| /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/platform_device.h> |
| #include <linux/mutex.h> |
| #include <linux/cpu.h> |
| #include <linux/of.h> |
| #include <linux/hrtimer.h> |
| #include <linux/ktime.h> |
| #include <linux/tick.h> |
| #include <linux/suspend.h> |
| #include <linux/pm_qos.h> |
| #include <linux/of_platform.h> |
| #include <linux/smp.h> |
| #include <linux/remote_spinlock.h> |
| #include <linux/msm_remote_spinlock.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/coresight-cti.h> |
| #include <linux/moduleparam.h> |
| #include <linux/sched.h> |
| #include <linux/cpu_pm.h> |
| #include <soc/qcom/spm.h> |
| #include <soc/qcom/pm-legacy.h> |
| #include <soc/qcom/rpm-notifier.h> |
| #include <soc/qcom/event_timer.h> |
| #include <soc/qcom/lpm-stats.h> |
| #include <soc/qcom/lpm_levels.h> |
| #include <soc/qcom/jtag.h> |
| #include <asm/cputype.h> |
| #include <asm/arch_timer.h> |
| #include <asm/cacheflush.h> |
| #include <asm/suspend.h> |
| #include "lpm-levels-legacy.h" |
| #include "lpm-workarounds.h" |
| #include <trace/events/power.h> |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/trace_msm_low_power.h> |
| #if defined(CONFIG_COMMON_CLK) |
| #include "../clk/clk.h" |
| #elif defined(CONFIG_COMMON_CLK_MSM) |
| #include "../../drivers/clk/msm/clock.h" |
| #endif /* CONFIG_COMMON_CLK */ |
| #include <soc/qcom/minidump.h> |
| |
| #define SCLK_HZ (32768) |
| #define SCM_HANDOFF_LOCK_ID "S:7" |
| #define PSCI_POWER_STATE(reset) (reset << 30) |
| #define PSCI_AFFINITY_LEVEL(lvl) ((lvl & 0x3) << 24) |
| static remote_spinlock_t scm_handoff_lock; |
| |
| enum { |
| MSM_LPM_LVL_DBG_SUSPEND_LIMITS = BIT(0), |
| MSM_LPM_LVL_DBG_IDLE_LIMITS = BIT(1), |
| }; |
| |
| enum debug_event { |
| CPU_ENTER, |
| CPU_EXIT, |
| CLUSTER_ENTER, |
| CLUSTER_EXIT, |
| PRE_PC_CB, |
| CPU_HP_STARTING, |
| CPU_HP_DYING, |
| }; |
| |
| struct lpm_debug { |
| cycle_t time; |
| enum debug_event evt; |
| int cpu; |
| uint32_t arg1; |
| uint32_t arg2; |
| uint32_t arg3; |
| uint32_t arg4; |
| }; |
| |
| static struct system_pm_ops *sys_pm_ops; |
| struct lpm_cluster *lpm_root_node; |
| |
| static DEFINE_PER_CPU(struct lpm_cluster*, cpu_cluster); |
| static bool suspend_in_progress; |
| static struct hrtimer lpm_hrtimer; |
| static struct lpm_debug *lpm_debug; |
| static phys_addr_t lpm_debug_phys; |
| |
| static const int num_dbg_elements = 0x100; |
| |
| static void cluster_unprepare(struct lpm_cluster *cluster, |
| const struct cpumask *cpu, int child_idx, bool from_idle, |
| int64_t time, bool success); |
| static void cluster_prepare(struct lpm_cluster *cluster, |
| const struct cpumask *cpu, int child_idx, bool from_idle, |
| int64_t time); |
| |
| static bool menu_select; |
| module_param_named( |
| menu_select, menu_select, bool, 0664 |
| ); |
| |
| static bool print_parsed_dt; |
| module_param_named( |
| print_parsed_dt, print_parsed_dt, bool, 0664 |
| ); |
| |
| static bool sleep_disabled; |
| module_param_named(sleep_disabled, |
| sleep_disabled, bool, 0664); |
| |
| s32 msm_cpuidle_get_deep_idle_latency(void) |
| { |
| return 10; |
| } |
| EXPORT_SYMBOL(msm_cpuidle_get_deep_idle_latency); |
| |
| uint32_t register_system_pm_ops(struct system_pm_ops *pm_ops) |
| { |
| if (sys_pm_ops) |
| return -EUSERS; |
| |
| sys_pm_ops = pm_ops; |
| |
| return 0; |
| } |
| |
| static uint32_t least_cluster_latency(struct lpm_cluster *cluster, |
| struct latency_level *lat_level) |
| { |
| struct list_head *list; |
| struct lpm_cluster_level *level; |
| struct lpm_cluster *n; |
| struct power_params *pwr_params; |
| uint32_t latency = 0; |
| int i; |
| |
| if (!cluster->list.next) { |
| for (i = 0; i < cluster->nlevels; i++) { |
| level = &cluster->levels[i]; |
| pwr_params = &level->pwr; |
| if (lat_level->reset_level == level->reset_level) { |
| if ((latency > pwr_params->latency_us) |
| || (!latency)) |
| latency = pwr_params->latency_us; |
| break; |
| } |
| } |
| } else { |
| list_for_each(list, &cluster->parent->child) { |
| n = list_entry(list, typeof(*n), list); |
| if (lat_level->level_name) { |
| if (strcmp(lat_level->level_name, |
| n->cluster_name)) |
| continue; |
| } |
| for (i = 0; i < n->nlevels; i++) { |
| level = &n->levels[i]; |
| pwr_params = &level->pwr; |
| if (lat_level->reset_level == |
| level->reset_level) { |
| if ((latency > pwr_params->latency_us) |
| || (!latency)) |
| latency = |
| pwr_params->latency_us; |
| break; |
| } |
| } |
| } |
| } |
| return latency; |
| } |
| |
| static uint32_t least_cpu_latency(struct list_head *child, |
| struct latency_level *lat_level) |
| { |
| struct list_head *list; |
| struct lpm_cpu_level *level; |
| struct power_params *pwr_params; |
| struct lpm_cpu *cpu; |
| struct lpm_cluster *n; |
| uint32_t latency = 0; |
| int i; |
| |
| list_for_each(list, child) { |
| n = list_entry(list, typeof(*n), list); |
| if (lat_level->level_name) { |
| if (strcmp(lat_level->level_name, n->cluster_name)) |
| continue; |
| } |
| cpu = n->cpu; |
| for (i = 0; i < cpu->nlevels; i++) { |
| level = &cpu->levels[i]; |
| pwr_params = &level->pwr; |
| if (lat_level->reset_level == level->reset_level) { |
| if ((latency > pwr_params->latency_us) |
