| // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) |
| /* |
| * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. |
| * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 |
| * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All |
| * rights reserved. |
| */ |
| |
| /* |
| * Exported interfaces ---- output |
| * =============================== |
| * |
| * There are four exported interfaces; two for use within the kernel, |
| * and two for use from userspace. |
| * |
| * Exported interfaces ---- userspace output |
| * ----------------------------------------- |
| * |
| * The userspace interfaces are two character devices /dev/random and |
| * /dev/urandom. /dev/random is suitable for use when very high |
| * quality randomness is desired (for example, for key generation or |
| * one-time pads), as it will only return a maximum of the number of |
| * bits of randomness (as estimated by the random number generator) |
| * contained in the entropy pool. |
| * |
| * The /dev/urandom device does not have this limit, and will return |
| * as many bytes as are requested. As more and more random bytes are |
| * requested without giving time for the entropy pool to recharge, |
| * this will result in random numbers that are merely cryptographically |
| * strong. For many applications, however, this is acceptable. |
| * |
| * Exported interfaces ---- kernel output |
| * -------------------------------------- |
| * |
| * The primary kernel interfaces are: |
| * |
| * void get_random_bytes(void *buf, size_t nbytes); |
| * u32 get_random_u32() |
| * u64 get_random_u64() |
| * unsigned int get_random_int() |
| * unsigned long get_random_long() |
| * |
| * These interfaces will return the requested number of random bytes |
| * into the given buffer or as a return value. This is equivalent to a |
| * read from /dev/urandom. The get_random_{u32,u64,int,long}() family |
| * of functions may be higher performance for one-off random integers, |
| * because they do a bit of buffering. |
| * |
| * prandom_u32() |
| * ------------- |
| * |
| * For even weaker applications, see the pseudorandom generator |
| * prandom_u32(), prandom_max(), and prandom_bytes(). If the random |
| * numbers aren't security-critical at all, these are *far* cheaper. |
| * Useful for self-tests, random error simulation, randomized backoffs, |
| * and any other application where you trust that nobody is trying to |
| * maliciously mess with you by guessing the "random" numbers. |
| * |
| * Exported interfaces ---- input |
| * ============================== |
| * |
| * The current exported interfaces for gathering environmental noise |
| * from the devices are: |
| * |
| * void add_device_randomness(const void *buf, size_t size); |
| * void add_input_randomness(unsigned int type, unsigned int code, |
| * unsigned int value); |
| * void add_interrupt_randomness(int irq); |
| * void add_disk_randomness(struct gendisk *disk); |
| * void add_hwgenerator_randomness(const void *buffer, size_t count, |
| * size_t entropy); |
| * void add_bootloader_randomness(const void *buf, size_t size); |
| * |
| * add_device_randomness() is for adding data to the random pool that |
| * is likely to differ between two devices (or possibly even per boot). |
| * This would be things like MAC addresses or serial numbers, or the |
| * read-out of the RTC. This does *not* add any actual entropy to the |
| * pool, but it initializes the pool to different values for devices |
| * that might otherwise be identical and have very little entropy |
| * available to them (particularly common in the embedded world). |
| * |
| * add_input_randomness() uses the input layer interrupt timing, as well as |
| * the event type information from the hardware. |
| * |
| * add_interrupt_randomness() uses the interrupt timing as random |
| * inputs to the entropy pool. Using the cycle counters and the irq source |
| * as inputs, it feeds the randomness roughly once a second. |
| * |
| * add_disk_randomness() uses what amounts to the seek time of block |
| * layer request events, on a per-disk_devt basis, as input to the |
| * entropy pool. Note that high-speed solid state drives with very low |
| * seek times do not make for good sources of entropy, as their seek |
| * times are usually fairly consistent. |
| * |
| * All of these routines try to estimate how many bits of randomness a |
| * particular randomness source. They do this by keeping track of the |
| * first and second order deltas of the event timings. |
| * |
| * add_hwgenerator_randomness() is for true hardware RNGs, and will credit |
| * entropy as specified by the caller. If the entropy pool is full it will |
| * block until more entropy is needed. |
| * |
| * add_bootloader_randomness() is the same as add_hwgenerator_randomness() or |
| * add_device_randomness(), depending on whether or not the configuration |
| * option CONFIG_RANDOM_TRUST_BOOTLOADER is set. |
| * |
| * Ensuring unpredictability at system startup |
| * ============================================ |
| * |
| * When any operating system starts up, it will go through a sequence |
| * of actions that are fairly predictable by an adversary, especially |
| * if the start-up does not involve interaction with a human operator. |
| * This reduces the actual number of bits of unpredictability in the |
| * entropy pool below the value in entropy_count. In order to |
| * counteract this effect, it helps to carry information in the |
| * entropy pool across shut-downs and start-ups. To do this, put the |
| * following lines an appropriate script which is run during the boot |
| * sequence: |
| * |
| * echo "Initializing random number generator..." |
| * random_seed=/var/run/random-seed |
| * # Carry a random seed from start-up to start-up |
| * # Load and then save the whole entropy pool |
| * if [ -f $random_seed ]; then |
| * cat $random_seed >/dev/urandom |
| * else |
| * touch $random_seed |
| * fi |
| * chmod 600 $random_seed |
| * dd if=/dev/urandom of=$random_seed count=1 bs=512 |
| * |
| * and the following lines in an appropriate script which is run as |
| * the system is shutdown: |
| * |
| * # Carry a random seed from shut-down to start-up |
| * # Save the whole entropy pool |
| * echo "Saving random seed..." |
| * random_seed=/var/run/random-seed |
| * touch $random_seed |
| * chmod 600 $random_seed |
| * dd if=/dev/urandom of=$random_seed count=1 bs=512 |
| * |
| * For example, on most modern systems using the System V init |
| * scripts, such code fragments would be found in |
