| /* Copyright (c) 2016-2018, The Linux Foundation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #define pr_fmt(fmt) "flashv2: %s: " fmt, __func__ |
| |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/delay.h> |
| #include <linux/slab.h> |
| #include <linux/of.h> |
| #include <linux/of_irq.h> |
| #include <linux/of_gpio.h> |
| #include <linux/gpio.h> |
| #include <linux/regmap.h> |
| #include <linux/power_supply.h> |
| #include <linux/platform_device.h> |
| #include <linux/interrupt.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/leds-qpnp-flash.h> |
| #include <linux/leds-qpnp-flash-v2.h> |
| #include <linux/qpnp/qpnp-revid.h> |
| #include <linux/log2.h> |
| #include "leds.h" |
| |
| #define FLASH_LED_REG_LED_STATUS1(base) (base + 0x08) |
| |
| #define FLASH_LED_REG_LED_STATUS2(base) (base + 0x09) |
| #define FLASH_LED_VPH_DROOP_FAULT_MASK BIT(4) |
| |
| #define FLASH_LED_REG_INT_RT_STS(base) (base + 0x10) |
| |
| #define FLASH_LED_REG_SAFETY_TMR(base) (base + 0x40) |
| #define FLASH_LED_SAFETY_TMR_ENABLE BIT(7) |
| |
| #define FLASH_LED_REG_TGR_CURRENT(base) (base + 0x43) |
| |
| #define FLASH_LED_REG_MOD_CTRL(base) (base + 0x46) |
| #define FLASH_LED_MOD_CTRL_MASK BIT(7) |
| #define FLASH_LED_MOD_ENABLE BIT(7) |
| |
| #define FLASH_LED_REG_IRES(base) (base + 0x47) |
| |
| #define FLASH_LED_REG_STROBE_CFG(base) (base + 0x48) |
| #define FLASH_LED_STROBE_MASK GENMASK(1, 0) |
| |
| #define FLASH_LED_REG_STROBE_CTRL(base) (base + 0x49) |
| #define FLASH_LED_HW_SW_STROBE_SEL_BIT BIT(2) |
| #define FLASH_HW_STROBE_MASK GENMASK(2, 0) |
| |
| #define FLASH_LED_EN_LED_CTRL(base) (base + 0x4C) |
| #define FLASH_LED_ENABLE BIT(0) |
| |
| #define FLASH_LED_REG_HDRM_PRGM(base) (base + 0x4D) |
| #define FLASH_LED_HDRM_VOL_MASK GENMASK(7, 4) |
| #define FLASH_LED_HDRM_VOL_SHIFT 4 |
| |
| #define FLASH_LED_REG_HDRM_AUTO_MODE_CTRL(base) (base + 0x50) |
| #define FLASH_LED_REG_WARMUP_DELAY(base) (base + 0x51) |
| |
| #define FLASH_LED_REG_ISC_DELAY(base) (base + 0x52) |
| #define FLASH_LED_ISC_WARMUP_DELAY_MASK GENMASK(1, 0) |
| #define FLASH_LED_ISC_WARMUP_DELAY_SHIFT 6 |
| |
| #define FLASH_LED_REG_THERMAL_RMP_DN_RATE(base) (base + 0x55) |
| #define THERMAL_OTST1_RAMP_CTRL_MASK BIT(7) |
| #define THERMAL_OTST1_RAMP_CTRL_SHIFT 7 |
| #define THERMAL_DERATE_SLOW_SHIFT 4 |
| #define THERMAL_DERATE_SLOW_MASK GENMASK(6, 4) |
| #define THERMAL_DERATE_FAST_MASK GENMASK(2, 0) |
| |
| #define FLASH_LED_REG_THERMAL_THRSH1(base) (base + 0x56) |
| #define FLASH_LED_THERMAL_THRSH_MASK GENMASK(2, 0) |
| |
| #define FLASH_LED_REG_THERMAL_THRSH2(base) (base + 0x57) |
| #define FLASH_LED_REG_THERMAL_THRSH3(base) (base + 0x58) |
| |
| #define FLASH_LED_REG_THERMAL_HYSTERESIS(base) (base + 0x59) |
| #define FLASH_LED_THERMAL_HYSTERESIS_MASK GENMASK(1, 0) |
| |
| #define FLASH_LED_REG_THERMAL_DEBOUNCE(base) (base + 0x5A) |
| #define FLASH_LED_THERMAL_DEBOUNCE_MASK GENMASK(1, 0) |
| |
| #define FLASH_LED_REG_VPH_DROOP_THRESHOLD(base) (base + 0x61) |
| #define FLASH_LED_VPH_DROOP_HYSTERESIS_MASK GENMASK(5, 4) |
| #define FLASH_LED_VPH_DROOP_THRESHOLD_MASK GENMASK(2, 0) |
| #define FLASH_LED_VPH_DROOP_HYST_SHIFT 4 |
| |
| #define FLASH_LED_REG_VPH_DROOP_DEBOUNCE(base) (base + 0x62) |
| #define FLASH_LED_VPH_DROOP_DEBOUNCE_MASK GENMASK(1, 0) |
| |
| #define FLASH_LED_REG_ILED_GRT_THRSH(base) (base + 0x67) |
| #define FLASH_LED_ILED_GRT_THRSH_MASK GENMASK(5, 0) |
| |
| #define FLASH_LED_REG_LED1N2_ICLAMP_LOW(base) (base + 0x68) |
| #define FLASH_LED_REG_LED1N2_ICLAMP_MID(base) (base + 0x69) |
| #define FLASH_LED_REG_LED3_ICLAMP_LOW(base) (base + 0x6A) |
| |
| #define FLASH_LED_REG_LED3_ICLAMP_MID(base) (base + 0x6B) |
| #define FLASH_LED_CURRENT_MASK GENMASK(6, 0) |
| |
| #define FLASH_LED_REG_MITIGATION_SEL(base) (base + 0x6E) |
| #define FLASH_LED_CHGR_MITIGATION_SEL_MASK GENMASK(5, 4) |
| #define FLASH_LED_LMH_MITIGATION_SEL_MASK GENMASK(1, 0) |
| |
| #define FLASH_LED_REG_MITIGATION_SW(base) (base + 0x6F) |
| #define FLASH_LED_LMH_MITIGATION_EN_MASK BIT(0) |
| #define FLASH_LED_CHGR_MITIGATION_EN_MASK BIT(4) |
| #define FLASH_LED_CHGR_MITIGATION_ENABLE BIT(4) |
| |
| #define FLASH_LED_REG_LMH_LEVEL(base) (base + 0x70) |
| #define FLASH_LED_LMH_LEVEL_MASK GENMASK(1, 0) |
| |
| #define FLASH_LED_REG_MULTI_STROBE_CTRL(base) (base + 0x71) |
| #define LED3_FLASH_ONCE_ONLY_BIT BIT(1) |
| #define LED1N2_FLASH_ONCE_ONLY_BIT BIT(0) |
| |
| #define FLASH_LED_REG_LPG_INPUT_CTRL(base) (base + 0x72) |
| #define LPG_INPUT_SEL_BIT BIT(0) |
| |
| #define FLASH_LED_REG_CURRENT_DERATE_EN(base) (base + 0x76) |
| #define FLASH_LED_CURRENT_DERATE_EN_MASK GENMASK(2, 0) |
| |
| #define VPH_DROOP_DEBOUNCE_US_TO_VAL(val_us) (val_us / 8) |
| #define VPH_DROOP_HYST_MV_TO_VAL(val_mv) (val_mv / 25) |
| #define VPH_DROOP_THRESH_VAL_TO_UV(val) ((val + 25) * 100000) |
| #define MITIGATION_THRSH_MA_TO_VAL(val_ma) (val_ma / 100) |
| #define THERMAL_HYST_TEMP_TO_VAL(val, divisor) (val / divisor) |
| |
| #define FLASH_LED_WARMUP_DELAY_DEFAULT 2 |
| #define FLASH_LED_ISC_DELAY_DEFAULT 3 |
| #define FLASH_LED_VPH_DROOP_DEBOUNCE_DEFAULT 2 |
| #define FLASH_LED_VPH_DROOP_HYST_DEFAULT 2 |
| #define FLASH_LED_VPH_DROOP_THRESH_DEFAULT 5 |
| #define BHARGER_FLASH_LED_VPH_DROOP_THRESH_DEFAULT 7 |
| #define FLASH_LED_DEBOUNCE_MAX 3 |
| #define FLASH_LED_HYSTERESIS_MAX 3 |
| #define FLASH_LED_VPH_DROOP_THRESH_MAX 7 |
| #define THERMAL_DERATE_SLOW_MAX 314592 |
| #define THERMAL_DERATE_FAST_MAX 512 |
| #define THERMAL_DEBOUNCE_TIME_MAX 64 |
| #define THERMAL_DERATE_HYSTERESIS_MAX 3 |
| #define FLASH_LED_THERMAL_THRSH_MIN 3 |
| #define FLASH_LED_THERMAL_THRSH_MAX 7 |
| #define FLASH_LED_THERMAL_OTST_LEVELS 3 |
| #define FLASH_LED_VLED_MAX_DEFAULT_UV 3500000 |
| #define FLASH_LED_IBATT_OCP_THRESH_DEFAULT_UA 4500000 |
| #define FLASH_LED_RPARA_DEFAULT_UOHM 0 |
| #define FLASH_LED_LMH_LEVEL_DEFAULT 0 |
| #define FLASH_LED_LMH_MITIGATION_ENABLE 1 |
| #define FLASH_LED_LMH_MITIGATION_DISABLE 0 |
| #define FLASH_LED_CHGR_MITIGATION_DISABLE 0 |
| #define FLASH_LED_LMH_MITIGATION_SEL_DEFAULT 2 |
| #define FLASH_LED_MITIGATION_SEL_MAX 2 |
| #define FLASH_LED_CHGR_MITIGATION_SEL_SHIFT 4 |
| #define FLASH_LED_CHGR_MITIGATION_THRSH_DEFAULT 0xA |
| #define FLASH_LED_CHGR_MITIGATION_THRSH_MAX 0x1F |
| #define FLASH_LED_LMH_OCV_THRESH_DEFAULT_UV 3700000 |
| #define FLASH_LED_LMH_RBATT_THRESH_DEFAULT_UOHM 400000 |
| #define FLASH_LED_IRES_BASE 3 |
| #define FLASH_LED_IRES_DIVISOR 2500 |
| #define FLASH_LED_IRES_MIN_UA 5000 |
| #define FLASH_LED_IRES_DEFAULT_UA 12500 |
| #define FLASH_LED_IRES_DEFAULT_VAL 0x00 |
| #define FLASH_LED_HDRM_VOL_DEFAULT_MV 0x80 |
| #define FLASH_LED_HDRM_VOL_HI_LO_WIN_DEFAULT_MV 0x04 |
| #define FLASH_LED_HDRM_VOL_BASE_MV 125 |
| #define FLASH_LED_HDRM_VOL_STEP_MV 25 |
| #define FLASH_LED_STROBE_CFG_DEFAULT 0x00 |
| #define FLASH_LED_HW_STROBE_OPTION_1 0x00 |
| #define FLASH_LED_HW_STROBE_OPTION_2 0x01 |
| #define FLASH_LED_HW_STROBE_OPTION_3 0x02 |
| #define FLASH_LED_DISABLE 0x00 |
| #define FLASH_LED_SAFETY_TMR_DISABLED 0x13 |
| #define FLASH_LED_MAX_TOTAL_CURRENT_MA 3750 |
| #define FLASH_LED_IRES5P0_MAX_CURR_MA 640 |
| #define FLASH_LED_IRES7P5_MAX_CURR_MA 960 |
| #define FLASH_LED_IRES10P0_MAX_CURR_MA 1280 |
| #define FLASH_LED_IRES12P5_MAX_CURR_MA 1600 |
| #define MAX_IRES_LEVELS 4 |
| #define FLASH_BST_PWM_OVRHD_MIN_UV 300000 |
| #define FLASH_BST_PWM_OVRHD_MAX_UV 600000 |
| |
| /* notifier call chain for flash-led irqs */ |
| static ATOMIC_NOTIFIER_HEAD(irq_notifier_list); |
| |
| enum flash_charger_mitigation { |
| FLASH_DISABLE_CHARGER_MITIGATION, |
| FLASH_HW_CHARGER_MITIGATION_BY_ILED_THRSHLD, |
| FLASH_SW_CHARGER_MITIGATION, |
| }; |
| |
| enum flash_led_type { |
| FLASH_LED_TYPE_UNKNOWN, |
| FLASH_LED_TYPE_FLASH, |
| FLASH_LED_TYPE_TORCH, |
| }; |
| |
| enum { |
| LED1 = 0, |
| LED2, |
| LED3, |
| }; |
| |
| enum strobe_type { |
| SW_STROBE = 0, |
| HW_STROBE, |
| LPG_STROBE, |
| }; |
| |
| /* |
| * Configurations for each individual LED |
| */ |
| struct flash_node_data { |
| struct platform_device *pdev; |
| struct led_classdev cdev; |
| struct pinctrl *strobe_pinctrl; |
| struct pinctrl_state *hw_strobe_state_active; |
| struct pinctrl_state *hw_strobe_state_suspend; |
| int hw_strobe_gpio; |
| int ires_ua; |
| int default_ires_ua; |
| int max_current; |
| int current_ma; |
| int prev_current_ma; |
| u8 duration; |
| u8 id; |
| u8 ires_idx; |
| u8 default_ires_idx; |
| u8 hdrm_val; |
| u8 current_reg_val; |
| u8 strobe_ctrl; |
| u8 strobe_sel; |
| enum flash_led_type type; |
| bool led_on; |
| }; |
| |
| |
| struct flash_switch_data { |
| struct platform_device *pdev; |
| struct regulator *vreg; |
| struct pinctrl *led_en_pinctrl; |
| struct pinctrl_state *gpio_state_active; |
| struct pinctrl_state *gpio_state_suspend; |
| struct led_classdev cdev; |
| int led_mask; |
| bool regulator_on; |
| bool enabled; |
| bool symmetry_en; |
| }; |
| |
| /* |
| * Flash LED configuration read from device tree |
| */ |
| struct flash_led_platform_data { |
| struct pmic_revid_data *pmic_rev_id; |
| int *thermal_derate_current; |
| int all_ramp_up_done_irq; |
| int all_ramp_down_done_irq; |
| int led_fault_irq; |
| int ibatt_ocp_threshold_ua; |
| int vled_max_uv; |
| int rpara_uohm; |
| int lmh_rbatt_threshold_uohm; |
| int lmh_ocv_threshold_uv; |
| int thermal_derate_slow; |
| int thermal_derate_fast; |
| int thermal_hysteresis; |
| int thermal_debounce; |
| int thermal_thrsh1; |
| int thermal_thrsh2; |
| int thermal_thrsh3; |
| int hw_strobe_option; |
| u32 led1n2_iclamp_low_ma; |
| u32 led1n2_iclamp_mid_ma; |
| u32 led3_iclamp_low_ma; |
| u32 led3_iclamp_mid_ma; |
| u32 bst_pwm_ovrhd_uv; |
| u8 isc_delay; |
| u8 warmup_delay; |
| u8 current_derate_en_cfg; |
| u8 vph_droop_threshold; |
| u8 vph_droop_hysteresis; |
| u8 vph_droop_debounce; |
| u8 lmh_mitigation_sel; |
| u8 chgr_mitigation_sel; |
| u8 lmh_level; |
| u8 iled_thrsh_val; |
| bool hdrm_auto_mode_en; |
| bool thermal_derate_en; |
| bool otst_ramp_bkup_en; |
| }; |
| |
| /* |
| * Flash LED data structure containing flash LED attributes |
| */ |
| struct qpnp_flash_led { |
| struct flash_led_platform_data *pdata; |
| struct platform_device *pdev; |
| struct regmap *regmap; |
| struct flash_node_data *fnode; |
| struct flash_switch_data *snode; |
| struct power_supply *bms_psy; |
| struct power_supply *main_psy; |
| struct power_supply *usb_psy; |
| struct notifier_block nb; |
| spinlock_t lock; |
| int num_fnodes; |
| int num_snodes; |
| int enable; |
| int total_current_ma; |
| u16 base; |
| bool trigger_lmh; |
| bool trigger_chgr; |
| }; |
| |
| static int thermal_derate_slow_table[] = { |
| 128, 256, 512, 1024, 2048, 4096, 8192, 314592, |
| }; |
| |
| static int thermal_derate_fast_table[] = { |
