Dan Stoza | 289ade1 | 2014-02-28 11:17:17 -0800 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 2014 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #include <gui/BufferItem.h> |
| 18 | #include <gui/BufferQueueConsumer.h> |
| 19 | #include <gui/BufferQueueCore.h> |
| 20 | #include <gui/IConsumerListener.h> |
| 21 | |
| 22 | namespace android { |
| 23 | |
| 24 | BufferQueueConsumer::BufferQueueConsumer(const sp<BufferQueueCore>& core) : |
| 25 | mCore(core), |
| 26 | mSlots(core->mSlots), |
| 27 | mConsumerName() {} |
| 28 | |
| 29 | BufferQueueConsumer::~BufferQueueConsumer() {} |
| 30 | |
| 31 | status_t BufferQueueConsumer::acquireBuffer(BufferItem* outBuffer, |
| 32 | nsecs_t expectedPresent) { |
| 33 | ATRACE_CALL(); |
| 34 | Mutex::Autolock lock(mCore->mMutex); |
| 35 | |
| 36 | // Check that the consumer doesn't currently have the maximum number of |
| 37 | // buffers acquired. We allow the max buffer count to be exceeded by one |
| 38 | // buffer so that the consumer can successfully set up the newly acquired |
| 39 | // buffer before releasing the old one. |
| 40 | int numAcquiredBuffers = 0; |
| 41 | for (int s = 0; s < BufferQueueCore::NUM_BUFFER_SLOTS; ++s) { |
| 42 | if (mSlots[s].mBufferState == BufferSlot::ACQUIRED) { |
| 43 | ++numAcquiredBuffers; |
| 44 | } |
| 45 | } |
| 46 | if (numAcquiredBuffers >= mCore->mMaxAcquiredBufferCount + 1) { |
| 47 | BQ_LOGE("acquireBuffer: max acquired buffer count reached: %d (max %d)", |
| 48 | numAcquiredBuffers, mCore->mMaxAcquiredBufferCount); |
| 49 | return INVALID_OPERATION; |
| 50 | } |
| 51 | |
| 52 | // Check if the queue is empty. |
| 53 | // In asynchronous mode the list is guaranteed to be one buffer deep, |
| 54 | // while in synchronous mode we use the oldest buffer. |
| 55 | if (mCore->mQueue.empty()) { |
| 56 | return NO_BUFFER_AVAILABLE; |
| 57 | } |
| 58 | |
| 59 | BufferQueueCore::Fifo::iterator front(mCore->mQueue.begin()); |
| 60 | |
| 61 | // If expectedPresent is specified, we may not want to return a buffer yet. |
| 62 | // If it's specified and there's more than one buffer queued, we may want |
| 63 | // to drop a buffer. |
| 64 | if (expectedPresent != 0) { |
| 65 | const int MAX_REASONABLE_NSEC = 1000000000ULL; // 1 second |
| 66 | |
| 67 | // The 'expectedPresent' argument indicates when the buffer is expected |
| 68 | // to be presented on-screen. If the buffer's desired present time is |
| 69 | // earlier (less) than expectedPresent -- meaning it will be displayed |
| 70 | // on time or possibly late if we show it as soon as possible -- we |
| 71 | // acquire and return it. If we don't want to display it until after the |
| 72 | // expectedPresent time, we return PRESENT_LATER without acquiring it. |
| 73 | // |
| 74 | // To be safe, we don't defer acquisition if expectedPresent is more |
| 75 | // than one second in the future beyond the desired present time |
| 76 | // (i.e., we'd be holding the buffer for a long time). |
| 77 | // |
| 78 | // NOTE: Code assumes monotonic time values from the system clock |
| 79 | // are positive. |
| 80 | |
