| /* |
| * Copyright (C) 2015 Google, Inc. |
| * |
| * Author: Sami Tolvanen <samitolvanen@google.com> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the Free |
| * Software Foundation; either version 2 of the License, or (at your option) |
| * any later version. |
| */ |
| |
| #include "dm-verity-fec.h" |
| #include <linux/math64.h> |
| #include <linux/sysfs.h> |
| |
| #define DM_MSG_PREFIX "verity-fec" |
| |
| /* |
| * If error correction has been configured, returns true. |
| */ |
| bool verity_fec_is_enabled(struct dm_verity *v) |
| { |
| return v->fec && v->fec->dev; |
| } |
| |
| /* |
| * Return a pointer to dm_verity_fec_io after dm_verity_io and its variable |
| * length fields. |
| */ |
| static inline struct dm_verity_fec_io *fec_io(struct dm_verity_io *io) |
| { |
| return (struct dm_verity_fec_io *) verity_io_digest_end(io->v, io); |
| } |
| |
| /* |
| * Return an interleaved offset for a byte in RS block. |
| */ |
| static inline u64 fec_interleave(struct dm_verity *v, u64 offset) |
| { |
| u32 mod; |
| |
| mod = do_div(offset, v->fec->rsn); |
| return offset + mod * (v->fec->rounds << v->data_dev_block_bits); |
| } |
| |
| /* |
| * Decode an RS block using Reed-Solomon. |
| */ |
| static int fec_decode_rs8(struct dm_verity *v, struct dm_verity_fec_io *fio, |
| u8 *data, u8 *fec, int neras) |
| { |
| int i; |
| uint16_t par[DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN]; |
| |
| for (i = 0; i < v->fec->roots; i++) |
| par[i] = fec[i]; |
| |
| return decode_rs8(fio->rs, data, par, v->fec->rsn, NULL, neras, |
| fio->erasures, 0, NULL); |
| } |
| |
| /* |
| * Read error-correcting codes for the requested RS block. Returns a pointer |
| * to the data block. Caller is responsible for releasing buf. |
| */ |
| static u8 *fec_read_parity(struct dm_verity *v, u64 rsb, int index, |
| unsigned *offset, struct dm_buffer **buf) |
| { |
| u64 position, block; |
| u8 *res; |
| |
| position = (index + rsb) * v->fec->roots; |
| block = position >> v->data_dev_block_bits; |
| *offset = (unsigned)(position - (block << v->data_dev_block_bits)); |
| |
| res = dm_bufio_read(v->fec->bufio, v->fec->start + block, buf); |
| if (IS_ERR(res)) { |
| DMERR("%s: FEC %llu: parity read failed (block %llu): %ld", |
| v->data_dev->name, (unsigned long long)rsb, |
| (unsigned long long)(v->fec->start + block), |
| PTR_ERR(res)); |
| *buf = NULL; |
| } |
| |
| return res; |
| } |
| |
| /* Loop over each preallocated buffer slot. */ |
| #define fec_for_each_prealloc_buffer(__i) \ |
| for (__i = 0; __i < DM_VERITY_FEC_BUF_PREALLOC; __i++) |
| |
| /* Loop over each extra buffer slot. */ |
| #define fec_for_each_extra_buffer(io, __i) \ |
| for (__i = DM_VERITY_FEC_BUF_PREALLOC; __i < DM_VERITY_FEC_BUF_MAX; __i++) |
| |
| /* Loop over each allocated buffer. */ |
| #define fec_for_each_buffer(io, __i) \ |
| for (__i = 0; __i < (io)->nbufs; __i++) |
| |
| /* Loop over each RS block in each allocated buffer. */ |
| #define fec_for_each_buffer_rs_block(io, __i, __j) \ |
| fec_for_each_buffer(io, __i) \ |
| for (__j = 0; __j < 1 << DM_VERITY_FEC_BUF_RS_BITS; __j++) |
| |
| /* |
| * Return a pointer to the current RS block when called inside |
| * fec_for_each_buffer_rs_block. |
| */ |
| static inline u8 *fec_buffer_rs_block(struct dm_verity *v, |
| struct dm_verity_fec_io *fio, |
| unsigned i, unsigned j) |
| { |
| return &fio->bufs[i][j * v->fec->rsn]; |
| } |
| |
| /* |