| 32, 64, 96, 128, 256, 384, 512, |
| }; |
| |
| static int otst1_threshold_table[] = { |
| 85, 79, 73, 67, 109, 103, 97, 91, |
| }; |
| |
| static int otst2_threshold_table[] = { |
| 110, 104, 98, 92, 134, 128, 122, 116, |
| }; |
| |
| static int otst3_threshold_table[] = { |
| 125, 119, 113, 107, 149, 143, 137, 131, |
| }; |
| |
| static int max_ires_curr_ma_table[MAX_IRES_LEVELS] = { |
| FLASH_LED_IRES12P5_MAX_CURR_MA, FLASH_LED_IRES10P0_MAX_CURR_MA, |
| FLASH_LED_IRES7P5_MAX_CURR_MA, FLASH_LED_IRES5P0_MAX_CURR_MA |
| }; |
| |
| static inline int get_current_reg_code(int target_curr_ma, int ires_ua) |
| { |
| if (!ires_ua || !target_curr_ma || (target_curr_ma < (ires_ua / 1000))) |
| return 0; |
| |
| return DIV_ROUND_CLOSEST(target_curr_ma * 1000, ires_ua) - 1; |
| } |
| |
| static int qpnp_flash_led_read(struct qpnp_flash_led *led, u16 addr, u8 *data) |
| { |
| int rc; |
| uint val; |
| |
| rc = regmap_read(led->regmap, addr, &val); |
| if (rc < 0) { |
| pr_err("Unable to read from 0x%04X rc = %d\n", addr, rc); |
| return rc; |
| } |
| |
| pr_debug("Read 0x%02X from addr 0x%04X\n", val, addr); |
| *data = (u8)val; |
| return 0; |
| } |
| |
| static int qpnp_flash_led_write(struct qpnp_flash_led *led, u16 addr, u8 data) |
| { |
| int rc; |
| |
| rc = regmap_write(led->regmap, addr, data); |
| if (rc < 0) { |
| pr_err("Unable to write to 0x%04X rc = %d\n", addr, rc); |
| return rc; |
| } |
| |
| pr_debug("Wrote 0x%02X to addr 0x%04X\n", data, addr); |
| return 0; |
| } |
| |
| static int |
| qpnp_flash_led_masked_read(struct qpnp_flash_led *led, u16 addr, u8 mask, |
| u8 *val) |
| { |
| int rc; |
| |
| rc = qpnp_flash_led_read(led, addr, val); |
| if (rc < 0) |
| return rc; |
| |
| *val &= mask; |
| return rc; |
| } |
| |
| static int |
| qpnp_flash_led_masked_write(struct qpnp_flash_led *led, u16 addr, u8 mask, |
| u8 val) |
| { |
| int rc; |
| |
| rc = regmap_update_bits(led->regmap, addr, mask, val); |
| if (rc < 0) |
| pr_err("Unable to update bits from 0x%04X, rc = %d\n", addr, |
| rc); |
| else |
| pr_debug("Wrote 0x%02X to addr 0x%04X\n", val, addr); |
| |
| return rc; |
| } |
| |
| static enum |
| led_brightness qpnp_flash_led_brightness_get(struct led_classdev *led_cdev) |
| { |
| return led_cdev->brightness; |
| } |
| |
| static int qpnp_flash_led_init_settings(struct qpnp_flash_led *led) |
| { |
| int rc, i, addr_offset; |
| u8 val = 0, mask, strobe_mask = 0, strobe_ctrl; |
| |
| for (i = 0; i < led->num_fnodes; i++) { |
| addr_offset = led->fnode[i].id; |
| rc = qpnp_flash_led_write(led, |
| FLASH_LED_REG_HDRM_PRGM(led->base + addr_offset), |
| led->fnode[i].hdrm_val); |
| if (rc < 0) |
| return rc; |
| |
| val |= 0x1 << led->fnode[i].id; |
| |
| rc = qpnp_flash_led_write(led, |
| FLASH_LED_REG_SAFETY_TMR(led->base + addr_offset), |
| FLASH_LED_SAFETY_TMR_DISABLED); |
| if (rc < 0) |
| return rc; |
| |
| if (led->fnode[i].strobe_sel == HW_STROBE) { |
| if (led->fnode[i].id == LED3) |
| strobe_mask |= LED3_FLASH_ONCE_ONLY_BIT; |
| else |
| strobe_mask |= LED1N2_FLASH_ONCE_ONLY_BIT; |
| } |
| |
| if (led->fnode[i].id == LED3 && |
| led->fnode[i].strobe_sel == LPG_STROBE) |
| strobe_mask |= LED3_FLASH_ONCE_ONLY_BIT; |
| /* |
| * As per the hardware recommendation, to use LED2/LED3 in HW |
| * strobe mode, LED1 should be set to HW strobe mode as well. |
| */ |
| if (led->fnode[i].strobe_sel == HW_STROBE && |
| (led->fnode[i].id == LED2 || led->fnode[i].id == LED3)) { |
| mask = FLASH_HW_STROBE_MASK; |
| addr_offset = led->fnode[LED1].id; |
| /* |
| * HW_STROBE: enable, TRIGGER: level, |
| * POLARITY: active high |
| */ |
| strobe_ctrl = BIT(2) | BIT(0); |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_STROBE_CTRL( |
| led->base + addr_offset), |
| mask, strobe_ctrl); |
| if (rc < 0) |
| return rc; |
| } |
| } |
| |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_MULTI_STROBE_CTRL(led->base), |
| strobe_mask, 0); |
| if (rc < 0) |
| return rc; |
| |
| if (led->fnode[LED3].strobe_sel == LPG_STROBE) { |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_LPG_INPUT_CTRL(led->base), |
| LPG_INPUT_SEL_BIT, LPG_INPUT_SEL_BIT); |
| if (rc < 0) |
| return rc; |
| } |
| |
| rc = qpnp_flash_led_write(led, |
| FLASH_LED_REG_HDRM_AUTO_MODE_CTRL(led->base), |
| val); |
| if (rc < 0) |
| return rc; |
| |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_ISC_DELAY(led->base), |
| FLASH_LED_ISC_WARMUP_DELAY_MASK, |
| led->pdata->isc_delay); |
| if (rc < 0) |
| return rc; |
| |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_WARMUP_DELAY(led->base), |
| FLASH_LED_ISC_WARMUP_DELAY_MASK, |
| led->pdata->warmup_delay); |
| if (rc < 0) |
| return rc; |
| |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_CURRENT_DERATE_EN(led->base), |
| FLASH_LED_CURRENT_DERATE_EN_MASK, |
| led->pdata->current_derate_en_cfg); |
| if (rc < 0) |
| return rc; |
| |
| val = (led->pdata->otst_ramp_bkup_en << THERMAL_OTST1_RAMP_CTRL_SHIFT); |
| mask = THERMAL_OTST1_RAMP_CTRL_MASK; |
| if (led->pdata->thermal_derate_slow >= 0) { |
| val |= (led->pdata->thermal_derate_slow << |
| THERMAL_DERATE_SLOW_SHIFT); |
| mask |= THERMAL_DERATE_SLOW_MASK; |
| } |
| |
| if (led->pdata->thermal_derate_fast >= 0) { |
| val |= led->pdata->thermal_derate_fast; |
| mask |= THERMAL_DERATE_FAST_MASK; |
| } |
| |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_THERMAL_RMP_DN_RATE(led->base), |
| mask, val); |
| if (rc < 0) |
| return rc; |
| |
| if (led->pdata->thermal_debounce >= 0) { |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_THERMAL_DEBOUNCE(led->base), |
| FLASH_LED_THERMAL_DEBOUNCE_MASK, |
| led->pdata->thermal_debounce); |
| if (rc < 0) |
| return rc; |
| } |
| |
| if (led->pdata->thermal_hysteresis >= 0) { |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_THERMAL_HYSTERESIS(led->base), |
| FLASH_LED_THERMAL_HYSTERESIS_MASK, |
| led->pdata->thermal_hysteresis); |
| if (rc < 0) |
| return rc; |
| } |
| |
| if (led->pdata->thermal_thrsh1 >= 0) { |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_THERMAL_THRSH1(led->base), |
| FLASH_LED_THERMAL_THRSH_MASK, |
| led->pdata->thermal_thrsh1); |
| if (rc < 0) |
| return rc; |
| } |
| |
| if (led->pdata->thermal_thrsh2 >= 0) { |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_THERMAL_THRSH2(led->base), |
| FLASH_LED_THERMAL_THRSH_MASK, |
| led->pdata->thermal_thrsh2); |
| if (rc < 0) |
| return rc; |
| } |
| |
| if (led->pdata->thermal_thrsh3 >= 0) { |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_THERMAL_THRSH3(led->base), |
| FLASH_LED_THERMAL_THRSH_MASK, |
| led->pdata->thermal_thrsh3); |
| if (rc < 0) |
| return rc; |
| } |
| |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_VPH_DROOP_DEBOUNCE(led->base), |
| FLASH_LED_VPH_DROOP_DEBOUNCE_MASK, |
| led->pdata->vph_droop_debounce); |
| if (rc < 0) |
| return rc; |
| |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_VPH_DROOP_THRESHOLD(led->base), |
| FLASH_LED_VPH_DROOP_THRESHOLD_MASK, |
| led->pdata->vph_droop_threshold); |
| if (rc < 0) |
| return rc; |
| |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_VPH_DROOP_THRESHOLD(led->base), |
| FLASH_LED_VPH_DROOP_HYSTERESIS_MASK, |
| led->pdata->vph_droop_hysteresis); |
| if (rc < 0) |
| return rc; |
| |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_MITIGATION_SEL(led->base), |
| FLASH_LED_LMH_MITIGATION_SEL_MASK, |
| led->pdata->lmh_mitigation_sel); |
| if (rc < 0) |
| return rc; |
| |
| val = led->pdata->chgr_mitigation_sel |
| << FLASH_LED_CHGR_MITIGATION_SEL_SHIFT; |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_MITIGATION_SEL(led->base), |
| FLASH_LED_CHGR_MITIGATION_SEL_MASK, |
| val); |
| if (rc < 0) |
| return rc; |
| |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_LMH_LEVEL(led->base), |
| FLASH_LED_LMH_LEVEL_MASK, |
| led->pdata->lmh_level); |
| if (rc < 0) |
| return rc; |
| |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_ILED_GRT_THRSH(led->base), |
| FLASH_LED_ILED_GRT_THRSH_MASK, |
| led->pdata->iled_thrsh_val); |
| if (rc < 0) |
| return rc; |
| |
| if (led->pdata->led1n2_iclamp_low_ma) { |
| val = get_current_reg_code(led->pdata->led1n2_iclamp_low_ma, |
| led->fnode[LED1].ires_ua); |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_LED1N2_ICLAMP_LOW(led->base), |
| FLASH_LED_CURRENT_MASK, val); |
| if (rc < 0) |
| return rc; |
| } |
| |
| if (led->pdata->led1n2_iclamp_mid_ma) { |
| val = get_current_reg_code(led->pdata->led1n2_iclamp_mid_ma, |
| led->fnode[LED1].ires_ua); |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_LED1N2_ICLAMP_MID(led->base), |
| FLASH_LED_CURRENT_MASK, val); |
| if (rc < 0) |
| return rc; |
| } |
| |
| if (led->pdata->led3_iclamp_low_ma) { |
| val = get_current_reg_code(led->pdata->led3_iclamp_low_ma, |
| led->fnode[LED3].ires_ua); |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_LED3_ICLAMP_LOW(led->base), |
| FLASH_LED_CURRENT_MASK, val); |
| if (rc < 0) |
| return rc; |
| } |
| |
| if (led->pdata->led3_iclamp_mid_ma) { |
| val = get_current_reg_code(led->pdata->led3_iclamp_mid_ma, |
| led->fnode[LED3].ires_ua); |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_LED3_ICLAMP_MID(led->base), |
| FLASH_LED_CURRENT_MASK, val); |
| if (rc < 0) |
| return rc; |
| } |
| |
| if (led->pdata->hw_strobe_option > 0) { |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_STROBE_CFG(led->base), |
| FLASH_LED_STROBE_MASK, |
| led->pdata->hw_strobe_option); |
| if (rc < 0) |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| static int qpnp_flash_led_hw_strobe_enable(struct flash_node_data *fnode, |
| int hw_strobe_option, bool on) |
| { |
| int rc = 0; |
| |
| /* |
| * If the LED controlled by this fnode is not GPIO controlled |
| * for the given strobe_option, return. |
| */ |
| if (hw_strobe_option == FLASH_LED_HW_STROBE_OPTION_1) |
| return 0; |
| else if (hw_strobe_option == FLASH_LED_HW_STROBE_OPTION_2 |
| && fnode->id != LED3) |
| return 0; |
| else if (hw_strobe_option == FLASH_LED_HW_STROBE_OPTION_3 |
| && fnode->id == LED1) |
| return 0; |
| |
| if (gpio_is_valid(fnode->hw_strobe_gpio)) { |
| gpio_set_value(fnode->hw_strobe_gpio, on ? 1 : 0); |
| } else if (fnode->strobe_pinctrl && fnode->hw_strobe_state_active && |
| fnode->hw_strobe_state_suspend) { |
| rc = pinctrl_select_state(fnode->strobe_pinctrl, |
| on ? fnode->hw_strobe_state_active : |
| fnode->hw_strobe_state_suspend); |
| if (rc < 0) { |
| pr_err("failed to change hw strobe pin state\n"); |
| return rc; |
| } |
| } |
| |
| return rc; |
| } |
| |
| static int qpnp_flash_led_regulator_enable(struct qpnp_flash_led *led, |
| struct flash_switch_data *snode, bool on) |
| { |
| int rc = 0; |
| |
| if (!snode || !snode->vreg) |
| return 0; |
| |
