCKING:
* Inherited from caller.
*/
void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
{
if (ap->flags & ATA_FLAG_MMIO)
ata_tf_read_mmio(ap, tf);
else
ata_tf_read_pio(ap, tf);
}
/**
* ata_check_status_pio - Read device status reg & clear interrupt
* @ap: port where the device is
*
* Reads ATA taskfile status register for currently-selected device
* and return its value. This also clears pending interrupts
* from this device
*
* LOCKING:
* Inherited from caller.
*/
static u8 ata_check_status_pio(struct ata_port *ap)
{
return inb(ap->ioaddr.status_addr);
}
/**
* ata_check_status_mmio - Read device status reg & clear interrupt
* @ap: port where the device is
*
* Reads ATA taskfile status register for currently-selected device
* via MMIO and return its value. This also clears pending interrupts
* from this device
*
* LOCKING:
* Inherited from caller.
*/
static u8 ata_check_status_mmio(struct ata_port *ap)
{
return readb((void __iomem *) ap->ioaddr.status_addr);
}
/**
* ata_check_status - Read device status reg & clear interrupt
* @ap: port where the device is
*
* Reads ATA taskfile status register for currently-selected device
* and return its value. This also clears pending interrupts
* from this device
*
* May be used as the check_status() entry in ata_port_operations.
*
* LOCKING:
* Inherited from caller.
*/
u8 ata_check_status(struct ata_port *ap)
{
if (ap->flags & ATA_FLAG_MMIO)
return ata_check_status_mmio(ap);
return ata_check_status_pio(ap);
}
/**
* ata_altstatus - Read device alternate status reg
* @ap: port where the device is
*
* Reads ATA taskfile alternate status register for
* currently-selected device and return its value.
*
* Note: may NOT be used as the check_altstatus() entry in
* ata_port_operations.
*
* LOCKING:
* Inherited from caller.
*/
u8 ata_altstatus(struct ata_port *ap)
{
if (ap->ops->check_altstatus)
return ap->ops->check_altstatus(ap);
if (ap->flags & ATA_FLAG_MMIO)
return readb((void __iomem *)ap->ioaddr.altstatus_addr);
return inb(ap->ioaddr.altstatus_addr);
}
/**
* ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
* @qc: Info associated with this ATA transaction.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
u8 dmactl;
void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
/* load PRD table addr. */
mb(); /* make sure PRD table writes are visible to controller */
writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
/* specify data direction, triple-check start bit is clear */
dmactl = readb(mmio + ATA_DMA_CMD);
dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
if (!rw)
dmactl |= ATA_DMA_WR;
writeb(dmactl, mmio + ATA_DMA_CMD);
/* issue r/w command */
ap->ops->exec_command(ap, &qc->tf);
}
/**
* ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
* @qc: Info associated with this ATA transaction.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
u8 dmactl;
/* start host DMA transaction */
dmactl = readb(mmio + ATA_DMA_CMD);
writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
/* Strictly, one may wish to issue a readb() here, to
* flush the mmio write. However, control also passes
* to the hardware at this point, and it will interrupt
* us when we are to resume control. So, in effect,
* we don't care when the mmio write flushes.
* Further, a read of the DMA status register _immediately_
* following the write may not be what certain flaky hardware
* is expected, so I think it is best to not add a readb()
* without first all the MMIO ATA cards/mobos.
* Or maybe I'm just being paranoid.
*/
}
/**
* ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
* @qc: Info associated with this ATA transaction.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
u8 dmactl;
/* load PRD table addr. */
outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
/* specify data direction, triple-check start bit is clear */
dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
if (!rw)
dmactl |= ATA_DMA_WR;
outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
/* issue r/w command */
ap->ops->exec_command(ap, &qc->tf);
}
/**
* ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
* @qc: Info associated with this ATA transaction.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
u8 dmactl;
/* start host DMA transaction */
dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
outb(dmactl | ATA_DMA_START,
ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
}
/**
* ata_bmdma_start - Start a PCI IDE BMDMA transaction
* @qc: Info associated with this ATA transaction.
*
* Writes the ATA_DMA_START flag to the DMA command register.
*
* May be used as the bmdma_start() entry in ata_port_operations.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
void ata_bmdma_start(struct ata_queued_cmd *qc)
{
if (qc->ap->flags & ATA_FLAG_MMIO)
ata_bmdma_start_mmio(qc);
else
ata_bmdma_start_pio(qc);
}
/**
* ata_bmdma_setup - Set up PCI IDE BMDMA transaction
* @qc: Info associated with this ATA transaction.