| || (!latency)) |
| latency = pwr_params->latency_us; |
| break; |
| } |
| } |
| } |
| return latency; |
| } |
| |
| static struct lpm_cluster *cluster_aff_match(struct lpm_cluster *cluster, |
| int affinity_level) |
| { |
| struct lpm_cluster *n; |
| |
| if ((cluster->aff_level == affinity_level) |
| || ((cluster->cpu) && (affinity_level == 0))) |
| return cluster; |
| else if (!cluster->cpu) { |
| n = list_entry(cluster->child.next, typeof(*n), list); |
| return cluster_aff_match(n, affinity_level); |
| } else |
| return NULL; |
| } |
| |
| int lpm_get_latency(struct latency_level *level, uint32_t *latency) |
| { |
| struct lpm_cluster *cluster; |
| uint32_t val; |
| |
| if (!lpm_root_node) { |
| pr_err("%s: lpm_probe not completed\n", __func__); |
| return -EAGAIN; |
| } |
| |
| if ((level->affinity_level < 0) |
| || (level->affinity_level > lpm_root_node->aff_level) |
| || (level->reset_level < LPM_RESET_LVL_RET) |
| || (level->reset_level > LPM_RESET_LVL_PC) |
| || !latency) |
| return -EINVAL; |
| |
| cluster = cluster_aff_match(lpm_root_node, level->affinity_level); |
| if (!cluster) { |
| pr_err("%s:No matching cluster found for affinity_level:%d\n", |
| __func__, level->affinity_level); |
| return -EINVAL; |
| } |
| |
| if (level->affinity_level == 0) |
| val = least_cpu_latency(&cluster->parent->child, level); |
| else |
| val = least_cluster_latency(cluster, level); |
| |
| if (!val) { |
| pr_err("%s:No mode with affinity_level:%d reset_level:%d\n", |
| __func__, level->affinity_level, level->reset_level); |
| return -EINVAL; |
| } |
| |
| *latency = val; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(lpm_get_latency); |
| |
| static void update_debug_pc_event(enum debug_event event, uint32_t arg1, |
| uint32_t arg2, uint32_t arg3, uint32_t arg4) |
| { |
| struct lpm_debug *dbg; |
| int idx; |
| static DEFINE_SPINLOCK(debug_lock); |
| static int pc_event_index; |
| |
| if (!lpm_debug) |
| return; |
| |
| spin_lock(&debug_lock); |
| idx = pc_event_index++; |
| dbg = &lpm_debug[idx & (num_dbg_elements - 1)]; |
| |
| dbg->evt = event; |
| dbg->time = arch_counter_get_cntpct(); |
| dbg->cpu = raw_smp_processor_id(); |
| dbg->arg1 = arg1; |
| dbg->arg2 = arg2; |
| dbg->arg3 = arg3; |
| dbg->arg4 = arg4; |
| spin_unlock(&debug_lock); |
| } |
| |
| static enum hrtimer_restart lpm_hrtimer_cb(struct hrtimer *h) |
| { |
| return HRTIMER_NORESTART; |
| } |
| |
| static void msm_pm_set_timer(uint32_t modified_time_us) |
| { |
| u64 modified_time_ns = modified_time_us * NSEC_PER_USEC; |
| ktime_t modified_ktime = ns_to_ktime(modified_time_ns); |
| |
| lpm_hrtimer.function = lpm_hrtimer_cb; |
| hrtimer_start(&lpm_hrtimer, modified_ktime, HRTIMER_MODE_REL_PINNED); |
| } |
| |
| int set_l2_mode(struct low_power_ops *ops, int mode, |
| struct lpm_cluster_level *level) |
| { |
| int lpm = mode; |
| int rc = 0; |
| bool notify_rpm = level->notify_rpm; |
| struct low_power_ops *cpu_ops = per_cpu(cpu_cluster, |
| smp_processor_id())->lpm_dev; |
| |
| if (cpu_ops->tz_flag & MSM_SCM_L2_OFF || |
| cpu_ops->tz_flag & MSM_SCM_L2_GDHS) |
| coresight_cti_ctx_restore(); |
| |
| switch (mode) { |
| case MSM_SPM_MODE_STANDALONE_POWER_COLLAPSE: |
| case MSM_SPM_MODE_POWER_COLLAPSE: |
| case MSM_SPM_MODE_FASTPC: |
| if (level->no_cache_flush) |
| cpu_ops->tz_flag = MSM_SCM_L2_GDHS; |
| else |
| cpu_ops->tz_flag = MSM_SCM_L2_OFF; |
| coresight_cti_ctx_save(); |
| break; |
| case MSM_SPM_MODE_GDHS: |
| cpu_ops->tz_flag = MSM_SCM_L2_GDHS; |
| coresight_cti_ctx_save(); |
| break; |
| case MSM_SPM_MODE_CLOCK_GATING: |
| case MSM_SPM_MODE_RETENTION: |
| case MSM_SPM_MODE_DISABLED: |
| cpu_ops->tz_flag = MSM_SCM_L2_ON; |
| break; |
| default: |
| cpu_ops->tz_flag = MSM_SCM_L2_ON; |
| lpm = MSM_SPM_MODE_DISABLED; |
| break; |
| } |
| |
| if (lpm_wa_get_skip_l2_spm()) |
| rc = msm_spm_config_low_power_mode_addr(ops->spm, lpm, |
| notify_rpm); |
| else |
| rc = msm_spm_config_low_power_mode(ops->spm, lpm, notify_rpm); |
| |
| if (rc) |
| pr_err("%s: Failed to set L2 low power mode %d, ERR %d", |
| __func__, lpm, rc); |
| |
| return rc; |
| } |
| |
| int set_l3_mode(struct low_power_ops *ops, int mode, |
| struct lpm_cluster_level *level) |
| { |
| bool notify_rpm = level->notify_rpm; |
| struct low_power_ops *cpu_ops = per_cpu(cpu_cluster, |
| smp_processor_id())->lpm_dev; |
| |
| switch (mode) { |
| case MSM_SPM_MODE_STANDALONE_POWER_COLLAPSE: |
| case MSM_SPM_MODE_POWER_COLLAPSE: |
| case MSM_SPM_MODE_FASTPC: |
| cpu_ops->tz_flag |= MSM_SCM_L3_PC_OFF; |
| break; |
| default: |
| break; |
| } |
| return msm_spm_config_low_power_mode(ops->spm, mode, notify_rpm); |
| } |
| |
| |
| int set_system_mode(struct low_power_ops *ops, int mode, |
| struct lpm_cluster_level *level) |
| { |
| bool notify_rpm = level->notify_rpm; |
| |
| return msm_spm_config_low_power_mode(ops->spm, mode, notify_rpm); |
| } |
| |
| static int set_device_mode(struct lpm_cluster *cluster, int ndevice, |
| struct lpm_cluster_level *level) |
| { |
| struct low_power_ops *ops; |
| |
| if (use_psci) |
| return 0; |
| |
| ops = &cluster->lpm_dev[ndevice]; |
| if (ops && ops->set_mode) |
| return ops->set_mode(ops, level->mode[ndevice], |
