blob: 96b85d1d6fd800d9495bb55ca9fefc0a8d64b134 [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wconversion"
#pragma clang diagnostic ignored "-Wextra"
//#define LOG_NDEBUG 0
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include "SurfaceFlinger.h"
#include <android-base/parseint.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <android/configuration.h>
#include <android/gui/IDisplayEventConnection.h>
#include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h>
#include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h>
#include <android/hardware/configstore/1.1/types.h>
#include <android/hardware/power/Boost.h>
#include <android/native_window.h>
#include <android/os/IInputFlinger.h>
#include <binder/IPCThreadState.h>
#include <binder/IServiceManager.h>
#include <binder/PermissionCache.h>
#include <compositionengine/CompositionEngine.h>
#include <compositionengine/CompositionRefreshArgs.h>
#include <compositionengine/Display.h>
#include <compositionengine/DisplayColorProfile.h>
#include <compositionengine/DisplayCreationArgs.h>
#include <compositionengine/LayerFECompositionState.h>
#include <compositionengine/OutputLayer.h>
#include <compositionengine/RenderSurface.h>
#include <compositionengine/impl/OutputCompositionState.h>
#include <compositionengine/impl/OutputLayerCompositionState.h>
#include <configstore/Utils.h>
#include <cutils/compiler.h>
#include <cutils/properties.h>
#include <ftl/fake_guard.h>
#include <ftl/future.h>
#include <ftl/small_map.h>
#include <gui/BufferQueue.h>
#include <gui/DebugEGLImageTracker.h>
#include <gui/IProducerListener.h>
#include <gui/LayerDebugInfo.h>
#include <gui/LayerMetadata.h>
#include <gui/LayerState.h>
#include <gui/Surface.h>
#include <gui/TraceUtils.h>
#include <hidl/ServiceManagement.h>
#include <layerproto/LayerProtoParser.h>
#include <log/log.h>
#include <private/android_filesystem_config.h>
#include <private/gui/SyncFeatures.h>
#include <processgroup/processgroup.h>
#include <renderengine/RenderEngine.h>
#include <renderengine/impl/ExternalTexture.h>
#include <sys/types.h>
#include <ui/ColorSpace.h>
#include <ui/DataspaceUtils.h>
#include <ui/DebugUtils.h>
#include <ui/DisplayId.h>
#include <ui/DisplayMode.h>
#include <ui/DisplayStatInfo.h>
#include <ui/DisplayState.h>
#include <ui/DynamicDisplayInfo.h>
#include <ui/GraphicBufferAllocator.h>
#include <ui/PixelFormat.h>
#include <ui/StaticDisplayInfo.h>
#include <utils/StopWatch.h>
#include <utils/String16.h>
#include <utils/String8.h>
#include <utils/Timers.h>
#include <utils/misc.h>
#include <algorithm>
#include <cerrno>
#include <cinttypes>
#include <cmath>
#include <cstdint>
#include <functional>
#include <memory>
#include <mutex>
#include <optional>
#include <type_traits>
#include <unordered_map>
#include <ui/DisplayIdentification.h>
#include "BackgroundExecutor.h"
#include "BufferLayer.h"
#include "BufferQueueLayer.h"
#include "BufferStateLayer.h"
#include "Client.h"
#include "Colorizer.h"
#include "ContainerLayer.h"
#include "DisplayDevice.h"
#include "DisplayHardware/ComposerHal.h"
#include "DisplayHardware/FramebufferSurface.h"
#include "DisplayHardware/HWComposer.h"
#include "DisplayHardware/Hal.h"
#include "DisplayHardware/PowerAdvisor.h"
#include "DisplayHardware/VirtualDisplaySurface.h"
#include "DisplayRenderArea.h"
#include "EffectLayer.h"
#include "Effects/Daltonizer.h"
#include "FlagManager.h"
#include "FpsReporter.h"
#include "FrameTimeline/FrameTimeline.h"
#include "FrameTracer/FrameTracer.h"
#include "HdrLayerInfoReporter.h"
#include "Layer.h"
#include "LayerProtoHelper.h"
#include "LayerRenderArea.h"
#include "LayerVector.h"
#include "MonitoredProducer.h"
#include "MutexUtils.h"
#include "NativeWindowSurface.h"
#include "RefreshRateOverlay.h"
#include "RegionSamplingThread.h"
#include "Scheduler/DispSyncSource.h"
#include "Scheduler/EventThread.h"
#include "Scheduler/LayerHistory.h"
#include "Scheduler/Scheduler.h"
#include "Scheduler/VsyncConfiguration.h"
#include "Scheduler/VsyncController.h"
#include "StartPropertySetThread.h"
#include "SurfaceFlingerProperties.h"
#include "SurfaceInterceptor.h"
#include "TimeStats/TimeStats.h"
#include "TunnelModeEnabledReporter.h"
#include "WindowInfosListenerInvoker.h"
#ifdef QCOM_UM_FAMILY
#if __has_include("QtiGralloc.h")
#include "QtiGralloc.h"
#else
#include "gralloc_priv.h"
#endif
#endif
#include <aidl/android/hardware/graphics/common/DisplayDecorationSupport.h>
#include <aidl/android/hardware/graphics/composer3/DisplayCapability.h>
#include <aidl/android/hardware/graphics/composer3/RenderIntent.h>
#undef NO_THREAD_SAFETY_ANALYSIS
#define NO_THREAD_SAFETY_ANALYSIS \
_Pragma("GCC error \"Prefer <ftl/fake_guard.h> or MutexUtils.h helpers.\"")
namespace android {
using namespace std::string_literals;
using namespace hardware::configstore;
using namespace hardware::configstore::V1_0;
using namespace sysprop;
using aidl::android::hardware::graphics::common::DisplayDecorationSupport;
using aidl::android::hardware::graphics::composer3::Capability;
using aidl::android::hardware::graphics::composer3::DisplayCapability;
using CompositionStrategyPredictionState = android::compositionengine::impl::
OutputCompositionState::CompositionStrategyPredictionState;
using base::StringAppendF;
using gui::DisplayInfo;
using gui::IDisplayEventConnection;
using gui::IWindowInfosListener;
using gui::WindowInfo;
using ui::ColorMode;
using ui::Dataspace;
using ui::DisplayPrimaries;
using ui::RenderIntent;
using KernelIdleTimerController = scheduler::RefreshRateConfigs::KernelIdleTimerController;
namespace hal = android::hardware::graphics::composer::hal;
namespace {
#pragma clang diagnostic push
#pragma clang diagnostic error "-Wswitch-enum"
bool isWideColorMode(const ColorMode colorMode) {
switch (colorMode) {
case ColorMode::DISPLAY_P3:
case ColorMode::ADOBE_RGB:
case ColorMode::DCI_P3:
case ColorMode::BT2020:
case ColorMode::DISPLAY_BT2020:
case ColorMode::BT2100_PQ:
case ColorMode::BT2100_HLG:
return true;
case ColorMode::NATIVE:
case ColorMode::STANDARD_BT601_625:
case ColorMode::STANDARD_BT601_625_UNADJUSTED:
case ColorMode::STANDARD_BT601_525:
case ColorMode::STANDARD_BT601_525_UNADJUSTED:
case ColorMode::STANDARD_BT709:
case ColorMode::SRGB:
return false;
}
return false;
}
#pragma clang diagnostic pop
// TODO(b/141333600): Consolidate with DisplayMode::Builder::getDefaultDensity.
constexpr float FALLBACK_DENSITY = ACONFIGURATION_DENSITY_TV;
float getDensityFromProperty(const char* property, bool required) {
char value[PROPERTY_VALUE_MAX];
const float density = property_get(property, value, nullptr) > 0 ? std::atof(value) : 0.f;
if (!density && required) {
ALOGE("%s must be defined as a build property", property);
return FALLBACK_DENSITY;
}
return density;
}
// Currently we only support V0_SRGB and DISPLAY_P3 as composition preference.