*
* Writes address of PRD table to device's PRD Table Address
* register, sets the DMA control register, and calls
* ops->exec_command() to start the transfer.
*
* May be used as the bmdma_setup() entry in ata_port_operations.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
void ata_bmdma_setup(struct ata_queued_cmd *qc)
{
if (qc->ap->flags & ATA_FLAG_MMIO)
ata_bmdma_setup_mmio(qc);
else
ata_bmdma_setup_pio(qc);
}
/**
* ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
* @ap: Port associated with this ATA transaction.
*
* Clear interrupt and error flags in DMA status register.
*
* May be used as the irq_clear() entry in ata_port_operations.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
void ata_bmdma_irq_clear(struct ata_port *ap)
{
if (!ap->ioaddr.bmdma_addr)
return;
if (ap->flags & ATA_FLAG_MMIO) {
void __iomem *mmio =
((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
writeb(readb(mmio), mmio);
} else {
unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
outb(inb(addr), addr);
}
}
/**
* ata_bmdma_status - Read PCI IDE BMDMA status
* @ap: Port associated with this ATA transaction.
*
* Read and return BMDMA status register.
*
* May be used as the bmdma_status() entry in ata_port_operations.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
u8 ata_bmdma_status(struct ata_port *ap)
{
u8 host_stat;
if (ap->flags & ATA_FLAG_MMIO) {
void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
host_stat = readb(mmio + ATA_DMA_STATUS);
} else
host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
return host_stat;
}
/**
* ata_bmdma_stop - Stop PCI IDE BMDMA transfer
* @qc: Command we are ending DMA for
*
* Clears the ATA_DMA_START flag in the dma control register
*
* May be used as the bmdma_stop() entry in ata_port_operations.
*
* LOCKING:
* spin_lock_irqsave(host lock)
*/
void ata_bmdma_stop(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
if (ap->flags & ATA_FLAG_MMIO) {
void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
/* clear start/stop bit */
writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
mmio + ATA_DMA_CMD);
} else {
/* clear start/stop bit */
outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
}
/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
ata_altstatus(ap); /* dummy read */
}
/**
* ata_bmdma_freeze - Freeze BMDMA controller port
* @ap: port to freeze
*
* Freeze BMDMA controller port.
*
* LOCKING:
* Inherited from caller.
*/
void ata_bmdma_freeze(struct ata_port *ap)
{
struct ata_ioports *ioaddr = &ap->ioaddr;
ap->ctl |= ATA_NIEN;
ap->last_ctl = ap->ctl;
if (ap->flags & ATA_FLAG_MMIO)
writeb(ap->ctl, (void __iomem *)ioaddr->ctl_addr);
else
outb(ap->ctl, ioaddr->ctl_addr);
/* Under certain circumstances, some controllers raise IRQ on
* ATA_NIEN manipulation. Also, many controllers fail to mask
* previously pending IRQ on ATA_NIEN assertion. Clear it.
*/
ata_chk_status(ap);
ap->ops->irq_clear(ap);
}
/**
* ata_bmdma_thaw - Thaw BMDMA controller port
* @ap: port to thaw
*
* Thaw BMDMA controller port.
*
* LOCKING:
* Inherited from caller.
*/
void ata_bmdma_thaw(struct ata_port *ap)
{
/* clear & re-enable interrupts */
ata_chk_status(ap);
ap->ops->irq_clear(ap);
if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
ata_irq_on(ap);
}
/**
* ata_bmdma_drive_eh - Perform EH with given methods for BMDMA controller
* @ap: port to handle error for
* @prereset: prereset method (can be NULL)
* @softreset: softreset method (can be NULL)
* @hardreset: hardreset method (can be NULL)
* @postreset: postreset method (can be NULL)
*
* Handle error for ATA BMDMA controller. It can handle both
* PATA and SATA controllers. Many controllers should be able to
* use this EH as-is or with some added handling before and
* after.
*
* This function is intended to be used for constructing
* ->error_handler callback by low level drivers.
*
* LOCKING:
* Kernel thread context (may sleep)
*/
void ata_bmdma_drive_eh(struct ata_port *ap, ata_prereset_fn_t prereset,
ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
ata_postreset_fn_t postreset)
{
struct ata_queued_cmd *qc;
unsigned long flags;
int thaw = 0;
qc = __ata_qc_from_tag(ap, ap->active_tag);
if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
qc = NULL;
/* reset PIO HSM and stop DMA engine */
spin_lock_irqsave(ap->lock, flags);
ap->hsm_task_state = HSM_ST_IDLE;
if (qc && (qc->tf.protocol == ATA_PROT_DMA ||
qc->tf.protocol == ATA_PROT_ATAPI_DMA)) {
u8 host_stat;
host_stat = ap->ops->bmdma_status(ap);
/* BMDMA controllers indicate host bus error by
* setting DMA_ERR bit and timing out. As it wasn't
* really a timeout event, adjust error mask and
* cancel frozen state.