| level); |
| else |
| return -EINVAL; |
| } |
| |
| static int cpu_power_select(struct cpuidle_device *dev, |
| struct lpm_cpu *cpu) |
| { |
| int best_level = 0; |
| uint32_t latency_us = pm_qos_request_for_cpu(PM_QOS_CPU_DMA_LATENCY, |
| dev->cpu); |
| s64 sleep_us = ktime_to_us(tick_nohz_get_sleep_length()); |
| uint32_t modified_time_us = 0; |
| uint32_t next_event_us = 0; |
| int i; |
| uint32_t lvl_latency_us = 0; |
| uint32_t *residency = get_per_cpu_max_residency(dev->cpu); |
| |
| if (!cpu) |
| return best_level; |
| |
| if ((sleep_disabled && !cpu_isolated(dev->cpu)) || sleep_us < 0) |
| return 0; |
| |
| next_event_us = (uint32_t)(ktime_to_us(get_next_event_time(dev->cpu))); |
| |
| for (i = 0; i < cpu->nlevels; i++) { |
| struct lpm_cpu_level *level = &cpu->levels[i]; |
| struct power_params *pwr_params = &level->pwr; |
| uint32_t next_wakeup_us = (uint32_t)sleep_us; |
| enum msm_pm_sleep_mode mode = level->mode; |
| bool allow; |
| |
| allow = lpm_cpu_mode_allow(dev->cpu, i, true); |
| |
| if (!allow) |
| continue; |
| |
| lvl_latency_us = pwr_params->latency_us; |
| |
| if (latency_us < lvl_latency_us) |
| break; |
| |
| if (next_event_us) { |
| if (next_event_us < lvl_latency_us) |
| break; |
| |
| if (((next_event_us - lvl_latency_us) < sleep_us) || |
| (next_event_us < sleep_us)) |
| next_wakeup_us = next_event_us - lvl_latency_us; |
| } |
| |
| best_level = i; |
| |
| if (next_event_us && next_event_us < sleep_us && |
| (mode != MSM_PM_SLEEP_MODE_WAIT_FOR_INTERRUPT)) |
| modified_time_us |
| = next_event_us - lvl_latency_us; |
| else |
| modified_time_us = 0; |
| |
| if (next_wakeup_us <= residency[i]) |
| break; |
| } |
| |
| if (modified_time_us) |
| msm_pm_set_timer(modified_time_us); |
| |
| trace_cpu_power_select(best_level, sleep_us, latency_us, next_event_us); |
| |
| return best_level; |
| } |
| |
| static uint64_t get_cluster_sleep_time(struct lpm_cluster *cluster, |
| struct cpumask *mask, bool from_idle) |
| { |
| int cpu; |
| int next_cpu = raw_smp_processor_id(); |
| ktime_t next_event; |
| struct cpumask online_cpus_in_cluster; |
| |
| next_event.tv64 = KTIME_MAX; |
| if (!from_idle) { |
| if (mask) |
| cpumask_copy(mask, cpumask_of(raw_smp_processor_id())); |
| return ~0ULL; |
| } |
| |
| cpumask_and(&online_cpus_in_cluster, |
| &cluster->num_children_in_sync, cpu_online_mask); |
| |
| for_each_cpu(cpu, &online_cpus_in_cluster) { |
| ktime_t *next_event_c; |
| |
| next_event_c = get_next_event_cpu(cpu); |
| if (next_event_c->tv64 < next_event.tv64) { |
| next_event.tv64 = next_event_c->tv64; |
| next_cpu = cpu; |
| } |
| } |
| |
| if (mask) |
| cpumask_copy(mask, cpumask_of(next_cpu)); |
| |
| |
| if (ktime_to_us(next_event) > ktime_to_us(ktime_get())) |
| return ktime_to_us(ktime_sub(next_event, ktime_get())); |
| else |
| return 0; |
| } |
| |
| static int cluster_select(struct lpm_cluster *cluster, bool from_idle) |
| { |
| int best_level = -1; |
| int i; |
| struct cpumask mask; |
| uint32_t latency_us = ~0U; |
| uint32_t sleep_us; |
| |
| if (!cluster) |
| return -EINVAL; |
| |
| sleep_us = (uint32_t)get_cluster_sleep_time(cluster, NULL, from_idle); |
| |
| if (cpumask_and(&mask, cpu_online_mask, &cluster->child_cpus)) |
| latency_us = pm_qos_request_for_cpumask(PM_QOS_CPU_DMA_LATENCY, |
| &mask); |
| |
| /* |
| * If atleast one of the core in the cluster is online, the cluster |
| * low power modes should be determined by the idle characteristics |
| * even if the last core enters the low power mode as a part of |
| * hotplug. |
| */ |
| |
| if (!from_idle && num_online_cpus() > 1 && |
| cpumask_intersects(&cluster->child_cpus, cpu_online_mask)) |
| from_idle = true; |
| |
| for (i = 0; i < cluster->nlevels; i++) { |
| struct lpm_cluster_level *level = &cluster->levels[i]; |
| struct power_params *pwr_params = &level->pwr; |
| |
| if (!lpm_cluster_mode_allow(cluster, i, from_idle)) |
| continue; |
| |
| if (level->last_core_only && |
| cpumask_weight(cpu_online_mask) > 1) |
| continue; |
| |
| if (!cpumask_equal(&cluster->num_children_in_sync, |
| &level->num_cpu_votes)) |
| continue; |
| |
| if (from_idle && latency_us < pwr_params->latency_us) |
| break; |
| |
| if (sleep_us < pwr_params->time_overhead_us) |
| break; |
| |
| if (suspend_in_progress && from_idle && level->notify_rpm) |
| continue; |
| |
| if (level->notify_rpm) { |
| if (!(sys_pm_ops && sys_pm_ops->sleep_allowed)) |
| continue; |
| if (!sys_pm_ops->sleep_allowed()) |
| continue; |
| } |
| |
| best_level = i; |
| |
| if (from_idle && sleep_us <= pwr_params->max_residency) |
| break; |
| } |
| |
| return best_level; |
| } |
| |
| static void cluster_notify(struct lpm_cluster *cluster, |
| struct lpm_cluster_level *level, bool enter) |
| { |
| if (level->is_reset && enter) |
| cpu_cluster_pm_enter(cluster->aff_level); |
| else if (level->is_reset && !enter) |
| cpu_cluster_pm_exit(cluster->aff_level); |
| } |
| |
| static unsigned int get_next_online_cpu(bool from_idle) |
| { |
| unsigned int cpu; |
| ktime_t next_event; |
| unsigned int next_cpu = raw_smp_processor_id(); |
| |
| if (!from_idle) |
| return next_cpu; |
| next_event.tv64 = KTIME_MAX; |
| for_each_online_cpu(cpu) { |