| 81 | // Start by checking to see if we can drop frames. We skip this check if |
| 82 | // the timestamps are being auto-generated by Surface. If the app isn't |
| 83 | // generating timestamps explicitly, it probably doesn't want frames to |
| 84 | // be discarded based on them. |
| 85 | while (mCore->mQueue.size() > 1 && !mCore->mQueue[0].mIsAutoTimestamp) { |
| 86 | // If entry[1] is timely, drop entry[0] (and repeat). We apply an |
| 87 | // additional criterion here: we only drop the earlier buffer if our |
| 88 | // desiredPresent falls within +/- 1 second of the expected present. |
| 89 | // Otherwise, bogus desiredPresent times (e.g., 0 or a small |
| 90 | // relative timestamp), which normally mean "ignore the timestamp |
| 91 | // and acquire immediately", would cause us to drop frames. |
| 92 | // |
| 93 | // We may want to add an additional criterion: don't drop the |
| 94 | // earlier buffer if entry[1]'s fence hasn't signaled yet. |
| 95 | const BufferItem& bufferItem(mCore->mQueue[1]); |
| 96 | nsecs_t desiredPresent = bufferItem.mTimestamp; |
| 97 | if (desiredPresent < expectedPresent - MAX_REASONABLE_NSEC || |
| 98 | desiredPresent > expectedPresent) { |
| 99 | // This buffer is set to display in the near future, or |
| 100 | // desiredPresent is garbage. Either way we don't want to drop |
| 101 | // the previous buffer just to get this on the screen sooner. |
| 102 | BQ_LOGV("acquireBuffer: nodrop desire=%lld expect=%lld " |
| 103 | "(%lld) now=%lld", desiredPresent, expectedPresent, |
| 104 | desiredPresent - expectedPresent, |
| 105 | systemTime(CLOCK_MONOTONIC)); |
| 106 | break; |
| 107 | } |
| 108 | |
| 109 | BQ_LOGV("acquireBuffer: drop desire=%lld expect=%lld size=%d", |
| 110 | desiredPresent, expectedPresent, mCore->mQueue.size()); |
| 111 | if (mCore->stillTracking(front)) { |
| 112 | // Front buffer is still in mSlots, so mark the slot as free |
| 113 | mSlots[front->mSlot].mBufferState = BufferSlot::FREE; |
| 114 | } |
| 115 | mCore->mQueue.erase(front); |
| 116 | front = mCore->mQueue.begin(); |
| 117 | } |
| 118 | |
| 119 | // See if the front buffer is due |
| 120 | nsecs_t desiredPresent = front->mTimestamp; |
| 121 | if (desiredPresent > expectedPresent && |
| 122 | desiredPresent < expectedPresent + MAX_REASONABLE_NSEC) { |
| 123 | BQ_LOGV("acquireBuffer: defer desire=%lld expect=%lld " |
| 124 | "(%lld) now=%lld", desiredPresent, expectedPresent, |
| 125 | desiredPresent - expectedPresent, |
| 126 | systemTime(CLOCK_MONOTONIC)); |
| 127 | return PRESENT_LATER; |
| 128 | } |
| 129 | |
| 130 | BQ_LOGV("acquireBuffer: accept desire=%lld expect=%lld " |
| 131 | "(%lld) now=%lld", desiredPresent, expectedPresent, |
| 132 | desiredPresent - expectedPresent, |
| 133 | systemTime(CLOCK_MONOTONIC)); |
| 134 | } |
| 135 | |
| 136 | int slot = front->mSlot; |
| 137 | *outBuffer = *front; |
| 138 | ATRACE_BUFFER_INDEX(slot); |
| 139 | |
| 140 | BQ_LOGV("acquireBuffer: acquiring { slot=%d/%llu buffer=%p }", |
| 141 | slot, front->mFrameNumber, front->mGraphicBuffer->handle); |
| 142 | // If the front buffer is still being tracked, update its slot state |