| if (snode->regulator_on == on) |
| return 0; |
| |
| if (on) |
| rc = regulator_enable(snode->vreg); |
| else |
| rc = regulator_disable(snode->vreg); |
| |
| if (rc < 0) { |
| pr_err("regulator_%s failed, rc=%d\n", |
| on ? "enable" : "disable", rc); |
| return rc; |
| } |
| |
| snode->regulator_on = on ? true : false; |
| return 0; |
| } |
| |
| static int get_property_from_fg(struct qpnp_flash_led *led, |
| enum power_supply_property prop, int *val) |
| { |
| int rc; |
| union power_supply_propval pval = {0, }; |
| |
| if (!led->bms_psy) { |
| led->bms_psy = power_supply_get_by_name("bms"); |
| if (!led->bms_psy) { |
| pr_err_ratelimited("Couldn't get bms_psy\n"); |
| return -ENODEV; |
| } |
| } |
| |
| rc = power_supply_get_property(led->bms_psy, prop, &pval); |
| if (rc) { |
| pr_err("bms psy doesn't support reading prop %d rc = %d\n", |
| prop, rc); |
| return rc; |
| } |
| |
| *val = pval.intval; |
| return rc; |
| } |
| |
| #define VOLTAGE_HDRM_DEFAULT_MV 350 |
| #define BHARGER_VOLTAGE_HDRM_DEFAULT_MV 400 |
| #define BHARGER_HEADROOM_OFFSET_MV 50 |
| static int qpnp_flash_led_get_voltage_headroom(struct qpnp_flash_led *led) |
| { |
| int i, voltage_hdrm_mv = 0, voltage_hdrm_max = 0; |
| u8 pmic_subtype = led->pdata->pmic_rev_id->pmic_subtype; |
| |
| for (i = 0; i < led->num_fnodes; i++) { |
| if (led->fnode[i].led_on) { |
| if (led->fnode[i].id < 2) { |
| if (led->fnode[i].current_ma < 750) |
| voltage_hdrm_mv = 125; |
| else if (led->fnode[i].current_ma < 1000) |
| voltage_hdrm_mv = 175; |
| else if (led->fnode[i].current_ma < 1250) |
| voltage_hdrm_mv = 250; |
| else |
| voltage_hdrm_mv = 350; |
| } else { |
| if (led->fnode[i].current_ma < 375) |
| voltage_hdrm_mv = 125; |
| else if (led->fnode[i].current_ma < 500) |
| voltage_hdrm_mv = 175; |
| else if (led->fnode[i].current_ma < 625) |
| voltage_hdrm_mv = 250; |
| else |
| voltage_hdrm_mv = 350; |
| } |
| |
| if (pmic_subtype == PMI632_SUBTYPE) |
| voltage_hdrm_mv += BHARGER_HEADROOM_OFFSET_MV; |
| |
| voltage_hdrm_max = max(voltage_hdrm_max, |
| voltage_hdrm_mv); |
| } |
| } |
| |
| if (!voltage_hdrm_max) |
| return (pmic_subtype == PMI632_SUBTYPE) ? |
| BHARGER_VOLTAGE_HDRM_DEFAULT_MV : |
| VOLTAGE_HDRM_DEFAULT_MV; |
| |
| return voltage_hdrm_max; |
| } |
| |
| #define UCONV 1000000LL |
| #define MCONV 1000LL |
| #define FLASH_VDIP_MARGIN 50000 |
| #define BOB_EFFICIENCY 900LL |
| #define VIN_FLASH_MIN_UV 3300000LL |
| static int qpnp_flash_led_calc_max_current(struct qpnp_flash_led *led, |
| int *max_current) |
| { |
| int ocv_uv, ibat_now, voltage_hdrm_mv, rc; |
| int rbatt_uohm = 0; |
| int64_t ibat_flash_ua, avail_flash_ua, avail_flash_power_fw; |
| int64_t ibat_safe_ua, vin_flash_uv, vph_flash_uv, vph_flash_vdip; |
| |
| /* RESISTANCE = esr_uohm + rslow_uohm */ |
| rc = get_property_from_fg(led, POWER_SUPPLY_PROP_RESISTANCE, |
| &rbatt_uohm); |
| if (rc < 0) { |
| pr_err("bms psy does not support resistance, rc=%d\n", rc); |
| return rc; |
| } |
| |
| /* If no battery is connected, return max possible flash current */ |
| if (!rbatt_uohm) { |
| *max_current = FLASH_LED_MAX_TOTAL_CURRENT_MA; |
| return 0; |
| } |
| |
| rc = get_property_from_fg(led, POWER_SUPPLY_PROP_VOLTAGE_OCV, &ocv_uv); |
| if (rc < 0) { |
| pr_err("bms psy does not support OCV, rc=%d\n", rc); |
| return rc; |
| } |
| |
| rc = get_property_from_fg(led, POWER_SUPPLY_PROP_CURRENT_NOW, |
| &ibat_now); |
| if (rc < 0) { |
| pr_err("bms psy does not support current, rc=%d\n", rc); |
| return rc; |
| } |
| |
| rbatt_uohm += led->pdata->rpara_uohm; |
| voltage_hdrm_mv = qpnp_flash_led_get_voltage_headroom(led); |
| vph_flash_vdip = |
| VPH_DROOP_THRESH_VAL_TO_UV(led->pdata->vph_droop_threshold) |
| + FLASH_VDIP_MARGIN; |
| |
| /* Check if LMH_MITIGATION needs to be triggered */ |
| if (!led->trigger_lmh && (ocv_uv < led->pdata->lmh_ocv_threshold_uv || |
| rbatt_uohm > led->pdata->lmh_rbatt_threshold_uohm)) { |
| led->trigger_lmh = true; |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_MITIGATION_SW(led->base), |
| FLASH_LED_LMH_MITIGATION_EN_MASK, |
| FLASH_LED_LMH_MITIGATION_ENABLE); |
| if (rc < 0) { |
| pr_err("trigger lmh mitigation failed, rc=%d\n", rc); |
| return rc; |
| } |
| |
| /* Wait for LMH mitigation to take effect */ |
| udelay(100); |
| |
| return qpnp_flash_led_calc_max_current(led, max_current); |
| } |
| |
| /* |
| * Calculate the maximum current that can pulled out of the battery |
| * before the battery voltage dips below a safe threshold. |
| */ |
| ibat_safe_ua = div_s64((ocv_uv - vph_flash_vdip) * UCONV, |
| rbatt_uohm); |
| |
| if (ibat_safe_ua <= led->pdata->ibatt_ocp_threshold_ua) { |
| /* |
| * If the calculated current is below the OCP threshold, then |
| * use it as the possible flash current. |
| */ |
| ibat_flash_ua = ibat_safe_ua - ibat_now; |
| vph_flash_uv = vph_flash_vdip; |
| } else { |
| /* |
| * If the calculated current is above the OCP threshold, then |
| * use the ocp threshold instead. |
| * |
| * Any higher current will be tripping the battery OCP. |
| */ |
| ibat_flash_ua = led->pdata->ibatt_ocp_threshold_ua - ibat_now; |
| vph_flash_uv = ocv_uv - div64_s64((int64_t)rbatt_uohm |
| * led->pdata->ibatt_ocp_threshold_ua, UCONV); |
| } |
| /* Calculate the input voltage of the flash module. */ |
| vin_flash_uv = max((led->pdata->vled_max_uv + |
| (voltage_hdrm_mv * MCONV)), VIN_FLASH_MIN_UV); |
| /* Calculate the available power for the flash module. */ |
| avail_flash_power_fw = BOB_EFFICIENCY * vph_flash_uv * ibat_flash_ua; |
| /* |
| * Calculate the available amount of current the flash module can draw |
| * before collapsing the battery. (available power/ flash input voltage) |
| */ |
| avail_flash_ua = div64_s64(avail_flash_power_fw, vin_flash_uv * MCONV); |
| pr_debug("avail_iflash=%lld, ocv=%d, ibat=%d, rbatt=%d, trigger_lmh=%d\n", |
| avail_flash_ua, ocv_uv, ibat_now, rbatt_uohm, led->trigger_lmh); |
| *max_current = min(FLASH_LED_MAX_TOTAL_CURRENT_MA, |
| (int)(div64_s64(avail_flash_ua, MCONV))); |
| return 0; |
| } |
| |
| static int is_main_psy_available(struct qpnp_flash_led *led) |
| { |
| if (!led->main_psy) { |
| led->main_psy = power_supply_get_by_name("main"); |
| if (!led->main_psy) { |
| pr_err_ratelimited("Couldn't get main_psy\n"); |
| return -ENODEV; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int is_usb_psy_available(struct qpnp_flash_led *led) |
| { |
| if (!led->usb_psy) { |
| led->usb_psy = power_supply_get_by_name("usb"); |
| if (!led->usb_psy) { |
| pr_err_ratelimited("Couldn't get usb_psy\n"); |
| return -ENODEV; |
| } |
| } |
| |
| return 0; |
| } |
| |
| #define CHGBST_EFFICIENCY 800LL |
| #define CHGBST_FLASH_VDIP_MARGIN 10000 |
| #define VIN_FLASH_UV 5000000 |
| #define BHARGER_FLASH_LED_MAX_TOTAL_CURRENT_MA 1500 |
| #define BHARGER_FLASH_LED_WITH_OTG_MAX_TOTAL_CURRENT_MA 1100 |
| static int qpnp_flash_led_calc_bharger_max_current(struct qpnp_flash_led *led, |
| int *max_current) |
| { |
| union power_supply_propval pval = {0, }; |
| int ocv_uv, ibat_now, voltage_hdrm_mv, flash_led_max_total_curr_ma, rc; |
| int rbatt_uohm = 0, usb_present, otg_enable; |
| int64_t ibat_flash_ua, avail_flash_ua, avail_flash_power_fw; |
| int64_t ibat_safe_ua, vin_flash_uv, vph_flash_uv, vph_flash_vdip; |
| int64_t bst_pwm_ovrhd_uv; |
| |
| rc = is_usb_psy_available(led); |
| if (rc < 0) |
| return rc; |
| |
| rc = power_supply_get_property(led->usb_psy, POWER_SUPPLY_PROP_SCOPE, |
| &pval); |
| if (rc < 0) { |
| pr_err("usb psy does not support usb present, rc=%d\n", rc); |
| return rc; |
| } |
| otg_enable = pval.intval; |
| |
| /* RESISTANCE = esr_uohm + rslow_uohm */ |
| rc = get_property_from_fg(led, POWER_SUPPLY_PROP_RESISTANCE, |
| &rbatt_uohm); |
| if (rc < 0) { |
| pr_err("bms psy does not support resistance, rc=%d\n", rc); |
| return rc; |
| } |
| |
| /* If no battery is connected, return max possible flash current */ |
| if (!rbatt_uohm) { |
| *max_current = (otg_enable == POWER_SUPPLY_SCOPE_SYSTEM) ? |
| BHARGER_FLASH_LED_WITH_OTG_MAX_TOTAL_CURRENT_MA : |
| BHARGER_FLASH_LED_MAX_TOTAL_CURRENT_MA; |
| return 0; |
| } |
| |
| rc = get_property_from_fg(led, POWER_SUPPLY_PROP_VOLTAGE_OCV, &ocv_uv); |
| if (rc < 0) { |
| pr_err("bms psy does not support OCV, rc=%d\n", rc); |
| return rc; |
| } |
| |
| rc = get_property_from_fg(led, POWER_SUPPLY_PROP_CURRENT_NOW, |
| &ibat_now); |
| if (rc < 0) { |
| pr_err("bms psy does not support current, rc=%d\n", rc); |
| return rc; |
| } |
| |
| bst_pwm_ovrhd_uv = led->pdata->bst_pwm_ovrhd_uv; |
| |
| rc = power_supply_get_property(led->usb_psy, POWER_SUPPLY_PROP_PRESENT, |
| &pval); |
| if (rc < 0) { |
| pr_err("usb psy does not support usb present, rc=%d\n", rc); |
| return rc; |
| } |
| usb_present = pval.intval; |
| |
| rbatt_uohm += led->pdata->rpara_uohm; |
| voltage_hdrm_mv = qpnp_flash_led_get_voltage_headroom(led); |
| vph_flash_vdip = |
| VPH_DROOP_THRESH_VAL_TO_UV(led->pdata->vph_droop_threshold) |
| + CHGBST_FLASH_VDIP_MARGIN; |
| |
| /* Check if LMH_MITIGATION needs to be triggered */ |
| if (!led->trigger_lmh && (ocv_uv < led->pdata->lmh_ocv_threshold_uv || |
| rbatt_uohm > led->pdata->lmh_rbatt_threshold_uohm)) { |
| led->trigger_lmh = true; |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_MITIGATION_SW(led->base), |
| FLASH_LED_LMH_MITIGATION_EN_MASK, |
| FLASH_LED_LMH_MITIGATION_ENABLE); |
| if (rc < 0) { |
| pr_err("trigger lmh mitigation failed, rc=%d\n", rc); |
| return rc; |
| } |
| |
| /* Wait for LMH mitigation to take effect */ |
| udelay(100); |
| |
| return qpnp_flash_led_calc_bharger_max_current(led, |
| max_current); |
| } |
| |
| /* |
| * Calculate the maximum current that can pulled out of the battery |
| * before the battery voltage dips below a safe threshold. |
| */ |
| ibat_safe_ua = div_s64((ocv_uv - vph_flash_vdip) * UCONV, |
| rbatt_uohm); |
| |
| if (ibat_safe_ua <= led->pdata->ibatt_ocp_threshold_ua) { |
| /* |
| * If the calculated current is below the OCP threshold, then |
| * use it as the possible flash current. |
| */ |
| ibat_flash_ua = ibat_safe_ua - ibat_now; |
| vph_flash_uv = vph_flash_vdip; |
| } else { |
| /* |
| * If the calculated current is above the OCP threshold, then |
| * use the ocp threshold instead. |
| * |
| * Any higher current will be tripping the battery OCP. |
| */ |
| ibat_flash_ua = led->pdata->ibatt_ocp_threshold_ua - ibat_now; |
| vph_flash_uv = ocv_uv - div64_s64((int64_t)rbatt_uohm |
| * led->pdata->ibatt_ocp_threshold_ua, UCONV); |
| } |
| |
| /* when USB is present or OTG is enabled, VIN_FLASH is always at 5V */ |
| if (usb_present || (otg_enable == POWER_SUPPLY_SCOPE_SYSTEM)) |
| vin_flash_uv = VIN_FLASH_UV; |
| else |
| /* Calculate the input voltage of the flash module. */ |