| ktime_t *next_event_c; |
| |
| next_event_c = get_next_event_cpu(cpu); |
| if (next_event_c->tv64 < next_event.tv64) { |
| next_event.tv64 = next_event_c->tv64; |
| next_cpu = cpu; |
| } |
| } |
| return next_cpu; |
| } |
| |
| static int cluster_configure(struct lpm_cluster *cluster, int idx, |
| bool from_idle) |
| { |
| struct lpm_cluster_level *level = &cluster->levels[idx]; |
| struct cpumask cpumask; |
| unsigned int cpu; |
| int ret, i; |
| |
| if (!cpumask_equal(&cluster->num_children_in_sync, &cluster->child_cpus) |
| || is_IPI_pending(&cluster->num_children_in_sync)) { |
| return -EPERM; |
| } |
| |
| if (idx != cluster->default_level) { |
| update_debug_pc_event(CLUSTER_ENTER, idx, |
| cluster->num_children_in_sync.bits[0], |
| cluster->child_cpus.bits[0], from_idle); |
| trace_cluster_enter(cluster->cluster_name, idx, |
| cluster->num_children_in_sync.bits[0], |
| cluster->child_cpus.bits[0], from_idle); |
| lpm_stats_cluster_enter(cluster->stats, idx); |
| } |
| |
| for (i = 0; i < cluster->ndevices; i++) { |
| ret = set_device_mode(cluster, i, level); |
| if (ret) |
| goto failed_set_mode; |
| } |
| |
| if (level->notify_rpm) { |
| struct cpumask *nextcpu; |
| |
| cpu = get_next_online_cpu(from_idle); |
| cpumask_copy(&cpumask, cpumask_of(cpu)); |
| nextcpu = level->disable_dynamic_routing ? NULL : &cpumask; |
| |
| if (sys_pm_ops && sys_pm_ops->enter) { |
| ret = sys_pm_ops->enter(nextcpu); |
| if (ret) |
| goto failed_set_mode; |
| } |
| |
| if (cluster->no_saw_devices && !use_psci) |
| msm_spm_set_rpm_hs(true); |
| } |
| |
| /* Notify cluster enter event after successfully config completion */ |
| cluster_notify(cluster, level, true); |
| |
| cluster->last_level = idx; |
| return 0; |
| |
| failed_set_mode: |
| |
| for (i = 0; i < cluster->ndevices; i++) { |
| int rc = 0; |
| |
| level = &cluster->levels[cluster->default_level]; |
| rc = set_device_mode(cluster, i, level); |
| WARN_ON(rc); |
| } |
| return ret; |
| } |
| |
| static void cluster_prepare(struct lpm_cluster *cluster, |
| const struct cpumask *cpu, int child_idx, bool from_idle, |
| int64_t start_time) |
| { |
| int i; |
| |
| if (!cluster) |
| return; |
| |
| if (cluster->min_child_level > child_idx) |
| return; |
| |
| spin_lock(&cluster->sync_lock); |
| cpumask_or(&cluster->num_children_in_sync, cpu, |
| &cluster->num_children_in_sync); |
| |
| for (i = 0; i < cluster->nlevels; i++) { |
| struct lpm_cluster_level *lvl = &cluster->levels[i]; |
| |
| if (child_idx >= lvl->min_child_level) |
| cpumask_or(&lvl->num_cpu_votes, cpu, |
| &lvl->num_cpu_votes); |
| } |
| |
| /* |
| * cluster_select() does not make any configuration changes. So its ok |
| * to release the lock here. If a core wakes up for a rude request, |
| * it need not wait for another to finish its cluster selection and |
| * configuration process |
| */ |
| |
| if (!cpumask_equal(&cluster->num_children_in_sync, |
| &cluster->child_cpus)) |
| goto failed; |
| |
| i = cluster_select(cluster, from_idle); |
| |
| if (i < 0) |
| goto failed; |
| |
| if (cluster_configure(cluster, i, from_idle)) |
| goto failed; |
| |
| cluster->stats->sleep_time = start_time; |
| cluster_prepare(cluster->parent, &cluster->num_children_in_sync, i, |
| from_idle, start_time); |
| |
| spin_unlock(&cluster->sync_lock); |
| |
| if (!use_psci) { |
| struct lpm_cluster_level *level = &cluster->levels[i]; |
| |
| if (level->notify_rpm) |
| if (sys_pm_ops && sys_pm_ops->update_wakeup) |
| sys_pm_ops->update_wakeup(from_idle); |
| } |
| |
| return; |
| failed: |
| spin_unlock(&cluster->sync_lock); |
| cluster->stats->sleep_time = 0; |
| } |
| |
| static void cluster_unprepare(struct lpm_cluster *cluster, |
| const struct cpumask *cpu, int child_idx, bool from_idle, |
| int64_t end_time, bool success) |
| { |
| struct lpm_cluster_level *level; |
| bool first_cpu; |
| int last_level, i, ret; |
| |
| if (!cluster) |
| return; |
| |
| if (cluster->min_child_level > child_idx) |
| return; |
| |
| spin_lock(&cluster->sync_lock); |
| last_level = cluster->default_level; |
| first_cpu = cpumask_equal(&cluster->num_children_in_sync, |
| &cluster->child_cpus); |
| cpumask_andnot(&cluster->num_children_in_sync, |
| &cluster->num_children_in_sync, cpu); |
| |
| for (i = 0; i < cluster->nlevels; i++) { |
| struct lpm_cluster_level *lvl = &cluster->levels[i]; |
| |
| if (child_idx >= lvl->min_child_level) |
| cpumask_andnot(&lvl->num_cpu_votes, |
| &lvl->num_cpu_votes, cpu); |
| } |
| |
| if (!first_cpu || cluster->last_level == cluster->default_level) |
| goto unlock_return; |
| |
| if (cluster->stats->sleep_time) |
| cluster->stats->sleep_time = end_time - |
| cluster->stats->sleep_time; |
| lpm_stats_cluster_exit(cluster->stats, cluster->last_level, success); |
| |
| level = &cluster->levels[cluster->last_level]; |
| if (level->notify_rpm) { |
| if (sys_pm_ops && sys_pm_ops->exit) |
| sys_pm_ops->exit(success); |
| |
| /* If RPM bumps up CX to turbo, unvote CX turbo vote |
| * during exit of rpm assisted power collapse to |
| * reduce the power impact |
| */ |
| lpm_wa_cx_unvote_send(); |
| |
| if (cluster->no_saw_devices && !use_psci) |
| msm_spm_set_rpm_hs(false); |
| |
| } |
| |