*/
if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
qc->err_mask = AC_ERR_HOST_BUS;
thaw = 1;
}
ap->ops->bmdma_stop(qc);
}
ata_altstatus(ap);
ata_chk_status(ap);
ap->ops->irq_clear(ap);
spin_unlock_irqrestore(ap->lock, flags);
if (thaw)
ata_eh_thaw_port(ap);
/* PIO and DMA engines have been stopped, perform recovery */
ata_do_eh(ap, prereset, softreset, hardreset, postreset);
}
/**
* ata_bmdma_error_handler - Stock error handler for BMDMA controller
* @ap: port to handle error for
*
* Stock error handler for BMDMA controller.
*
* LOCKING:
* Kernel thread context (may sleep)
*/
void ata_bmdma_error_handler(struct ata_port *ap)
{
ata_reset_fn_t hardreset;
hardreset = NULL;
if (sata_scr_valid(ap))
hardreset = sata_std_hardreset;
ata_bmdma_drive_eh(ap, ata_std_prereset, ata_std_softreset, hardreset,
ata_std_postreset);
}
/**
* ata_bmdma_post_internal_cmd - Stock post_internal_cmd for
* BMDMA controller
* @qc: internal command to clean up
*
* LOCKING:
* Kernel thread context (may sleep)
*/
void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
{
if (qc->ap->ioaddr.bmdma_addr)
ata_bmdma_stop(qc);
}
#ifdef CONFIG_PCI
static int ata_resources_present(struct pci_dev *pdev, int port)
{
int i;
/* Check the PCI resources for this channel are enabled */
port = port * 2;
for (i = 0; i < 2; i ++) {
if (pci_resource_start(pdev, port + i) == 0 ||
pci_resource_len(pdev, port + i) == 0)
return 0;
}
return 1;
}
/**
* ata_pci_init_native_mode - Initialize native-mode driver
* @pdev: pci device to be initialized
* @port: array[2] of pointers to port info structures.
* @ports: bitmap of ports present
*
* Utility function which allocates and initializes an
* ata_probe_ent structure for a standard dual-port
* PIO-based IDE controller. The returned ata_probe_ent
* structure can be passed to ata_device_add(). The returned
* ata_probe_ent structure should then be freed with kfree().
*
* The caller need only pass the address of the primary port, the
* secondary will be deduced automatically. If the device has non
* standard secondary port mappings this function can be called twice,
* once for each interface.
*/
struct ata_probe_ent *
ata_pci_init_native_mode(struct pci_dev *pdev, struct ata_port_info **port, int ports)
{
struct ata_probe_ent *probe_ent =
ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]);
int p = 0;
unsigned long bmdma;
if (!probe_ent)
return NULL;
probe_ent->irq = pdev->irq;
probe_ent->irq_flags = IRQF_SHARED;
/* Discard disabled ports. Some controllers show their
unused channels this way */
if (ata_resources_present(pdev, 0) == 0)
ports &= ~ATA_PORT_PRIMARY;
if (ata_resources_present(pdev, 1) == 0)
ports &= ~ATA_PORT_SECONDARY;
if (ports & ATA_PORT_PRIMARY) {
probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 0);
probe_ent->port[p].altstatus_addr =
probe_ent->port[p].ctl_addr =
pci_resource_start(pdev, 1) | ATA_PCI_CTL_OFS;
bmdma = pci_resource_start(pdev, 4);
if (bmdma) {
if ((!(port[p]->flags & ATA_FLAG_IGN_SIMPLEX)) &&