bool validateCompositionDataspace(Dataspace dataspace) {
return dataspace == Dataspace::V0_SRGB || dataspace == Dataspace::DISPLAY_P3;
}
std::chrono::milliseconds getIdleTimerTimeout(DisplayId displayId) {
const auto displayIdleTimerMsKey = [displayId] {
std::stringstream ss;
ss << "debug.sf.set_idle_timer_ms_" << displayId.value;
return ss.str();
}();
const int32_t displayIdleTimerMs = base::GetIntProperty(displayIdleTimerMsKey, 0);
if (displayIdleTimerMs > 0) {
return std::chrono::milliseconds(displayIdleTimerMs);
}
const int32_t setIdleTimerMs = base::GetIntProperty("debug.sf.set_idle_timer_ms", 0);
const int32_t millis = setIdleTimerMs ? setIdleTimerMs : sysprop::set_idle_timer_ms(0);
return std::chrono::milliseconds(millis);
}
bool getKernelIdleTimerSyspropConfig(DisplayId displayId) {
const auto displaySupportKernelIdleTimerKey = [displayId] {
std::stringstream ss;
ss << "debug.sf.support_kernel_idle_timer_" << displayId.value;
return ss.str();
}();
const auto displaySupportKernelIdleTimer =
base::GetBoolProperty(displaySupportKernelIdleTimerKey, false);
return displaySupportKernelIdleTimer || sysprop::support_kernel_idle_timer(false);
}
} // namespace anonymous
// ---------------------------------------------------------------------------
const String16 sHardwareTest("android.permission.HARDWARE_TEST");
const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
const String16 sRotateSurfaceFlinger("android.permission.ROTATE_SURFACE_FLINGER");
const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
const String16 sControlDisplayBrightness("android.permission.CONTROL_DISPLAY_BRIGHTNESS");
const String16 sDump("android.permission.DUMP");
const String16 sCaptureBlackoutContent("android.permission.CAPTURE_BLACKOUT_CONTENT");
const String16 sInternalSystemWindow("android.permission.INTERNAL_SYSTEM_WINDOW");
const char* KERNEL_IDLE_TIMER_PROP = "graphics.display.kernel_idle_timer.enabled";
// ---------------------------------------------------------------------------
int64_t SurfaceFlinger::dispSyncPresentTimeOffset;
bool SurfaceFlinger::useHwcForRgbToYuv;
bool SurfaceFlinger::hasSyncFramework;
int64_t SurfaceFlinger::maxFrameBufferAcquiredBuffers;
uint32_t SurfaceFlinger::maxGraphicsWidth;
uint32_t SurfaceFlinger::maxGraphicsHeight;
bool SurfaceFlinger::hasWideColorDisplay;
bool SurfaceFlinger::useContextPriority;
Dataspace SurfaceFlinger::defaultCompositionDataspace = Dataspace::V0_SRGB;
ui::PixelFormat SurfaceFlinger::defaultCompositionPixelFormat = ui::PixelFormat::RGBA_8888;
Dataspace SurfaceFlinger::wideColorGamutCompositionDataspace = Dataspace::V0_SRGB;
ui::PixelFormat SurfaceFlinger::wideColorGamutCompositionPixelFormat = ui::PixelFormat::RGBA_8888;
LatchUnsignaledConfig SurfaceFlinger::enableLatchUnsignaledConfig;
std::string decodeDisplayColorSetting(DisplayColorSetting displayColorSetting) {
switch(displayColorSetting) {
case DisplayColorSetting::kManaged:
return std::string("Managed");
case DisplayColorSetting::kUnmanaged:
return std::string("Unmanaged");
case DisplayColorSetting::kEnhanced:
return std::string("Enhanced");
default:
return std::string("Unknown ") +
std::to_string(static_cast<int>(displayColorSetting));
}
}
bool callingThreadHasRotateSurfaceFlingerAccess() {
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
return uid == AID_GRAPHICS || uid == AID_SYSTEM ||
PermissionCache::checkPermission(sRotateSurfaceFlinger, pid, uid);
}
bool callingThreadHasInternalSystemWindowAccess() {
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
return uid == AID_GRAPHICS || uid == AID_SYSTEM ||
PermissionCache::checkPermission(sInternalSystemWindow, pid, uid);
}
SurfaceFlinger::SurfaceFlinger(Factory& factory, SkipInitializationTag)
: mFactory(factory),
mPid(getpid()),
mInterceptor(mFactory.createSurfaceInterceptor()),
mTimeStats(std::make_shared<impl::TimeStats>()),
mFrameTracer(mFactory.createFrameTracer()),
mFrameTimeline(mFactory.createFrameTimeline(mTimeStats, mPid)),
mCompositionEngine(mFactory.createCompositionEngine()),
mHwcServiceName(base::GetProperty("debug.sf.hwc_service_name"s, "default"s)),
mTunnelModeEnabledReporter(new TunnelModeEnabledReporter()),
mInternalDisplayDensity(getDensityFromProperty("ro.sf.lcd_density", true)),
mEmulatedDisplayDensity(getDensityFromProperty("qemu.sf.lcd_density", false)),
mPowerAdvisor(std::make_unique<Hwc2::impl::PowerAdvisor>(*this)),
mWindowInfosListenerInvoker(sp<WindowInfosListenerInvoker>::make(*this)) {
ALOGI("Using HWComposer service: %s", mHwcServiceName.c_str());
}
SurfaceFlinger::SurfaceFlinger(Factory& factory) : SurfaceFlinger(factory, SkipInitialization) {
ALOGI("SurfaceFlinger is starting");
hasSyncFramework = running_without_sync_framework(true);
dispSyncPresentTimeOffset = present_time_offset_from_vsync_ns(0);
useHwcForRgbToYuv = force_hwc_copy_for_virtual_displays(false);
maxFrameBufferAcquiredBuffers = max_frame_buffer_acquired_buffers(2);
maxGraphicsWidth = std::max(max_graphics_width(0), 0);
maxGraphicsHeight = std::max(max_graphics_height(0), 0);
hasWideColorDisplay = has_wide_color_display(false);
mDefaultCompositionDataspace =
static_cast<ui::Dataspace>(default_composition_dataspace(Dataspace::V0_SRGB));
mWideColorGamutCompositionDataspace = static_cast<ui::Dataspace>(wcg_composition_dataspace(
hasWideColorDisplay ? Dataspace::DISPLAY_P3 : Dataspace::V0_SRGB));
defaultCompositionDataspace = mDefaultCompositionDataspace;
wideColorGamutCompositionDataspace = mWideColorGamutCompositionDataspace;
defaultCompositionPixelFormat = static_cast<ui::PixelFormat>(
default_composition_pixel_format(ui::PixelFormat::RGBA_8888));
wideColorGamutCompositionPixelFormat =
static_cast<ui::PixelFormat>(wcg_composition_pixel_format(ui::PixelFormat::RGBA_8888));
mColorSpaceAgnosticDataspace =
static_cast<ui::Dataspace>(color_space_agnostic_dataspace(Dataspace::UNKNOWN));
mLayerCachingEnabled = [] {
const bool enable =
android::sysprop::SurfaceFlingerProperties::enable_layer_caching().value_or(false);
return base::GetBoolProperty(std::string("debug.sf.enable_layer_caching"), enable);
}();
useContextPriority = use_context_priority(true);
mInternalDisplayPrimaries = sysprop::getDisplayNativePrimaries();
// debugging stuff...
char value[PROPERTY_VALUE_MAX];
property_get("ro.bq.gpu_to_cpu_unsupported", value, "0");
mGpuToCpuSupported = !atoi(value);
property_get("ro.build.type", value, "user");
mIsUserBuild = strcmp(value, "user") == 0;
mDebugFlashDelay = base::GetUintProperty("debug.sf.showupdates"s, 0u);
// DDMS debugging deprecated (b/120782499)
property_get("debug.sf.ddms", value, "0");
int debugDdms = atoi(value);
ALOGI_IF(debugDdms, "DDMS debugging not supported");
property_get("debug.sf.enable_gl_backpressure", value, "0");
mPropagateBackpressureClientComposition = atoi(value);
ALOGI_IF(mPropagateBackpressureClientComposition,
"Enabling backpressure propagation for Client Composition");
property_get("ro.surface_flinger.supports_background_blur", value, "0");
bool supportsBlurs = atoi(value);
mSupportsBlur = supportsBlurs;
ALOGI_IF(!mSupportsBlur, "Disabling blur effects, they are not supported.");
property_get("ro.sf.blurs_are_expensive", value, "0");
mBlursAreExpensive = atoi(value);
const size_t defaultListSize = ISurfaceComposer::MAX_LAYERS;
auto listSize = property_get_int32("debug.sf.max_igbp_list_size", int32_t(defaultListSize));
mMaxGraphicBufferProducerListSize = (listSize > 0) ? size_t(listSize) : defaultListSize;
mGraphicBufferProducerListSizeLogThreshold =
std::max(static_cast<int>(0.95 *
static_cast<double>(mMaxGraphicBufferProducerListSize)),
1);
property_get("debug.sf.luma_sampling", value, "1");
mLumaSampling = atoi(value);
property_get("debug.sf.disable_client_composition_cache", value, "0");
mDisableClientCompositionCache = atoi(value);
property_get("debug.sf.predict_hwc_composition_strategy", value, "1");
mPredictCompositionStrategy = atoi(value);
property_get("debug.sf.treat_170m_as_sRGB", value, "0");
mTreat170mAsSrgb = atoi(value);
// We should be reading 'persist.sys.sf.color_saturation' here
// but since /data may be encrypted, we need to wait until after vold
// comes online to attempt to read the property. The property is
// instead read after the boot animation
if (base::GetBoolProperty("debug.sf.treble_testing_override"s, false)) {
// Without the override SurfaceFlinger cannot connect to HIDL
// services that are not listed in the manifests. Considered
// deriving the setting from the set service name, but it
// would be brittle if the name that's not 'default' is used
// for production purposes later on.
ALOGI("Enabling Treble testing override");
android::hardware::details::setTrebleTestingOverride(true);
}
mRefreshRateOverlaySpinner = property_get_bool("sf.debug.show_refresh_rate_overlay_spinner", 0);
if (!mIsUserBuild && base::GetBoolProperty("debug.sf.enable_transaction_tracing"s, true)) {
mTransactionTracing.emplace();
}
mIgnoreHdrCameraLayers = ignore_hdr_camera_layers(false);
// Power hint session mode, representing which hint(s) to send: early, late, or both)
mPowerHintSessionMode =
{.late = base::GetBoolProperty("debug.sf.send_late_power_session_hint"s, true),
.early = base::GetBoolProperty("debug.sf.send_early_power_session_hint"s, false)};
}
LatchUnsignaledConfig SurfaceFlinger::getLatchUnsignaledConfig() {
if (base::GetBoolProperty("debug.sf.latch_unsignaled"s, false)) {
return LatchUnsignaledConfig::Always;
}
if (base::GetBoolProperty("debug.sf.auto_latch_unsignaled"s, true)) {
return LatchUnsignaledConfig::AutoSingleLayer;
}
return LatchUnsignaledConfig::Disabled;
}
SurfaceFlinger::~SurfaceFlinger() = default;
void SurfaceFlinger::binderDied(const wp<IBinder>&) {
// the window manager died on us. prepare its eulogy.
mBootFinished = false;
// Sever the link to inputflinger since it's gone as well.
static_cast<void>(mScheduler->schedule([=] { mInputFlinger = nullptr; }));
// restore initial conditions (default device unblank, etc)
initializeDisplays();
// restart the boot-animation
startBootAnim();
}
void SurfaceFlinger::run() {
mScheduler->run();
}
sp<ISurfaceComposerClient> SurfaceFlinger::createConnection() {
const sp<Client> client = new Client(this);
return client->initCheck() == NO_ERROR ? client : nullptr;
}
sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName, bool secure) {
// onTransact already checks for some permissions, but adding an additional check here.