| update_debug_pc_event(CLUSTER_EXIT, cluster->last_level, |
| cluster->num_children_in_sync.bits[0], |
| cluster->child_cpus.bits[0], from_idle); |
| trace_cluster_exit(cluster->cluster_name, cluster->last_level, |
| cluster->num_children_in_sync.bits[0], |
| cluster->child_cpus.bits[0], from_idle); |
| |
| last_level = cluster->last_level; |
| cluster->last_level = cluster->default_level; |
| |
| for (i = 0; i < cluster->ndevices; i++) { |
| level = &cluster->levels[cluster->default_level]; |
| ret = set_device_mode(cluster, i, level); |
| |
| WARN_ON(ret); |
| |
| } |
| |
| cluster_notify(cluster, &cluster->levels[last_level], false); |
| cluster_unprepare(cluster->parent, &cluster->child_cpus, |
| last_level, from_idle, end_time, success); |
| unlock_return: |
| spin_unlock(&cluster->sync_lock); |
| } |
| |
| static inline void cpu_prepare(struct lpm_cluster *cluster, int cpu_index, |
| bool from_idle) |
| { |
| struct lpm_cpu_level *cpu_level = &cluster->cpu->levels[cpu_index]; |
| bool jtag_save_restore = |
| cluster->cpu->levels[cpu_index].jtag_save_restore; |
| |
| /* Use broadcast timer for aggregating sleep mode within a cluster. |
| * A broadcast timer could be used in the following scenarios |
| * 1) The architected timer HW gets reset during certain low power |
| * modes and the core relies on a external(broadcast) timer to wake up |
| * from sleep. This information is passed through device tree. |
| * 2) The CPU low power mode could trigger a system low power mode. |
| * The low power module relies on Broadcast timer to aggregate the |
| * next wakeup within a cluster, in which case, CPU switches over to |
| * use broadcast timer. |
| */ |
| if (from_idle && (cpu_level->use_bc_timer || |
| (cpu_index >= cluster->min_child_level))) |
| tick_broadcast_enter(); |
| |
| if (from_idle && ((cpu_level->mode == MSM_PM_SLEEP_MODE_POWER_COLLAPSE) |
| || (cpu_level->mode == |
| MSM_PM_SLEEP_MODE_POWER_COLLAPSE_STANDALONE) |
| || (cpu_level->is_reset))) |
| cpu_pm_enter(); |
| |
| /* |
| * Save JTAG registers for 8996v1.0 & 8996v2.x in C4 LPM |
| */ |
| if (jtag_save_restore) |
| msm_jtag_save_state(); |
| } |
| |
| static inline void cpu_unprepare(struct lpm_cluster *cluster, int cpu_index, |
| bool from_idle) |
| { |
| struct lpm_cpu_level *cpu_level = &cluster->cpu->levels[cpu_index]; |
| bool jtag_save_restore = |
| cluster->cpu->levels[cpu_index].jtag_save_restore; |
| |
| if (from_idle && (cpu_level->use_bc_timer || |
| (cpu_index >= cluster->min_child_level))) |
| tick_broadcast_exit(); |
| |
| if (from_idle && ((cpu_level->mode == MSM_PM_SLEEP_MODE_POWER_COLLAPSE) |
| || (cpu_level->mode == |
| MSM_PM_SLEEP_MODE_POWER_COLLAPSE_STANDALONE) |
| || cpu_level->is_reset)) |
| cpu_pm_exit(); |
| |
| /* |
| * Restore JTAG registers for 8996v1.0 & 8996v2.x in C4 LPM |
| */ |
| if (jtag_save_restore) |
| msm_jtag_restore_state(); |
| } |
| |
| #if defined(CONFIG_ARM_PSCI) || !defined(CONFIG_CPU_V7) |
| static int get_cluster_id(struct lpm_cluster *cluster, int *aff_lvl) |
| { |
| int state_id = 0; |
| |
| if (!cluster) |
| return 0; |
| |
| spin_lock(&cluster->sync_lock); |
| |
| if (!cpumask_equal(&cluster->num_children_in_sync, |
| &cluster->child_cpus)) |
| goto unlock_and_return; |
| |
| state_id |= get_cluster_id(cluster->parent, aff_lvl); |
| |
| if (cluster->last_level != cluster->default_level) { |
| struct lpm_cluster_level *level |
| = &cluster->levels[cluster->last_level]; |
| |
| state_id |= (level->psci_id & cluster->psci_mode_mask) |
| << cluster->psci_mode_shift; |
| (*aff_lvl)++; |
| } |
| unlock_and_return: |
| spin_unlock(&cluster->sync_lock); |
| return state_id; |
| } |
| #endif |
| |
| #if !defined(CONFIG_CPU_V7) |
| asmlinkage int __invoke_psci_fn_smc(u64, u64, u64, u64); |
| static bool psci_enter_sleep(struct lpm_cluster *cluster, |
| int idx, bool from_idle) |
| |
| { |
| bool ret; |
| /* |
| * idx = 0 is the default LPM state |
| */ |
| if (!idx) { |
| stop_critical_timings(); |
| wfi(); |
| start_critical_timings(); |
| ret = true; |
| } else { |
| int affinity_level = 0; |
| int state_id = get_cluster_id(cluster, &affinity_level); |
| int power_state = |
| PSCI_POWER_STATE(cluster->cpu->levels[idx].is_reset); |
| bool success = false; |
| |
| if (cluster->cpu->levels[idx].hyp_psci) { |
| stop_critical_timings(); |
| __invoke_psci_fn_smc(0xC4000021, 0, 0, 0); |
| start_critical_timings(); |
| return 1; |
| } |
| |
| affinity_level = PSCI_AFFINITY_LEVEL(affinity_level); |
| state_id |= (power_state | affinity_level |
| | cluster->cpu->levels[idx].psci_id); |
| |
| update_debug_pc_event(CPU_ENTER, state_id, |
| 0xdeaffeed, 0xdeaffeed, true); |
| stop_critical_timings(); |
| success = !arm_cpuidle_suspend(state_id); |
| start_critical_timings(); |
| update_debug_pc_event(CPU_EXIT, state_id, |
| success, 0xdeaffeed, true); |
| ret = success; |
| } |
| return ret; |
| } |
| #elif defined(CONFIG_ARM_PSCI) |
| static bool psci_enter_sleep(struct lpm_cluster *cluster, |
| int idx, bool from_idle) |
| { |
| bool ret; |
| |
| if (!idx) { |
| stop_critical_timings(); |
| wfi(); |
| start_critical_timings(); |
| ret = true; |
| } else { |
| int affinity_level = 0; |