| * /etc/rc.d/init.d/random. On older Linux systems, the correct script |
| * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. |
| * |
| * Effectively, these commands cause the contents of the entropy pool |
| * to be saved at shut-down time and reloaded into the entropy pool at |
| * start-up. (The 'dd' in the addition to the bootup script is to |
| * make sure that /etc/random-seed is different for every start-up, |
| * even if the system crashes without executing rc.0.) Even with |
| * complete knowledge of the start-up activities, predicting the state |
| * of the entropy pool requires knowledge of the previous history of |
| * the system. |
| * |
| * Configuring the /dev/random driver under Linux |
| * ============================================== |
| * |
| * The /dev/random driver under Linux uses minor numbers 8 and 9 of |
| * the /dev/mem major number (#1). So if your system does not have |
| * /dev/random and /dev/urandom created already, they can be created |
| * by using the commands: |
| * |
| * mknod /dev/random c 1 8 |
| * mknod /dev/urandom c 1 9 |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/utsname.h> |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/major.h> |
| #include <linux/string.h> |
| #include <linux/fcntl.h> |
| #include <linux/slab.h> |
| #include <linux/random.h> |
| #include <linux/poll.h> |
| #include <linux/init.h> |
| #include <linux/fs.h> |
| #include <linux/genhd.h> |
| #include <linux/interrupt.h> |
| #include <linux/mm.h> |
| #include <linux/nodemask.h> |
| #include <linux/spinlock.h> |
| #include <linux/kthread.h> |
| #include <linux/percpu.h> |
| #include <linux/ptrace.h> |
| #include <linux/kmemcheck.h> |
| #include <linux/workqueue.h> |
| #include <linux/irq.h> |
| #include <linux/ratelimit.h> |
| #include <linux/syscalls.h> |
| #include <linux/completion.h> |
| #include <linux/uuid.h> |
| #include <crypto/chacha20.h> |
| #include <crypto/blake2s.h> |
| |
| #include <asm/processor.h> |
| #include <asm/uaccess.h> |
| #include <asm/irq.h> |
| #include <asm/irq_regs.h> |
| #include <asm/io.h> |
| |
| enum { |
| POOL_BITS = BLAKE2S_HASH_SIZE * 8, |
| POOL_MIN_BITS = POOL_BITS /* No point in settling for less. */ |
| }; |
| |
| /* |
| * Static global variables |
| */ |
| static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); |
| static struct fasync_struct *fasync; |
| |
| static DEFINE_SPINLOCK(random_ready_list_lock); |
| static LIST_HEAD(random_ready_list); |
| |
| /* |
| * crng_init = 0 --> Uninitialized |
| * 1 --> Initialized |
| * 2 --> Initialized from input_pool |
| * |
| * crng_init is protected by primary_crng->lock, and only increases |
| * its value (from 0->1->2). |
| */ |
| static int crng_init = 0; |
| #define crng_ready() (likely(crng_init > 1)) |
| static int crng_init_cnt = 0; |
| static void process_random_ready_list(void); |
| static void _get_random_bytes(void *buf, size_t nbytes); |
| |
| static struct ratelimit_state unseeded_warning = |
| RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3); |
| static struct ratelimit_state urandom_warning = |
| RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3); |
| |
| static int ratelimit_disable __read_mostly; |
| |
| module_param_named(ratelimit_disable, ratelimit_disable, int, 0644); |
| MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression"); |
| |
| /********************************************************************** |
| * |
| * OS independent entropy store. Here are the functions which handle |
| * storing entropy in an entropy pool. |
| * |
| **********************************************************************/ |
| |
| static struct { |
| struct blake2s_state hash; |
| spinlock_t lock; |
| unsigned int entropy_count; |
| } input_pool = { |
| .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE), |
| BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4, |
| BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 }, |
| .hash.outlen = BLAKE2S_HASH_SIZE, |
| .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), |
| }; |
| |
| static void extract_entropy(void *buf, size_t nbytes); |
| static bool drain_entropy(void *buf, size_t nbytes); |
| |
| static void crng_reseed(void); |
| |
| /* |
| * This function adds bytes into the entropy "pool". It does not |
| * update the entropy estimate. The caller should call |
| * credit_entropy_bits if this is appropriate. |
| */ |
| static void _mix_pool_bytes(const void *in, size_t nbytes) |
| { |
| blake2s_update(&input_pool.hash, in, nbytes); |
| } |
| |
| static void mix_pool_bytes(const void *in, size_t nbytes) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&input_pool.lock, flags); |
| _mix_pool_bytes(in, nbytes); |
| spin_unlock_irqrestore(&input_pool.lock, flags); |
| } |
| |
| struct fast_pool { |
| union { |
| u32 pool32[4]; |
| u64 pool64[2]; |
| }; |
| unsigned long last; |
| u16 reg_idx; |
| u8 count; |
| }; |
| |
| /* |
| * This is a fast mixing routine used by the interrupt randomness |
| * collector. It's hardcoded for an 128 bit pool and assumes that any |
| * locks that might be needed are taken by the caller. |
| */ |
| static void fast_mix(u32 pool[4]) |
| { |
| u32 a = pool[0], b = pool[1]; |
| u32 c = pool[2], d = pool[3]; |
| |
| a += b; c += d; |
| b = rol32(b, 6); d = rol32(d, 27); |
| d ^= a; b ^= c; |
| |
| a += b; c += d; |
| b = rol32(b, 16); d = rol32(d, 14); |
| d ^= a; b ^= c; |
| |
| a += b; c += d; |
| b = rol32(b, 6); d = rol32(d, 27); |
| d ^= a; b ^= c; |
| |
| a += b; c += d; |
| b = rol32(b, 16); d = rol32(d, 14); |
| d ^= a; b ^= c; |
| |
| pool[0] = a; pool[1] = b; |
| pool[2] = c; pool[3] = d; |
| } |
| |
| static void process_random_ready_list(void) |
| { |
| unsigned long flags; |
| struct random_ready_callback *rdy, *tmp; |
| |
| spin_lock_irqsave(&random_ready_list_lock, flags); |
| list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) { |
| struct module *owner = rdy->owner; |
| |
| list_del_init(&rdy->list); |
| rdy->func(rdy); |
| module_put(owner); |
| } |
| spin_unlock_irqrestore(&random_ready_list_lock, flags); |
| } |
| |
| static void credit_entropy_bits(size_t nbits) |
| { |
| unsigned int entropy_count, orig, add; |
| |
| if (!nbits) |
| return; |
| |
| add = min_t(size_t, nbits, POOL_BITS); |
| |
| do { |
| orig = READ_ONCE(input_pool.entropy_count); |
| entropy_count = min_t(unsigned int, POOL_BITS, orig + add); |
| } while (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig); |
| |
| if (crng_init < 2 && entropy_count >= POOL_MIN_BITS) |
| crng_reseed(); |
| } |
| |
| /********************************************************************* |