| vin_flash_uv = max((led->pdata->vled_max_uv + |
| (voltage_hdrm_mv * MCONV)), |
| vph_flash_uv + bst_pwm_ovrhd_uv); |
| |
| /* Calculate the available power for the flash module. */ |
| avail_flash_power_fw = CHGBST_EFFICIENCY * vph_flash_uv * ibat_flash_ua; |
| /* |
| * Calculate the available amount of current the flash module can draw |
| * before collapsing the battery. (available power/ flash input voltage) |
| */ |
| avail_flash_ua = div64_s64(avail_flash_power_fw, vin_flash_uv * MCONV); |
| flash_led_max_total_curr_ma = otg_enable ? |
| BHARGER_FLASH_LED_WITH_OTG_MAX_TOTAL_CURRENT_MA : |
| BHARGER_FLASH_LED_MAX_TOTAL_CURRENT_MA; |
| *max_current = min(flash_led_max_total_curr_ma, |
| (int)(div64_s64(avail_flash_ua, MCONV))); |
| |
| pr_debug("avail_iflash=%lld, ocv=%d, ibat=%d, rbatt=%d, trigger_lmh=%d max_current=%lld usb_present=%d otg_enable=%d\n", |
| avail_flash_ua, ocv_uv, ibat_now, rbatt_uohm, led->trigger_lmh, |
| (*max_current * MCONV), usb_present, otg_enable); |
| return 0; |
| } |
| |
| |
| static int qpnp_flash_led_calc_thermal_current_lim(struct qpnp_flash_led *led, |
| int *thermal_current_lim) |
| { |
| int rc; |
| u8 thermal_thrsh1, thermal_thrsh2, thermal_thrsh3, otst_status; |
| |
| /* Store THERMAL_THRSHx register values */ |
| rc = qpnp_flash_led_masked_read(led, |
| FLASH_LED_REG_THERMAL_THRSH1(led->base), |
| FLASH_LED_THERMAL_THRSH_MASK, |
| &thermal_thrsh1); |
| if (rc < 0) |
| return rc; |
| |
| rc = qpnp_flash_led_masked_read(led, |
| FLASH_LED_REG_THERMAL_THRSH2(led->base), |
| FLASH_LED_THERMAL_THRSH_MASK, |
| &thermal_thrsh2); |
| if (rc < 0) |
| return rc; |
| |
| rc = qpnp_flash_led_masked_read(led, |
| FLASH_LED_REG_THERMAL_THRSH3(led->base), |
| FLASH_LED_THERMAL_THRSH_MASK, |
| &thermal_thrsh3); |
| if (rc < 0) |
| return rc; |
| |
| /* Lower THERMAL_THRSHx thresholds to minimum */ |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_THERMAL_THRSH1(led->base), |
| FLASH_LED_THERMAL_THRSH_MASK, |
| FLASH_LED_THERMAL_THRSH_MIN); |
| if (rc < 0) |
| return rc; |
| |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_THERMAL_THRSH2(led->base), |
| FLASH_LED_THERMAL_THRSH_MASK, |
| FLASH_LED_THERMAL_THRSH_MIN); |
| if (rc < 0) |
| return rc; |
| |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_THERMAL_THRSH3(led->base), |
| FLASH_LED_THERMAL_THRSH_MASK, |
| FLASH_LED_THERMAL_THRSH_MIN); |
| if (rc < 0) |
| return rc; |
| |
| /* Check THERMAL_OTST status */ |
| rc = qpnp_flash_led_read(led, |
| FLASH_LED_REG_LED_STATUS2(led->base), |
| &otst_status); |
| if (rc < 0) |
| return rc; |
| |
| /* Look up current limit based on THERMAL_OTST status */ |
| if (otst_status) |
| *thermal_current_lim = |
| led->pdata->thermal_derate_current[otst_status >> 1]; |
| |
| /* Restore THERMAL_THRESHx registers to original values */ |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_THERMAL_THRSH1(led->base), |
| FLASH_LED_THERMAL_THRSH_MASK, |
| thermal_thrsh1); |
| if (rc < 0) |
| return rc; |
| |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_THERMAL_THRSH2(led->base), |
| FLASH_LED_THERMAL_THRSH_MASK, |
| thermal_thrsh2); |
| if (rc < 0) |
| return rc; |
| |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_THERMAL_THRSH3(led->base), |
| FLASH_LED_THERMAL_THRSH_MASK, |
| thermal_thrsh3); |
| if (rc < 0) |
| return rc; |
| |
| return 0; |
| } |
| |
| static int qpnp_flash_led_get_max_avail_current(struct qpnp_flash_led *led, |
| int *max_avail_current) |
| { |
| int thermal_current_lim = 0, rc; |
| u8 pmic_subtype = led->pdata->pmic_rev_id->pmic_subtype; |
| |
| led->trigger_lmh = false; |
| |
| if (pmic_subtype == PMI632_SUBTYPE) |
| rc = qpnp_flash_led_calc_bharger_max_current(led, |
| max_avail_current); |
| else |
| rc = qpnp_flash_led_calc_max_current(led, max_avail_current); |
| |
| if (rc < 0) { |
| pr_err("Couldn't calculate max_avail_current, rc=%d\n", rc); |
| return rc; |
| } |
| |
| if (led->pdata->thermal_derate_en) { |
| rc = qpnp_flash_led_calc_thermal_current_lim(led, |
| &thermal_current_lim); |
| if (rc < 0) { |
| pr_err("Couldn't calculate thermal_current_lim, rc=%d\n", |
| rc); |
| return rc; |
| } |
| } |
| |
| if (thermal_current_lim) |
| *max_avail_current = min(*max_avail_current, |
| thermal_current_lim); |
| |
| return 0; |
| } |
| |
| static void qpnp_flash_led_aggregate_max_current(struct flash_node_data *fnode) |
| { |
| struct qpnp_flash_led *led = dev_get_drvdata(&fnode->pdev->dev); |
| |
| if (fnode->current_ma) |
| led->total_current_ma += fnode->current_ma |
| - fnode->prev_current_ma; |
| else |
| led->total_current_ma -= fnode->prev_current_ma; |
| |
| fnode->prev_current_ma = fnode->current_ma; |
| } |
| |
| static void qpnp_flash_led_node_set(struct flash_node_data *fnode, int value) |
| { |
| int i = 0; |
| int prgm_current_ma = value; |
| int min_ma = fnode->ires_ua / 1000; |
| struct qpnp_flash_led *led = dev_get_drvdata(&fnode->pdev->dev); |
| u8 pmic_subtype = led->pdata->pmic_rev_id->pmic_subtype; |
| |
| if (value <= 0) |
| prgm_current_ma = 0; |
| else if (value < min_ma) |
| prgm_current_ma = min_ma; |
| |
| fnode->ires_idx = fnode->default_ires_idx; |
| fnode->ires_ua = fnode->default_ires_ua; |
| |
| prgm_current_ma = min(prgm_current_ma, fnode->max_current); |
| if (prgm_current_ma > max_ires_curr_ma_table[fnode->ires_idx]) { |
| /* find the matching ires */ |
| for (i = MAX_IRES_LEVELS - 1; i >= 0; i--) { |
| if (prgm_current_ma <= max_ires_curr_ma_table[i]) { |
| fnode->ires_idx = i; |
| fnode->ires_ua = FLASH_LED_IRES_MIN_UA + |
| (FLASH_LED_IRES_BASE - fnode->ires_idx) * |
| FLASH_LED_IRES_DIVISOR; |
| break; |
| } |
| } |
| } |
| fnode->current_ma = prgm_current_ma; |
| fnode->cdev.brightness = prgm_current_ma; |
| fnode->current_reg_val = get_current_reg_code(prgm_current_ma, |
| fnode->ires_ua); |
| if (prgm_current_ma) |
| fnode->led_on = true; |
| |
| if (pmic_subtype != PMI632_SUBTYPE && |
| led->pdata->chgr_mitigation_sel == FLASH_SW_CHARGER_MITIGATION) { |
| qpnp_flash_led_aggregate_max_current(fnode); |
| led->trigger_chgr = false; |
| if (led->total_current_ma >= 1000) |
| led->trigger_chgr = true; |
| } |
| } |
| |
| static int qpnp_flash_led_switch_disable(struct flash_switch_data *snode) |
| { |
| struct qpnp_flash_led *led = dev_get_drvdata(&snode->pdev->dev); |
| int i, rc, addr_offset; |
| |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_EN_LED_CTRL(led->base), |
| snode->led_mask, FLASH_LED_DISABLE); |
| if (rc < 0) |
| return rc; |
| |
| if (led->trigger_lmh) { |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_MITIGATION_SW(led->base), |
| FLASH_LED_LMH_MITIGATION_EN_MASK, |
| FLASH_LED_LMH_MITIGATION_DISABLE); |
| if (rc < 0) { |
| pr_err("disable lmh mitigation failed, rc=%d\n", rc); |
| return rc; |
| } |
| } |
| |
| if (led->pdata->chgr_mitigation_sel && !led->trigger_chgr) { |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_MITIGATION_SW(led->base), |
| FLASH_LED_CHGR_MITIGATION_EN_MASK, |
| FLASH_LED_CHGR_MITIGATION_DISABLE); |
| if (rc < 0) { |
| pr_err("disable chgr mitigation failed, rc=%d\n", rc); |
| return rc; |
| } |
| } |
| |
| led->enable--; |
| if (led->enable == 0) { |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_MOD_CTRL(led->base), |
| FLASH_LED_MOD_CTRL_MASK, FLASH_LED_DISABLE); |
| if (rc < 0) |
| return rc; |
| } |
| |
| for (i = 0; i < led->num_fnodes; i++) { |
| if (!led->fnode[i].led_on || |
| !(snode->led_mask & BIT(led->fnode[i].id))) |
| continue; |
| |
| addr_offset = led->fnode[i].id; |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_TGR_CURRENT(led->base + addr_offset), |
| FLASH_LED_CURRENT_MASK, 0); |
| if (rc < 0) |
| return rc; |
| |
| rc = qpnp_flash_led_write(led, |
| FLASH_LED_REG_SAFETY_TMR(led->base + addr_offset), |
| FLASH_LED_SAFETY_TMR_DISABLED); |
| if (rc < 0) |
| return rc; |
| |
| led->fnode[i].led_on = false; |
| |
| if (led->fnode[i].strobe_sel == HW_STROBE) { |
| rc = qpnp_flash_led_hw_strobe_enable(&led->fnode[i], |
| led->pdata->hw_strobe_option, false); |
| if (rc < 0) { |
| pr_err("Unable to disable hw strobe, rc=%d\n", |
| rc); |
| return rc; |
| } |
| } |
| } |
| |
| if (snode->led_en_pinctrl) { |
| pr_debug("Selecting suspend state for %s\n", snode->cdev.name); |
| rc = pinctrl_select_state(snode->led_en_pinctrl, |
| snode->gpio_state_suspend); |
| if (rc < 0) { |
| pr_err("failed to select pinctrl suspend state rc=%d\n", |
| rc); |
| return rc; |
| } |
| } |
| |
| snode->enabled = false; |
| return 0; |
| } |
| |
| static int qpnp_flash_led_symmetry_config(struct flash_switch_data *snode) |
| { |
| struct qpnp_flash_led *led = dev_get_drvdata(&snode->pdev->dev); |
| int i, total_curr_ma = 0, num_leds = 0, prgm_current_ma; |
| enum flash_led_type type = FLASH_LED_TYPE_UNKNOWN; |
| |
| for (i = 0; i < led->num_fnodes; i++) { |
| if (snode->led_mask & BIT(led->fnode[i].id)) { |
| if (led->fnode[i].type == FLASH_LED_TYPE_FLASH && |
| led->fnode[i].led_on) |
| type = FLASH_LED_TYPE_FLASH; |
| |
| if (led->fnode[i].type == FLASH_LED_TYPE_TORCH && |
| led->fnode[i].led_on) |
| type = FLASH_LED_TYPE_TORCH; |
| } |
| } |
| |
| if (type == FLASH_LED_TYPE_UNKNOWN) { |
| pr_err("Incorrect type possibly because of no active LEDs\n"); |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < led->num_fnodes; i++) { |
| if ((snode->led_mask & BIT(led->fnode[i].id)) && |
| (led->fnode[i].type == type)) { |
| total_curr_ma += led->fnode[i].current_ma; |
| num_leds++; |
| } |
| } |
| |
| if (num_leds > 0 && total_curr_ma > 0) { |
| prgm_current_ma = total_curr_ma / num_leds; |
| } else { |
| pr_err("Incorrect configuration, num_leds: %d total_curr_ma: %d\n", |
| num_leds, total_curr_ma); |
| return -EINVAL; |
| } |
| |
| if (prgm_current_ma == 0) { |
| pr_warn("prgm_curr_ma cannot be 0\n"); |
| return 0; |
| } |
| |
| pr_debug("num_leds: %d total: %d prgm_curr_ma: %d\n", num_leds, |
| total_curr_ma, prgm_current_ma); |
| |
| for (i = 0; i < led->num_fnodes; i++) { |
| if (snode->led_mask & BIT(led->fnode[i].id) && |
| led->fnode[i].current_ma != prgm_current_ma && |
| led->fnode[i].type == type) { |
| qpnp_flash_led_node_set(&led->fnode[i], |
| prgm_current_ma); |
| pr_debug("%s LED %d current: %d code: %d ires_ua: %d\n", |
| (type == FLASH_LED_TYPE_FLASH) ? |
| "flash" : "torch", |
| led->fnode[i].id, prgm_current_ma, |
| led->fnode[i].current_reg_val, |
| led->fnode[i].ires_ua); |
| } |
| } |
| |
| return 0; |
| } |
| |
| #define FLASH_LED_MODULE_EN_TIME_MS 300 |
| static int qpnp_flash_poll_vreg_ok(struct qpnp_flash_led *led) |
| { |
| int rc, i; |
| union power_supply_propval pval = {0, }; |
| |
| rc = is_main_psy_available(led); |
| if (rc < 0) |
| return rc; |
| |
| for (i = 0; i < 60; i++) { |