(inb(bmdma + 2) & 0x80))
probe_ent->_host_flags |= ATA_HOST_SIMPLEX;
probe_ent->port[p].bmdma_addr = bmdma;
}
ata_std_ports(&probe_ent->port[p]);
p++;
}
if (ports & ATA_PORT_SECONDARY) {
probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 2);
probe_ent->port[p].altstatus_addr =
probe_ent->port[p].ctl_addr =
pci_resource_start(pdev, 3) | ATA_PCI_CTL_OFS;
bmdma = pci_resource_start(pdev, 4);
if (bmdma) {
bmdma += 8;
if ((!(port[p]->flags & ATA_FLAG_IGN_SIMPLEX)) &&
(inb(bmdma + 2) & 0x80))
probe_ent->_host_flags |= ATA_HOST_SIMPLEX;
probe_ent->port[p].bmdma_addr = bmdma;
}
ata_std_ports(&probe_ent->port[p]);
probe_ent->pinfo2 = port[1];
p++;
}
probe_ent->n_ports = p;
return probe_ent;
}
static struct ata_probe_ent *ata_pci_init_legacy_port(struct pci_dev *pdev,
struct ata_port_info **port, int port_mask)
{
struct ata_probe_ent *probe_ent;
unsigned long bmdma = pci_resource_start(pdev, 4);
probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]);
if (!probe_ent)
return NULL;
probe_ent->n_ports = 2;
probe_ent->irq_flags = IRQF_SHARED;
if (port_mask & ATA_PORT_PRIMARY) {
probe_ent->irq = ATA_PRIMARY_IRQ(pdev);
probe_ent->port[0].cmd_addr = ATA_PRIMARY_CMD;
probe_ent->port[0].altstatus_addr =
probe_ent->port[0].ctl_addr = ATA_PRIMARY_CTL;
if (bmdma) {
probe_ent->port[0].bmdma_addr = bmdma;
if ((!(port[0]->flags & ATA_FLAG_IGN_SIMPLEX)) &&
(inb(bmdma + 2) & 0x80))
probe_ent->_host_flags |= ATA_HOST_SIMPLEX;
}
ata_std_ports(&probe_ent->port[0]);
} else
probe_ent->dummy_port_mask |= ATA_PORT_PRIMARY;
if (port_mask & ATA_PORT_SECONDARY) {
if (probe_ent->irq)
probe_ent->irq2 = ATA_SECONDARY_IRQ(pdev);
else
probe_ent->irq = ATA_SECONDARY_IRQ(pdev);
probe_ent->port[1].cmd_addr = ATA_SECONDARY_CMD;
probe_ent->port[1].altstatus_addr =
probe_ent->port[1].ctl_addr = ATA_SECONDARY_CTL;
if (bmdma) {
probe_ent->port[1].bmdma_addr = bmdma + 8;
if ((!(port[1]->flags & ATA_FLAG_IGN_SIMPLEX)) &&
(inb(bmdma + 10) & 0x80))
probe_ent->_host_flags |= ATA_HOST_SIMPLEX;
}
ata_std_ports(&probe_ent->port[1]);
/* FIXME: could be pointing to stack area; must copy */
probe_ent->pinfo2 = port[1];
} else
probe_ent->dummy_port_mask |= ATA_PORT_SECONDARY;
return probe_ent;
}
/**
* ata_pci_init_one - Initialize/register PCI IDE host controller
* @pdev: Controller to be initialized
* @port_info: Information from low-level host driver
* @n_ports: Number of ports attached to host controller
*
* This is a helper function which can be called from a driver's
* xxx_init_one() probe function if the hardware uses traditional
* IDE taskfile registers.
*
* This function calls pci_enable_device(), reserves its register
* regions, sets the dma mask, enables bus master mode, and calls
* ata_device_add()
*
* ASSUMPTION:
* Nobody makes a single channel controller that appears solely as
* the secondary legacy port on PCI.
*
* LOCKING:
* Inherited from PCI layer (may sleep).
*
* RETURNS:
* Zero on success, negative on errno-based value on error.