| * Return an index to the current RS block when called inside |
| * fec_for_each_buffer_rs_block. |
| */ |
| static inline unsigned fec_buffer_rs_index(unsigned i, unsigned j) |
| { |
| return (i << DM_VERITY_FEC_BUF_RS_BITS) + j; |
| } |
| |
| /* |
| * Decode all RS blocks from buffers and copy corrected bytes into fio->output |
| * starting from block_offset. |
| */ |
| static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio, |
| u64 rsb, int byte_index, unsigned block_offset, |
| int neras) |
| { |
| int r, corrected = 0, res; |
| struct dm_buffer *buf; |
| unsigned n, i, offset; |
| u8 *par, *block; |
| |
| par = fec_read_parity(v, rsb, block_offset, &offset, &buf); |
| if (IS_ERR(par)) |
| return PTR_ERR(par); |
| |
| /* |
| * Decode the RS blocks we have in bufs. Each RS block results in |
| * one corrected target byte and consumes fec->roots parity bytes. |
| */ |
| fec_for_each_buffer_rs_block(fio, n, i) { |
| block = fec_buffer_rs_block(v, fio, n, i); |
| res = fec_decode_rs8(v, fio, block, &par[offset], neras); |
| if (res < 0) { |
| r = res; |
| goto error; |
| } |
| |
| corrected += res; |
| fio->output[block_offset] = block[byte_index]; |
| |
| block_offset++; |
| if (block_offset >= 1 << v->data_dev_block_bits) |
| goto done; |
| |
| /* read the next block when we run out of parity bytes */ |
| offset += v->fec->roots; |
| if (offset >= 1 << v->data_dev_block_bits) { |
| dm_bufio_release(buf); |
| |
| par = fec_read_parity(v, rsb, block_offset, &offset, &buf); |
| if (IS_ERR(par)) |
| return PTR_ERR(par); |
| } |
| } |
| done: |
| r = corrected; |
| error: |
| dm_bufio_release(buf); |
| |
| if (r < 0 && neras) |
| DMERR_LIMIT("%s: FEC %llu: failed to correct: %d", |
| v->data_dev->name, (unsigned long long)rsb, r); |
| else if (r > 0) { |
| DMWARN_LIMIT("%s: FEC %llu: corrected %d errors", |
| v->data_dev->name, (unsigned long long)rsb, r); |
| atomic_add_unless(&v->fec->corrected, 1, INT_MAX); |
| } |
| |
| return r; |
| } |
| |
| /* |
| * Locate data block erasures using verity hashes. |
| */ |
| static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io, |
| u8 *want_digest, u8 *data) |
| { |
| if (unlikely(verity_hash(v, verity_io_hash_req(v, io), |
| data, 1 << v->data_dev_block_bits, |
| verity_io_real_digest(v, io)))) |
| return 0; |
| |
| return memcmp(verity_io_real_digest(v, io), want_digest, |
| v->digest_size) != 0; |
| } |
| |
| /* |
| * Read data blocks that are part of the RS block and deinterleave as much as |
| * fits into buffers. Check for erasure locations if @neras is non-NULL. |
| */ |
| static int fec_read_bufs(struct dm_verity *v, struct dm_verity_io *io, |
| u64 rsb, u64 target, unsigned block_offset, |
| int *neras) |
| { |
| bool is_zero; |
| int i, j, target_index = -1; |
| struct dm_buffer *buf; |
| struct dm_bufio_client *bufio; |
| struct dm_verity_fec_io *fio = fec_io(io); |
| u64 block, ileaved; |
| u8 *bbuf, *rs_block; |
| u8 want_digest[v->digest_size]; |
| unsigned n, k; |
| |
| if (neras) |
| *neras = 0; |
| |
| /* |
| * read each of the rsn data blocks that are part of the RS block, and |
| * interleave contents to available bufs |
| */ |
| for (i = 0; i < v->fec->rsn; i++) { |
| ileaved = fec_interleave(v, rsb * v->fec->rsn + i); |
| |
| /* |
| * target is the data block we want to correct, target_index is |
| * the index of this block within the rsn RS blocks |
| */ |
| if (ileaved == target) |
| target_index = i; |
| |