| int state_id = get_cluster_id(cluster, &affinity_level); |
| int power_state = |
| PSCI_POWER_STATE(cluster->cpu->levels[idx].is_reset); |
| bool success = false; |
| |
| affinity_level = PSCI_AFFINITY_LEVEL(affinity_level); |
| state_id |= (power_state | affinity_level |
| | cluster->cpu->levels[idx].psci_id); |
| |
| update_debug_pc_event(CPU_ENTER, state_id, |
| 0xdeaffeed, 0xdeaffeed, true); |
| stop_critical_timings(); |
| success = !arm_cpuidle_suspend(state_id); |
| start_critical_timings(); |
| update_debug_pc_event(CPU_EXIT, state_id, |
| success, 0xdeaffeed, true); |
| ret = success; |
| } |
| return ret; |
| } |
| #else |
| static bool psci_enter_sleep(struct lpm_cluster *cluster, |
| int idx, bool from_idle) |
| { |
| WARN_ONCE(true, "PSCI cpu_suspend ops not supported\n"); |
| return false; |
| } |
| #endif |
| |
| static int lpm_cpuidle_select(struct cpuidle_driver *drv, |
| struct cpuidle_device *dev) |
| { |
| struct lpm_cluster *cluster = per_cpu(cpu_cluster, dev->cpu); |
| int idx; |
| |
| if (!cluster) |
| return 0; |
| |
| idx = cpu_power_select(dev, cluster->cpu); |
| |
| return idx; |
| } |
| |
| static int lpm_cpuidle_enter(struct cpuidle_device *dev, |
| struct cpuidle_driver *drv, int idx) |
| { |
| struct lpm_cluster *cluster = per_cpu(cpu_cluster, dev->cpu); |
| bool success = true; |
| const struct cpumask *cpumask = get_cpu_mask(dev->cpu); |
| ktime_t start = ktime_get(); |
| int64_t start_time = ktime_to_ns(ktime_get()), end_time; |
| |
| if (idx < 0) |
| return -EINVAL; |
| |
| cpu_prepare(cluster, idx, true); |
| cluster_prepare(cluster, cpumask, idx, true, ktime_to_ns(ktime_get())); |
| |
| trace_cpu_idle_enter(idx); |
| lpm_stats_cpu_enter(idx, start_time); |
| |
| if (need_resched()) |
| goto exit; |
| |
| if (!use_psci) { |
| if (idx > 0) |
| update_debug_pc_event(CPU_ENTER, idx, 0xdeaffeed, |
| 0xdeaffeed, true); |
| success = msm_cpu_pm_enter_sleep(cluster->cpu->levels[idx].mode, |
| true); |
| |
| if (idx > 0) |
| update_debug_pc_event(CPU_EXIT, idx, success, |
| 0xdeaffeed, true); |
| } else { |
| success = psci_enter_sleep(cluster, idx, true); |
| } |
| |
| exit: |
| end_time = ktime_to_ns(ktime_get()); |
| lpm_stats_cpu_exit(idx, end_time, success); |
| |
| cluster_unprepare(cluster, cpumask, idx, true, end_time, success); |
| cpu_unprepare(cluster, idx, true); |
| |
| trace_cpu_idle_exit(idx, success); |
| dev->last_residency = ktime_us_delta(ktime_get(), start); |
| local_irq_enable(); |
| |
| return idx; |
| } |
| |
| #ifdef CONFIG_CPU_IDLE_MULTIPLE_DRIVERS |
| static int cpuidle_register_cpu(struct cpuidle_driver *drv, |
| struct cpumask *mask) |
| { |
| struct cpuidle_device *device; |
| int cpu, ret; |
| |
| |
| if (!mask || !drv) |
| return -EINVAL; |
| |
| drv->cpumask = mask; |
| ret = cpuidle_register_driver(drv); |
| if (ret) { |
| pr_err("Failed to register cpuidle driver %d\n", ret); |
| goto failed_driver_register; |
| } |
| |
| for_each_cpu(cpu, mask) { |
| device = &per_cpu(cpuidle_dev, cpu); |
| device->cpu = cpu; |
| |
| ret = cpuidle_register_device(device); |
| if (ret) { |
| pr_err("Failed to register cpuidle driver for cpu:%u\n", |
| cpu); |
| goto failed_driver_register; |
| } |
| } |
| return ret; |
| failed_driver_register: |
| for_each_cpu(cpu, mask) |
| cpuidle_unregister_driver(drv); |
| return ret; |
| } |
| #else |
| static int cpuidle_register_cpu(struct cpuidle_driver *drv, |
| struct cpumask *mask) |
| { |
| return cpuidle_register(drv, NULL); |
| } |
| #endif |
| |
| static struct cpuidle_governor lpm_governor = { |
| .name = "qcom", |
| .rating = 30, |
| .select = lpm_cpuidle_select, |
| .owner = THIS_MODULE, |
| }; |
| |
| static int cluster_cpuidle_register(struct lpm_cluster *cl) |
| { |
| int i = 0, ret = 0; |
| unsigned int cpu; |
| struct lpm_cluster *p = NULL; |
| |
| if (!cl->cpu) { |
| struct lpm_cluster *n; |
| |
| list_for_each_entry(n, &cl->child, list) { |
| ret = cluster_cpuidle_register(n); |
| if (ret) |
| break; |
| } |
| return ret; |
| } |
| |
| cl->drv = kzalloc(sizeof(*cl->drv), GFP_KERNEL); |
| if (!cl->drv) |
| return -ENOMEM; |
| |
| cl->drv->name = "msm_idle"; |
| |
| for (i = 0; i < cl->cpu->nlevels; i++) { |
| struct cpuidle_state *st = &cl->drv->states[i]; |
| struct lpm_cpu_level *cpu_level = &cl->cpu->levels[i]; |
| |
| snprintf(st->name, CPUIDLE_NAME_LEN, "C%u\n", i); |
| snprintf(st->desc, CPUIDLE_DESC_LEN, "%s", cpu_level->name); |
| st->flags = 0; |
| st->exit_latency = cpu_level->pwr.latency_us; |
| st->power_usage = cpu_level->pwr.ss_power; |
| st->target_residency = 0; |
| st->enter = lpm_cpuidle_enter; |
| } |
| |
| cl->drv->state_count = cl->cpu->nlevels; |
| cl->drv->safe_state_index = 0; |
| for_each_cpu(cpu, &cl->child_cpus) |
| per_cpu(cpu_cluster, cpu) = cl; |
| |
| for_each_possible_cpu(cpu) { |
| if (cpu_online(cpu)) |
| continue; |
| p = per_cpu(cpu_cluster, cpu); |
| while (p) { |
| int j; |
| |
| spin_lock(&p->sync_lock); |
| cpumask_set_cpu(cpu, &p->num_children_in_sync); |
| for (j = 0; j < p->nlevels; j++) |
| cpumask_copy(&p->levels[j].num_cpu_votes, |
| &p->num_children_in_sync); |
| spin_unlock(&p->sync_lock); |
| p = p->parent; |
| } |
| } |