| /* wait for the flash vreg_ok to be set */ |
| mdelay(5); |
| |
| rc = power_supply_get_property(led->main_psy, |
| POWER_SUPPLY_PROP_FLASH_TRIGGER, &pval); |
| if (rc < 0) { |
| pr_err("main psy doesn't support reading prop %d rc = %d\n", |
| POWER_SUPPLY_PROP_FLASH_TRIGGER, rc); |
| return rc; |
| } |
| |
| if (pval.intval > 0) { |
| pr_debug("Flash trigger set\n"); |
| break; |
| } |
| |
| if (pval.intval < 0) { |
| pr_err("Error during flash trigger %d\n", pval.intval); |
| return pval.intval; |
| } |
| } |
| |
| if (!pval.intval) { |
| pr_err("Failed to enable the module\n"); |
| return -ETIMEDOUT; |
| } |
| |
| return 0; |
| } |
| |
| static int qpnp_flash_led_switch_set(struct flash_switch_data *snode, bool on) |
| { |
| struct qpnp_flash_led *led = dev_get_drvdata(&snode->pdev->dev); |
| u8 pmic_subtype = led->pdata->pmic_rev_id->pmic_subtype; |
| int rc, i, addr_offset; |
| u8 val, mask; |
| |
| if (snode->enabled == on) { |
| pr_debug("Switch node is already %s!\n", |
| on ? "enabled" : "disabled"); |
| return 0; |
| } |
| |
| if (!on) { |
| rc = qpnp_flash_led_switch_disable(snode); |
| return rc; |
| } |
| |
| /* Iterate over all active leds for this switch node */ |
| if (snode->symmetry_en) { |
| rc = qpnp_flash_led_symmetry_config(snode); |
| if (rc < 0) { |
| pr_err("Failed to configure current symmetrically, rc=%d\n", |
| rc); |
| return rc; |
| } |
| } |
| |
| val = 0; |
| for (i = 0; i < led->num_fnodes; i++) |
| if (led->fnode[i].led_on && |
| snode->led_mask & BIT(led->fnode[i].id)) |
| val |= led->fnode[i].ires_idx << (led->fnode[i].id * 2); |
| |
| rc = qpnp_flash_led_masked_write(led, FLASH_LED_REG_IRES(led->base), |
| FLASH_LED_CURRENT_MASK, val); |
| if (rc < 0) |
| return rc; |
| |
| val = 0; |
| for (i = 0; i < led->num_fnodes; i++) { |
| if (!led->fnode[i].led_on || |
| !(snode->led_mask & BIT(led->fnode[i].id))) |
| continue; |
| |
| addr_offset = led->fnode[i].id; |
| if (led->fnode[i].strobe_sel == SW_STROBE) |
| mask = FLASH_LED_HW_SW_STROBE_SEL_BIT; |
| else |
| mask = FLASH_HW_STROBE_MASK; |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_STROBE_CTRL(led->base + addr_offset), |
| mask, led->fnode[i].strobe_ctrl); |
| if (rc < 0) |
| return rc; |
| |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_TGR_CURRENT(led->base + addr_offset), |
| FLASH_LED_CURRENT_MASK, led->fnode[i].current_reg_val); |
| if (rc < 0) |
| return rc; |
| |
| rc = qpnp_flash_led_write(led, |
| FLASH_LED_REG_SAFETY_TMR(led->base + addr_offset), |
| led->fnode[i].duration); |
| if (rc < 0) |
| return rc; |
| |
| val |= FLASH_LED_ENABLE << led->fnode[i].id; |
| |
| if (led->fnode[i].strobe_sel == HW_STROBE) { |
| rc = qpnp_flash_led_hw_strobe_enable(&led->fnode[i], |
| led->pdata->hw_strobe_option, true); |
| if (rc < 0) { |
| pr_err("Unable to enable hw strobe rc=%d\n", |
| rc); |
| return rc; |
| } |
| } |
| } |
| |
| if (snode->led_en_pinctrl) { |
| pr_debug("Selecting active state for %s\n", snode->cdev.name); |
| rc = pinctrl_select_state(snode->led_en_pinctrl, |
| snode->gpio_state_active); |
| if (rc < 0) { |
| pr_err("failed to select pinctrl active state rc=%d\n", |
| rc); |
| return rc; |
| } |
| } |
| |
| if (led->enable == 0) { |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_MOD_CTRL(led->base), |
| FLASH_LED_MOD_CTRL_MASK, FLASH_LED_MOD_ENABLE); |
| if (rc < 0) |
| return rc; |
| |
| if (pmic_subtype == PMI632_SUBTYPE) { |
| rc = qpnp_flash_poll_vreg_ok(led); |
| if (rc < 0) { |
| /* Disable the module */ |
| qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_MOD_CTRL(led->base), |
| FLASH_LED_MOD_CTRL_MASK, |
| FLASH_LED_DISABLE); |
| |
| return rc; |
| } |
| } |
| } |
| led->enable++; |
| |
| if (led->trigger_lmh) { |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_MITIGATION_SW(led->base), |
| FLASH_LED_LMH_MITIGATION_EN_MASK, |
| FLASH_LED_LMH_MITIGATION_ENABLE); |
| if (rc < 0) { |
| pr_err("trigger lmh mitigation failed, rc=%d\n", rc); |
| return rc; |
| } |
| /* Wait for LMH mitigation to take effect */ |
| udelay(500); |
| } |
| |
| if (led->pdata->chgr_mitigation_sel && led->trigger_chgr) { |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_REG_MITIGATION_SW(led->base), |
| FLASH_LED_CHGR_MITIGATION_EN_MASK, |
| FLASH_LED_CHGR_MITIGATION_ENABLE); |
| if (rc < 0) { |
| pr_err("trigger chgr mitigation failed, rc=%d\n", rc); |
| return rc; |
| } |
| } |
| |
| rc = qpnp_flash_led_masked_write(led, |
| FLASH_LED_EN_LED_CTRL(led->base), |
| snode->led_mask, val); |
| if (rc < 0) |
| return rc; |
| |
| snode->enabled = true; |
| return 0; |
| } |
| |
| static int qpnp_flash_led_regulator_control(struct led_classdev *led_cdev, |
| int options, int *max_current) |
| { |
| int rc; |
| u8 pmic_subtype; |
| struct flash_switch_data *snode; |
| struct qpnp_flash_led *led; |
| union power_supply_propval ret = {0, }; |
| |
| snode = container_of(led_cdev, struct flash_switch_data, cdev); |
| led = dev_get_drvdata(&snode->pdev->dev); |
| pmic_subtype = led->pdata->pmic_rev_id->pmic_subtype; |
| |
| if (pmic_subtype == PMI632_SUBTYPE) { |
| rc = is_main_psy_available(led); |
| if (rc < 0) |
| return rc; |
| |
| rc = is_usb_psy_available(led); |
| if (rc < 0) |
| return rc; |
| } |
| |
| if (!(options & FLASH_LED_PREPARE_OPTIONS_MASK)) { |
| pr_err("Invalid options %d\n", options); |
| return -EINVAL; |
| } |
| |
| if (options & ENABLE_REGULATOR) { |
| if (pmic_subtype == PMI632_SUBTYPE) { |
| ret.intval = 1; |
| rc = power_supply_set_property(led->main_psy, |
| POWER_SUPPLY_PROP_FLASH_ACTIVE, |
| &ret); |
| if (rc < 0) { |
| pr_err("Failed to set FLASH_ACTIVE on charger rc=%d\n", |
| rc); |
| return rc; |
| } |
| pr_debug("FLASH_ACTIVE = 1\n"); |
| } else { |
| rc = qpnp_flash_led_regulator_enable(led, snode, true); |
| if (rc < 0) { |
| pr_err("enable regulator failed, rc=%d\n", rc); |
| return rc; |
| } |
| } |
| } |
| |
| if (options & DISABLE_REGULATOR) { |
| if (pmic_subtype == PMI632_SUBTYPE) { |
| ret.intval = 0; |
| rc = power_supply_set_property(led->main_psy, |
| POWER_SUPPLY_PROP_FLASH_ACTIVE, |
| &ret); |
| if (rc < 0) { |
| pr_err("Failed to set FLASH_ACTIVE on charger rc=%d\n", |
| rc); |
| return rc; |
| } |
| pr_debug("FLASH_ACTIVE = 0\n"); |
| } else { |
| rc = qpnp_flash_led_regulator_enable(led, snode, false); |
| if (rc < 0) { |
| pr_err("disable regulator failed, rc=%d\n", rc); |
| return rc; |
| } |
| } |
| } |
| |
| if (options & QUERY_MAX_CURRENT) { |
| rc = qpnp_flash_led_get_max_avail_current(led, max_current); |
| if (rc < 0) { |
| pr_err("query max current failed, rc=%d\n", rc); |
| return rc; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int qpnp_flash_led_prepare_v2(struct led_trigger *trig, int options, |
| int *max_current) |
| { |
| struct led_classdev *led_cdev; |
| int rc; |
| |
| if (!trig) { |
| pr_err("Invalid led_trigger provided\n"); |
| return -EINVAL; |
| } |
| |
| led_cdev = trigger_to_lcdev(trig); |
| if (!led_cdev) { |
| pr_err("Invalid led_cdev in trigger %s\n", trig->name); |
| return -EINVAL; |
| } |
| |
| rc = qpnp_flash_led_regulator_control(led_cdev, options, max_current); |
| |
| return rc; |
| } |
| |
| static void qpnp_flash_led_brightness_set(struct led_classdev *led_cdev, |
| enum led_brightness value) |
| { |
| struct flash_node_data *fnode = NULL; |
| struct flash_switch_data *snode = NULL; |
| struct qpnp_flash_led *led = NULL; |
| int rc; |
| |
| /* |
| * strncmp() must be used here since a prefix comparison is required |
| * in order to support names like led:switch_0 and led:flash_1. |
| */ |
| if (!strncmp(led_cdev->name, "led:switch", strlen("led:switch"))) { |
| snode = container_of(led_cdev, struct flash_switch_data, cdev); |
| led = dev_get_drvdata(&snode->pdev->dev); |
| } else if (!strncmp(led_cdev->name, "led:flash", strlen("led:flash")) || |
| !strncmp(led_cdev->name, "led:torch", |
| strlen("led:torch"))) { |
| fnode = container_of(led_cdev, struct flash_node_data, cdev); |
| led = dev_get_drvdata(&fnode->pdev->dev); |
| } |
| |
| if (!led) { |
| pr_err("Failed to get flash driver data\n"); |
| return; |
| } |
| |
| spin_lock(&led->lock); |
| if (snode) { |
| rc = qpnp_flash_led_switch_set(snode, value > 0); |
| if (rc < 0) |
| pr_err("Failed to set flash LED switch rc=%d\n", rc); |
| } else if (fnode) { |
| qpnp_flash_led_node_set(fnode, value); |
| } |
| |
| spin_unlock(&led->lock); |
| } |
| |
| static ssize_t qpnp_flash_led_prepare_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t count) |
| { |
| int rc, options, max_current; |
| u32 val; |
| struct led_classdev *led_cdev = dev_get_drvdata(dev); |
| |
| rc = kstrtouint(buf, 0, &val); |
| if (rc < 0) |
| return rc; |
| |
| if (val != 0 && val != 1) |
| return count; |
| |
| options = val ? ENABLE_REGULATOR : DISABLE_REGULATOR; |
| |
| rc = qpnp_flash_led_regulator_control(led_cdev, options, &max_current); |
| if (rc < 0) |
| return rc; |
| |
| return count; |
| } |
| |
| /* sysfs show function for flash_max_current */ |
| static ssize_t qpnp_flash_led_max_current_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| int rc, max_current = 0; |
| struct flash_switch_data *snode; |
| struct qpnp_flash_led *led; |
| struct led_classdev *led_cdev = dev_get_drvdata(dev); |
| |
| snode = container_of(led_cdev, struct flash_switch_data, cdev); |
| led = dev_get_drvdata(&snode->pdev->dev); |
| |
| rc = qpnp_flash_led_get_max_avail_current(led, &max_current); |
| if (rc < 0) |
| pr_err("query max current failed, rc=%d\n", rc); |
| |
| return snprintf(buf, PAGE_SIZE, "%d\n", max_current); |
| } |
| |
| /* sysfs attributes exported by flash_led */ |
| static struct device_attribute qpnp_flash_led_attrs[] = { |
| __ATTR(max_current, 0664, qpnp_flash_led_max_current_show, NULL), |
| __ATTR(enable, 0664, NULL, qpnp_flash_led_prepare_store), |
| }; |
| |
| /* irq handler */ |
| static irqreturn_t qpnp_flash_led_irq_handler(int irq, void *_led) |
| { |
| struct qpnp_flash_led *led = _led; |
| enum flash_led_irq_type irq_type = INVALID_IRQ; |
| int rc; |
| u8 irq_status, led_status1, led_status2; |
| |
| pr_debug("irq received, irq=%d\n", irq); |
| |
| rc = qpnp_flash_led_read(led, |
| FLASH_LED_REG_INT_RT_STS(led->base), &irq_status); |
| if (rc < 0) { |
| pr_err("Failed to read interrupt status reg, rc=%d\n", rc); |
| goto exit; |
| } |
| |
| if (irq == led->pdata->all_ramp_up_done_irq) |
| irq_type = ALL_RAMP_UP_DONE_IRQ; |
| else if (irq == led->pdata->all_ramp_down_done_irq) |
| irq_type = ALL_RAMP_DOWN_DONE_IRQ; |
| else if (irq == led->pdata->led_fault_irq) |
| irq_type = LED_FAULT_IRQ; |
| |
| if (irq_type == ALL_RAMP_UP_DONE_IRQ) |
| atomic_notifier_call_chain(&irq_notifier_list, |
| irq_type, NULL); |
| |