// This is to ensure that only system and graphics can request to create a secure
// display. Secure displays can show secure content so we add an additional restriction on it.
const int uid = IPCThreadState::self()->getCallingUid();
if (secure && uid != AID_GRAPHICS && uid != AID_SYSTEM) {
ALOGE("Only privileged processes can create a secure display");
return nullptr;
}
class DisplayToken : public BBinder {
sp<SurfaceFlinger> flinger;
virtual ~DisplayToken() {
// no more references, this display must be terminated
Mutex::Autolock _l(flinger->mStateLock);
flinger->mCurrentState.displays.removeItem(this);
flinger->setTransactionFlags(eDisplayTransactionNeeded);
}
public:
explicit DisplayToken(const sp<SurfaceFlinger>& flinger)
: flinger(flinger) {
}
};
sp<BBinder> token = new DisplayToken(this);
Mutex::Autolock _l(mStateLock);
// Display ID is assigned when virtual display is allocated by HWC.
DisplayDeviceState state;
state.isSecure = secure;
state.displayName = displayName;
mCurrentState.displays.add(token, state);
mInterceptor->saveDisplayCreation(state);
return token;
}
void SurfaceFlinger::destroyDisplay(const sp<IBinder>& displayToken) {
Mutex::Autolock lock(mStateLock);
const ssize_t index = mCurrentState.displays.indexOfKey(displayToken);
if (index < 0) {
ALOGE("%s: Invalid display token %p", __func__, displayToken.get());
return;
}
const DisplayDeviceState& state = mCurrentState.displays.valueAt(index);
if (state.physical) {
ALOGE("%s: Invalid operation on physical display", __func__);
return;
}
mInterceptor->saveDisplayDeletion(state.sequenceId);
mCurrentState.displays.removeItemsAt(index);
setTransactionFlags(eDisplayTransactionNeeded);
}
void SurfaceFlinger::enableHalVirtualDisplays(bool enable) {
auto& generator = mVirtualDisplayIdGenerators.hal;
if (!generator && enable) {
ALOGI("Enabling HAL virtual displays");
generator.emplace(getHwComposer().getMaxVirtualDisplayCount());
} else if (generator && !enable) {
ALOGW_IF(generator->inUse(), "Disabling HAL virtual displays while in use");
generator.reset();
}
}
VirtualDisplayId SurfaceFlinger::acquireVirtualDisplay(ui::Size resolution,
ui::PixelFormat format,
bool canAllocateHwcForVDS) {
auto& generator = mVirtualDisplayIdGenerators.hal;
if (canAllocateHwcForVDS && generator) {
if (const auto id = generator->generateId()) {
if (getHwComposer().allocateVirtualDisplay(*id, resolution, &format)) {
return *id;
}
generator->releaseId(*id);
} else {
ALOGW("%s: Exhausted HAL virtual displays", __func__);
}
ALOGW("%s: Falling back to GPU virtual display", __func__);
}
const auto id = mVirtualDisplayIdGenerators.gpu.generateId();
LOG_ALWAYS_FATAL_IF(!id, "Failed to generate ID for GPU virtual display");
return *id;
}
void SurfaceFlinger::releaseVirtualDisplay(VirtualDisplayId displayId) {
if (const auto id = HalVirtualDisplayId::tryCast(displayId)) {
if (auto& generator = mVirtualDisplayIdGenerators.hal) {
generator->releaseId(*id);
}
return;
}
const auto id = GpuVirtualDisplayId::tryCast(displayId);
LOG_ALWAYS_FATAL_IF(!id);
mVirtualDisplayIdGenerators.gpu.releaseId(*id);
}
std::vector<PhysicalDisplayId> SurfaceFlinger::getPhysicalDisplayIdsLocked() const {
std::vector<PhysicalDisplayId> displayIds;
displayIds.reserve(mPhysicalDisplayTokens.size());
const auto defaultDisplayId = getDefaultDisplayDeviceLocked()->getPhysicalId();
displayIds.push_back(defaultDisplayId);
for (const auto& [id, token] : mPhysicalDisplayTokens) {
if (id != defaultDisplayId) {
displayIds.push_back(id);
}
}
return displayIds;
}
status_t SurfaceFlinger::getPrimaryPhysicalDisplayId(PhysicalDisplayId* id) const {
Mutex::Autolock lock(mStateLock);
*id = getPrimaryDisplayIdLocked();
return NO_ERROR;
}
sp<IBinder> SurfaceFlinger::getPhysicalDisplayToken(PhysicalDisplayId displayId) const {
Mutex::Autolock lock(mStateLock);
return getPhysicalDisplayTokenLocked(displayId);
}
status_t SurfaceFlinger::getColorManagement(bool* outGetColorManagement) const {
if (!outGetColorManagement) {
return BAD_VALUE;
}
*outGetColorManagement = useColorManagement;
return NO_ERROR;
}
HWComposer& SurfaceFlinger::getHwComposer() const {
return mCompositionEngine->getHwComposer();
}
renderengine::RenderEngine& SurfaceFlinger::getRenderEngine() const {
return mCompositionEngine->getRenderEngine();
}
compositionengine::CompositionEngine& SurfaceFlinger::getCompositionEngine() const {
return *mCompositionEngine.get();
}
void SurfaceFlinger::bootFinished() {
if (mBootFinished == true) {
ALOGE("Extra call to bootFinished");
return;
}
mBootFinished = true;
if (mStartPropertySetThread->join() != NO_ERROR) {
ALOGE("Join StartPropertySetThread failed!");
}
if (mRenderEnginePrimeCacheFuture.valid()) {
mRenderEnginePrimeCacheFuture.get();
}
const nsecs_t now = systemTime();
const nsecs_t duration = now - mBootTime;
ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
mFrameTracer->initialize();
mFrameTimeline->onBootFinished();
getRenderEngine().setEnableTracing(mFlagManager.use_skia_tracing());
// wait patiently for the window manager death
const String16 name("window");
mWindowManager = defaultServiceManager()->getService(name);
if (mWindowManager != 0) {
mWindowManager->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
}
// stop boot animation
// formerly we would just kill the process, but we now ask it to exit so it
// can choose where to stop the animation.
property_set("service.bootanim.exit", "1");
const int LOGTAG_SF_STOP_BOOTANIM = 60110;
LOG_EVENT_LONG(LOGTAG_SF_STOP_BOOTANIM,
ns2ms(systemTime(SYSTEM_TIME_MONOTONIC)));
sp<IBinder> input(defaultServiceManager()->getService(String16("inputflinger")));
static_cast<void>(mScheduler->schedule([=] {
if (input == nullptr) {
ALOGE("Failed to link to input service");
} else {
mInputFlinger = interface_cast<os::IInputFlinger>(input);
}
readPersistentProperties();
mPowerAdvisor->onBootFinished();
const bool powerHintEnabled = mFlagManager.use_adpf_cpu_hint();
mPowerAdvisor->enablePowerHint(powerHintEnabled);
const bool powerHintUsed = mPowerAdvisor->usePowerHintSession();
ALOGD("Power hint is %s",
powerHintUsed ? "supported" : (powerHintEnabled ? "unsupported" : "disabled"));
if (powerHintUsed) {
std::optional<pid_t> renderEngineTid = getRenderEngine().getRenderEngineTid();
std::vector<int32_t> tidList;
tidList.emplace_back(gettid());
if (renderEngineTid.has_value()) {
tidList.emplace_back(*renderEngineTid);
}
if (!mPowerAdvisor->startPowerHintSession(tidList)) {
ALOGW("Cannot start power hint session");
}
}
mBootStage = BootStage::FINISHED;
if (property_get_bool("sf.debug.show_refresh_rate_overlay", false)) {
FTL_FAKE_GUARD(mStateLock, enableRefreshRateOverlay(true));
}
}));
}
uint32_t SurfaceFlinger::getNewTexture() {
{
std::lock_guard lock(mTexturePoolMutex);
if (!mTexturePool.empty()) {
uint32_t name = mTexturePool.back();
mTexturePool.pop_back();
ATRACE_INT("TexturePoolSize", mTexturePool.size());
return name;
}
// The pool was too small, so increase it for the future
++mTexturePoolSize;
}
// The pool was empty, so we need to get a new texture name directly using a
// blocking call to the main thread
auto genTextures = [this] {
uint32_t name = 0;
getRenderEngine().genTextures(1, &name);
return name;
};
if (std::this_thread::get_id() == mMainThreadId) {
return genTextures();
} else {
return mScheduler->schedule(genTextures).get();
}
}
void SurfaceFlinger::deleteTextureAsync(uint32_t texture) {
std::lock_guard lock(mTexturePoolMutex);
// We don't change the pool size, so the fix-up logic in postComposition will decide whether
// to actually delete this or not based on mTexturePoolSize
mTexturePool.push_back(texture);
ATRACE_INT("TexturePoolSize", mTexturePool.size());
}
static std::optional<renderengine::RenderEngine::RenderEngineType>
chooseRenderEngineTypeViaSysProp() {
char prop[PROPERTY_VALUE_MAX];
property_get(PROPERTY_DEBUG_RENDERENGINE_BACKEND, prop, "");
if (strcmp(prop, "gles") == 0) {
return renderengine::RenderEngine::RenderEngineType::GLES;
} else if (strcmp(prop, "threaded") == 0) {
return renderengine::RenderEngine::RenderEngineType::THREADED;
} else if (strcmp(prop, "skiagl") == 0) {
return renderengine::RenderEngine::RenderEngineType::SKIA_GL;
} else if (strcmp(prop, "skiaglthreaded") == 0) {
return renderengine::RenderEngine::RenderEngineType::SKIA_GL_THREADED;
} else {
ALOGE("Unrecognized RenderEngineType %s; ignoring!", prop);
return {};
}
}
// Do not call property_set on main thread which will be blocked by init
// Use StartPropertySetThread instead.
void SurfaceFlinger::init() {
ALOGI( "SurfaceFlinger's main thread ready to run. "
"Initializing graphics H/W...");
Mutex::Autolock _l(mStateLock);
// Get a RenderEngine for the given display / config (can't fail)
// TODO(b/77156734): We need to stop casting and use HAL types when possible.