| 143 | if (mCore->stillTracking(front)) { |
| 144 | mSlots[slot].mAcquireCalled = true; |
| 145 | mSlots[slot].mNeedsCleanupOnRelease = false; |
| 146 | mSlots[slot].mBufferState = BufferSlot::ACQUIRED; |
| 147 | mSlots[slot].mFence = Fence::NO_FENCE; |
| 148 | } |
| 149 | |
| 150 | // If the buffer has previously been acquired by the consumer, set |
| 151 | // mGraphicBuffer to NULL to avoid unnecessarily remapping this buffer |
| 152 | // on the consumer side |
| 153 | if (outBuffer->mAcquireCalled) { |
| 154 | outBuffer->mGraphicBuffer = NULL; |
| 155 | } |
| 156 | |
| 157 | mCore->mQueue.erase(front); |
| 158 | // TODO: Should this call be after we free a slot while dropping buffers? |
| 159 | // Simply acquiring the next buffer doesn't enable a producer to dequeue. |
| 160 | mCore->mDequeueCondition.broadcast(); |
| 161 | |
| 162 | ATRACE_INT(mCore->mConsumerName.string(), mCore->mQueue.size()); |
| 163 | |
| 164 | return NO_ERROR; |
| 165 | } |
| 166 | |
| 167 | status_t BufferQueueConsumer::releaseBuffer(int slot, uint64_t frameNumber, |
| 168 | const sp<Fence>& releaseFence, EGLDisplay eglDisplay, |
| 169 | EGLSyncKHR eglFence) { |
| 170 | ATRACE_CALL(); |
| 171 | ATRACE_BUFFER_INDEX(slot); |
| 172 | |
| 173 | if (slot == BufferQueueCore::INVALID_BUFFER_SLOT || releaseFence == NULL) { |
| 174 | return BAD_VALUE; |
| 175 | } |
| 176 | |
| 177 | Mutex::Autolock lock(mCore->mMutex); |
| 178 | |
| 179 | // If the frame number has changed because the buffer has been reallocated, |
| 180 | // we can ignore this releaseBuffer for the old buffer |
| 181 | if (frameNumber != mSlots[slot].mFrameNumber) { |
| 182 | return STALE_BUFFER_SLOT; |
| 183 | } |
| 184 | |
| 185 | // Make sure this buffer hasn't been queued while acquired by the consumer |
| 186 | BufferQueueCore::Fifo::iterator current(mCore->mQueue.begin()); |
| 187 | while (current != mCore->mQueue.end()) { |
| 188 | if (current->mSlot == slot) { |
| 189 | BQ_LOGE("releaseBuffer: buffer slot %d pending release is " |
| 190 | "currently queued", slot); |
| 191 | return -EINVAL; |
| 192 | } |
| 193 | ++current; |
| 194 | } |
| 195 | |
| 196 | if (mSlots[slot].mBufferState == BufferSlot::ACQUIRED) { |
| 197 | mSlots[slot].mEglDisplay = eglDisplay; |
| 198 | mSlots[slot].mEglFence = eglFence; |
| 199 | mSlots[slot].mFence = releaseFence; |
| 200 | mSlots[slot].mBufferState = BufferSlot::FREE; |
| 201 | } else if (mSlots[slot].mNeedsCleanupOnRelease) { |
| 202 | BQ_LOGV("releaseBuffer: releasing a stale buffer slot %d " |
| 203 | "(state = %d)", slot, mSlots[slot].mBufferState); |
| 204 | mSlots[slot].mNeedsCleanupOnRelease = false; |
| 205 | return STALE_BUFFER_SLOT; |
| 206 | } else { |
| 207 | BQ_LOGV("releaseBuffer: attempted to release buffer slot %d " |
| 208 | "but its state was %d", slot, mSlots[slot].mBufferState); |
| 209 | return -EINVAL; |
| 210 | } |
| 211 | |
| 212 | mCore->mDequeueCondition.broadcast(); |
| 213 | |
| 214 | return NO_ERROR; |
| 215 | } |
| 216 | |
| 217 | status_t BufferQueueConsumer::connect( |
| 218 | const sp<IConsumerListener>& consumerListener, bool controlledByApp) { |