| * |
| * CRNG using CHACHA20 |
| * |
| *********************************************************************/ |
| |
| enum { |
| CRNG_RESEED_INTERVAL = 300 * HZ, |
| CRNG_INIT_CNT_THRESH = 2 * CHACHA20_KEY_SIZE |
| }; |
| |
| static struct { |
| u8 key[CHACHA20_KEY_SIZE] __aligned(__alignof__(long)); |
| unsigned long birth; |
| unsigned long generation; |
| spinlock_t lock; |
| } base_crng = { |
| .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock) |
| }; |
| |
| struct crng { |
| u8 key[CHACHA20_KEY_SIZE]; |
| unsigned long generation; |
| }; |
| |
| static DEFINE_PER_CPU(struct crng, crngs) = { |
| .generation = ULONG_MAX |
| }; |
| |
| static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); |
| |
| /* |
| * crng_fast_load() can be called by code in the interrupt service |
| * path. So we can't afford to dilly-dally. Returns the number of |
| * bytes processed from cp. |
| */ |
| static size_t crng_fast_load(const void *cp, size_t len) |
| { |
| unsigned long flags; |
| const u8 *src = (const u8 *)cp; |
| size_t ret = 0; |
| |
| if (!spin_trylock_irqsave(&base_crng.lock, flags)) |
| return 0; |
| if (crng_init != 0) { |
| spin_unlock_irqrestore(&base_crng.lock, flags); |
| return 0; |
| } |
| while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) { |
| base_crng.key[crng_init_cnt % sizeof(base_crng.key)] ^= *src; |
| src++; crng_init_cnt++; len--; ret++; |
| } |
| if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) { |
| ++base_crng.generation; |
| crng_init = 1; |
| } |
| spin_unlock_irqrestore(&base_crng.lock, flags); |
| if (crng_init == 1) |
| pr_notice("fast init done\n"); |
| return ret; |
| } |
| |
| #ifdef CONFIG_NUMA |
| static void do_numa_crng_init(struct work_struct *work) |
| { |
| int i; |
| struct crng_state *crng; |
| struct crng_state **pool; |
| |
| pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL); |
| for_each_online_node(i) { |
| crng = kmalloc_node(sizeof(struct crng_state), |
| GFP_KERNEL | __GFP_NOFAIL, i); |
| spin_lock_init(&crng->lock); |
| crng_initialize(crng); |
| pool[i] = crng; |
| } |
| /* pairs with READ_ONCE() in select_crng() */ |
| if (cmpxchg_release(&crng_node_pool, NULL, pool) != NULL) { |
| for_each_node(i) |
| kfree(pool[i]); |
| kfree(pool); |
| } |
| } |
| |
| static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init); |
| |
| static void numa_crng_init(void) |
| { |
| schedule_work(&numa_crng_init_work); |
| } |
| |
| static struct crng_state *select_crng(void) |
| { |
| struct crng_state **pool; |
| int nid = numa_node_id(); |
| |
| /* pairs with cmpxchg_release() in do_numa_crng_init() */ |
| pool = READ_ONCE(crng_node_pool); |
| if (pool && pool[nid]) |
| return pool[nid]; |
| |
| return &primary_crng; |
| } |
| #else |
| static void numa_crng_init(void) {} |
| |
| static struct crng_state *select_crng(void) |
| { |
| return &primary_crng; |
| } |
| #endif |
| |
| /* |
| * crng_slow_load() is called by add_device_randomness, which has two |
| * attributes. (1) We can't trust the buffer passed to it is |
| * guaranteed to be unpredictable (so it might not have any entropy at |
| * all), and (2) it doesn't have the performance constraints of |
| * crng_fast_load(). |
| * |
| * So, we simply hash the contents in with the current key. Finally, |
| * we do *not* advance crng_init_cnt since buffer we may get may be |
| * something like a fixed DMI table (for example), which might very |
| * well be unique to the machine, but is otherwise unvarying. |
| */ |
| static void crng_slow_load(const void *cp, size_t len) |
| { |
| unsigned long flags; |
| struct blake2s_state hash; |
| |
| blake2s_init(&hash, sizeof(base_crng.key)); |
| |
| if (!spin_trylock_irqsave(&base_crng.lock, flags)) |
| return; |
| if (crng_init != 0) { |
| spin_unlock_irqrestore(&base_crng.lock, flags); |
| return; |
| } |
| |
| blake2s_update(&hash, base_crng.key, sizeof(base_crng.key)); |
| blake2s_update(&hash, cp, len); |
| blake2s_final(&hash, base_crng.key); |
| |
| spin_unlock_irqrestore(&base_crng.lock, flags); |
| } |
| |
| static void crng_reseed(void) |
| { |
| unsigned long flags; |
| unsigned long next_gen; |
| u8 key[CHACHA20_KEY_SIZE]; |
| bool finalize_init = false; |
| |
| /* Only reseed if we can, to prevent brute forcing a small amount of new bits. */ |
| if (!drain_entropy(key, sizeof(key))) |
| return; |
| |
| /* |
| * We copy the new key into the base_crng, overwriting the old one, |
| * and update the generation counter. We avoid hitting ULONG_MAX, |
| * because the per-cpu crngs are initialized to ULONG_MAX, so this |
| * forces new CPUs that come online to always initialize. |
| */ |
| spin_lock_irqsave(&base_crng.lock, flags); |
| memcpy(base_crng.key, key, sizeof(base_crng.key)); |
| next_gen = base_crng.generation + 1; |
| if (next_gen == ULONG_MAX) |
| ++next_gen; |
| WRITE_ONCE(base_crng.generation, next_gen); |
| WRITE_ONCE(base_crng.birth, jiffies); |
| if (crng_init < 2) { |
| crng_init = 2; |
| finalize_init = true; |
| } |
| spin_unlock_irqrestore(&base_crng.lock, flags); |
| memzero_explicit(key, sizeof(key)); |
| if (finalize_init) { |
| process_random_ready_list(); |
| wake_up_interruptible(&crng_init_wait); |
| kill_fasync(&fasync, SIGIO, POLL_IN); |
| pr_notice("crng init done\n"); |
| if (unseeded_warning.missed) { |
| pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n", |
| unseeded_warning.missed); |
| unseeded_warning.missed = 0; |
| } |
| if (urandom_warning.missed) { |
| pr_notice("%d urandom warning(s) missed due to ratelimiting\n", |
| urandom_warning.missed); |
| urandom_warning.missed = 0; |
| } |
| } |
| } |
| |
| /* |
| * The general form here is based on a "fast key erasure RNG" from |
| * <https://blog.cr.yp.to/20170723-random.html>. It generates a ChaCha |
| * block using the provided key, and then immediately overwites that |
| * key with half the block. It returns the resultant ChaCha state to the |
| * user, along with the second half of the block containing 32 bytes of |
| * random data that may be used; random_data_len may not be greater than |
| * 32. |
| */ |
| static void crng_fast_key_erasure(u8 key[CHACHA20_KEY_SIZE], |
| u32 chacha_state[CHACHA20_BLOCK_SIZE / sizeof(u32)], |
| u8 *random_data, size_t random_data_len) |
| { |
| u8 first_block[CHACHA20_BLOCK_SIZE]; |
| |
| BUG_ON(random_data_len > 32); |
| |
| chacha_init_consts(chacha_state); |
| memcpy(&chacha_state[4], key, CHACHA20_KEY_SIZE); |
| memset(&chacha_state[12], 0, sizeof(u32) * 4); |
| chacha20_block(chacha_state, first_block); |
| |
| memcpy(key, first_block, CHACHA20_KEY_SIZE); |