| ret = cpuidle_register_cpu(cl->drv, &cl->child_cpus); |
| |
| if (ret) { |
| kfree(cl->drv); |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| /** |
| * init_lpm - initializes the governor |
| */ |
| static int __init init_lpm(void) |
| { |
| return cpuidle_register_governor(&lpm_governor); |
| } |
| |
| postcore_initcall(init_lpm); |
| |
| static void register_cpu_lpm_stats(struct lpm_cpu *cpu, |
| struct lpm_cluster *parent) |
| { |
| const char **level_name; |
| int i; |
| |
| level_name = kcalloc(cpu->nlevels, sizeof(*level_name), GFP_KERNEL); |
| |
| if (!level_name) |
| return; |
| |
| for (i = 0; i < cpu->nlevels; i++) |
| level_name[i] = cpu->levels[i].name; |
| |
| lpm_stats_config_level("cpu", level_name, cpu->nlevels, |
| parent->stats, &parent->child_cpus); |
| |
| kfree(level_name); |
| } |
| |
| static void register_cluster_lpm_stats(struct lpm_cluster *cl, |
| struct lpm_cluster *parent) |
| { |
| const char **level_name; |
| int i; |
| struct lpm_cluster *child; |
| |
| if (!cl) |
| return; |
| |
| level_name = kcalloc(cl->nlevels, sizeof(*level_name), GFP_KERNEL); |
| |
| if (!level_name) |
| return; |
| |
| for (i = 0; i < cl->nlevels; i++) |
| level_name[i] = cl->levels[i].level_name; |
| |
| cl->stats = lpm_stats_config_level(cl->cluster_name, level_name, |
| cl->nlevels, parent ? parent->stats : NULL, NULL); |
| |
| kfree(level_name); |
| |
| if (cl->cpu) { |
| register_cpu_lpm_stats(cl->cpu, cl); |
| return; |
| } |
| |
| list_for_each_entry(child, &cl->child, list) |
| register_cluster_lpm_stats(child, cl); |
| } |
| |
| static int lpm_suspend_prepare(void) |
| { |
| suspend_in_progress = true; |
| lpm_stats_suspend_enter(); |
| |
| return 0; |
| } |
| |
| static void lpm_suspend_wake(void) |
| { |
| suspend_in_progress = false; |
| lpm_stats_suspend_exit(); |
| } |
| |
| static int lpm_suspend_enter(suspend_state_t state) |
| { |
| int cpu = raw_smp_processor_id(); |
| struct lpm_cluster *cluster = per_cpu(cpu_cluster, cpu); |
| struct lpm_cpu *lpm_cpu = cluster->cpu; |
| const struct cpumask *cpumask = get_cpu_mask(cpu); |
| int idx; |
| bool success = true; |
| |
| for (idx = lpm_cpu->nlevels - 1; idx >= 0; idx--) { |
| |
| if (lpm_cpu_mode_allow(cpu, idx, false)) |
| break; |
| } |
| if (idx < 0) { |
| pr_err("Failed suspend\n"); |
| return 0; |
| } |
| cpu_prepare(cluster, idx, false); |
| cluster_prepare(cluster, cpumask, idx, false, 0); |
| if (idx > 0) |
| update_debug_pc_event(CPU_ENTER, idx, 0xdeaffeed, |
| 0xdeaffeed, false); |
| |
| /* |
| * Print the clocks which are enabled during system suspend |
| * This debug information is useful to know which are the |
| * clocks that are enabled and preventing the system level |
| * LPMs(XO and Vmin). |
| */ |
| clock_debug_print_enabled(true); |
| |
| if (!use_psci) |
| msm_cpu_pm_enter_sleep(cluster->cpu->levels[idx].mode, false); |
| else |
| success = psci_enter_sleep(cluster, idx, true); |
| |
| if (idx > 0) |
| update_debug_pc_event(CPU_EXIT, idx, true, 0xdeaffeed, |
| false); |
| |
| cluster_unprepare(cluster, cpumask, idx, false, 0, success); |
| cpu_unprepare(cluster, idx, false); |
| return 0; |
| } |
| |
| static int lpm_dying_cpu(unsigned int cpu) |
| { |
| struct lpm_cluster *cluster = per_cpu(cpu_cluster, cpu); |
| |
| update_debug_pc_event(CPU_HP_DYING, cpu, |
| cluster->num_children_in_sync.bits[0], |
| cluster->child_cpus.bits[0], false); |
| cluster_prepare(cluster, get_cpu_mask(cpu), NR_LPM_LEVELS, false, 0); |
| return 0; |
| } |
| |
| static int lpm_starting_cpu(unsigned int cpu) |
| { |
| struct lpm_cluster *cluster = per_cpu(cpu_cluster, cpu); |
| |
| update_debug_pc_event(CPU_HP_STARTING, cpu, |
| cluster->num_children_in_sync.bits[0], |
| cluster->child_cpus.bits[0], false); |
| cluster_unprepare(cluster, get_cpu_mask(cpu), NR_LPM_LEVELS, |
| false, 0, true); |
| return 0; |
| } |
| |
| static const struct platform_suspend_ops lpm_suspend_ops = { |
| .enter = lpm_suspend_enter, |
| .valid = suspend_valid_only_mem, |
| .prepare_late = lpm_suspend_prepare, |
| .wake = lpm_suspend_wake, |
| }; |
| |
| static int lpm_probe(struct platform_device *pdev) |
| { |
| int ret; |
| int size; |
| struct kobject *module_kobj = NULL; |
| struct md_region md_entry; |
| |
| get_online_cpus(); |
| lpm_root_node = lpm_of_parse_cluster(pdev); |
| |
| if (IS_ERR_OR_NULL(lpm_root_node)) { |
| pr_err("%s(): Failed to probe low power modes\n", __func__); |
| put_online_cpus(); |
| return PTR_ERR(lpm_root_node); |
| } |
| |
| if (print_parsed_dt) |
| cluster_dt_walkthrough(lpm_root_node); |
| |
| /* |
| * Register hotplug notifier before broadcast time to ensure there |
| * to prevent race where a broadcast timer might not be setup on for a |
| * core. BUG in existing code but no known issues possibly because of |
| * how late lpm_levels gets initialized. |
| */ |
| suspend_set_ops(&lpm_suspend_ops); |
| hrtimer_init(&lpm_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| |
| ret = remote_spin_lock_init(&scm_handoff_lock, SCM_HANDOFF_LOCK_ID); |
| if (ret) { |
| pr_err("%s: Failed initializing scm_handoff_lock (%d)\n", |
| __func__, ret); |
| put_online_cpus(); |
| return ret; |
| } |
| size = num_dbg_elements * sizeof(struct lpm_debug); |