// Sending maxFrameBufferAcquiredBuffers as the cache size is tightly tuned to single-display.
auto builder = renderengine::RenderEngineCreationArgs::Builder()
.setPixelFormat(static_cast<int32_t>(defaultCompositionPixelFormat))
.setImageCacheSize(maxFrameBufferAcquiredBuffers)
.setUseColorManagerment(useColorManagement)
.setEnableProtectedContext(enable_protected_contents(false))
.setPrecacheToneMapperShaderOnly(false)
.setSupportsBackgroundBlur(mSupportsBlur)
.setContextPriority(
useContextPriority
? renderengine::RenderEngine::ContextPriority::REALTIME
: renderengine::RenderEngine::ContextPriority::MEDIUM);
if (auto type = chooseRenderEngineTypeViaSysProp()) {
builder.setRenderEngineType(type.value());
}
mCompositionEngine->setRenderEngine(renderengine::RenderEngine::create(builder.build()));
mMaxRenderTargetSize =
std::min(getRenderEngine().getMaxTextureSize(), getRenderEngine().getMaxViewportDims());
// Set SF main policy after initializing RenderEngine which has its own policy.
if (!SetTaskProfiles(0, {"SFMainPolicy"})) {
ALOGW("Failed to set main task profile");
}
mCompositionEngine->setTimeStats(mTimeStats);
mCompositionEngine->setHwComposer(getFactory().createHWComposer(mHwcServiceName));
mCompositionEngine->getHwComposer().setCallback(*this);
ClientCache::getInstance().setRenderEngine(&getRenderEngine());
enableLatchUnsignaledConfig = getLatchUnsignaledConfig();
mAllowHwcForWFD = base::GetBoolProperty("vendor.display.vds_allow_hwc"s, false);
mAllowHwcForVDS = mAllowHwcForWFD && base::GetBoolProperty("debug.sf.enable_hwc_vds"s, false);
mFirstApiLevel = android::base::GetIntProperty("ro.product.first_api_level", 0);
// Process any initial hotplug and resulting display changes.
processDisplayHotplugEventsLocked();
const auto display = getDefaultDisplayDeviceLocked();
LOG_ALWAYS_FATAL_IF(!display, "Missing primary display after registering composer callback.");
const auto displayId = display->getPhysicalId();
LOG_ALWAYS_FATAL_IF(!getHwComposer().isConnected(displayId),
"Primary display is disconnected.");
// initialize our drawing state
mDrawingState = mCurrentState;
// set initial conditions (e.g. unblank default device)
initializeDisplays();
mPowerAdvisor->init();
char primeShaderCache[PROPERTY_VALUE_MAX];
property_get("service.sf.prime_shader_cache", primeShaderCache, "1");
if (atoi(primeShaderCache)) {
if (setSchedFifo(false) != NO_ERROR) {
ALOGW("Can't set SCHED_OTHER for primeCache");
}
mRenderEnginePrimeCacheFuture = getRenderEngine().primeCache();
if (setSchedFifo(true) != NO_ERROR) {
ALOGW("Can't set SCHED_OTHER for primeCache");
}
}
onActiveDisplaySizeChanged(display);
// Inform native graphics APIs whether the present timestamp is supported:
const bool presentFenceReliable =
!getHwComposer().hasCapability(Capability::PRESENT_FENCE_IS_NOT_RELIABLE);
mStartPropertySetThread = getFactory().createStartPropertySetThread(presentFenceReliable);
if (mStartPropertySetThread->Start() != NO_ERROR) {
ALOGE("Run StartPropertySetThread failed!");
}
ALOGV("Done initializing");
}
void SurfaceFlinger::readPersistentProperties() {
Mutex::Autolock _l(mStateLock);
char value[PROPERTY_VALUE_MAX];
property_get("persist.sys.sf.color_saturation", value, "1.0");
mGlobalSaturationFactor = atof(value);
updateColorMatrixLocked();
ALOGV("Saturation is set to %.2f", mGlobalSaturationFactor);
property_get("persist.sys.sf.native_mode", value, "0");
mDisplayColorSetting = static_cast<DisplayColorSetting>(atoi(value));
property_get("persist.sys.sf.color_mode", value, "0");
mForceColorMode = static_cast<ColorMode>(atoi(value));
}
void SurfaceFlinger::startBootAnim() {
// Start boot animation service by setting a property mailbox
// if property setting thread is already running, Start() will be just a NOP
mStartPropertySetThread->Start();
// Wait until property was set
if (mStartPropertySetThread->join() != NO_ERROR) {
ALOGE("Join StartPropertySetThread failed!");
}
}
// ----------------------------------------------------------------------------
bool SurfaceFlinger::authenticateSurfaceTexture(
const sp<IGraphicBufferProducer>& bufferProducer) const {
Mutex::Autolock _l(mStateLock);
return authenticateSurfaceTextureLocked(bufferProducer);
}
bool SurfaceFlinger::authenticateSurfaceTextureLocked(
const sp<IGraphicBufferProducer>& /* bufferProducer */) const {
return false;
}
status_t SurfaceFlinger::getSupportedFrameTimestamps(
std::vector<FrameEvent>* outSupported) const {
*outSupported = {
FrameEvent::REQUESTED_PRESENT,
FrameEvent::ACQUIRE,
FrameEvent::LATCH,
FrameEvent::FIRST_REFRESH_START,
FrameEvent::LAST_REFRESH_START,
FrameEvent::GPU_COMPOSITION_DONE,
FrameEvent::DEQUEUE_READY,
FrameEvent::RELEASE,
};
ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId);
if (!getHwComposer().hasCapability(Capability::PRESENT_FENCE_IS_NOT_RELIABLE)) {
outSupported->push_back(FrameEvent::DISPLAY_PRESENT);
}
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayState(const sp<IBinder>& displayToken, ui::DisplayState* state) {
if (!displayToken || !state) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
return NAME_NOT_FOUND;
}
state->layerStack = display->getLayerStack();
state->orientation = display->getOrientation();
const Rect layerStackRect = display->getLayerStackSpaceRect();
state->layerStackSpaceRect =
layerStackRect.isValid() ? layerStackRect.getSize() : display->getSize();
return NO_ERROR;
}
status_t SurfaceFlinger::getStaticDisplayInfo(const sp<IBinder>& displayToken,
ui::StaticDisplayInfo* info) {
if (!displayToken || !info) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
return NAME_NOT_FOUND;
}
if (const auto connectionType = display->getConnectionType())
info->connectionType = *connectionType;
else {
return INVALID_OPERATION;
}
if (mEmulatedDisplayDensity) {
info->density = mEmulatedDisplayDensity;
} else {
info->density = info->connectionType == ui::DisplayConnectionType::Internal
? mInternalDisplayDensity
: FALLBACK_DENSITY;
}
info->density /= ACONFIGURATION_DENSITY_MEDIUM;
info->secure = display->isSecure();
info->deviceProductInfo = display->getDeviceProductInfo();
info->installOrientation = display->getPhysicalOrientation();
return NO_ERROR;
}
status_t SurfaceFlinger::getDynamicDisplayInfo(const sp<IBinder>& displayToken,
ui::DynamicDisplayInfo* info) {
if (!displayToken || !info) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
return NAME_NOT_FOUND;
}
const auto displayId = PhysicalDisplayId::tryCast(display->getId());
if (!displayId) {
return INVALID_OPERATION;
}
info->activeDisplayModeId = display->getActiveMode()->getId().value();
const auto& supportedModes = display->getSupportedModes();
info->supportedDisplayModes.clear();
info->supportedDisplayModes.reserve(supportedModes.size());
for (const auto& [id, mode] : supportedModes) {
ui::DisplayMode outMode;
outMode.id = static_cast<int32_t>(id.value());
auto [width, height] = mode->getResolution();
auto [xDpi, yDpi] = mode->getDpi();
if (const auto physicalOrientation = display->getPhysicalOrientation();
physicalOrientation == ui::ROTATION_90 || physicalOrientation == ui::ROTATION_270) {
std::swap(width, height);
std::swap(xDpi, yDpi);
}
outMode.resolution = ui::Size(width, height);
outMode.xDpi = xDpi;
outMode.yDpi = yDpi;
const nsecs_t period = mode->getVsyncPeriod();
outMode.refreshRate = Fps::fromPeriodNsecs(period).getValue();
const auto vsyncConfigSet =
mVsyncConfiguration->getConfigsForRefreshRate(Fps::fromValue(outMode.refreshRate));
outMode.appVsyncOffset = vsyncConfigSet.late.appOffset;
outMode.sfVsyncOffset = vsyncConfigSet.late.sfOffset;
outMode.group = mode->getGroup();
// This is how far in advance a buffer must be queued for
// presentation at a given time. If you want a buffer to appear
// on the screen at time N, you must submit the buffer before
// (N - presentationDeadline).