| block = ileaved >> v->data_dev_block_bits; |
| bufio = v->fec->data_bufio; |
| |
| if (block >= v->data_blocks) { |
| block -= v->data_blocks; |
| |
| /* |
| * blocks outside the area were assumed to contain |
| * zeros when encoding data was generated |
| */ |
| if (unlikely(block >= v->fec->hash_blocks)) |
| continue; |
| |
| block += v->hash_start; |
| bufio = v->bufio; |
| } |
| |
| bbuf = dm_bufio_read(bufio, block, &buf); |
| if (IS_ERR(bbuf)) { |
| DMWARN_LIMIT("%s: FEC %llu: read failed (%llu): %ld", |
| v->data_dev->name, |
| (unsigned long long)rsb, |
| (unsigned long long)block, PTR_ERR(bbuf)); |
| |
| /* assume the block is corrupted */ |
| if (neras && *neras <= v->fec->roots) |
| fio->erasures[(*neras)++] = i; |
| |
| continue; |
| } |
| |
| /* locate erasures if the block is on the data device */ |
| if (bufio == v->fec->data_bufio && |
| verity_hash_for_block(v, io, block, want_digest, |
| &is_zero) == 0) { |
| /* skip known zero blocks entirely */ |
| if (is_zero) |
| goto done; |
| |
| /* |
| * skip if we have already found the theoretical |
| * maximum number (i.e. fec->roots) of erasures |
| */ |
| if (neras && *neras <= v->fec->roots && |
| fec_is_erasure(v, io, want_digest, bbuf)) |
| fio->erasures[(*neras)++] = i; |
| } |
| |
| /* |
| * deinterleave and copy the bytes that fit into bufs, |
| * starting from block_offset |
| */ |
| fec_for_each_buffer_rs_block(fio, n, j) { |
| k = fec_buffer_rs_index(n, j) + block_offset; |
| |
| if (k >= 1 << v->data_dev_block_bits) |
| goto done; |
| |
| rs_block = fec_buffer_rs_block(v, fio, n, j); |
| rs_block[i] = bbuf[k]; |
| } |
| done: |
| dm_bufio_release(buf); |
| } |
| |
| return target_index; |
| } |
| |
| /* |
| * Allocate RS control structure and FEC buffers from preallocated mempools, |
| * and attempt to allocate as many extra buffers as available. |
| */ |
| static int fec_alloc_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio) |
| { |
| unsigned n; |
| |
| if (!fio->rs) |
| fio->rs = mempool_alloc(v->fec->rs_pool, GFP_NOIO); |
| |
| fec_for_each_prealloc_buffer(n) { |
| if (fio->bufs[n]) |
| continue; |
| |
| fio->bufs[n] = mempool_alloc(v->fec->prealloc_pool, GFP_NOWAIT); |
| if (unlikely(!fio->bufs[n])) { |
| DMERR("failed to allocate FEC buffer"); |
| return -ENOMEM; |
| } |
| } |
| |
| /* try to allocate the maximum number of buffers */ |
| fec_for_each_extra_buffer(fio, n) { |
| if (fio->bufs[n]) |
| continue; |
| |
| fio->bufs[n] = mempool_alloc(v->fec->extra_pool, GFP_NOWAIT); |
| /* we can manage with even one buffer if necessary */ |
| if (unlikely(!fio->bufs[n])) |
| break; |
| } |
| fio->nbufs = n; |
| |
| if (!fio->output) |
| fio->output = mempool_alloc(v->fec->output_pool, GFP_NOIO); |
| |
| return 0; |
| } |
| |
| /* |
| * Initialize buffers and clear erasures. fec_read_bufs() assumes buffers are |
| * zeroed before deinterleaving. |
| */ |
| static void fec_init_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio) |
| { |
| unsigned n; |
| |
| fec_for_each_buffer(fio, n) |
| memset(fio->bufs[n], 0, v->fec->rsn << DM_VERITY_FEC_BUF_RS_BITS); |
| |
| memset(fio->erasures, 0, sizeof(fio->erasures)); |
| } |
| |
| /* |
| * Decode all RS blocks in a single data block and return the target block |
| * (indicated by @offset) in fio->output. If @use_erasures is non-zero, uses |
| * hashes to locate erasures. |
| */ |
| static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io, |