| lpm_debug = dma_alloc_coherent(&pdev->dev, size, |
| &lpm_debug_phys, GFP_KERNEL); |
| register_cluster_lpm_stats(lpm_root_node, NULL); |
| |
| ret = cluster_cpuidle_register(lpm_root_node); |
| put_online_cpus(); |
| if (ret) { |
| pr_err("%s()Failed to register with cpuidle framework\n", |
| __func__); |
| goto failed; |
| } |
| ret = cpuhp_setup_state(CPUHP_AP_QCOM_SLEEP_STARTING, |
| "AP_QCOM_SLEEP_STARTING", |
| lpm_starting_cpu, lpm_dying_cpu); |
| if (ret) |
| goto failed; |
| |
| module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME); |
| if (!module_kobj) { |
| pr_err("%s: cannot find kobject for module %s\n", |
| __func__, KBUILD_MODNAME); |
| ret = -ENOENT; |
| goto failed; |
| } |
| |
| ret = create_cluster_lvl_nodes(lpm_root_node, module_kobj); |
| if (ret) { |
| pr_err("%s(): Failed to create cluster level nodes\n", |
| __func__); |
| goto failed; |
| } |
| |
| /* Add lpm_debug to Minidump*/ |
| strlcpy(md_entry.name, "KLPMDEBUG", sizeof(md_entry.name)); |
| md_entry.virt_addr = (uintptr_t)lpm_debug; |
| md_entry.phys_addr = lpm_debug_phys; |
| md_entry.size = size; |
| if (msm_minidump_add_region(&md_entry)) |
| pr_info("Failed to add lpm_debug in Minidump\n"); |
| |
| return 0; |
| failed: |
| free_cluster_node(lpm_root_node); |
| lpm_root_node = NULL; |
| return ret; |
| } |
| |
| static const struct of_device_id lpm_mtch_tbl[] = { |
| {.compatible = "qcom,lpm-levels"}, |
| {}, |
| }; |
| |
| static struct platform_driver lpm_driver = { |
| .probe = lpm_probe, |
| .driver = { |
| .name = "lpm-levels", |
| .owner = THIS_MODULE, |
| .of_match_table = lpm_mtch_tbl, |
| }, |
| }; |
| |
| static int __init lpm_levels_module_init(void) |
| { |
| int rc; |
| |
| rc = platform_driver_register(&lpm_driver); |
| if (rc) { |
| pr_info("Error registering %s\n", lpm_driver.driver.name); |
| goto fail; |
| } |
| |
| fail: |
| return rc; |
| } |
| late_initcall(lpm_levels_module_init); |
| |
| enum msm_pm_l2_scm_flag lpm_cpu_pre_pc_cb(unsigned int cpu) |
| { |
| struct lpm_cluster *cluster = per_cpu(cpu_cluster, cpu); |
| enum msm_pm_l2_scm_flag retflag = MSM_SCM_L2_ON; |
| |
| /* |
| * No need to acquire the lock if probe isn't completed yet |
| * In the event of the hotplug happening before lpm probe, we want to |
| * flush the cache to make sure that L2 is flushed. In particular, this |
| * could cause incoherencies for a cluster architecture. This wouldn't |
| * affect the idle case as the idle driver wouldn't be registered |
| * before the probe function |
| */ |
| if (!cluster) |
| return MSM_SCM_L2_OFF; |
| |
| /* |
| * Assumes L2 only. What/How parameters gets passed into TZ will |
| * determine how this function reports this info back in msm-pm.c |
| */ |
| spin_lock(&cluster->sync_lock); |
| |
| if (!cluster->lpm_dev) { |
| retflag = MSM_SCM_L2_OFF; |
| goto unlock_and_return; |
| } |
| |
| if (!cpumask_equal(&cluster->num_children_in_sync, |
| &cluster->child_cpus)) |
| goto unlock_and_return; |
| |
| if (cluster->lpm_dev) |
| retflag = cluster->lpm_dev->tz_flag; |
| /* |
| * The scm_handoff_lock will be release by the secure monitor. |
| * It is used to serialize power-collapses from this point on, |
| * so that both Linux and the secure context have a consistent |
| * view regarding the number of running cpus (cpu_count). |
| * |
| * It must be acquired before releasing the cluster lock. |
| */ |
| unlock_and_return: |
| update_debug_pc_event(PRE_PC_CB, retflag, 0xdeadbeef, 0xdeadbeef, |
| 0xdeadbeef); |
| trace_pre_pc_cb(retflag); |
| remote_spin_lock_rlock_id(&scm_handoff_lock, |
| REMOTE_SPINLOCK_TID_START + cpu); |
| spin_unlock(&cluster->sync_lock); |
| return retflag; |
| } |
| |
| /** |
| * lpm_cpu_hotplug_enter(): Called by dying CPU to terminate in low power mode |
| * |
| * @cpu: cpuid of the dying CPU |
| * |
| * Called from platform_cpu_kill() to terminate hotplug in a low power mode |
| */ |
| void lpm_cpu_hotplug_enter(unsigned int cpu) |
| { |
| enum msm_pm_sleep_mode mode = MSM_PM_SLEEP_MODE_NR; |
| struct lpm_cluster *cluster = per_cpu(cpu_cluster, cpu); |
| int i; |
| int idx = -1; |
| |
| /* |
| * If lpm isn't probed yet, try to put cpu into the one of the modes |
| * available |
| */ |
| if (!cluster) { |
| if (msm_spm_is_mode_avail( |
| MSM_SPM_MODE_POWER_COLLAPSE)){ |
| mode = MSM_PM_SLEEP_MODE_POWER_COLLAPSE; |
| } else if (msm_spm_is_mode_avail( |
| MSM_SPM_MODE_FASTPC)) { |
| mode = MSM_PM_SLEEP_MODE_FASTPC; |
| } else if (msm_spm_is_mode_avail( |
| MSM_SPM_MODE_RETENTION)) { |
| mode = MSM_PM_SLEEP_MODE_RETENTION; |
| } else { |
| pr_err("No mode avail for cpu%d hotplug\n", cpu); |
| WARN_ON(1); |
| return; |
| } |
| } else { |
| struct lpm_cpu *lpm_cpu; |
| uint32_t ss_pwr = ~0U; |
| |
| lpm_cpu = cluster->cpu; |
| for (i = 0; i < lpm_cpu->nlevels; i++) { |
| if (ss_pwr < lpm_cpu->levels[i].pwr.ss_power) |
| continue; |
| ss_pwr = lpm_cpu->levels[i].pwr.ss_power; |
| idx = i; |
| mode = lpm_cpu->levels[i].mode; |
| } |
| |
| if (mode == MSM_PM_SLEEP_MODE_NR) |
| return; |
| |
| WARN_ON(idx < 0); |
| cluster_prepare(cluster, get_cpu_mask(cpu), idx, false, 0); |
| } |
| |
| msm_cpu_pm_enter_sleep(mode, false); |
| } |