//
// Normally it's one full refresh period (to give SF a chance to
// latch the buffer), but this can be reduced by configuring a
// VsyncController offset. Any additional delays introduced by the hardware
// composer or panel must be accounted for here.
//
// We add an additional 1ms to allow for processing time and
// differences between the ideal and actual refresh rate.
outMode.presentationDeadline = period - outMode.sfVsyncOffset + 1000000;
info->supportedDisplayModes.push_back(outMode);
}
info->activeColorMode = display->getCompositionDisplay()->getState().colorMode;
info->supportedColorModes = getDisplayColorModes(*display);
info->hdrCapabilities = display->getHdrCapabilities();
info->autoLowLatencyModeSupported =
getHwComposer().hasDisplayCapability(*displayId,
DisplayCapability::AUTO_LOW_LATENCY_MODE);
info->gameContentTypeSupported =
getHwComposer().supportsContentType(*displayId, hal::ContentType::GAME);
info->preferredBootDisplayMode = static_cast<ui::DisplayModeId>(-1);
if (getHwComposer().hasCapability(Capability::BOOT_DISPLAY_CONFIG)) {
if (const auto hwcId = getHwComposer().getPreferredBootDisplayMode(*displayId)) {
if (const auto modeId = display->translateModeId(*hwcId)) {
info->preferredBootDisplayMode = modeId->value();
}
}
}
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayStats(const sp<IBinder>&, DisplayStatInfo* stats) {
if (!stats) {
return BAD_VALUE;
}
*stats = mScheduler->getDisplayStatInfo(systemTime());
return NO_ERROR;
}
void SurfaceFlinger::setDesiredActiveMode(const ActiveModeInfo& info, bool force) {
ATRACE_CALL();
if (!info.mode) {
ALOGW("requested display mode is null");
return;
}
auto display = getDisplayDeviceLocked(info.mode->getPhysicalDisplayId());
if (!display) {
ALOGW("%s: display is no longer valid", __func__);
return;
}
if (display->setDesiredActiveMode(info, force)) {
scheduleComposite(FrameHint::kNone);
// Start receiving vsync samples now, so that we can detect a period
// switch.
mScheduler->resyncToHardwareVsync(true, info.mode->getFps());
// As we called to set period, we will call to onRefreshRateChangeCompleted once
// VsyncController model is locked.
modulateVsync(&VsyncModulator::onRefreshRateChangeInitiated);
updatePhaseConfiguration(info.mode->getFps());
mScheduler->setModeChangePending(true);
}
}
status_t SurfaceFlinger::setActiveModeFromBackdoor(const sp<IBinder>& displayToken, int modeId) {
ATRACE_CALL();
if (!displayToken) {
return BAD_VALUE;
}
auto future = mScheduler->schedule([=]() -> status_t {
const auto display = FTL_FAKE_GUARD(mStateLock, getDisplayDeviceLocked(displayToken));
if (!display) {
ALOGE("Attempt to set allowed display modes for invalid display token %p",
displayToken.get());
return NAME_NOT_FOUND;
}
if (display->isVirtual()) {
ALOGW("Attempt to set allowed display modes for virtual display");
return INVALID_OPERATION;
}
const auto mode = display->getMode(DisplayModeId{modeId});
if (!mode) {
ALOGW("Attempt to switch to an unsupported mode %d.", modeId);
return BAD_VALUE;
}
const auto fps = mode->getFps();
// Keep the old switching type.
const auto allowGroupSwitching =
display->refreshRateConfigs().getCurrentPolicy().allowGroupSwitching;
const scheduler::RefreshRateConfigs::Policy policy{mode->getId(),
allowGroupSwitching,
{fps, fps}};
constexpr bool kOverridePolicy = false;
return setDesiredDisplayModeSpecsInternal(display, policy, kOverridePolicy);
});
return future.get();
}
void SurfaceFlinger::updateInternalStateWithChangedMode() {
ATRACE_CALL();
const auto display = getDefaultDisplayDeviceLocked();
if (!display) {
return;
}
const auto upcomingModeInfo =
FTL_FAKE_GUARD(kMainThreadContext, display->getUpcomingActiveMode());
if (!upcomingModeInfo.mode) {
// There is no pending mode change. This can happen if the active
// display changed and the mode change happened on a different display.
return;
}
if (display->getActiveMode()->getResolution() != upcomingModeInfo.mode->getResolution()) {
auto& state = mCurrentState.displays.editValueFor(display->getDisplayToken());
// We need to generate new sequenceId in order to recreate the display (and this
// way the framebuffer).
state.sequenceId = DisplayDeviceState{}.sequenceId;
state.physical->activeMode = upcomingModeInfo.mode;
processDisplayChangesLocked();
// processDisplayChangesLocked will update all necessary components so we're done here.
return;
}
// We just created this display so we can call even if we are not on the main thread.
ftl::FakeGuard guard(kMainThreadContext);
display->setActiveMode(upcomingModeInfo.mode->getId());
const Fps refreshRate = upcomingModeInfo.mode->getFps();
mRefreshRateStats->setRefreshRate(refreshRate);
updatePhaseConfiguration(refreshRate);
if (upcomingModeInfo.event != DisplayModeEvent::None) {
mScheduler->onPrimaryDisplayModeChanged(mAppConnectionHandle, upcomingModeInfo.mode);
}
}
void SurfaceFlinger::clearDesiredActiveModeState(const sp<DisplayDevice>& display) {
display->clearDesiredActiveModeState();
if (isDisplayActiveLocked(display)) {
mScheduler->setModeChangePending(false);
}
}
void SurfaceFlinger::desiredActiveModeChangeDone(const sp<DisplayDevice>& display) {
const auto refreshRate = display->getDesiredActiveMode()->mode->getFps();
clearDesiredActiveModeState(display);
mScheduler->resyncToHardwareVsync(true, refreshRate);
updatePhaseConfiguration(refreshRate);
}
void SurfaceFlinger::setActiveModeInHwcIfNeeded() {
ATRACE_CALL();
std::optional<PhysicalDisplayId> displayToUpdateImmediately;
for (const auto& iter : mDisplays) {
const auto& display = iter.second;
if (!display || !display->isInternal()) {
continue;
}
// Store the local variable to release the lock.
const auto desiredActiveMode = display->getDesiredActiveMode();
if (!desiredActiveMode) {
// No desired active mode pending to be applied
continue;
}
if (!isDisplayActiveLocked(display)) {
// display is no longer the active display, so abort the mode change
clearDesiredActiveModeState(display);
continue;
}
const auto desiredMode = display->getMode(desiredActiveMode->mode->getId());
if (!desiredMode) {
ALOGW("Desired display mode is no longer supported. Mode ID = %d",
desiredActiveMode->mode->getId().value());
clearDesiredActiveModeState(display);
continue;
}
const auto refreshRate = desiredMode->getFps();
ALOGV("%s changing active mode to %d(%s) for display %s", __func__,
desiredMode->getId().value(), to_string(refreshRate).c_str(),
to_string(display->getId()).c_str());
if (display->getActiveMode()->getId() == desiredActiveMode->mode->getId()) {
// we are already in the requested mode, there is nothing left to do
desiredActiveModeChangeDone(display);
continue;
}
// Desired active mode was set, it is different than the mode currently in use, however
// allowed modes might have changed by the time we process the refresh.
// Make sure the desired mode is still allowed
const auto displayModeAllowed =
display->refreshRateConfigs().isModeAllowed(desiredActiveMode->mode->getId());
if (!displayModeAllowed) {
clearDesiredActiveModeState(display);
continue;
}
// TODO(b/142753666) use constrains
hal::VsyncPeriodChangeConstraints constraints;
constraints.desiredTimeNanos = systemTime();
constraints.seamlessRequired = false;
hal::VsyncPeriodChangeTimeline outTimeline;
const auto status = FTL_FAKE_GUARD(kMainThreadContext,
display->initiateModeChange(*desiredActiveMode,
constraints, &outTimeline));
if (status != NO_ERROR) {
// initiateModeChange may fail if a hotplug event is just about
// to be sent. We just log the error in this case.
ALOGW("initiateModeChange failed: %d", status);
continue;
}
mScheduler->onNewVsyncPeriodChangeTimeline(outTimeline);
if (outTimeline.refreshRequired) {
scheduleComposite(FrameHint::kNone);
mSetActiveModePending = true;
} else {
// Updating the internal state should be done outside the loop,
// because it can recreate a DisplayDevice and modify mDisplays
// which will invalidate the iterator.
displayToUpdateImmediately = display->getPhysicalId();
}
}
if (displayToUpdateImmediately) {
updateInternalStateWithChangedMode();
const auto display = getDisplayDeviceLocked(*displayToUpdateImmediately);
const auto desiredActiveMode = display->getDesiredActiveMode();
if (desiredActiveMode &&
display->getActiveMode()->getId() == desiredActiveMode->mode->getId()) {
desiredActiveModeChangeDone(display);
}
}
}
void SurfaceFlinger::disableExpensiveRendering() {
const char* const whence = __func__;
auto future = mScheduler->schedule([=]() FTL_FAKE_GUARD(mStateLock) {
ATRACE_NAME(whence);
if (mPowerAdvisor->isUsingExpensiveRendering()) {
for (const auto& [_, display] : mDisplays) {
constexpr bool kDisable = false;
mPowerAdvisor->setExpensiveRenderingExpected(display->getId(), kDisable);
}
}
});
future.wait();
}
std::vector<ColorMode> SurfaceFlinger::getDisplayColorModes(const DisplayDevice& display) {
auto modes = getHwComposer().getColorModes(display.getPhysicalId());
// If the display is internal and the configuration claims it's not wide color capable,
// filter out all wide color modes. The typical reason why this happens is that the
// hardware is not good enough to support GPU composition of wide color, and thus the
// OEMs choose to disable this capability.