| 219 | ATRACE_CALL(); |
| 220 | |
| 221 | if (consumerListener == NULL) { |
| 222 | BQ_LOGE("connect(C): consumerListener may not be NULL"); |
| 223 | return BAD_VALUE; |
| 224 | } |
| 225 | |
| 226 | BQ_LOGV("connect(C): controlledByApp=%s", |
| 227 | controlledByApp ? "true" : "false"); |
| 228 | |
| 229 | Mutex::Autolock lock(mCore->mMutex); |
| 230 | |
| 231 | if (mCore->mIsAbandoned) { |
| 232 | BQ_LOGE("connect(C): BufferQueue has been abandoned"); |
| 233 | return NO_INIT; |
| 234 | } |
| 235 | |
| 236 | mCore->mConsumerListener = consumerListener; |
| 237 | mCore->mConsumerControlledByApp = controlledByApp; |
| 238 | |
| 239 | return NO_ERROR; |
| 240 | } |
| 241 | |
| 242 | status_t BufferQueueConsumer::disconnect() { |
| 243 | ATRACE_CALL(); |
| 244 | |
| 245 | BQ_LOGV("disconnect(C)"); |
| 246 | |
| 247 | Mutex::Autolock lock(mCore->mMutex); |
| 248 | |
| 249 | if (mCore->mConsumerListener == NULL) { |
| 250 | BQ_LOGE("disconnect(C): no consumer is connected"); |
| 251 | return -EINVAL; |
| 252 | } |
| 253 | |
| 254 | mCore->mIsAbandoned = true; |
| 255 | mCore->mConsumerListener = NULL; |
| 256 | mCore->mQueue.clear(); |
| 257 | mCore->freeAllBuffersLocked(); |
| 258 | mCore->mDequeueCondition.broadcast(); |
| 259 | return NO_ERROR; |
| 260 | } |
| 261 | |
| 262 | status_t BufferQueueConsumer::getReleasedBuffers(uint32_t *outSlotMask) { |
| 263 | ATRACE_CALL(); |
| 264 | |
| 265 | if (outSlotMask == NULL) { |
| 266 | BQ_LOGE("getReleasedBuffers: outSlotMask may not be NULL"); |
| 267 | return BAD_VALUE; |
| 268 | } |
| 269 | |
| 270 | Mutex::Autolock lock(mCore->mMutex); |
| 271 | |
| 272 | if (mCore->mIsAbandoned) { |
| 273 | BQ_LOGE("getReleasedBuffers: BufferQueue has been abandoned"); |
| 274 | return NO_INIT; |
| 275 | } |
| 276 | |
| 277 | uint32_t mask = 0; |
| 278 | for (int s = 0; s < BufferQueueCore::NUM_BUFFER_SLOTS; ++s) { |
| 279 | if (!mSlots[s].mAcquireCalled) { |
| 280 | mask |= (1u << s); |
| 281 | } |
| 282 | } |
| 283 | |
| 284 | // Remove from the mask queued buffers for which acquire has been called, |
| 285 | // since the consumer will not receive their buffer addresses and so must |
| 286 | // retain their cached information |
| 287 | BufferQueueCore::Fifo::iterator current(mCore->mQueue.begin()); |
| 288 | while (current != mCore->mQueue.end()) { |
| 289 | if (current->mAcquireCalled) { |
| 290 | mask &= ~(1u << current->mSlot); |
| 291 | } |
| 292 | ++current; |
| 293 | } |
| 294 | |
| 295 | BQ_LOGV("getReleasedBuffers: returning mask %#x", mask); |
| 296 | *outSlotMask = mask; |
| 297 | return NO_ERROR; |
| 298 | } |
| 299 | |
| 300 | status_t BufferQueueConsumer::setDefaultBufferSize(uint32_t width, |
| 301 | uint32_t height) { |
| 302 | ATRACE_CALL(); |
| 303 | |
| 304 | if (width == 0 || height == 0) { |
| 305 | BQ_LOGV("setDefaultBufferSize: dimensions cannot be 0 (width=%u " |
| 306 | "height=%u)", width, height); |
| 307 | return BAD_VALUE; |
| 308 | } |
| 309 | |
| 310 | BQ_LOGV("setDefaultBufferSize: width=%u height=%u", width, height); |
| 311 | |
| 312 | Mutex::Autolock lock(mCore->mMutex); |