| memcpy(random_data, first_block + CHACHA20_KEY_SIZE, random_data_len); |
| memzero_explicit(first_block, sizeof(first_block)); |
| } |
| |
| /* |
| * This function returns a ChaCha state that you may use for generating |
| * random data. It also returns up to 32 bytes on its own of random data |
| * that may be used; random_data_len may not be greater than 32. |
| */ |
| static void crng_make_state(u32 chacha_state[CHACHA20_BLOCK_SIZE / sizeof(u32)], |
| u8 *random_data, size_t random_data_len) |
| { |
| unsigned long flags; |
| struct crng *crng; |
| |
| BUG_ON(random_data_len > 32); |
| |
| /* |
| * For the fast path, we check whether we're ready, unlocked first, and |
| * then re-check once locked later. In the case where we're really not |
| * ready, we do fast key erasure with the base_crng directly, because |
| * this is what crng_{fast,slow}_load mutate during early init. |
| */ |
| if (unlikely(!crng_ready())) { |
| bool ready; |
| |
| spin_lock_irqsave(&base_crng.lock, flags); |
| ready = crng_ready(); |
| if (!ready) |
| crng_fast_key_erasure(base_crng.key, chacha_state, |
| random_data, random_data_len); |
| spin_unlock_irqrestore(&base_crng.lock, flags); |
| if (!ready) |
| return; |
| } |
| |
| /* |
| * If the base_crng is more than 5 minutes old, we reseed, which |
| * in turn bumps the generation counter that we check below. |
| */ |
| if (unlikely(time_after(jiffies, READ_ONCE(base_crng.birth) + CRNG_RESEED_INTERVAL))) |
| crng_reseed(); |
| |
| local_irq_save(flags); |
| crng = raw_cpu_ptr(&crngs); |
| |
| /* |
| * If our per-cpu crng is older than the base_crng, then it means |
| * somebody reseeded the base_crng. In that case, we do fast key |
| * erasure on the base_crng, and use its output as the new key |
| * for our per-cpu crng. This brings us up to date with base_crng. |
| */ |
| if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) { |
| spin_lock(&base_crng.lock); |
| crng_fast_key_erasure(base_crng.key, chacha_state, |
| crng->key, sizeof(crng->key)); |
| crng->generation = base_crng.generation; |
| spin_unlock(&base_crng.lock); |
| } |
| |
| /* |
| * Finally, when we've made it this far, our per-cpu crng has an up |
| * to date key, and we can do fast key erasure with it to produce |
| * some random data and a ChaCha state for the caller. All other |
| * branches of this function are "unlikely", so most of the time we |
| * should wind up here immediately. |
| */ |
| crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len); |
| local_irq_restore(flags); |
| } |
| |
| static ssize_t get_random_bytes_user(void __user *buf, size_t nbytes) |
| { |
| bool large_request = nbytes > 256; |
| ssize_t ret = 0; |
| size_t len; |
| u32 chacha_state[CHACHA20_BLOCK_SIZE / sizeof(u32)]; |
| u8 output[CHACHA20_BLOCK_SIZE]; |
| |
| if (!nbytes) |
| return 0; |
| |
| len = min_t(size_t, 32, nbytes); |
| crng_make_state(chacha_state, output, len); |
| |
| if (copy_to_user(buf, output, len)) |
| return -EFAULT; |
| nbytes -= len; |
| buf += len; |
| ret += len; |
| |
| while (nbytes) { |
| if (large_request && need_resched()) { |
| if (signal_pending(current)) |
| break; |
| schedule(); |
| } |
| |
| chacha20_block(chacha_state, output); |
| if (unlikely(chacha_state[12] == 0)) |
| ++chacha_state[13]; |
| |
| len = min_t(size_t, nbytes, CHACHA20_BLOCK_SIZE); |
| if (copy_to_user(buf, output, len)) { |
| ret = -EFAULT; |
| break; |
| } |
| |
| nbytes -= len; |
| buf += len; |
| ret += len; |
| } |
| |
| memzero_explicit(chacha_state, sizeof(chacha_state)); |
| memzero_explicit(output, sizeof(output)); |
| return ret; |
| } |
| |
| /********************************************************************* |
| * |
| * Entropy input management |
| * |
| *********************************************************************/ |
| |
| /* There is one of these per entropy source */ |
| struct timer_rand_state { |
| cycles_t last_time; |
| long last_delta, last_delta2; |
| }; |
| |
| #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, }; |
| |
| /* |
| * Add device- or boot-specific data to the input pool to help |
| * initialize it. |
| * |
| * None of this adds any entropy; it is meant to avoid the problem of |
| * the entropy pool having similar initial state across largely |
| * identical devices. |
| */ |
| void add_device_randomness(const void *buf, size_t size) |
| { |
| unsigned long time = random_get_entropy() ^ jiffies; |
| unsigned long flags; |
| |
| if (!crng_ready() && size) |
| crng_slow_load(buf, size); |
| |
| spin_lock_irqsave(&input_pool.lock, flags); |
| _mix_pool_bytes(buf, size); |
| _mix_pool_bytes(&time, sizeof(time)); |
| spin_unlock_irqrestore(&input_pool.lock, flags); |
| } |
| EXPORT_SYMBOL(add_device_randomness); |
| |
| static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE; |
| |
| /* |
| * This function adds entropy to the entropy "pool" by using timing |
| * delays. It uses the timer_rand_state structure to make an estimate |
| * of how many bits of entropy this call has added to the pool. |
| * |
| * The number "num" is also added to the pool - it should somehow describe |
| * the type of event which just happened. This is currently 0-255 for |
| * keyboard scan codes, and 256 upwards for interrupts. |
| * |
| */ |
| static void add_timer_randomness(struct timer_rand_state *state, unsigned int num) |
| { |
| struct { |
| long jiffies; |
| unsigned int cycles; |
| unsigned int num; |
| } sample; |
| long delta, delta2, delta3; |
| |
| sample.jiffies = jiffies; |
| sample.cycles = random_get_entropy(); |
| sample.num = num; |
| mix_pool_bytes(&sample, sizeof(sample)); |
| |
| /* |
| * Calculate number of bits of randomness we probably added. |
| * We take into account the first, second and third-order deltas |
| * in order to make our estimate. |
| */ |
| delta = sample.jiffies - state->last_time; |
| state->last_time = sample.jiffies; |
| |
| delta2 = delta - state->last_delta; |
| state->last_delta = delta; |
| |
| delta3 = delta2 - state->last_delta2; |
| state->last_delta2 = delta2; |
| |
| if (delta < 0) |
| delta = -delta; |
| if (delta2 < 0) |
| delta2 = -delta2; |
| if (delta3 < 0) |
| delta3 = -delta3; |
| if (delta > delta2) |
| delta = delta2; |
| if (delta > delta3) |
| delta = delta3; |
| |
| /* |
| * delta is now minimum absolute delta. |
| * Round down by 1 bit on general principles, |
| * and limit entropy estimate to 12 bits. |
| */ |
| credit_entropy_bits(min_t(unsigned int, fls(delta >> 1), 11)); |
| } |
| |
| void add_input_randomness(unsigned int type, unsigned int code, |
| unsigned int value) |
| { |