if (display.getConnectionType() == ui::DisplayConnectionType::Internal &&
!hasWideColorDisplay) {
const auto newEnd = std::remove_if(modes.begin(), modes.end(), isWideColorMode);
modes.erase(newEnd, modes.end());
}
return modes;
}
status_t SurfaceFlinger::getDisplayNativePrimaries(const sp<IBinder>& displayToken,
ui::DisplayPrimaries& primaries) {
if (!displayToken) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
return NAME_NOT_FOUND;
}
const auto connectionType = display->getConnectionType();
if (connectionType != ui::DisplayConnectionType::Internal) {
return INVALID_OPERATION;
}
// TODO(b/229846990): For now, assume that all internal displays have the same primaries.
primaries = mInternalDisplayPrimaries;
return NO_ERROR;
}
status_t SurfaceFlinger::setActiveColorMode(const sp<IBinder>& displayToken, ColorMode mode) {
if (!displayToken) {
return BAD_VALUE;
}
auto future = mScheduler->schedule([=]() FTL_FAKE_GUARD(mStateLock) -> status_t {
const auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
ALOGE("Attempt to set active color mode %s (%d) for invalid display token %p",
decodeColorMode(mode).c_str(), mode, displayToken.get());
return NAME_NOT_FOUND;
}
if (display->isVirtual()) {
ALOGW("Attempt to set active color mode %s (%d) for virtual display",
decodeColorMode(mode).c_str(), mode);
return INVALID_OPERATION;
}
const auto modes = getDisplayColorModes(*display);
const bool exists = std::find(modes.begin(), modes.end(), mode) != modes.end();
if (mode < ColorMode::NATIVE || !exists) {
ALOGE("Attempt to set invalid active color mode %s (%d) for display token %p",
decodeColorMode(mode).c_str(), mode, displayToken.get());
return BAD_VALUE;
}
display->getCompositionDisplay()->setColorProfile(
{mode, Dataspace::UNKNOWN, RenderIntent::COLORIMETRIC, Dataspace::UNKNOWN});
return NO_ERROR;
});
// TODO(b/195698395): Propagate error.
future.wait();
return NO_ERROR;
}
status_t SurfaceFlinger::getBootDisplayModeSupport(bool* outSupport) const {
auto future = mScheduler->schedule(
[this] { return getHwComposer().hasCapability(Capability::BOOT_DISPLAY_CONFIG); });
*outSupport = future.get();
return NO_ERROR;
}
status_t SurfaceFlinger::setBootDisplayMode(const sp<IBinder>& displayToken,
ui::DisplayModeId modeId) {
const char* const whence = __func__;
auto future = mScheduler->schedule([=]() FTL_FAKE_GUARD(mStateLock) -> status_t {
const auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
ALOGE("%s: Invalid display token %p", whence, displayToken.get());
return NAME_NOT_FOUND;
}
if (display->isVirtual()) {
ALOGE("%s: Invalid operation on virtual display", whence);
return INVALID_OPERATION;
}
const auto displayId = display->getPhysicalId();
const auto mode = display->getMode(DisplayModeId{modeId});
if (!mode) {
ALOGE("%s: Invalid mode %d for display %s", whence, modeId,
to_string(displayId).c_str());
return BAD_VALUE;
}
return getHwComposer().setBootDisplayMode(displayId, mode->getHwcId());
});
return future.get();
}
status_t SurfaceFlinger::clearBootDisplayMode(const sp<IBinder>& displayToken) {
const char* const whence = __func__;
auto future = mScheduler->schedule([=]() FTL_FAKE_GUARD(mStateLock) -> status_t {
if (const auto displayId = getPhysicalDisplayIdLocked(displayToken)) {
return getHwComposer().clearBootDisplayMode(*displayId);
} else {
ALOGE("%s: Invalid display token %p", whence, displayToken.get());
return BAD_VALUE;
}
});
return future.get();
}
void SurfaceFlinger::setAutoLowLatencyMode(const sp<IBinder>& displayToken, bool on) {
const char* const whence = __func__;
static_cast<void>(mScheduler->schedule([=]() FTL_FAKE_GUARD(mStateLock) {
if (const auto displayId = getPhysicalDisplayIdLocked(displayToken)) {
getHwComposer().setAutoLowLatencyMode(*displayId, on);
} else {
ALOGE("%s: Invalid display token %p", whence, displayToken.get());
}
}));
}
void SurfaceFlinger::setGameContentType(const sp<IBinder>& displayToken, bool on) {
const char* const whence = __func__;
static_cast<void>(mScheduler->schedule([=]() FTL_FAKE_GUARD(mStateLock) {
if (const auto displayId = getPhysicalDisplayIdLocked(displayToken)) {
const auto type = on ? hal::ContentType::GAME : hal::ContentType::NONE;
getHwComposer().setContentType(*displayId, type);
} else {
ALOGE("%s: Invalid display token %p", whence, displayToken.get());
}
}));
}
status_t SurfaceFlinger::clearAnimationFrameStats() {
Mutex::Autolock _l(mStateLock);
mAnimFrameTracker.clearStats();
return NO_ERROR;
}
status_t SurfaceFlinger::getAnimationFrameStats(FrameStats* outStats) const {
Mutex::Autolock _l(mStateLock);
mAnimFrameTracker.getStats(outStats);
return NO_ERROR;
}
status_t SurfaceFlinger::overrideHdrTypes(const sp<IBinder>& displayToken,
const std::vector<ui::Hdr>& hdrTypes) {
Mutex::Autolock lock(mStateLock);
auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
ALOGE("%s: Invalid display token %p", __func__, displayToken.get());
return NAME_NOT_FOUND;
}
display->overrideHdrTypes(hdrTypes);
dispatchDisplayHotplugEvent(display->getPhysicalId(), true /* connected */);
return NO_ERROR;
}
status_t SurfaceFlinger::onPullAtom(const int32_t atomId, std::string* pulledData, bool* success) {
*success = mTimeStats->onPullAtom(atomId, pulledData);
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayedContentSamplingAttributes(const sp<IBinder>& displayToken,
ui::PixelFormat* outFormat,
ui::Dataspace* outDataspace,
uint8_t* outComponentMask) const {
if (!outFormat || !outDataspace || !outComponentMask) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto displayId = getPhysicalDisplayIdLocked(displayToken);
if (!displayId) {
return NAME_NOT_FOUND;
}
return getHwComposer().getDisplayedContentSamplingAttributes(*displayId, outFormat,
outDataspace, outComponentMask);
}
status_t SurfaceFlinger::setDisplayContentSamplingEnabled(const sp<IBinder>& displayToken,
bool enable, uint8_t componentMask,
uint64_t maxFrames) {
const char* const whence = __func__;
auto future = mScheduler->schedule([=]() FTL_FAKE_GUARD(mStateLock) -> status_t {
if (const auto displayId = getPhysicalDisplayIdLocked(displayToken)) {
return getHwComposer().setDisplayContentSamplingEnabled(*displayId, enable,
componentMask, maxFrames);
} else {
ALOGE("%s: Invalid display token %p", whence, displayToken.get());
return NAME_NOT_FOUND;
}
});
return future.get();
}
status_t SurfaceFlinger::getDisplayedContentSample(const sp<IBinder>& displayToken,
uint64_t maxFrames, uint64_t timestamp,
DisplayedFrameStats* outStats) const {
Mutex::Autolock lock(mStateLock);
const auto displayId = getPhysicalDisplayIdLocked(displayToken);
if (!displayId) {
return NAME_NOT_FOUND;
}
return getHwComposer().getDisplayedContentSample(*displayId, maxFrames, timestamp, outStats);
}
status_t SurfaceFlinger::getProtectedContentSupport(bool* outSupported) const {
if (!outSupported) {
return BAD_VALUE;
}
*outSupported = getRenderEngine().supportsProtectedContent();
return NO_ERROR;
}
status_t SurfaceFlinger::isWideColorDisplay(const sp<IBinder>& displayToken,
bool* outIsWideColorDisplay) const {
if (!displayToken || !outIsWideColorDisplay) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
return NAME_NOT_FOUND;
}
*outIsWideColorDisplay =
display->isPrimary() ? hasWideColorDisplay : display->hasWideColorGamut();
return NO_ERROR;
}
status_t SurfaceFlinger::enableVSyncInjections(bool enable) {
auto future = mScheduler->schedule([=] {
Mutex::Autolock lock(mStateLock);
if (const auto handle = mScheduler->enableVSyncInjection(enable)) {
mScheduler->setInjector(enable ? mScheduler->getEventConnection(handle) : nullptr);
}
});
future.wait();
return NO_ERROR;
}
status_t SurfaceFlinger::injectVSync(nsecs_t when) {
Mutex::Autolock lock(mStateLock);
const DisplayStatInfo stats = mScheduler->getDisplayStatInfo(when);
const auto expectedPresent = calculateExpectedPresentTime(stats);
return mScheduler->injectVSync(when, /*expectedVSyncTime=*/expectedPresent,
/*deadlineTimestamp=*/expectedPresent)
? NO_ERROR
: BAD_VALUE;
}
status_t SurfaceFlinger::getLayerDebugInfo(std::vector<LayerDebugInfo>* outLayers) {
outLayers->clear();
auto future = mScheduler->schedule([=] {
const auto display = FTL_FAKE_GUARD(mStateLock, getDefaultDisplayDeviceLocked());
mDrawingState.traverseInZOrder([&](Layer* layer) {
outLayers->push_back(layer->getLayerDebugInfo(display.get()));
});
});
future.wait();
return NO_ERROR;
}
status_t SurfaceFlinger::getCompositionPreference(
Dataspace* outDataspace, ui::PixelFormat* outPixelFormat,
Dataspace* outWideColorGamutDataspace,
ui::PixelFormat* outWideColorGamutPixelFormat) const {
*outDataspace = mDefaultCompositionDataspace;