*/
int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info,
unsigned int n_ports)
{
struct device *dev = &pdev->dev;
struct ata_probe_ent *probe_ent = NULL;
struct ata_port_info *port[2];
u8 mask;
unsigned int legacy_mode = 0;
int rc;
DPRINTK("ENTER\n");
if (!devres_open_group(dev, NULL, GFP_KERNEL))
return -ENOMEM;
BUG_ON(n_ports < 1 || n_ports > 2);
port[0] = port_info[0];
if (n_ports > 1)
port[1] = port_info[1];
else
port[1] = port[0];
/* FIXME: Really for ATA it isn't safe because the device may be
multi-purpose and we want to leave it alone if it was already
enabled. Secondly for shared use as Arjan says we want refcounting
Checking dev->is_enabled is insufficient as this is not set at
boot for the primary video which is BIOS enabled
*/
rc = pcim_enable_device(pdev);
if (rc)
goto err_out;
if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
u8 tmp8;
/* TODO: What if one channel is in native mode ... */
pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
mask = (1 << 2) | (1 << 0);
if ((tmp8 & mask) != mask)
legacy_mode = (1 << 3);
#if defined(CONFIG_NO_ATA_LEGACY)
/* Some platforms with PCI limits cannot address compat
port space. In that case we punt if their firmware has
left a device in compatibility mode */
if (legacy_mode) {
printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
rc = -EOPNOTSUPP;
goto err_out;
}
#endif
}
if (!legacy_mode) {
rc = pci_request_regions(pdev, DRV_NAME);
if (rc) {
pcim_pin_device(pdev);
goto err_out;
}
} else {
/* Deal with combined mode hack. This side of the logic all
goes away once the combined mode hack is killed in 2.6.21 */
if (!devm_request_region(dev, ATA_PRIMARY_CMD, 8, "libata")) {
struct resource *conflict, res;
res.start = ATA_PRIMARY_CMD;
res.end = ATA_PRIMARY_CMD + 8 - 1;
conflict = ____request_resource(&ioport_resource, &res);
while (conflict->child)
conflict = ____request_resource(conflict, &res);
if (!strcmp(conflict->name, "libata"))
legacy_mode |= ATA_PORT_PRIMARY;
else {
pcim_pin_device(pdev);
printk(KERN_WARNING "ata: 0x%0X IDE port busy\n" \
"ata: conflict with %s\n",
ATA_PRIMARY_CMD,
conflict->name);
}
} else
legacy_mode |= ATA_PORT_PRIMARY;
if (!devm_request_region(dev, ATA_SECONDARY_CMD, 8, "libata")) {
struct resource *conflict, res;
res.start = ATA_SECONDARY_CMD;
res.end = ATA_SECONDARY_CMD + 8 - 1;
conflict = ____request_resource(&ioport_resource, &res);
while (conflict->child)
conflict = ____request_resource(conflict, &res);
if (!strcmp(conflict->name, "libata"))
legacy_mode |= ATA_PORT_SECONDARY;
else {
pcim_pin_device(pdev);
printk(KERN_WARNING "ata: 0x%X IDE port busy\n" \
"ata: conflict with %s\n",
ATA_SECONDARY_CMD,
conflict->name);
}
} else
legacy_mode |= ATA_PORT_SECONDARY;
if (legacy_mode & ATA_PORT_PRIMARY)
pci_request_region(pdev, 1, DRV_NAME);
if (legacy_mode & ATA_PORT_SECONDARY)
pci_request_region(pdev, 3, DRV_NAME);
/* If there is a DMA resource, allocate it */
pci_request_region(pdev, 4, DRV_NAME);
}
/* we have legacy mode, but all ports are unavailable */
if (legacy_mode == (1 << 3)) {
rc = -EBUSY;
goto err_out;
}
/* TODO: If we get no DMA mask we should fall back to PIO */
rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
if (rc)
goto err_out;
rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
if (rc)
goto err_out;
if (legacy_mode) {
probe_ent = ata_pci_init_legacy_port(pdev, port, legacy_mode);
} else {
if (n_ports == 2)
probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY | ATA_PORT_SECONDARY);
else
probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY);
}
if (!probe_ent) {
rc = -ENOMEM;
goto err_out;
}
pci_set_master(pdev);
if (!ata_device_add(probe_ent)) {
rc = -ENODEV;
goto err_out;
}
devm_kfree(dev, probe_ent);
devres_remove_group(dev, NULL);
return 0;
err_out:
devres_release_group(dev, NULL);
return rc;
}
/**
* ata_pci_clear_simplex - attempt to kick device out of simplex
* @pdev: PCI device
*
* Some PCI ATA devices report simplex mode but in fact can be told to
* enter non simplex mode. This implements the neccessary logic to
* perform the task on such devices. Calling it on other devices will
* have -undefined- behaviour.
*/
int ata_pci_clear_simplex(struct pci_dev *pdev)
{
unsigned long bmdma = pci_resource_start(pdev, 4);
u8 simplex;
if (bmdma == 0)
return -ENOENT;
simplex = inb(bmdma + 0x02);
outb(simplex & 0x60, bmdma + 0x02);
simplex = inb(bmdma + 0x02);
if (simplex & 0x80)
return -EOPNOTSUPP;
return 0;
}
unsigned long ata_pci_default_filter(const struct ata_port *ap, struct ata_device *adev, unsigned long xfer_mask)
{
/* Filter out DMA modes if the device has been configured by
the BIOS as PIO only */
if (ap->ioaddr.bmdma_addr == 0)
xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
return xfer_mask;
}
#endif /* CONFIG_PCI */