| static unsigned char last_value; |
| |
| /* ignore autorepeat and the like */ |
| if (value == last_value) |
| return; |
| |
| last_value = value; |
| add_timer_randomness(&input_timer_state, |
| (type << 4) ^ code ^ (code >> 4) ^ value); |
| } |
| EXPORT_SYMBOL_GPL(add_input_randomness); |
| |
| static DEFINE_PER_CPU(struct fast_pool, irq_randomness); |
| |
| static u32 get_reg(struct fast_pool *f, struct pt_regs *regs) |
| { |
| u32 *ptr = (u32 *)regs; |
| unsigned int idx; |
| |
| if (regs == NULL) |
| return 0; |
| idx = READ_ONCE(f->reg_idx); |
| if (idx >= sizeof(struct pt_regs) / sizeof(u32)) |
| idx = 0; |
| ptr += idx++; |
| WRITE_ONCE(f->reg_idx, idx); |
| return *ptr; |
| } |
| |
| void add_interrupt_randomness(int irq) |
| { |
| struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); |
| struct pt_regs *regs = get_irq_regs(); |
| unsigned long now = jiffies; |
| cycles_t cycles = random_get_entropy(); |
| |
| if (cycles == 0) |
| cycles = get_reg(fast_pool, regs); |
| |
| if (sizeof(cycles) == 8) |
| fast_pool->pool64[0] ^= cycles ^ rol64(now, 32) ^ irq; |
| else { |
| fast_pool->pool32[0] ^= cycles ^ irq; |
| fast_pool->pool32[1] ^= now; |
| } |
| |
| if (sizeof(unsigned long) == 8) |
| fast_pool->pool64[1] ^= regs ? instruction_pointer(regs) : _RET_IP_; |
| else { |
| fast_pool->pool32[2] ^= regs ? instruction_pointer(regs) : _RET_IP_; |
| fast_pool->pool32[3] ^= get_reg(fast_pool, regs); |
| } |
| |
| fast_mix(fast_pool->pool32); |
| ++fast_pool->count; |
| |
| if (unlikely(crng_init == 0)) { |
| if (fast_pool->count >= 64 && |
| crng_fast_load(fast_pool->pool32, sizeof(fast_pool->pool32)) > 0) { |
| fast_pool->count = 0; |
| fast_pool->last = now; |
| if (spin_trylock(&input_pool.lock)) { |
| _mix_pool_bytes(&fast_pool->pool32, sizeof(fast_pool->pool32)); |
| spin_unlock(&input_pool.lock); |
| } |
| } |
| return; |
| } |
| |
| if ((fast_pool->count < 64) && !time_after(now, fast_pool->last + HZ)) |
| return; |
| |
| if (!spin_trylock(&input_pool.lock)) |
| return; |
| |
| fast_pool->last = now; |
| _mix_pool_bytes(&fast_pool->pool32, sizeof(fast_pool->pool32)); |
| spin_unlock(&input_pool.lock); |
| |
| fast_pool->count = 0; |
| |
| /* award one bit for the contents of the fast pool */ |
| credit_entropy_bits(1); |
| } |
| EXPORT_SYMBOL_GPL(add_interrupt_randomness); |
| |
| #ifdef CONFIG_BLOCK |
| void add_disk_randomness(struct gendisk *disk) |
| { |
| if (!disk || !disk->random) |
| return; |
| /* first major is 1, so we get >= 0x200 here */ |
| add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); |
| } |
| EXPORT_SYMBOL_GPL(add_disk_randomness); |
| #endif |
| |
| /********************************************************************* |
| * |
| * Entropy extraction routines |
| * |
| *********************************************************************/ |
| |
| /* |
| * This is an HKDF-like construction for using the hashed collected entropy |
| * as a PRF key, that's then expanded block-by-block. |
| */ |
| static void extract_entropy(void *buf, size_t nbytes) |
| { |
| unsigned long flags; |
| u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE]; |
| struct { |
| unsigned long rdseed[32 / sizeof(long)]; |
| size_t counter; |
| } block; |
| size_t i; |
| |
| for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) { |
| if (!arch_get_random_seed_long(&block.rdseed[i]) && |
| !arch_get_random_long(&block.rdseed[i])) |
| block.rdseed[i] = random_get_entropy(); |
| } |
| |
| spin_lock_irqsave(&input_pool.lock, flags); |
| |
| /* seed = HASHPRF(last_key, entropy_input) */ |
| blake2s_final(&input_pool.hash, seed); |
| |
| /* next_key = HASHPRF(seed, RDSEED || 0) */ |
| block.counter = 0; |
| blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed)); |
| blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key)); |
| |
| spin_unlock_irqrestore(&input_pool.lock, flags); |
| memzero_explicit(next_key, sizeof(next_key)); |
| |
| while (nbytes) { |
| i = min_t(size_t, nbytes, BLAKE2S_HASH_SIZE); |
| /* output = HASHPRF(seed, RDSEED || ++counter) */ |
| ++block.counter; |
| blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed)); |
| nbytes -= i; |
| buf += i; |
| } |
| |
| memzero_explicit(seed, sizeof(seed)); |
| memzero_explicit(&block, sizeof(block)); |
| } |
| |
| /* |
| * First we make sure we have POOL_MIN_BITS of entropy in the pool, and then we |
| * set the entropy count to zero (but don't actually touch any data). Only then |
| * can we extract a new key with extract_entropy(). |
| */ |
| static bool drain_entropy(void *buf, size_t nbytes) |
| { |
| unsigned int entropy_count; |
| do { |
| entropy_count = READ_ONCE(input_pool.entropy_count); |
| if (entropy_count < POOL_MIN_BITS) |
| return false; |
| } while (cmpxchg(&input_pool.entropy_count, entropy_count, 0) != entropy_count); |
| extract_entropy(buf, nbytes); |
| wake_up_interruptible(&random_write_wait); |
| kill_fasync(&fasync, SIGIO, POLL_OUT); |
| return true; |
| } |
| |
| #define warn_unseeded_randomness(previous) \ |
| _warn_unseeded_randomness(__func__, (void *)_RET_IP_, (previous)) |
| |
| static void _warn_unseeded_randomness(const char *func_name, void *caller, void **previous) |
| { |
| #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM |
| const bool print_once = false; |
| #else |
| static bool print_once __read_mostly; |
| #endif |
| |
| if (print_once || crng_ready() || |
| (previous && (caller == READ_ONCE(*previous)))) |
| return; |
| WRITE_ONCE(*previous, caller); |
| #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM |
| print_once = true; |
| #endif |
| if (__ratelimit(&unseeded_warning)) |
| pr_notice("random: %s called from %pS with crng_init=%d\n", |
| func_name, caller, crng_init); |
| } |
| |
| /* |
| * This function is the exported kernel interface. It returns some |
| * number of good random numbers, suitable for key generation, seeding |
| * TCP sequence numbers, etc. It does not rely on the hardware random |
| * number generator. For random bytes direct from the hardware RNG |
| * (when available), use get_random_bytes_arch(). In order to ensure |
| * that the randomness provided by this function is okay, the function |
| * wait_for_random_bytes() should be called and return 0 at least once |
| * at any point prior. |
| */ |
| static void _get_random_bytes(void *buf, size_t nbytes) |
| { |
| u32 chacha_state[CHACHA20_BLOCK_SIZE / sizeof(u32)]; |
| u8 tmp[CHACHA20_BLOCK_SIZE]; |
| size_t len; |
| |
| if (!nbytes) |
| return; |
| |
| len = min_t(size_t, 32, nbytes); |
| crng_make_state(chacha_state, buf, len); |
| nbytes -= len; |