| struct dm_verity_fec_io *fio, u64 rsb, u64 offset, |
| bool use_erasures) |
| { |
| int r, neras = 0; |
| unsigned pos; |
| |
| r = fec_alloc_bufs(v, fio); |
| if (unlikely(r < 0)) |
| return r; |
| |
| for (pos = 0; pos < 1 << v->data_dev_block_bits; ) { |
| fec_init_bufs(v, fio); |
| |
| r = fec_read_bufs(v, io, rsb, offset, pos, |
| use_erasures ? &neras : NULL); |
| if (unlikely(r < 0)) |
| return r; |
| |
| r = fec_decode_bufs(v, fio, rsb, r, pos, neras); |
| if (r < 0) |
| return r; |
| |
| pos += fio->nbufs << DM_VERITY_FEC_BUF_RS_BITS; |
| } |
| |
| /* Always re-validate the corrected block against the expected hash */ |
| r = verity_hash(v, verity_io_hash_req(v, io), fio->output, |
| 1 << v->data_dev_block_bits, |
| verity_io_real_digest(v, io)); |
| if (unlikely(r < 0)) |
| return r; |
| |
| if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io), |
| v->digest_size)) { |
| DMERR_LIMIT("%s: FEC %llu: failed to correct (%d erasures)", |
| v->data_dev->name, (unsigned long long)rsb, neras); |
| return -EILSEQ; |
| } |
| |
| return 0; |
| } |
| |
| static int fec_bv_copy(struct dm_verity *v, struct dm_verity_io *io, u8 *data, |
| size_t len) |
| { |
| struct dm_verity_fec_io *fio = fec_io(io); |
| |
| memcpy(data, &fio->output[fio->output_pos], len); |
| fio->output_pos += len; |
| |
| return 0; |
| } |
| |
| /* |
| * Correct errors in a block. Copies corrected block to dest if non-NULL, |
| * otherwise to a bio_vec starting from iter. |
| */ |
| int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io, |
| enum verity_block_type type, sector_t block, u8 *dest, |
| struct bvec_iter *iter) |
| { |
| int r; |
| struct dm_verity_fec_io *fio = fec_io(io); |
| u64 offset, res, rsb; |
| |
| if (!verity_fec_is_enabled(v)) |
| return -EOPNOTSUPP; |
| |
| if (fio->level >= DM_VERITY_FEC_MAX_RECURSION) { |
| DMWARN_LIMIT("%s: FEC: recursion too deep", v->data_dev->name); |
| return -EIO; |
| } |
| |
| fio->level++; |
| |
| if (type == DM_VERITY_BLOCK_TYPE_METADATA) |
| block = block - v->hash_start + v->data_blocks; |
| |
| /* |
| * For RS(M, N), the continuous FEC data is divided into blocks of N |
| * bytes. Since block size may not be divisible by N, the last block |
| * is zero padded when decoding. |
| * |
| * Each byte of the block is covered by a different RS(M, N) code, |
| * and each code is interleaved over N blocks to make it less likely |
| * that bursty corruption will leave us in unrecoverable state. |
| */ |
| |
| offset = block << v->data_dev_block_bits; |
| res = div64_u64(offset, v->fec->rounds << v->data_dev_block_bits); |
| |
| /* |
| * The base RS block we can feed to the interleaver to find out all |
| * blocks required for decoding. |
| */ |
| rsb = offset - res * (v->fec->rounds << v->data_dev_block_bits); |
| |
| /* |
| * Locating erasures is slow, so attempt to recover the block without |
| * them first. Do a second attempt with erasures if the corruption is |
| * bad enough. |
| */ |
| r = fec_decode_rsb(v, io, fio, rsb, offset, false); |
| if (r < 0) { |
| r = fec_decode_rsb(v, io, fio, rsb, offset, true); |
| if (r < 0) |
| goto done; |
| } |
| |
| if (dest) |
| memcpy(dest, fio->output, 1 << v->data_dev_block_bits); |
| else if (iter) { |
| fio->output_pos = 0; |
| r = verity_for_bv_block(v, io, iter, fec_bv_copy); |
| } |
| |
| done: |
| fio->level--; |
| return r; |
| } |
| |
| /* |
| * Clean up per-bio data. |
| */ |
| void verity_fec_finish_io(struct dm_verity_io *io) |