| if (irq_type == LED_FAULT_IRQ) { |
| rc = qpnp_flash_led_read(led, |
| FLASH_LED_REG_LED_STATUS1(led->base), &led_status1); |
| if (rc < 0) { |
| pr_err("Failed to read led_status1 reg, rc=%d\n", rc); |
| goto exit; |
| } |
| |
| rc = qpnp_flash_led_read(led, |
| FLASH_LED_REG_LED_STATUS2(led->base), &led_status2); |
| if (rc < 0) { |
| pr_err("Failed to read led_status2 reg, rc=%d\n", rc); |
| goto exit; |
| } |
| |
| if (led_status1) |
| pr_emerg("led short/open fault detected! led_status1=%x\n", |
| led_status1); |
| |
| if (led_status2 & FLASH_LED_VPH_DROOP_FAULT_MASK) |
| pr_emerg("led vph_droop fault detected!\n"); |
| } |
| |
| pr_debug("irq handled, irq_type=%x, irq_status=%x\n", irq_type, |
| irq_status); |
| |
| exit: |
| return IRQ_HANDLED; |
| } |
| |
| int qpnp_flash_led_register_irq_notifier(struct notifier_block *nb) |
| { |
| return atomic_notifier_chain_register(&irq_notifier_list, nb); |
| } |
| |
| int qpnp_flash_led_unregister_irq_notifier(struct notifier_block *nb) |
| { |
| return atomic_notifier_chain_unregister(&irq_notifier_list, nb); |
| } |
| |
| static inline u8 get_safety_timer_code(u32 duration_ms) |
| { |
| if (!duration_ms) |
| return 0; |
| |
| return (duration_ms / 10) - 1; |
| } |
| |
| static inline u8 get_vph_droop_thresh_code(u32 val_mv) |
| { |
| if (!val_mv) |
| return 0; |
| |
| return (val_mv / 100) - 25; |
| } |
| |
| static int qpnp_flash_led_parse_each_led_dt(struct qpnp_flash_led *led, |
| struct flash_node_data *fnode, struct device_node *node) |
| { |
| const char *temp_string; |
| int rc, min_ma; |
| u32 val; |
| bool hw_strobe = 0, edge_trigger = 0, active_high = 0; |
| u8 pmic_subtype = led->pdata->pmic_rev_id->pmic_subtype; |
| |
| fnode->pdev = led->pdev; |
| fnode->cdev.brightness_set = qpnp_flash_led_brightness_set; |
| fnode->cdev.brightness_get = qpnp_flash_led_brightness_get; |
| |
| rc = of_property_read_string(node, "qcom,led-name", &fnode->cdev.name); |
| if (rc < 0) { |
| pr_err("Unable to read flash LED names\n"); |
| return rc; |
| } |
| |
| rc = of_property_read_string(node, "label", &temp_string); |
| if (!rc) { |
| if (!strcmp(temp_string, "flash")) { |
| fnode->type = FLASH_LED_TYPE_FLASH; |
| } else if (!strcmp(temp_string, "torch")) { |
| fnode->type = FLASH_LED_TYPE_TORCH; |
| } else { |
| pr_err("Wrong flash LED type\n"); |
| return rc; |
| } |
| } else { |
| pr_err("Unable to read flash LED label\n"); |
| return rc; |
| } |
| |
| rc = of_property_read_u32(node, "qcom,id", &val); |
| if (!rc) { |
| fnode->id = (u8)val; |
| |
| if (pmic_subtype == PMI632_SUBTYPE && fnode->id > 1) { |
| pr_err("Flash node id = %d not supported\n", fnode->id); |
| return -EINVAL; |
| } |
| } else { |
| pr_err("Unable to read flash LED ID\n"); |
| return rc; |
| } |
| |
| rc = of_property_read_string(node, "qcom,default-led-trigger", |
| &fnode->cdev.default_trigger); |
| if (rc < 0) { |
| pr_err("Unable to read trigger name\n"); |
| return rc; |
| } |
| |
| fnode->default_ires_ua = fnode->ires_ua = FLASH_LED_IRES_DEFAULT_UA; |
| fnode->default_ires_idx = fnode->ires_idx = FLASH_LED_IRES_DEFAULT_VAL; |
| rc = of_property_read_u32(node, "qcom,ires-ua", &val); |
| if (!rc) { |
| fnode->default_ires_ua = fnode->ires_ua = val; |
| fnode->default_ires_idx = fnode->ires_idx = |
| FLASH_LED_IRES_BASE - (val - FLASH_LED_IRES_MIN_UA) / |
| FLASH_LED_IRES_DIVISOR; |
| } else if (rc != -EINVAL) { |
| pr_err("Unable to read current resolution rc=%d\n", rc); |
| return rc; |
| } |
| |
| min_ma = fnode->ires_ua / 1000; |
| rc = of_property_read_u32(node, "qcom,max-current", &val); |
| if (!rc) { |
| if (val < min_ma) |
| val = min_ma; |
| fnode->max_current = val; |
| fnode->cdev.max_brightness = val; |
| } else { |
| pr_err("Unable to read max current, rc=%d\n", rc); |
| return rc; |
| } |
| |
| rc = of_property_read_u32(node, "qcom,current-ma", &val); |
| if (!rc) { |
| if (val < min_ma || val > fnode->max_current) |
| pr_warn("Invalid operational current specified, capping it\n"); |
| if (val < min_ma) |
| val = min_ma; |
| if (val > fnode->max_current) |
| val = fnode->max_current; |
| fnode->current_ma = val; |
| fnode->cdev.brightness = val; |
| } else if (rc != -EINVAL) { |
| pr_err("Unable to read operational current, rc=%d\n", rc); |
| return rc; |
| } |
| |
| fnode->duration = FLASH_LED_SAFETY_TMR_DISABLED; |
| rc = of_property_read_u32(node, "qcom,duration-ms", &val); |
| if (!rc) { |
| fnode->duration = get_safety_timer_code(val); |
| if (fnode->duration) |
| fnode->duration |= FLASH_LED_SAFETY_TMR_ENABLE; |
| } else if (rc == -EINVAL) { |
| if (fnode->type == FLASH_LED_TYPE_FLASH) { |
| pr_err("Timer duration is required for flash LED\n"); |
| return rc; |
| } |
| } else { |
| pr_err("Unable to read timer duration\n"); |
| return rc; |
| } |
| |
| fnode->hdrm_val = FLASH_LED_HDRM_VOL_DEFAULT_MV; |
| rc = of_property_read_u32(node, "qcom,hdrm-voltage-mv", &val); |
| if (!rc) { |
| val = (val - FLASH_LED_HDRM_VOL_BASE_MV) / |
| FLASH_LED_HDRM_VOL_STEP_MV; |
| fnode->hdrm_val = (val << FLASH_LED_HDRM_VOL_SHIFT) & |
| FLASH_LED_HDRM_VOL_MASK; |
| } else if (rc != -EINVAL) { |
| pr_err("Unable to read headroom voltage\n"); |
| return rc; |
| } |
| |
| rc = of_property_read_u32(node, "qcom,hdrm-vol-hi-lo-win-mv", &val); |
| if (!rc) { |
| fnode->hdrm_val |= (val / FLASH_LED_HDRM_VOL_STEP_MV) & |
| ~FLASH_LED_HDRM_VOL_MASK; |
| } else if (rc == -EINVAL) { |
| fnode->hdrm_val |= FLASH_LED_HDRM_VOL_HI_LO_WIN_DEFAULT_MV; |
| } else { |
| pr_err("Unable to read hdrm hi-lo window voltage\n"); |
| return rc; |
| } |
| |
| fnode->strobe_sel = SW_STROBE; |
| rc = of_property_read_u32(node, "qcom,strobe-sel", &val); |
| if (rc < 0) { |
| if (rc != -EINVAL) { |
| pr_err("Unable to read qcom,strobe-sel property\n"); |
| return rc; |
| } |
| } else { |
| if (val < SW_STROBE || val > LPG_STROBE) { |
| pr_err("Incorrect strobe selection specified %d\n", |
| val); |
| return -EINVAL; |
| } |
| fnode->strobe_sel = (u8)val; |
| } |
| |
| /* |
| * LPG strobe is allowed only for LED3 and HW strobe option should be |
| * option 2 or 3. |
| */ |
| if (fnode->strobe_sel == LPG_STROBE) { |
| if (led->pdata->hw_strobe_option == |
| FLASH_LED_HW_STROBE_OPTION_1) { |
| pr_err("Incorrect strobe option for LPG strobe\n"); |
| return -EINVAL; |
| } |
| if (fnode->id != LED3) { |
| pr_err("Incorrect LED chosen for LPG strobe\n"); |
| return -EINVAL; |
| } |
| } |
| |
| if (fnode->strobe_sel == HW_STROBE) { |
| edge_trigger = of_property_read_bool(node, |
| "qcom,hw-strobe-edge-trigger"); |
| active_high = !of_property_read_bool(node, |
| "qcom,hw-strobe-active-low"); |
| hw_strobe = 1; |
| } else if (fnode->strobe_sel == LPG_STROBE) { |
| /* LPG strobe requires level trigger and active high */ |
| edge_trigger = 0; |
| active_high = 1; |
| hw_strobe = 1; |
| } |
| fnode->strobe_ctrl = (hw_strobe << 2) | (edge_trigger << 1) | |
| active_high; |
| |
| rc = led_classdev_register(&led->pdev->dev, &fnode->cdev); |
| if (rc < 0) { |
| pr_err("Unable to register led node %d\n", fnode->id); |
| return rc; |
| } |
| |
| fnode->cdev.dev->of_node = node; |
| fnode->strobe_pinctrl = devm_pinctrl_get(fnode->cdev.dev); |
| if (IS_ERR_OR_NULL(fnode->strobe_pinctrl)) { |
| pr_debug("No pinctrl defined for %s, err=%ld\n", |
| fnode->cdev.name, PTR_ERR(fnode->strobe_pinctrl)); |
| fnode->strobe_pinctrl = NULL; |
| } |
| |
| if (fnode->strobe_sel == HW_STROBE) { |
| if (of_find_property(node, "qcom,hw-strobe-gpio", NULL)) { |
| fnode->hw_strobe_gpio = of_get_named_gpio(node, |
| "qcom,hw-strobe-gpio", 0); |
| if (fnode->hw_strobe_gpio < 0) { |
| pr_err("Invalid gpio specified\n"); |
| return fnode->hw_strobe_gpio; |
| } |
| gpio_direction_output(fnode->hw_strobe_gpio, 0); |
| } else if (fnode->strobe_pinctrl) { |
| fnode->hw_strobe_gpio = -1; |
| fnode->hw_strobe_state_active = |
| pinctrl_lookup_state(fnode->strobe_pinctrl, |
| "strobe_enable"); |
| if (IS_ERR_OR_NULL(fnode->hw_strobe_state_active)) { |
| pr_err("No active pin for hardware strobe, rc=%ld\n", |
| PTR_ERR(fnode->hw_strobe_state_active)); |
| fnode->hw_strobe_state_active = NULL; |
| } |
| |
| fnode->hw_strobe_state_suspend = |
| pinctrl_lookup_state(fnode->strobe_pinctrl, |
| "strobe_disable"); |
| if (IS_ERR_OR_NULL(fnode->hw_strobe_state_suspend)) { |
| pr_err("No suspend pin for hardware strobe, rc=%ld\n", |
| PTR_ERR(fnode->hw_strobe_state_suspend) |
| ); |
| fnode->hw_strobe_state_suspend = NULL; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int qpnp_flash_led_parse_and_register_switch(struct qpnp_flash_led *led, |
| struct flash_switch_data *snode, |
| struct device_node *node) |
| { |
| int rc = 0, num; |
| char reg_name[16], reg_sup_name[16]; |
| |
| rc = of_property_read_string(node, "qcom,led-name", &snode->cdev.name); |
| if (rc < 0) { |
| pr_err("Failed to read switch node name, rc=%d\n", rc); |
| return rc; |
| } |
| |
| rc = sscanf(snode->cdev.name, "led:switch_%d", &num); |
| if (!rc) { |
| pr_err("No number for switch device?\n"); |
| return -EINVAL; |
| } |
| |
| rc = of_property_read_string(node, "qcom,default-led-trigger", |
| &snode->cdev.default_trigger); |
| if (rc < 0) { |
| pr_err("Unable to read trigger name, rc=%d\n", rc); |
| return rc; |
| } |
| |
| rc = of_property_read_u32(node, "qcom,led-mask", &snode->led_mask); |
| if (rc < 0) { |
| pr_err("Unable to read led mask rc=%d\n", rc); |
| return rc; |
| } |
| |
| snode->symmetry_en = of_property_read_bool(node, "qcom,symmetry-en"); |
| |
| if (snode->led_mask < 1 || snode->led_mask > 7) { |
| pr_err("Invalid value for led-mask\n"); |
| return -EINVAL; |
| } |
| |
| scnprintf(reg_name, sizeof(reg_name), "switch%d-supply", num); |
| if (of_find_property(led->pdev->dev.of_node, reg_name, NULL)) { |
| scnprintf(reg_sup_name, sizeof(reg_sup_name), "switch%d", num); |
| snode->vreg = devm_regulator_get(&led->pdev->dev, reg_sup_name); |
| if (IS_ERR_OR_NULL(snode->vreg)) { |
| rc = PTR_ERR(snode->vreg); |
| if (rc != -EPROBE_DEFER) |
| pr_err("Failed to get regulator, rc=%d\n", rc); |
| snode->vreg = NULL; |
| return rc; |
| } |
| } |
| |
| snode->pdev = led->pdev; |
| snode->cdev.brightness_set = qpnp_flash_led_brightness_set; |
| snode->cdev.brightness_get = qpnp_flash_led_brightness_get; |
| snode->cdev.flags |= LED_KEEP_TRIGGER; |
| rc = led_classdev_register(&led->pdev->dev, &snode->cdev); |
| if (rc < 0) { |
| pr_err("Unable to register led switch node\n"); |
| return rc; |
| } |
| |
| snode->cdev.dev->of_node = node; |
| |
| snode->led_en_pinctrl = devm_pinctrl_get(snode->cdev.dev); |
| if (IS_ERR_OR_NULL(snode->led_en_pinctrl)) { |
| pr_debug("No pinctrl defined for %s, err=%ld\n", |
| snode->cdev.name, PTR_ERR(snode->led_en_pinctrl)); |