| buf += len; |
| |
| while (nbytes) { |
| if (nbytes < CHACHA20_BLOCK_SIZE) { |
| chacha20_block(chacha_state, tmp); |
| memcpy(buf, tmp, nbytes); |
| memzero_explicit(tmp, sizeof(tmp)); |
| break; |
| } |
| |
| chacha20_block(chacha_state, buf); |
| if (unlikely(chacha_state[12] == 0)) |
| ++chacha_state[13]; |
| nbytes -= CHACHA20_BLOCK_SIZE; |
| buf += CHACHA20_BLOCK_SIZE; |
| } |
| |
| memzero_explicit(chacha_state, sizeof(chacha_state)); |
| } |
| |
| void get_random_bytes(void *buf, size_t nbytes) |
| { |
| static void *previous; |
| |
| warn_unseeded_randomness(&previous); |
| _get_random_bytes(buf, nbytes); |
| } |
| EXPORT_SYMBOL(get_random_bytes); |
| |
| /* |
| * Each time the timer fires, we expect that we got an unpredictable |
| * jump in the cycle counter. Even if the timer is running on another |
| * CPU, the timer activity will be touching the stack of the CPU that is |
| * generating entropy.. |
| * |
| * Note that we don't re-arm the timer in the timer itself - we are |
| * happy to be scheduled away, since that just makes the load more |
| * complex, but we do not want the timer to keep ticking unless the |
| * entropy loop is running. |
| * |
| * So the re-arming always happens in the entropy loop itself. |
| */ |
| static void entropy_timer(unsigned long data) |
| { |
| credit_entropy_bits(1); |
| } |
| |
| /* |
| * If we have an actual cycle counter, see if we can |
| * generate enough entropy with timing noise |
| */ |
| static void try_to_generate_entropy(void) |
| { |
| struct { |
| unsigned long now; |
| struct timer_list timer; |
| } stack; |
| |
| stack.now = random_get_entropy(); |
| |
| /* Slow counter - or none. Don't even bother */ |
| if (stack.now == random_get_entropy()) |
| return; |
| |
| __setup_timer_on_stack(&stack.timer, entropy_timer, 0, 0); |
| while (!crng_ready()) { |
| if (!timer_pending(&stack.timer)) |
| mod_timer(&stack.timer, jiffies + 1); |
| mix_pool_bytes(&stack.now, sizeof(stack.now)); |
| schedule(); |
| stack.now = random_get_entropy(); |
| } |
| |
| del_timer_sync(&stack.timer); |
| destroy_timer_on_stack(&stack.timer); |
| mix_pool_bytes(&stack.now, sizeof(stack.now)); |
| } |
| |
| /* |
| * Wait for the urandom pool to be seeded and thus guaranteed to supply |
| * cryptographically secure random numbers. This applies to: the /dev/urandom |
| * device, the get_random_bytes function, and the get_random_{u32,u64,int,long} |
| * family of functions. Using any of these functions without first calling |
| * this function forfeits the guarantee of security. |
| * |
| * Returns: 0 if the urandom pool has been seeded. |
| * -ERESTARTSYS if the function was interrupted by a signal. |
| */ |
| int wait_for_random_bytes(void) |
| { |
| if (likely(crng_ready())) |
| return 0; |
| |
| do { |
| int ret; |
| ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ); |
| if (ret) |
| return ret > 0 ? 0 : ret; |
| |
| try_to_generate_entropy(); |
| } while (!crng_ready()); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(wait_for_random_bytes); |
| |
| /* |
| * Returns whether or not the urandom pool has been seeded and thus guaranteed |
| * to supply cryptographically secure random numbers. This applies to: the |
| * /dev/urandom device, the get_random_bytes function, and the get_random_{u32, |
| * ,u64,int,long} family of functions. |
| * |
| * Returns: true if the urandom pool has been seeded. |
| * false if the urandom pool has not been seeded. |
| */ |
| bool rng_is_initialized(void) |
| { |
| return crng_ready(); |
| } |
| EXPORT_SYMBOL(rng_is_initialized); |
| |
| /* |
| * Add a callback function that will be invoked when the nonblocking |
| * pool is initialised. |
| * |
| * returns: 0 if callback is successfully added |
| * -EALREADY if pool is already initialised (callback not called) |
| * -ENOENT if module for callback is not alive |
| */ |
| int add_random_ready_callback(struct random_ready_callback *rdy) |
| { |
| struct module *owner; |
| unsigned long flags; |
| int err = -EALREADY; |
| |
| if (crng_ready()) |
| return err; |
| |
| owner = rdy->owner; |
| if (!try_module_get(owner)) |
| return -ENOENT; |
| |
| spin_lock_irqsave(&random_ready_list_lock, flags); |
| if (crng_ready()) |
| goto out; |
| |
| owner = NULL; |
| |
| list_add(&rdy->list, &random_ready_list); |
| err = 0; |
| |
| out: |
| spin_unlock_irqrestore(&random_ready_list_lock, flags); |
| |
| module_put(owner); |
| |
| return err; |
| } |
| EXPORT_SYMBOL(add_random_ready_callback); |
| |
| /* |
| * Delete a previously registered readiness callback function. |
| */ |
| void del_random_ready_callback(struct random_ready_callback *rdy) |
| { |
| unsigned long flags; |
| struct module *owner = NULL; |
| |
| spin_lock_irqsave(&random_ready_list_lock, flags); |
| if (!list_empty(&rdy->list)) { |
| list_del_init(&rdy->list); |
| owner = rdy->owner; |
| } |
| spin_unlock_irqrestore(&random_ready_list_lock, flags); |
| |
| module_put(owner); |
| } |
| EXPORT_SYMBOL(del_random_ready_callback); |
| |
| /* |
| * This function will use the architecture-specific hardware random |
| * number generator if it is available. It is not recommended for |
| * use. Use get_random_bytes() instead. It returns the number of |
| * bytes filled in. |
| */ |
| size_t __must_check get_random_bytes_arch(void *buf, size_t nbytes) |
| { |
| size_t left = nbytes; |
| u8 *p = buf; |
| |
| while (left) { |
| unsigned long v; |
| size_t chunk = min_t(size_t, left, sizeof(unsigned long)); |
| |
| if (!arch_get_random_long(&v)) |
| break; |
| |
| memcpy(p, &v, chunk); |
| p += chunk; |
| left -= chunk; |
| } |
| |
| return nbytes - left; |
| } |
| EXPORT_SYMBOL(get_random_bytes_arch); |
| |
| static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU); |
| static int __init parse_trust_cpu(char *arg) |
| { |
| return kstrtobool(arg, &trust_cpu); |
| } |
| early_param("random.trust_cpu", parse_trust_cpu); |
| |
| /* |
| * Note that setup_arch() may call add_device_randomness() |
| * long before we get here. This allows seeding of the pools |
| * with some platform dependent data very early in the boot |
| * process. But it limits our options here. We must use |
| * statically allocated structures that already have all |
| * initializations complete at compile time. We should also |
| * take care not to overwrite the precious per platform data |
| * we were given. |
| */ |
| int __init rand_initialize(void) |
| { |
| size_t i; |
| ktime_t now = ktime_get_real(); |
| bool arch_init = true; |
| unsigned long rv; |
| |
| for (i = 0; i < BLAKE2S_BLOCK_SIZE; i += sizeof(rv)) { |