| { |
| unsigned n; |
| struct dm_verity_fec *f = io->v->fec; |
| struct dm_verity_fec_io *fio = fec_io(io); |
| |
| if (!verity_fec_is_enabled(io->v)) |
| return; |
| |
| mempool_free(fio->rs, f->rs_pool); |
| |
| fec_for_each_prealloc_buffer(n) |
| mempool_free(fio->bufs[n], f->prealloc_pool); |
| |
| fec_for_each_extra_buffer(fio, n) |
| mempool_free(fio->bufs[n], f->extra_pool); |
| |
| mempool_free(fio->output, f->output_pool); |
| } |
| |
| /* |
| * Initialize per-bio data. |
| */ |
| void verity_fec_init_io(struct dm_verity_io *io) |
| { |
| struct dm_verity_fec_io *fio = fec_io(io); |
| |
| if (!verity_fec_is_enabled(io->v)) |
| return; |
| |
| fio->rs = NULL; |
| memset(fio->bufs, 0, sizeof(fio->bufs)); |
| fio->nbufs = 0; |
| fio->output = NULL; |
| fio->level = 0; |
| } |
| |
| /* |
| * Append feature arguments and values to the status table. |
| */ |
| unsigned verity_fec_status_table(struct dm_verity *v, unsigned sz, |
| char *result, unsigned maxlen) |
| { |
| if (!verity_fec_is_enabled(v)) |
| return sz; |
| |
| DMEMIT(" " DM_VERITY_OPT_FEC_DEV " %s " |
| DM_VERITY_OPT_FEC_BLOCKS " %llu " |
| DM_VERITY_OPT_FEC_START " %llu " |
| DM_VERITY_OPT_FEC_ROOTS " %d", |
| v->fec->dev->name, |
| (unsigned long long)v->fec->blocks, |
| (unsigned long long)v->fec->start, |
| v->fec->roots); |
| |
| return sz; |
| } |
| |
| void verity_fec_dtr(struct dm_verity *v) |
| { |
| struct dm_verity_fec *f = v->fec; |
| struct kobject *kobj = &f->kobj_holder.kobj; |
| |
| if (!verity_fec_is_enabled(v)) |
| goto out; |
| |
| mempool_destroy(f->rs_pool); |
| mempool_destroy(f->prealloc_pool); |
| mempool_destroy(f->extra_pool); |
| mempool_destroy(f->output_pool); |
| kmem_cache_destroy(f->cache); |
| |
| if (f->data_bufio) |
| dm_bufio_client_destroy(f->data_bufio); |
| if (f->bufio) |
| dm_bufio_client_destroy(f->bufio); |
| |
| if (f->dev) |
| dm_put_device(v->ti, f->dev); |
| |
| if (kobj->state_initialized) { |
| kobject_put(kobj); |
| wait_for_completion(dm_get_completion_from_kobject(kobj)); |
| } |
| |
| out: |
| kfree(f); |
| v->fec = NULL; |
| } |
| |
| static void *fec_rs_alloc(gfp_t gfp_mask, void *pool_data) |
| { |
| struct dm_verity *v = (struct dm_verity *)pool_data; |
| |
| return init_rs(8, 0x11d, 0, 1, v->fec->roots); |
| } |
| |
| static void fec_rs_free(void *element, void *pool_data) |
| { |
| struct rs_control *rs = (struct rs_control *)element; |
| |
| if (rs) |
| free_rs(rs); |
| } |
| |
| bool verity_is_fec_opt_arg(const char *arg_name) |
| { |
| return (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV) || |
| !strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS) || |
| !strcasecmp(arg_name, DM_VERITY_OPT_FEC_START) || |
| !strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)); |
| } |
| |
| int verity_fec_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v, |
| unsigned *argc, const char *arg_name) |
| { |
| int r; |
| struct dm_target *ti = v->ti; |
| const char *arg_value; |
| unsigned long long num_ll; |
| unsigned char num_c; |
| char dummy; |
| |
| if (!*argc) { |
| ti->error = "FEC feature arguments require a value"; |
| return -EINVAL; |
| } |
| |
| arg_value = dm_shift_arg(as); |
| (*argc)--; |
| |
| if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV)) { |
| r = dm_get_device(ti, arg_value, FMODE_READ, &v->fec->dev); |
| if (r) { |
| ti->error = "FEC device lookup failed"; |
| return r; |
| } |
| |
| } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS)) { |
| if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 || |
| ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) |
| >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) { |
| ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS; |
| return -EINVAL; |
| } |
| v->fec->blocks = num_ll; |
| |
| } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START)) { |
| if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 || |
| ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) >> |
| (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) { |
| ti->error = "Invalid " DM_VERITY_OPT_FEC_START; |
| return -EINVAL; |
| } |
| v->fec->start = num_ll; |
| |
| } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)) { |
| if (sscanf(arg_value, "%hhu%c", &num_c, &dummy) != 1 || !num_c || |
| num_c < (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MAX_RSN) || |
| num_c > (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN)) { |
| ti->error = "Invalid " DM_VERITY_OPT_FEC_ROOTS; |
| return -EINVAL; |
| } |
| v->fec->roots = num_c; |
| |
| } else { |
| ti->error = "Unrecognized verity FEC feature request"; |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static ssize_t corrected_show(struct kobject *kobj, struct kobj_attribute *attr, |
| char *buf) |
| { |
| struct dm_verity_fec *f = container_of(kobj, struct dm_verity_fec, |
| kobj_holder.kobj); |
| |
| return sprintf(buf, "%d\n", atomic_read(&f->corrected)); |
| } |
| |
| static struct kobj_attribute attr_corrected = __ATTR_RO(corrected); |
| |
| static struct attribute *fec_attrs[] = { |
| &attr_corrected.attr, |
| NULL |
| }; |
| |
| static struct kobj_type fec_ktype = { |
| .sysfs_ops = &kobj_sysfs_ops, |
| .default_attrs = fec_attrs, |
| .release = dm_kobject_release |
| }; |
| |
| /* |
| * Allocate dm_verity_fec for v->fec. Must be called before verity_fec_ctr. |
| */ |
| int verity_fec_ctr_alloc(struct dm_verity *v) |
| { |
| struct dm_verity_fec *f; |
| |
| f = kzalloc(sizeof(struct dm_verity_fec), GFP_KERNEL); |
| if (!f) { |
| v->ti->error = "Cannot allocate FEC structure"; |
| return -ENOMEM; |
| } |
| v->fec = f; |
| |
| return 0; |
| } |
| |
| /* |
| * Validate arguments and preallocate memory. Must be called after arguments |
| * have been parsed using verity_fec_parse_opt_args. |
| */ |
| int verity_fec_ctr(struct dm_verity *v) |
| { |
| int r; |
| struct dm_verity_fec *f = v->fec; |
| struct dm_target *ti = v->ti; |
| struct mapped_device *md = dm_table_get_md(ti->table); |
| u64 hash_blocks; |
| |
| if (!verity_fec_is_enabled(v)) { |
| verity_fec_dtr(v); |
| return 0; |
| } |
| |
| /* Create a kobject and sysfs attributes */ |
| init_completion(&f->kobj_holder.completion); |
| |
| r = kobject_init_and_add(&f->kobj_holder.kobj, &fec_ktype, |
| &disk_to_dev(dm_disk(md))->kobj, "%s", "fec"); |
| if (r) { |
| ti->error = "Cannot create kobject"; |
| return r; |
| } |
| |
| /* |
| * FEC is computed over data blocks, possible metadata, and |
| * hash blocks. In other words, FEC covers total of fec_blocks |
| * blocks consisting of the following: |
| * |
| * data blocks | hash blocks | metadata (optional) |
| * |
| * We allow metadata after hash blocks to support a use case |
| * where all data is stored on the same device and FEC covers |
| * the entire area. |
| * |
| * If metadata is included, we require it to be available on the |