| snode->led_en_pinctrl = NULL; |
| } |
| |
| if (snode->led_en_pinctrl) { |
| snode->gpio_state_active = |
| pinctrl_lookup_state(snode->led_en_pinctrl, |
| "led_enable"); |
| if (IS_ERR_OR_NULL(snode->gpio_state_active)) { |
| pr_err("Cannot lookup LED active state\n"); |
| devm_pinctrl_put(snode->led_en_pinctrl); |
| snode->led_en_pinctrl = NULL; |
| return PTR_ERR(snode->gpio_state_active); |
| } |
| |
| snode->gpio_state_suspend = |
| pinctrl_lookup_state(snode->led_en_pinctrl, |
| "led_disable"); |
| if (IS_ERR_OR_NULL(snode->gpio_state_suspend)) { |
| pr_err("Cannot lookup LED disable state\n"); |
| devm_pinctrl_put(snode->led_en_pinctrl); |
| snode->led_en_pinctrl = NULL; |
| return PTR_ERR(snode->gpio_state_suspend); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int get_code_from_table(int *table, int len, int value) |
| { |
| int i; |
| |
| for (i = 0; i < len; i++) { |
| if (value == table[i]) |
| break; |
| } |
| |
| if (i == len) { |
| pr_err("Couldn't find %d from table\n", value); |
| return -ENODATA; |
| } |
| |
| return i; |
| } |
| |
| static int qpnp_flash_led_parse_common_dt(struct qpnp_flash_led *led, |
| struct device_node *node) |
| { |
| struct device_node *revid_node; |
| int rc; |
| u32 val; |
| u8 pmic_subtype; |
| bool short_circuit_det, open_circuit_det, vph_droop_det; |
| |
| revid_node = of_parse_phandle(node, "qcom,pmic-revid", 0); |
| if (!revid_node) { |
| pr_err("Missing qcom,pmic-revid property - driver failed\n"); |
| return -EINVAL; |
| } |
| |
| led->pdata->pmic_rev_id = get_revid_data(revid_node); |
| if (IS_ERR_OR_NULL(led->pdata->pmic_rev_id)) { |
| pr_err("Unable to get pmic_revid rc=%ld\n", |
| PTR_ERR(led->pdata->pmic_rev_id)); |
| /* |
| * the revid peripheral must be registered, any failure |
| * here only indicates that the rev-id module has not |
| * probed yet. |
| */ |
| return -EPROBE_DEFER; |
| } |
| |
| pmic_subtype = led->pdata->pmic_rev_id->pmic_subtype; |
| pr_debug("PMIC subtype %d Digital major %d\n", |
| led->pdata->pmic_rev_id->pmic_subtype, |
| led->pdata->pmic_rev_id->rev4); |
| led->pdata->hdrm_auto_mode_en = of_property_read_bool(node, |
| "qcom,hdrm-auto-mode"); |
| |
| led->pdata->isc_delay = FLASH_LED_ISC_DELAY_DEFAULT; |
| rc = of_property_read_u32(node, "qcom,isc-delay-us", &val); |
| if (!rc) { |
| led->pdata->isc_delay = |
| val >> FLASH_LED_ISC_WARMUP_DELAY_SHIFT; |
| } else if (rc != -EINVAL) { |
| pr_err("Unable to read ISC delay, rc=%d\n", rc); |
| return rc; |
| } |
| |
| led->pdata->warmup_delay = FLASH_LED_WARMUP_DELAY_DEFAULT; |
| rc = of_property_read_u32(node, "qcom,warmup-delay-us", &val); |
| if (!rc) { |
| led->pdata->warmup_delay = |
| val >> FLASH_LED_ISC_WARMUP_DELAY_SHIFT; |
| } else if (rc != -EINVAL) { |
| pr_err("Unable to read WARMUP delay, rc=%d\n", rc); |
| return rc; |
| } |
| |
| short_circuit_det = |
| of_property_read_bool(node, "qcom,short-circuit-det"); |
| open_circuit_det = of_property_read_bool(node, "qcom,open-circuit-det"); |
| vph_droop_det = of_property_read_bool(node, "qcom,vph-droop-det"); |
| led->pdata->current_derate_en_cfg = (vph_droop_det << 2) | |
| (open_circuit_det << 1) | short_circuit_det; |
| |
| led->pdata->thermal_derate_en = |
| of_property_read_bool(node, "qcom,thermal-derate-en"); |
| |
| if (led->pdata->thermal_derate_en) { |
| led->pdata->thermal_derate_current = |
| devm_kcalloc(&led->pdev->dev, |
| FLASH_LED_THERMAL_OTST_LEVELS, |
| sizeof(int), GFP_KERNEL); |
| if (!led->pdata->thermal_derate_current) |
| return -ENOMEM; |
| |
| rc = of_property_read_u32_array(node, |
| "qcom,thermal-derate-current", |
| led->pdata->thermal_derate_current, |
| FLASH_LED_THERMAL_OTST_LEVELS); |
| if (rc < 0) { |
| pr_err("Unable to read thermal current limits, rc=%d\n", |
| rc); |
| return rc; |
| } |
| } |
| |
| led->pdata->otst_ramp_bkup_en = |
| !of_property_read_bool(node, "qcom,otst-ramp-back-up-dis"); |
| |
| led->pdata->thermal_derate_slow = -EINVAL; |
| rc = of_property_read_u32(node, "qcom,thermal-derate-slow", &val); |
| if (!rc) { |
| if (val < 0 || val > THERMAL_DERATE_SLOW_MAX) { |
| pr_err("Invalid thermal_derate_slow %d\n", val); |
| return -EINVAL; |
| } |
| |
| led->pdata->thermal_derate_slow = |
| get_code_from_table(thermal_derate_slow_table, |
| ARRAY_SIZE(thermal_derate_slow_table), val); |
| } else if (rc != -EINVAL) { |
| pr_err("Unable to read thermal derate slow, rc=%d\n", rc); |
| return rc; |
| } |
| |
| led->pdata->thermal_derate_fast = -EINVAL; |
| rc = of_property_read_u32(node, "qcom,thermal-derate-fast", &val); |
| if (!rc) { |
| if (val < 0 || val > THERMAL_DERATE_FAST_MAX) { |
| pr_err("Invalid thermal_derate_fast %d\n", val); |
| return -EINVAL; |
| } |
| |
| led->pdata->thermal_derate_fast = |
| get_code_from_table(thermal_derate_fast_table, |
| ARRAY_SIZE(thermal_derate_fast_table), val); |
| } else if (rc != -EINVAL) { |
| pr_err("Unable to read thermal derate fast, rc=%d\n", rc); |
| return rc; |
| } |
| |
| led->pdata->thermal_debounce = -EINVAL; |
| rc = of_property_read_u32(node, "qcom,thermal-debounce", &val); |
| if (!rc) { |
| if (val < 0 || val > THERMAL_DEBOUNCE_TIME_MAX) { |
| pr_err("Invalid thermal_debounce %d\n", val); |
| return -EINVAL; |
| } |
| |
| if (val >= 0 && val < 16) |
| led->pdata->thermal_debounce = 0; |
| else |
| led->pdata->thermal_debounce = ilog2(val) - 3; |
| } else if (rc != -EINVAL) { |
| pr_err("Unable to read thermal debounce, rc=%d\n", rc); |
| return rc; |
| } |
| |
| led->pdata->thermal_hysteresis = -EINVAL; |
| rc = of_property_read_u32(node, "qcom,thermal-hysteresis", &val); |
| if (!rc) { |
| if (pmic_subtype == PM660L_SUBTYPE) |
| val = THERMAL_HYST_TEMP_TO_VAL(val, 20); |
| else |
| val = THERMAL_HYST_TEMP_TO_VAL(val, 15); |
| |
| if (val < 0 || val > THERMAL_DERATE_HYSTERESIS_MAX) { |
| pr_err("Invalid thermal_derate_hysteresis %d\n", val); |
| return -EINVAL; |
| } |
| |
| led->pdata->thermal_hysteresis = val; |
| } else if (rc != -EINVAL) { |
| pr_err("Unable to read thermal hysteresis, rc=%d\n", rc); |
| return rc; |
| } |
| |
| led->pdata->thermal_thrsh1 = -EINVAL; |
| rc = of_property_read_u32(node, "qcom,thermal-thrsh1", &val); |
| if (!rc) { |
| led->pdata->thermal_thrsh1 = |
| get_code_from_table(otst1_threshold_table, |
| ARRAY_SIZE(otst1_threshold_table), val); |
| } else if (rc != -EINVAL) { |
| pr_err("Unable to read thermal thrsh1, rc=%d\n", rc); |
| return rc; |
| } |
| |
| led->pdata->thermal_thrsh2 = -EINVAL; |
| rc = of_property_read_u32(node, "qcom,thermal-thrsh2", &val); |
| if (!rc) { |
| led->pdata->thermal_thrsh2 = |
| get_code_from_table(otst2_threshold_table, |
| ARRAY_SIZE(otst2_threshold_table), val); |
| } else if (rc != -EINVAL) { |
| pr_err("Unable to read thermal thrsh2, rc=%d\n", rc); |
| return rc; |
| } |
| |
| led->pdata->thermal_thrsh3 = -EINVAL; |
| rc = of_property_read_u32(node, "qcom,thermal-thrsh3", &val); |
| if (!rc) { |
| led->pdata->thermal_thrsh3 = |
| get_code_from_table(otst3_threshold_table, |
| ARRAY_SIZE(otst3_threshold_table), val); |
| } else if (rc != -EINVAL) { |
| pr_err("Unable to read thermal thrsh3, rc=%d\n", rc); |
| return rc; |
| } |
| |
| led->pdata->vph_droop_debounce = FLASH_LED_VPH_DROOP_DEBOUNCE_DEFAULT; |
| rc = of_property_read_u32(node, "qcom,vph-droop-debounce-us", &val); |
| if (!rc) { |
| led->pdata->vph_droop_debounce = |
| VPH_DROOP_DEBOUNCE_US_TO_VAL(val); |
| } else if (rc != -EINVAL) { |
| pr_err("Unable to read VPH droop debounce, rc=%d\n", rc); |
| return rc; |
| } |
| |
| if (led->pdata->vph_droop_debounce > FLASH_LED_DEBOUNCE_MAX) { |
| pr_err("Invalid VPH droop debounce specified\n"); |
| return -EINVAL; |
| } |
| |
| if (pmic_subtype == PMI632_SUBTYPE) |
| led->pdata->vph_droop_threshold = |
| BHARGER_FLASH_LED_VPH_DROOP_THRESH_DEFAULT; |
| else |
| led->pdata->vph_droop_threshold = |
| FLASH_LED_VPH_DROOP_THRESH_DEFAULT; |
| |
| rc = of_property_read_u32(node, "qcom,vph-droop-threshold-mv", &val); |
| if (!rc) { |
| led->pdata->vph_droop_threshold = |
| get_vph_droop_thresh_code(val); |
| } else if (rc != -EINVAL) { |
| pr_err("Unable to read VPH droop threshold, rc=%d\n", rc); |
| return rc; |
| } |
| |
| if (led->pdata->vph_droop_threshold > FLASH_LED_VPH_DROOP_THRESH_MAX) { |
| pr_err("Invalid VPH droop threshold specified\n"); |
| return -EINVAL; |
| } |
| |
| led->pdata->vph_droop_hysteresis = |
| FLASH_LED_VPH_DROOP_HYST_DEFAULT; |
| rc = of_property_read_u32(node, "qcom,vph-droop-hysteresis-mv", &val); |
| if (!rc) { |
| led->pdata->vph_droop_hysteresis = |
| VPH_DROOP_HYST_MV_TO_VAL(val); |
| } else if (rc != -EINVAL) { |
| pr_err("Unable to read VPH droop hysteresis, rc=%d\n", rc); |
| return rc; |
| } |
| |
| if (led->pdata->vph_droop_hysteresis > FLASH_LED_HYSTERESIS_MAX) { |
| pr_err("Invalid VPH droop hysteresis specified\n"); |
| return -EINVAL; |
| } |
| |
| led->pdata->vph_droop_hysteresis <<= FLASH_LED_VPH_DROOP_HYST_SHIFT; |
| |
| led->pdata->hw_strobe_option = -EINVAL; |
| rc = of_property_read_u32(node, "qcom,hw-strobe-option", &val); |
| if (!rc) { |
| led->pdata->hw_strobe_option = val; |
| } else if (rc != -EINVAL) { |
| pr_err("Unable to parse hw strobe option, rc=%d\n", rc); |
| return rc; |
| } |
| |
| rc = of_property_read_u32(node, "qcom,led1n2-iclamp-low-ma", &val); |
| if (!rc) { |
| led->pdata->led1n2_iclamp_low_ma = val; |
| } else if (rc != -EINVAL) { |
| pr_err("Unable to read led1n2_iclamp_low current, rc=%d\n", rc); |
| return rc; |
| } |
| |
| rc = of_property_read_u32(node, "qcom,led1n2-iclamp-mid-ma", &val); |
| if (!rc) { |
| led->pdata->led1n2_iclamp_mid_ma = val; |
| } else if (rc != -EINVAL) { |
| pr_err("Unable to read led1n2_iclamp_mid current, rc=%d\n", rc); |
| return rc; |
| } |
| |
| rc = of_property_read_u32(node, "qcom,led3-iclamp-low-ma", &val); |
| if (!rc) { |
| led->pdata->led3_iclamp_low_ma = val; |
| } else if (rc != -EINVAL) { |
| pr_err("Unable to read led3_iclamp_low current, rc=%d\n", rc); |
| return rc; |
| } |
| |
| rc = of_property_read_u32(node, "qcom,led3-iclamp-mid-ma", &val); |
| if (!rc) { |
| led->pdata->led3_iclamp_mid_ma = val; |
| } else if (rc != -EINVAL) { |
| pr_err("Unable to read led3_iclamp_mid current, rc=%d\n", rc); |
| return rc; |
| } |
| |
| led->pdata->vled_max_uv = FLASH_LED_VLED_MAX_DEFAULT_UV; |
| rc = of_property_read_u32(node, "qcom,vled-max-uv", &val); |
| if (!rc) { |
| led->pdata->vled_max_uv = val; |
| } else if (rc != -EINVAL) { |
| pr_err("Unable to parse vled_max voltage, rc=%d\n", rc); |
| return rc; |
| } |
| |
| led->pdata->ibatt_ocp_threshold_ua = |
| FLASH_LED_IBATT_OCP_THRESH_DEFAULT_UA; |
| rc = of_property_read_u32(node, "qcom,ibatt-ocp-threshold-ua", &val); |
| if (!rc) { |
| led->pdata->ibatt_ocp_threshold_ua = val; |