| if (!arch_get_random_seed_long_early(&rv) && |
| !arch_get_random_long_early(&rv)) { |
| rv = random_get_entropy(); |
| arch_init = false; |
| } |
| mix_pool_bytes(&rv, sizeof(rv)); |
| } |
| mix_pool_bytes(&now, sizeof(now)); |
| mix_pool_bytes(utsname(), sizeof(*(utsname()))); |
| |
| extract_entropy(base_crng.key, sizeof(base_crng.key)); |
| ++base_crng.generation; |
| |
| if (arch_init && trust_cpu && crng_init < 2) { |
| crng_init = 2; |
| pr_notice("crng init done (trusting CPU's manufacturer)\n"); |
| } |
| |
| if (ratelimit_disable) { |
| urandom_warning.interval = 0; |
| unseeded_warning.interval = 0; |
| } |
| return 0; |
| } |
| |
| #ifdef CONFIG_BLOCK |
| void rand_initialize_disk(struct gendisk *disk) |
| { |
| struct timer_rand_state *state; |
| |
| /* |
| * If kzalloc returns null, we just won't use that entropy |
| * source. |
| */ |
| state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); |
| if (state) { |
| state->last_time = INITIAL_JIFFIES; |
| disk->random = state; |
| } |
| } |
| #endif |
| |
| static ssize_t urandom_read(struct file *file, char __user *buf, size_t nbytes, |
| loff_t *ppos) |
| { |
| static int maxwarn = 10; |
| |
| if (!crng_ready() && maxwarn > 0) { |
| maxwarn--; |
| if (__ratelimit(&urandom_warning)) |
| pr_notice("%s: uninitialized urandom read (%zd bytes read)\n", |
| current->comm, nbytes); |
| } |
| |
| return get_random_bytes_user(buf, nbytes); |
| } |
| |
| static ssize_t random_read(struct file *file, char __user *buf, size_t nbytes, |
| loff_t *ppos) |
| { |
| int ret; |
| |
| ret = wait_for_random_bytes(); |
| if (ret != 0) |
| return ret; |
| return get_random_bytes_user(buf, nbytes); |
| } |
| |
| static unsigned int random_poll(struct file *file, poll_table *wait) |
| { |
| unsigned int mask; |
| |
| poll_wait(file, &crng_init_wait, wait); |
| poll_wait(file, &random_write_wait, wait); |
| mask = 0; |
| if (crng_ready()) |
| mask |= POLLIN | POLLRDNORM; |
| if (input_pool.entropy_count < POOL_MIN_BITS) |
| mask |= POLLOUT | POLLWRNORM; |
| return mask; |
| } |
| |
| static int write_pool(const char __user *ubuf, size_t count) |
| { |
| size_t len; |
| int ret = 0; |
| u8 block[BLAKE2S_BLOCK_SIZE]; |
| |
| while (count) { |
| len = min(count, sizeof(block)); |
| if (copy_from_user(block, ubuf, len)) { |
| ret = -EFAULT; |
| goto out; |
| } |
| count -= len; |
| ubuf += len; |
| mix_pool_bytes(block, len); |
| cond_resched(); |
| } |
| |
| out: |
| memzero_explicit(block, sizeof(block)); |
| return ret; |
| } |
| |
| static ssize_t random_write(struct file *file, const char __user *buffer, |
| size_t count, loff_t *ppos) |
| { |
| int ret; |
| |
| ret = write_pool(buffer, count); |
| if (ret) |
| return ret; |
| |
| return (ssize_t)count; |
| } |
| |
| static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) |
| { |
| int size, ent_count; |
| int __user *p = (int __user *)arg; |
| int retval; |
| |
| switch (cmd) { |
| case RNDGETENTCNT: |
| /* inherently racy, no point locking */ |
| if (put_user(input_pool.entropy_count, p)) |
| return -EFAULT; |
| return 0; |
| case RNDADDTOENTCNT: |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| if (get_user(ent_count, p)) |
| return -EFAULT; |
| if (ent_count < 0) |
| return -EINVAL; |
| credit_entropy_bits(ent_count); |
| return 0; |
| case RNDADDENTROPY: |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| if (get_user(ent_count, p++)) |
| return -EFAULT; |
| if (ent_count < 0) |
| return -EINVAL; |
| if (get_user(size, p++)) |
| return -EFAULT; |
| retval = write_pool((const char __user *)p, size); |
| if (retval < 0) |
| return retval; |
| credit_entropy_bits(ent_count); |
| return 0; |
| case RNDZAPENTCNT: |
| case RNDCLEARPOOL: |
| /* |
| * Clear the entropy pool counters. We no longer clear |
| * the entropy pool, as that's silly. |
| */ |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| if (xchg(&input_pool.entropy_count, 0)) { |
| wake_up_interruptible(&random_write_wait); |
| kill_fasync(&fasync, SIGIO, POLL_OUT); |
| } |
| return 0; |
| case RNDRESEEDCRNG: |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| if (crng_init < 2) |
| return -ENODATA; |
| crng_reseed(); |
| return 0; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int random_fasync(int fd, struct file *filp, int on) |
| { |
| return fasync_helper(fd, filp, on, &fasync); |
| } |
| |
| const struct file_operations random_fops = { |
| .read = random_read, |
| .write = random_write, |
| .poll = random_poll, |
| .unlocked_ioctl = random_ioctl, |
| .fasync = random_fasync, |
| .llseek = noop_llseek, |
| }; |
| |
| const struct file_operations urandom_fops = { |
| .read = urandom_read, |
| .write = random_write, |
| .unlocked_ioctl = random_ioctl, |
| .fasync = random_fasync, |
| .llseek = noop_llseek, |
| }; |
| |
| SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int, |
| flags) |
| { |
| if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE)) |
| return -EINVAL; |
| |
| /* |
| * Requesting insecure and blocking randomness at the same time makes |
| * no sense. |
| */ |
| if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM)) |
| return -EINVAL; |
| |
| if (count > INT_MAX) |
| count = INT_MAX; |
| |
| if (!(flags & GRND_INSECURE) && !crng_ready()) { |
| int ret; |
| |
| if (flags & GRND_NONBLOCK) |
| return -EAGAIN; |
| ret = wait_for_random_bytes(); |
| if (unlikely(ret)) |
| return ret; |
| } |
| return get_random_bytes_user(buf, count); |
| } |
| |
| /******************************************************************** |
| * |
| * Sysctl interface |
| * |
| ********************************************************************/ |
| |
| #ifdef CONFIG_SYSCTL |
| |
| #include <linux/sysctl.h> |
| |
| static int random_min_urandom_seed = 60; |
| static int random_write_wakeup_bits = POOL_MIN_BITS; |
| static int sysctl_poolsize = POOL_BITS; |
| static char sysctl_bootid[16]; |
| |
| /* |
| * This function is used to return both the bootid UUID, and random |
| * UUID. The difference is in whether table->data is NULL; if it is, |
| * then a new UUID is generated and returned to the user. |
| * |
| * If the user accesses this via the proc interface, the UUID will be |
| * returned as an ASCII string in the standard UUID format; if via the |
| * sysctl system call, as 16 bytes of binary data. |
| */ |
| static int proc_do_uuid(struct ctl_table *table, int write, |
| void __user *buffer, size_t *lenp, loff_t *ppos) |
| { |
| struct ctl_table fake_table; |
| unsigned char buf[64], tmp_uuid[16], *uuid; |
| |
| uuid = table->data; |
| if (!uuid) { |
| uuid = tmp_uuid; |