| 313 | mCore->mDefaultWidth = width; |
| 314 | mCore->mDefaultHeight = height; |
| 315 | return NO_ERROR; |
| 316 | } |
| 317 | |
| 318 | status_t BufferQueueConsumer::setDefaultMaxBufferCount(int bufferCount) { |
| 319 | ATRACE_CALL(); |
| 320 | Mutex::Autolock lock(mCore->mMutex); |
| 321 | return mCore->setDefaultMaxBufferCountLocked(bufferCount); |
| 322 | } |
| 323 | |
| 324 | status_t BufferQueueConsumer::disableAsyncBuffer() { |
| 325 | ATRACE_CALL(); |
| 326 | |
| 327 | Mutex::Autolock lock(mCore->mMutex); |
| 328 | |
| 329 | if (mCore->mConsumerListener != NULL) { |
| 330 | BQ_LOGE("disableAsyncBuffer: consumer already connected"); |
| 331 | return INVALID_OPERATION; |
| 332 | } |
| 333 | |
| 334 | BQ_LOGV("disableAsyncBuffer"); |
| 335 | mCore->mUseAsyncBuffer = false; |
| 336 | return NO_ERROR; |
| 337 | } |
| 338 | |
| 339 | status_t BufferQueueConsumer::setMaxAcquiredBufferCount( |
| 340 | int maxAcquiredBuffers) { |
| 341 | ATRACE_CALL(); |
| 342 | |
| 343 | if (maxAcquiredBuffers < 1 || |
| 344 | maxAcquiredBuffers > BufferQueueCore::MAX_MAX_ACQUIRED_BUFFERS) { |
| 345 | BQ_LOGE("setMaxAcquiredBufferCount: invalid count %d", |
| 346 | maxAcquiredBuffers); |
| 347 | return BAD_VALUE; |
| 348 | } |
| 349 | |
| 350 | Mutex::Autolock lock(mCore->mMutex); |
| 351 | |
| 352 | if (mCore->mConnectedApi != BufferQueueCore::NO_CONNECTED_API) { |
| 353 | BQ_LOGE("setMaxAcquiredBufferCount: producer is already connected"); |
| 354 | return INVALID_OPERATION; |
| 355 | } |
| 356 | |
| 357 | BQ_LOGV("setMaxAcquiredBufferCount: %d", maxAcquiredBuffers); |
| 358 | mCore->mMaxAcquiredBufferCount = maxAcquiredBuffers; |
| 359 | return NO_ERROR; |
| 360 | } |
| 361 | |
| 362 | void BufferQueueConsumer::setConsumerName(const String8& name) { |
| 363 | ATRACE_CALL(); |
| 364 | BQ_LOGV("setConsumerName: '%s'", name.string()); |
| 365 | Mutex::Autolock lock(mCore->mMutex); |
| 366 | mCore->mConsumerName = name; |
| 367 | mConsumerName = name; |
| 368 | } |
| 369 | |
| 370 | status_t BufferQueueConsumer::setDefaultBufferFormat(uint32_t defaultFormat) { |
| 371 | ATRACE_CALL(); |
| 372 | BQ_LOGV("setDefaultBufferFormat: %u", defaultFormat); |
| 373 | Mutex::Autolock lock(mCore->mMutex); |
| 374 | mCore->mDefaultBufferFormat = defaultFormat; |
| 375 | return NO_ERROR; |
| 376 | } |
| 377 | |
| 378 | status_t BufferQueueConsumer::setConsumerUsageBits(uint32_t usage) { |
| 379 | ATRACE_CALL(); |
| 380 | BQ_LOGV("setConsumerUsageBits: %#x", usage); |
| 381 | Mutex::Autolock lock(mCore->mMutex); |
| 382 | mCore->mConsumerUsageBits = usage; |
| 383 | return NO_ERROR; |
| 384 | } |
| 385 | |
| 386 | status_t BufferQueueConsumer::setTransformHint(uint32_t hint) { |
| 387 | ATRACE_CALL(); |
| 388 | BQ_LOGV("setTransformHint: %#x", hint); |
| 389 | Mutex::Autolock lock(mCore->mMutex); |
| 390 | mCore->mTransformHint = hint; |
| 391 | return NO_ERROR; |
| 392 | } |
| 393 | |
| 394 | void BufferQueueConsumer::dump(String8& result, const char* prefix) const { |
| 395 | mCore->dump(result, prefix); |
| 396 | } |
| 397 | |
| 398 | } // namespace android |