| * hash device after the hash blocks. |
| */ |
| |
| hash_blocks = v->hash_blocks - v->hash_start; |
| |
| /* |
| * Require matching block sizes for data and hash devices for |
| * simplicity. |
| */ |
| if (v->data_dev_block_bits != v->hash_dev_block_bits) { |
| ti->error = "Block sizes must match to use FEC"; |
| return -EINVAL; |
| } |
| |
| if (!f->roots) { |
| ti->error = "Missing " DM_VERITY_OPT_FEC_ROOTS; |
| return -EINVAL; |
| } |
| f->rsn = DM_VERITY_FEC_RSM - f->roots; |
| |
| if (!f->blocks) { |
| ti->error = "Missing " DM_VERITY_OPT_FEC_BLOCKS; |
| return -EINVAL; |
| } |
| |
| f->rounds = f->blocks; |
| if (sector_div(f->rounds, f->rsn)) |
| f->rounds++; |
| |
| /* |
| * Due to optional metadata, f->blocks can be larger than |
| * data_blocks and hash_blocks combined. |
| */ |
| if (f->blocks < v->data_blocks + hash_blocks || !f->rounds) { |
| ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS; |
| return -EINVAL; |
| } |
| |
| /* |
| * Metadata is accessed through the hash device, so we require |
| * it to be large enough. |
| */ |
| f->hash_blocks = f->blocks - v->data_blocks; |
| if (dm_bufio_get_device_size(v->bufio) < f->hash_blocks) { |
| ti->error = "Hash device is too small for " |
| DM_VERITY_OPT_FEC_BLOCKS; |
| return -E2BIG; |
| } |
| |
| f->bufio = dm_bufio_client_create(f->dev->bdev, |
| 1 << v->data_dev_block_bits, |
| 1, 0, NULL, NULL); |
| if (IS_ERR(f->bufio)) { |
| ti->error = "Cannot initialize FEC bufio client"; |
| return PTR_ERR(f->bufio); |
| } |
| |
| if (dm_bufio_get_device_size(f->bufio) < |
| ((f->start + f->rounds * f->roots) >> v->data_dev_block_bits)) { |
| ti->error = "FEC device is too small"; |
| return -E2BIG; |
| } |
| |
| f->data_bufio = dm_bufio_client_create(v->data_dev->bdev, |
| 1 << v->data_dev_block_bits, |
| 1, 0, NULL, NULL); |
| if (IS_ERR(f->data_bufio)) { |
| ti->error = "Cannot initialize FEC data bufio client"; |
| return PTR_ERR(f->data_bufio); |
| } |
| |
| if (dm_bufio_get_device_size(f->data_bufio) < v->data_blocks) { |
| ti->error = "Data device is too small"; |
| return -E2BIG; |
| } |
| |
| /* Preallocate an rs_control structure for each worker thread */ |
| f->rs_pool = mempool_create(num_online_cpus(), fec_rs_alloc, |
| fec_rs_free, (void *) v); |
| if (!f->rs_pool) { |
| ti->error = "Cannot allocate RS pool"; |
| return -ENOMEM; |
| } |
| |
| f->cache = kmem_cache_create("dm_verity_fec_buffers", |
| f->rsn << DM_VERITY_FEC_BUF_RS_BITS, |
| 0, 0, NULL); |
| if (!f->cache) { |
| ti->error = "Cannot create FEC buffer cache"; |
| return -ENOMEM; |
| } |
| |
| /* Preallocate DM_VERITY_FEC_BUF_PREALLOC buffers for each thread */ |
| f->prealloc_pool = mempool_create_slab_pool(num_online_cpus() * |
| DM_VERITY_FEC_BUF_PREALLOC, |
| f->cache); |
| if (!f->prealloc_pool) { |
| ti->error = "Cannot allocate FEC buffer prealloc pool"; |
| return -ENOMEM; |
| } |
| |
| f->extra_pool = mempool_create_slab_pool(0, f->cache); |
| if (!f->extra_pool) { |
| ti->error = "Cannot allocate FEC buffer extra pool"; |
| return -ENOMEM; |
| } |
| |
| /* Preallocate an output buffer for each thread */ |
| f->output_pool = mempool_create_kmalloc_pool(num_online_cpus(), |
| 1 << v->data_dev_block_bits); |
| if (!f->output_pool) { |
| ti->error = "Cannot allocate FEC output pool"; |
| return -ENOMEM; |
| } |
| |
| /* Reserve space for our per-bio data */ |
| ti->per_io_data_size += sizeof(struct dm_verity_fec_io); |
| |
| return 0; |
| } |