| generate_random_uuid(uuid); |
| } else { |
| static DEFINE_SPINLOCK(bootid_spinlock); |
| |
| spin_lock(&bootid_spinlock); |
| if (!uuid[8]) |
| generate_random_uuid(uuid); |
| spin_unlock(&bootid_spinlock); |
| } |
| |
| sprintf(buf, "%pU", uuid); |
| |
| fake_table.data = buf; |
| fake_table.maxlen = sizeof(buf); |
| |
| return proc_dostring(&fake_table, write, buffer, lenp, ppos); |
| } |
| |
| extern struct ctl_table random_table[]; |
| struct ctl_table random_table[] = { |
| { |
| .procname = "poolsize", |
| .data = &sysctl_poolsize, |
| .maxlen = sizeof(int), |
| .mode = 0444, |
| .proc_handler = proc_dointvec, |
| }, |
| { |
| .procname = "entropy_avail", |
| .data = &input_pool.entropy_count, |
| .maxlen = sizeof(int), |
| .mode = 0444, |
| .proc_handler = proc_dointvec, |
| }, |
| { |
| .procname = "write_wakeup_threshold", |
| .data = &random_write_wakeup_bits, |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = proc_dointvec, |
| }, |
| { |
| .procname = "urandom_min_reseed_secs", |
| .data = &random_min_urandom_seed, |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = proc_dointvec, |
| }, |
| { |
| .procname = "boot_id", |
| .data = &sysctl_bootid, |
| .maxlen = 16, |
| .mode = 0444, |
| .proc_handler = proc_do_uuid, |
| }, |
| { |
| .procname = "uuid", |
| .maxlen = 16, |
| .mode = 0444, |
| .proc_handler = proc_do_uuid, |
| }, |
| { } |
| }; |
| #endif /* CONFIG_SYSCTL */ |
| |
| struct batched_entropy { |
| union { |
| /* |
| * We make this 1.5x a ChaCha block, so that we get the |
| * remaining 32 bytes from fast key erasure, plus one full |
| * block from the detached ChaCha state. We can increase |
| * the size of this later if needed so long as we keep the |
| * formula of (integer_blocks + 0.5) * CHACHA20_BLOCK_SIZE. |
| */ |
| u64 entropy_u64[CHACHA20_BLOCK_SIZE * 3 / (2 * sizeof(u64))]; |
| u32 entropy_u32[CHACHA20_BLOCK_SIZE * 3 / (2 * sizeof(u32))]; |
| }; |
| unsigned long generation; |
| unsigned int position; |
| }; |
| |
| /* |
| * Get a random word for internal kernel use only. The quality of the random |
| * number is good as /dev/urandom. In order to ensure that the randomness |
| * provided by this function is okay, the function wait_for_random_bytes() |
| * should be called and return 0 at least once at any point prior. |
| */ |
| static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = { |
| .position = UINT_MAX |
| }; |
| |
| u64 get_random_u64(void) |
| { |
| u64 ret; |
| unsigned long flags; |
| struct batched_entropy *batch; |
| static void *previous; |
| unsigned long next_gen; |
| |
| warn_unseeded_randomness(&previous); |
| |
| local_irq_save(flags); |
| batch = raw_cpu_ptr(&batched_entropy_u64); |
| |
| next_gen = READ_ONCE(base_crng.generation); |
| if (batch->position >= ARRAY_SIZE(batch->entropy_u64) || |
| next_gen != batch->generation) { |
| _get_random_bytes(batch->entropy_u64, sizeof(batch->entropy_u64)); |
| batch->position = 0; |
| batch->generation = next_gen; |
| } |
| |
| ret = batch->entropy_u64[batch->position]; |
| batch->entropy_u64[batch->position] = 0; |
| ++batch->position; |
| local_irq_restore(flags); |
| return ret; |
| } |
| EXPORT_SYMBOL(get_random_u64); |
| |
| static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = { |
| .position = UINT_MAX |
| }; |
| |
| u32 get_random_u32(void) |
| { |
| u32 ret; |
| unsigned long flags; |
| struct batched_entropy *batch; |
| static void *previous; |
| unsigned long next_gen; |
| |
| warn_unseeded_randomness(&previous); |
| |
| local_irq_save(flags); |
| batch = raw_cpu_ptr(&batched_entropy_u32); |
| |
| next_gen = READ_ONCE(base_crng.generation); |
| if (batch->position >= ARRAY_SIZE(batch->entropy_u32) || |
| next_gen != batch->generation) { |
| _get_random_bytes(batch->entropy_u32, sizeof(batch->entropy_u32)); |
| batch->position = 0; |
| batch->generation = next_gen; |
| } |
| |
| ret = batch->entropy_u32[batch->position]; |
| batch->entropy_u32[batch->position] = 0; |
| ++batch->position; |
| local_irq_restore(flags); |
| return ret; |
| } |
| EXPORT_SYMBOL(get_random_u32); |
| |
| /** |
| * randomize_page - Generate a random, page aligned address |
| * @start: The smallest acceptable address the caller will take. |
| * @range: The size of the area, starting at @start, within which the |
| * random address must fall. |
| * |
| * If @start + @range would overflow, @range is capped. |
| * |
| * NOTE: Historical use of randomize_range, which this replaces, presumed that |
| * @start was already page aligned. We now align it regardless. |
| * |
| * Return: A page aligned address within [start, start + range). On error, |
| * @start is returned. |
| */ |
| unsigned long randomize_page(unsigned long start, unsigned long range) |
| { |
| if (!PAGE_ALIGNED(start)) { |
| range -= PAGE_ALIGN(start) - start; |
| start = PAGE_ALIGN(start); |
| } |
| |
| if (start > ULONG_MAX - range) |
| range = ULONG_MAX - start; |
| |
| range >>= PAGE_SHIFT; |
| |
| if (range == 0) |
| return start; |
| |
| return start + (get_random_long() % range << PAGE_SHIFT); |
| } |
| |
| /* Interface for in-kernel drivers of true hardware RNGs. |
| * Those devices may produce endless random bits and will be throttled |
| * when our pool is full. |
| */ |
| void add_hwgenerator_randomness(const void *buffer, size_t count, |
| size_t entropy) |
| { |
| if (unlikely(crng_init == 0)) { |
| size_t ret = crng_fast_load(buffer, count); |
| mix_pool_bytes(buffer, ret); |
| count -= ret; |
| buffer += ret; |
| if (!count || crng_init == 0) |
| return; |
| } |
| |
| /* Throttle writing if we're above the trickle threshold. |
| * We'll be woken up again once below POOL_MIN_BITS, when |
| * the calling thread is about to terminate, or once |
| * CRNG_RESEED_INTERVAL has elapsed. |
| */ |
| wait_event_interruptible_timeout(random_write_wait, |
| !system_wq || kthread_should_stop() || |
| input_pool.entropy_count < POOL_MIN_BITS, |
| CRNG_RESEED_INTERVAL); |
| mix_pool_bytes(buffer, count); |
| credit_entropy_bits(entropy); |
| } |
| EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); |
| |
| /* Handle random seed passed by bootloader. |
| * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise |
| * it would be regarded as device data. |
| * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER. |
| */ |
| void add_bootloader_randomness(const void *buf, size_t size) |
| { |
| if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER)) |
| add_hwgenerator_randomness(buf, size, size * 8); |
| else |
| add_device_randomness(buf, size); |
| } |
| EXPORT_SYMBOL_GPL(add_bootloader_randomness); |