| } else if (rc != -EINVAL) { |
| pr_err("Unable to parse ibatt_ocp threshold, rc=%d\n", rc); |
| return rc; |
| } |
| |
| led->pdata->rpara_uohm = FLASH_LED_RPARA_DEFAULT_UOHM; |
| rc = of_property_read_u32(node, "qcom,rparasitic-uohm", &val); |
| if (!rc) { |
| led->pdata->rpara_uohm = val; |
| } else if (rc != -EINVAL) { |
| pr_err("Unable to parse rparasitic, rc=%d\n", rc); |
| return rc; |
| } |
| |
| led->pdata->lmh_ocv_threshold_uv = |
| FLASH_LED_LMH_OCV_THRESH_DEFAULT_UV; |
| rc = of_property_read_u32(node, "qcom,lmh-ocv-threshold-uv", &val); |
| if (!rc) { |
| led->pdata->lmh_ocv_threshold_uv = val; |
| } else if (rc != -EINVAL) { |
| pr_err("Unable to parse lmh ocv threshold, rc=%d\n", rc); |
| return rc; |
| } |
| |
| led->pdata->lmh_rbatt_threshold_uohm = |
| FLASH_LED_LMH_RBATT_THRESH_DEFAULT_UOHM; |
| rc = of_property_read_u32(node, "qcom,lmh-rbatt-threshold-uohm", &val); |
| if (!rc) { |
| led->pdata->lmh_rbatt_threshold_uohm = val; |
| } else if (rc != -EINVAL) { |
| pr_err("Unable to parse lmh rbatt threshold, rc=%d\n", rc); |
| return rc; |
| } |
| |
| led->pdata->lmh_level = FLASH_LED_LMH_LEVEL_DEFAULT; |
| rc = of_property_read_u32(node, "qcom,lmh-level", &val); |
| if (!rc) { |
| led->pdata->lmh_level = val; |
| } else if (rc != -EINVAL) { |
| pr_err("Unable to parse lmh_level, rc=%d\n", rc); |
| return rc; |
| } |
| |
| led->pdata->lmh_mitigation_sel = FLASH_LED_LMH_MITIGATION_SEL_DEFAULT; |
| rc = of_property_read_u32(node, "qcom,lmh-mitigation-sel", &val); |
| if (!rc) { |
| led->pdata->lmh_mitigation_sel = val; |
| } else if (rc != -EINVAL) { |
| pr_err("Unable to parse lmh_mitigation_sel, rc=%d\n", rc); |
| return rc; |
| } |
| |
| if (led->pdata->lmh_mitigation_sel > FLASH_LED_MITIGATION_SEL_MAX) { |
| pr_err("Invalid lmh_mitigation_sel specified\n"); |
| return -EINVAL; |
| } |
| |
| if (pmic_subtype == PMI632_SUBTYPE) |
| led->pdata->chgr_mitigation_sel = |
| FLASH_DISABLE_CHARGER_MITIGATION; |
| else |
| led->pdata->chgr_mitigation_sel = FLASH_SW_CHARGER_MITIGATION; |
| |
| rc = of_property_read_u32(node, "qcom,chgr-mitigation-sel", &val); |
| if (!rc) { |
| led->pdata->chgr_mitigation_sel = val; |
| } else if (rc != -EINVAL) { |
| pr_err("Unable to parse chgr_mitigation_sel, rc=%d\n", rc); |
| return rc; |
| } |
| |
| if (led->pdata->chgr_mitigation_sel > FLASH_LED_MITIGATION_SEL_MAX) { |
| pr_err("Invalid chgr_mitigation_sel specified\n"); |
| return -EINVAL; |
| } |
| |
| led->pdata->iled_thrsh_val = FLASH_LED_CHGR_MITIGATION_THRSH_DEFAULT; |
| rc = of_property_read_u32(node, "qcom,iled-thrsh-ma", &val); |
| if (!rc) { |
| led->pdata->iled_thrsh_val = MITIGATION_THRSH_MA_TO_VAL(val); |
| } else if (rc != -EINVAL) { |
| pr_err("Unable to parse iled_thrsh_val, rc=%d\n", rc); |
| return rc; |
| } |
| |
| if (led->pdata->iled_thrsh_val > FLASH_LED_CHGR_MITIGATION_THRSH_MAX) { |
| pr_err("Invalid iled_thrsh_val specified\n"); |
| return -EINVAL; |
| } |
| |
| led->pdata->bst_pwm_ovrhd_uv = FLASH_BST_PWM_OVRHD_MIN_UV; |
| rc = of_property_read_u32(node, "qcom,bst-pwm-ovrhd-uv", &val); |
| if (!rc) { |
| if (val >= FLASH_BST_PWM_OVRHD_MIN_UV && |
| val <= FLASH_BST_PWM_OVRHD_MAX_UV) |
| led->pdata->bst_pwm_ovrhd_uv = val; |
| } |
| |
| led->pdata->all_ramp_up_done_irq = |
| of_irq_get_byname(node, "all-ramp-up-done-irq"); |
| if (led->pdata->all_ramp_up_done_irq < 0) |
| pr_debug("all-ramp-up-done-irq not used\n"); |
| |
| led->pdata->all_ramp_down_done_irq = |
| of_irq_get_byname(node, "all-ramp-down-done-irq"); |
| if (led->pdata->all_ramp_down_done_irq < 0) |
| pr_debug("all-ramp-down-done-irq not used\n"); |
| |
| led->pdata->led_fault_irq = |
| of_irq_get_byname(node, "led-fault-irq"); |
| if (led->pdata->led_fault_irq < 0) |
| pr_debug("led-fault-irq not used\n"); |
| |
| return 0; |
| } |
| |
| static int qpnp_flash_led_probe(struct platform_device *pdev) |
| { |
| struct qpnp_flash_led *led; |
| struct device_node *node, *temp; |
| const char *temp_string; |
| unsigned int base; |
| int rc, i = 0, j = 0; |
| |
| node = pdev->dev.of_node; |
| if (!node) { |
| pr_err("No flash LED nodes defined\n"); |
| return -ENODEV; |
| } |
| |
| rc = of_property_read_u32(node, "reg", &base); |
| if (rc < 0) { |
| pr_err("Couldn't find reg in node %s, rc = %d\n", |
| node->full_name, rc); |
| return rc; |
| } |
| |
| led = devm_kzalloc(&pdev->dev, sizeof(struct qpnp_flash_led), |
| GFP_KERNEL); |
| if (!led) |
| return -ENOMEM; |
| |
| led->regmap = dev_get_regmap(pdev->dev.parent, NULL); |
| if (!led->regmap) { |
| pr_err("Couldn't get parent's regmap\n"); |
| return -EINVAL; |
| } |
| |
| led->base = base; |
| led->pdev = pdev; |
| led->pdata = devm_kzalloc(&pdev->dev, |
| sizeof(struct flash_led_platform_data), GFP_KERNEL); |
| if (!led->pdata) |
| return -ENOMEM; |
| |
| qpnp_flash_led_prepare = qpnp_flash_led_prepare_v2; |
| rc = qpnp_flash_led_parse_common_dt(led, node); |
| if (rc < 0) { |
| pr_err("Failed to parse common flash LED device tree\n"); |
| return rc; |
| } |
| |
| for_each_available_child_of_node(node, temp) { |
| rc = of_property_read_string(temp, "label", &temp_string); |
| if (rc < 0) { |
| pr_err("Failed to parse label, rc=%d\n", rc); |
| return rc; |
| } |
| |
| if (!strcmp("switch", temp_string)) { |
| led->num_snodes++; |
| } else if (!strcmp("flash", temp_string) || |
| !strcmp("torch", temp_string)) { |
| led->num_fnodes++; |
| } else { |
| pr_err("Invalid label for led node\n"); |
| return -EINVAL; |
| } |
| } |
| |
| if (!led->num_fnodes) { |
| pr_err("No LED nodes defined\n"); |
| return -ECHILD; |
| } |
| |
| led->fnode = devm_kcalloc(&pdev->dev, led->num_fnodes, |
| sizeof(*led->fnode), |
| GFP_KERNEL); |
| if (!led->fnode) |
| return -ENOMEM; |
| |
| led->snode = devm_kcalloc(&pdev->dev, led->num_snodes, |
| sizeof(*led->snode), |
| GFP_KERNEL); |
| if (!led->snode) |
| return -ENOMEM; |
| |
| temp = NULL; |
| i = 0; |
| j = 0; |
| for_each_available_child_of_node(node, temp) { |
| rc = of_property_read_string(temp, "label", &temp_string); |
| if (rc < 0) { |
| pr_err("Failed to parse label, rc=%d\n", rc); |
| return rc; |
| } |
| |
| if (!strcmp("flash", temp_string) || |
| !strcmp("torch", temp_string)) { |
| rc = qpnp_flash_led_parse_each_led_dt(led, |
| &led->fnode[i], temp); |
| if (rc < 0) { |
| pr_err("Unable to parse flash node %d rc=%d\n", |
| i, rc); |
| goto error_led_register; |
| } |
| i++; |
| } |
| |
| if (!strcmp("switch", temp_string)) { |
| rc = qpnp_flash_led_parse_and_register_switch(led, |
| &led->snode[j], temp); |
| if (rc < 0) { |
| pr_err("Unable to parse and register switch node, rc=%d\n", |
| rc); |
| goto error_switch_register; |
| } |
| j++; |
| } |
| } |
| |
| /* setup irqs */ |
| if (led->pdata->all_ramp_up_done_irq >= 0) { |
| rc = devm_request_threaded_irq(&led->pdev->dev, |
| led->pdata->all_ramp_up_done_irq, |
| NULL, qpnp_flash_led_irq_handler, |
| IRQF_ONESHOT, |
| "qpnp_flash_led_all_ramp_up_done_irq", led); |
| if (rc < 0) { |
| pr_err("Unable to request all_ramp_up_done(%d) IRQ(err:%d)\n", |
| led->pdata->all_ramp_up_done_irq, rc); |
| goto error_switch_register; |
| } |
| } |
| |
| if (led->pdata->all_ramp_down_done_irq >= 0) { |
| rc = devm_request_threaded_irq(&led->pdev->dev, |
| led->pdata->all_ramp_down_done_irq, |
| NULL, qpnp_flash_led_irq_handler, |
| IRQF_ONESHOT, |
| "qpnp_flash_led_all_ramp_down_done_irq", led); |
| if (rc < 0) { |
| pr_err("Unable to request all_ramp_down_done(%d) IRQ(err:%d)\n", |
| led->pdata->all_ramp_down_done_irq, rc); |
| goto error_switch_register; |
| } |
| } |
| |
| if (led->pdata->led_fault_irq >= 0) { |
| rc = devm_request_threaded_irq(&led->pdev->dev, |
| led->pdata->led_fault_irq, |
| NULL, qpnp_flash_led_irq_handler, |
| IRQF_ONESHOT, |
| "qpnp_flash_led_fault_irq", led); |
| if (rc < 0) { |
| pr_err("Unable to request led_fault(%d) IRQ(err:%d)\n", |
| led->pdata->led_fault_irq, rc); |
| goto error_switch_register; |
| } |
| } |
| |
| rc = qpnp_flash_led_init_settings(led); |
| if (rc < 0) { |
| pr_err("Failed to initialize flash LED, rc=%d\n", rc); |
| goto unreg_notifier; |
| } |
| |
| for (i = 0; i < led->num_snodes; i++) { |
| for (j = 0; j < ARRAY_SIZE(qpnp_flash_led_attrs); j++) { |
| rc = sysfs_create_file(&led->snode[i].cdev.dev->kobj, |
| &qpnp_flash_led_attrs[j].attr); |
| if (rc < 0) { |
| pr_err("sysfs creation failed, rc=%d\n", rc); |
| goto sysfs_fail; |
| } |
| } |
| } |
| |
| spin_lock_init(&led->lock); |
| |
| dev_set_drvdata(&pdev->dev, led); |
| |
| return 0; |
| |
| sysfs_fail: |
| for (--j; j >= 0; j--) |
| sysfs_remove_file(&led->snode[i].cdev.dev->kobj, |
| &qpnp_flash_led_attrs[j].attr); |
| |
| for (--i; i >= 0; i--) { |
| for (j = 0; j < ARRAY_SIZE(qpnp_flash_led_attrs); j++) |
| sysfs_remove_file(&led->snode[i].cdev.dev->kobj, |
| &qpnp_flash_led_attrs[j].attr); |
| } |
| |
| i = led->num_snodes; |
| unreg_notifier: |
| power_supply_unreg_notifier(&led->nb); |
| error_switch_register: |
| while (i > 0) |
| led_classdev_unregister(&led->snode[--i].cdev); |
| i = led->num_fnodes; |
| error_led_register: |
| while (i > 0) |
| led_classdev_unregister(&led->fnode[--i].cdev); |
| |
| return rc; |
| } |
| |
| static int qpnp_flash_led_remove(struct platform_device *pdev) |
| { |
| struct qpnp_flash_led *led = dev_get_drvdata(&pdev->dev); |
| int i, j; |
| |
| for (i = 0; i < led->num_snodes; i++) { |
| for (j = 0; j < ARRAY_SIZE(qpnp_flash_led_attrs); j++) |
| sysfs_remove_file(&led->snode[i].cdev.dev->kobj, |
| &qpnp_flash_led_attrs[j].attr); |
| |
| if (led->snode[i].regulator_on) |
| qpnp_flash_led_regulator_enable(led, |
| &led->snode[i], false); |
| } |
| |
| while (i > 0) |
| led_classdev_unregister(&led->snode[--i].cdev); |
| |
| i = led->num_fnodes; |
| while (i > 0) |
| led_classdev_unregister(&led->fnode[--i].cdev); |
| |
| power_supply_unreg_notifier(&led->nb); |
| return 0; |
| } |
| |
| const struct of_device_id qpnp_flash_led_match_table[] = { |
| { .compatible = "qcom,qpnp-flash-led-v2",}, |
| { }, |
| }; |
| |
| static struct platform_driver qpnp_flash_led_driver = { |
| .driver = { |
| .name = "qcom,qpnp-flash-led-v2", |
| .of_match_table = qpnp_flash_led_match_table, |
| }, |
| .probe = qpnp_flash_led_probe, |
| .remove = qpnp_flash_led_remove, |
| }; |
| |
| static int __init qpnp_flash_led_init(void) |
| { |
| return platform_driver_register(&qpnp_flash_led_driver); |
| } |
| late_initcall(qpnp_flash_led_init); |
| |
| static void __exit qpnp_flash_led_exit(void) |
| { |
| platform_driver_unregister(&qpnp_flash_led_driver); |
| } |
| module_exit(qpnp_flash_led_exit); |
| |
| MODULE_DESCRIPTION("QPNP Flash LED driver v2"); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_ALIAS("leds:leds-qpnp-flash-v2"); |