*outPixelFormat = defaultCompositionPixelFormat;
*outWideColorGamutDataspace = mWideColorGamutCompositionDataspace;
*outWideColorGamutPixelFormat = wideColorGamutCompositionPixelFormat;
return NO_ERROR;
}
status_t SurfaceFlinger::addRegionSamplingListener(const Rect& samplingArea,
const sp<IBinder>& stopLayerHandle,
const sp<IRegionSamplingListener>& listener) {
if (!listener || samplingArea == Rect::INVALID_RECT || samplingArea.isEmpty()) {
return BAD_VALUE;
}
const wp<Layer> stopLayer = fromHandle(stopLayerHandle);
mRegionSamplingThread->addListener(samplingArea, stopLayer, listener);
return NO_ERROR;
}
status_t SurfaceFlinger::removeRegionSamplingListener(const sp<IRegionSamplingListener>& listener) {
if (!listener) {
return BAD_VALUE;
}
mRegionSamplingThread->removeListener(listener);
return NO_ERROR;
}
status_t SurfaceFlinger::addFpsListener(int32_t taskId, const sp<gui::IFpsListener>& listener) {
if (!listener) {
return BAD_VALUE;
}
mFpsReporter->addListener(listener, taskId);
return NO_ERROR;
}
status_t SurfaceFlinger::removeFpsListener(const sp<gui::IFpsListener>& listener) {
if (!listener) {
return BAD_VALUE;
}
mFpsReporter->removeListener(listener);
return NO_ERROR;
}
status_t SurfaceFlinger::addTunnelModeEnabledListener(
const sp<gui::ITunnelModeEnabledListener>& listener) {
if (!listener) {
return BAD_VALUE;
}
mTunnelModeEnabledReporter->addListener(listener);
return NO_ERROR;
}
status_t SurfaceFlinger::removeTunnelModeEnabledListener(
const sp<gui::ITunnelModeEnabledListener>& listener) {
if (!listener) {
return BAD_VALUE;
}
mTunnelModeEnabledReporter->removeListener(listener);
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayBrightnessSupport(const sp<IBinder>& displayToken,
bool* outSupport) const {
if (!displayToken || !outSupport) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto displayId = getPhysicalDisplayIdLocked(displayToken);
if (!displayId) {
return NAME_NOT_FOUND;
}
*outSupport = getHwComposer().hasDisplayCapability(*displayId, DisplayCapability::BRIGHTNESS);
return NO_ERROR;
}
bool SurfaceFlinger::hasVisibleHdrLayer(const sp<DisplayDevice>& display) {
bool hasHdrLayers = false;
mDrawingState.traverse([&,
compositionDisplay = display->getCompositionDisplay()](Layer* layer) {
hasHdrLayers |= (layer->isVisible() &&
compositionDisplay->includesLayer(layer->getCompositionEngineLayerFE()) &&
isHdrDataspace(layer->getDataSpace()));
});
return hasHdrLayers;
}
status_t SurfaceFlinger::setDisplayBrightness(const sp<IBinder>& displayToken,
const gui::DisplayBrightness& brightness) {
if (!displayToken) {
return BAD_VALUE;
}
const char* const whence = __func__;
return ftl::Future(mScheduler->schedule([=]() FTL_FAKE_GUARD(mStateLock) {
if (const auto display = getDisplayDeviceLocked(displayToken)) {
const bool supportsDisplayBrightnessCommand =
getHwComposer().getComposer()->isSupported(
Hwc2::Composer::OptionalFeature::DisplayBrightnessCommand);
// If we support applying display brightness as a command, then we also support
// dimming SDR layers.
if (supportsDisplayBrightnessCommand) {
auto compositionDisplay = display->getCompositionDisplay();
float currentDimmingRatio =
compositionDisplay->editState().sdrWhitePointNits /
compositionDisplay->editState().displayBrightnessNits;
compositionDisplay->setDisplayBrightness(brightness.sdrWhitePointNits,
brightness.displayBrightnessNits);
FTL_FAKE_GUARD(kMainThreadContext,
display->stageBrightness(brightness.displayBrightness));
if (brightness.sdrWhitePointNits / brightness.displayBrightnessNits !=
currentDimmingRatio) {
scheduleComposite(FrameHint::kNone);
} else {
scheduleCommit(FrameHint::kNone);
}
return ftl::yield<status_t>(OK);
} else {
return getHwComposer()
.setDisplayBrightness(display->getPhysicalId(),
brightness.displayBrightness,
brightness.displayBrightnessNits,
Hwc2::Composer::DisplayBrightnessOptions{
.applyImmediately = true});
}
} else {
ALOGE("%s: Invalid display token %p", whence, displayToken.get());
return ftl::yield<status_t>(NAME_NOT_FOUND);
}
}))
.then([](ftl::Future<status_t> task) { return task; })
.get();
}
status_t SurfaceFlinger::addHdrLayerInfoListener(const sp<IBinder>& displayToken,
const sp<gui::IHdrLayerInfoListener>& listener) {
if (!displayToken) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
return NAME_NOT_FOUND;
}
const auto displayId = display->getId();
sp<HdrLayerInfoReporter>& hdrInfoReporter = mHdrLayerInfoListeners[displayId];
if (!hdrInfoReporter) {
hdrInfoReporter = sp<HdrLayerInfoReporter>::make();
}
hdrInfoReporter->addListener(listener);
mAddingHDRLayerInfoListener = true;
return OK;
}
status_t SurfaceFlinger::removeHdrLayerInfoListener(
const sp<IBinder>& displayToken, const sp<gui::IHdrLayerInfoListener>& listener) {
if (!displayToken) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
return NAME_NOT_FOUND;
}
const auto displayId = display->getId();
sp<HdrLayerInfoReporter>& hdrInfoReporter = mHdrLayerInfoListeners[displayId];
if (hdrInfoReporter) {
hdrInfoReporter->removeListener(listener);
}
return OK;
}
status_t SurfaceFlinger::notifyPowerBoost(int32_t boostId) {
using hardware::power::Boost;
Boost powerBoost = static_cast<Boost>(boostId);
if (powerBoost == Boost::INTERACTION) {
mScheduler->onTouchHint();
}
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayDecorationSupport(
const sp<IBinder>& displayToken,
std::optional<DisplayDecorationSupport>* outSupport) const {
if (!displayToken || !outSupport) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto displayId = getPhysicalDisplayIdLocked(displayToken);
if (!displayId) {
return NAME_NOT_FOUND;
}
getHwComposer().getDisplayDecorationSupport(*displayId, outSupport);
return NO_ERROR;
}
// ----------------------------------------------------------------------------
sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection(
ISurfaceComposer::VsyncSource vsyncSource,
ISurfaceComposer::EventRegistrationFlags eventRegistration) {
const auto& handle =
vsyncSource == eVsyncSourceSurfaceFlinger ? mSfConnectionHandle : mAppConnectionHandle;
return mScheduler->createDisplayEventConnection(handle, eventRegistration);
}
void SurfaceFlinger::scheduleCommit(FrameHint hint) {
if (hint == FrameHint::kActive) {
mScheduler->resetIdleTimer();
}
mPowerAdvisor->notifyDisplayUpdateImminent();
mScheduler->scheduleFrame();
}
void SurfaceFlinger::scheduleComposite(FrameHint hint) {
mMustComposite = true;
scheduleCommit(hint);
}
void SurfaceFlinger::scheduleRepaint() {
mGeometryDirty = true;
scheduleComposite(FrameHint::kActive);
}
void SurfaceFlinger::scheduleSample() {
static_cast<void>(mScheduler->schedule([this] { sample(); }));
}
nsecs_t SurfaceFlinger::getVsyncPeriodFromHWC() const {
if (const auto display = getDefaultDisplayDeviceLocked()) {
return display->getVsyncPeriodFromHWC();
}
return 0;
}
void SurfaceFlinger::onComposerHalVsync(hal::HWDisplayId hwcDisplayId, int64_t timestamp,
std::optional<hal::VsyncPeriodNanos> vsyncPeriod) {
const std::string tracePeriod = [vsyncPeriod]() {
if (ATRACE_ENABLED() && vsyncPeriod) {
std::stringstream ss;
ss << "(" << *vsyncPeriod << ")";
return ss.str();
}
return std::string();
}();
ATRACE_FORMAT("onComposerHalVsync%s", tracePeriod.c_str());
Mutex::Autolock lock(mStateLock);
const auto displayId = getHwComposer().toPhysicalDisplayId(hwcDisplayId);
if (displayId) {
const auto token = getPhysicalDisplayTokenLocked(*displayId);
const auto display = getDisplayDeviceLocked(token);
display->onVsync(timestamp);
}
if (!getHwComposer().onVsync(hwcDisplayId, timestamp)) {
return;
}
const bool isActiveDisplay =
displayId && getPhysicalDisplayTokenLocked(*displayId) == mActiveDisplayToken;
if (!isActiveDisplay) {
// For now, we don't do anything with non active display vsyncs.
return;
}
bool periodFlushed = false;
mScheduler->addResyncSample(timestamp, vsyncPeriod, &periodFlushed);
if (periodFlushed) {
modulateVsync(&VsyncModulator::onRefreshRateChangeCompleted);
}
}
void SurfaceFlinger::getCompositorTiming(CompositorTiming* compositorTiming) {
std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock);
*compositorTiming = getBE().mCompositorTiming;
}
void SurfaceFlinger::onComposerHalHotplug(hal::HWDisplayId hwcDisplayId,
hal::Connection connection) {
const bool connected = connection == hal::Connection::CONNECTED;
ALOGI("%s HAL display %" PRIu64, connected ? "Connecting" : "Disconnecting", hwcDisplayId);
// Only lock if we're not on the main thread. This function is normally
// called on a hwbinder thread, but for the primary display it's called on
// the main thread with the state lock already held, so don't attempt to
// acquire it here.
ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId);
mPendingHotplugEvents.emplace_back(HotplugEvent{hwcDisplayId, connection});
if (std::this_thread::get_id() == mMainThreadId) {
// Process all pending hot plug events immediately if we are on the main thread.
processDisplayHotplugEventsLocked();
}
setTransactionFlags(eDisplayTransactionNeeded);
}
void SurfaceFlinger::onComposerHalVsyncPeriodTimingChanged(
hal::HWDisplayId, const hal::VsyncPeriodChangeTimeline& timeline) {
Mutex::Autolock lock(mStateLock);
mScheduler->onNewVsyncPeriodChangeTimeline(timeline);
if (timeline.refreshRequired) {
scheduleComposite(FrameHint::kNone);
}
}
void SurfaceFlinger::onComposerHalSeamlessPossible(hal::HWDisplayId) {
// TODO(b/142753666): use constraints when calling to setActiveModeWithConstraints and
// use this callback to know when to retry in case of SEAMLESS_NOT_POSSIBLE.
}
void SurfaceFlinger::onComposerHalRefresh(hal::HWDisplayId) {
Mutex::Autolock lock(mStateLock);
scheduleComposite(FrameHint::kNone);
}
void SurfaceFlinger::onComposerHalVsyncIdle(hal::HWDisplayId) {
ATRACE_CALL();
mScheduler->forceNextResync();
}
void SurfaceFlinger::setVsyncEnabled(bool enabled) {
ATRACE_CALL();
// On main thread to avoid race conditions with display power state.
static_cast<void>(mScheduler->schedule([=]() FTL_FAKE_GUARD(mStateLock) {
mHWCVsyncPendingState = enabled ? hal::Vsync::ENABLE : hal::Vsync::DISABLE;
if (const auto display = getDefaultDisplayDeviceLocked();
display && display->isPoweredOn()) {
setHWCVsyncEnabled(display->getPhysicalId(), mHWCVsyncPendingState);
}
}));
}
SurfaceFlinger::FenceWithFenceTime SurfaceFlinger::previousFrameFence() {
const auto now = systemTime();
const auto vsyncPeriod = mScheduler->getDisplayStatInfo(now).vsyncPeriod;
const bool expectedPresentTimeIsTheNextVsync = mExpectedPresentTime - now <= vsyncPeriod;
return expectedPresentTimeIsTheNextVsync ? mPreviousPresentFences[0]
: mPreviousPresentFences[1];
}
bool SurfaceFlinger::previousFramePending(int graceTimeMs) {
ATRACE_CALL();
const std::shared_ptr<FenceTime>& fence = previousFrameFence().fenceTime;
if (fence == FenceTime::NO_FENCE) {
return false;
}
const status_t status = fence->wait(graceTimeMs);
// This is the same as Fence::Status::Unsignaled, but it saves a getStatus() call,
// which calls wait(0) again internally
return status == -ETIME;
}
nsecs_t SurfaceFlinger::previousFramePresentTime() {
const std::shared_ptr<FenceTime>& fence = previousFrameFence().fenceTime;
if (fence == FenceTime::NO_FENCE) {
return Fence::SIGNAL_TIME_INVALID;
}
return fence->getSignalTime();
}
nsecs_t SurfaceFlinger::calculateExpectedPresentTime(DisplayStatInfo stats) const {
// Inflate the expected present time if we're targetting the next vsync.
return mVsyncModulator->getVsyncConfig().sfOffset > 0 ? stats.vsyncTime
: stats.vsyncTime + stats.vsyncPeriod;
}
bool SurfaceFlinger::commit(nsecs_t frameTime, int64_t vsyncId, nsecs_t expectedVsyncTime)
FTL_FAKE_GUARD(kMainThreadContext) {
// calculate the expected present time once and use the cached
// value throughout this frame to make sure all layers are
// seeing this same value.
if (expectedVsyncTime >= frameTime) {
mExpectedPresentTime = expectedVsyncTime;
} else {
const DisplayStatInfo stats = mScheduler->getDisplayStatInfo(frameTime);
mExpectedPresentTime = calculateExpectedPresentTime(stats);
}
const nsecs_t lastScheduledPresentTime = mScheduledPresentTime;
mScheduledPresentTime = expectedVsyncTime;
const auto vsyncIn = [&] {
if (!ATRACE_ENABLED()) return 0.f;
return (mExpectedPresentTime - systemTime()) / 1e6f;
}();
ATRACE_FORMAT("%s %" PRId64 " vsyncIn %.2fms%s", __func__, vsyncId, vsyncIn,
mExpectedPresentTime == expectedVsyncTime ? "" : " (adjusted)");
// When Backpressure propagation is enabled we want to give a small grace period
// for the present fence to fire instead of just giving up on this frame to handle cases
// where present fence is just about to get signaled.
const int graceTimeForPresentFenceMs =
(mPropagateBackpressureClientComposition || !mHadClientComposition) ? 1 : 0;
// Pending frames may trigger backpressure propagation.
const TracedOrdinal<bool> framePending = {"PrevFramePending",
previousFramePending(graceTimeForPresentFenceMs)};
// Frame missed counts for metrics tracking.
// A frame is missed if the prior frame is still pending. If no longer pending,
// then we still count the frame as missed if the predicted present time
// was further in the past than when the fence actually fired.
// Add some slop to correct for drift. This should generally be
// smaller than a typical frame duration, but should not be so small
// that it reports reasonable drift as a missed frame.
const DisplayStatInfo stats = mScheduler->getDisplayStatInfo(systemTime());
const nsecs_t frameMissedSlop = stats.vsyncPeriod / 2;
const nsecs_t previousPresentTime = previousFramePresentTime();
const TracedOrdinal<bool> frameMissed = {"PrevFrameMissed",
framePending ||
(previousPresentTime >= 0 &&
(lastScheduledPresentTime <
previousPresentTime - frameMissedSlop))};
const TracedOrdinal<bool> hwcFrameMissed = {"PrevHwcFrameMissed",
mHadDeviceComposition && frameMissed};
const TracedOrdinal<bool> gpuFrameMissed = {"PrevGpuFrameMissed",
mHadClientComposition && frameMissed};
if (frameMissed) {
mFrameMissedCount++;
mTimeStats->incrementMissedFrames();
}
if (hwcFrameMissed) {
mHwcFrameMissedCount++;
}
if (gpuFrameMissed) {
mGpuFrameMissedCount++;
}
// If we are in the middle of a mode change and the fence hasn't
// fired yet just wait for the next commit.
if (mSetActiveModePending) {
if (framePending) {
mScheduler->scheduleFrame();
return false;
}
// We received the present fence from the HWC, so we assume it successfully updated
// the mode, hence we update SF.
mSetActiveModePending = false;
{
Mutex::Autolock lock(mStateLock);
updateInternalStateWithChangedMode();
}
}
if (framePending) {
if ((hwcFrameMissed && !gpuFrameMissed) || mPropagateBackpressureClientComposition) {
scheduleCommit(FrameHint::kNone);
return false;
}
}
// Save this once per commit + composite to ensure consistency
// TODO (b/240619471): consider removing active display check once AOD is fixed
const auto activeDisplay =
FTL_FAKE_GUARD(mStateLock, getDisplayDeviceLocked(mActiveDisplayToken));
mPowerHintSessionEnabled = mPowerAdvisor->usePowerHintSession() && activeDisplay &&
activeDisplay->getPowerMode() == hal::PowerMode::ON;
if (mPowerHintSessionEnabled) {
const auto& display = FTL_FAKE_GUARD(mStateLock, getDefaultDisplayDeviceLocked()).get();
// get stable vsync period from display mode
const nsecs_t vsyncPeriod = display->getActiveMode()->getVsyncPeriod();
mPowerAdvisor->setCommitStart(frameTime);
mPowerAdvisor->setExpectedPresentTime(mExpectedPresentTime);
const nsecs_t idealSfWorkDuration =
mVsyncModulator->getVsyncConfig().sfWorkDuration.count();
// Frame delay is how long we should have minus how long we actually have
mPowerAdvisor->setFrameDelay(idealSfWorkDuration - (mExpectedPresentTime - frameTime));
mPowerAdvisor->setTotalFrameTargetWorkDuration(idealSfWorkDuration);
mPowerAdvisor->setTargetWorkDuration(vsyncPeriod);
// Send early hint here to make sure there's not another frame pending
if (mPowerHintSessionMode.early) {
// Send a rough prediction for this frame based on last frame's timing info
mPowerAdvisor->sendPredictedWorkDuration();
}
}
if (mTracingEnabledChanged) {
mLayerTracingEnabled = mLayerTracing.isEnabled();
mTracingEnabledChanged = false;
}
if (mRefreshRateOverlaySpinner) {
Mutex::Autolock lock(mStateLock);
if (const auto display = getDefaultDisplayDeviceLocked()) {
display->animateRefreshRateOverlay();
}
}
// Composite if transactions were committed, or if requested by HWC.
bool mustComposite = mMustComposite.exchange(false);
{
mFrameTimeline->setSfWakeUp(vsyncId, frameTime, Fps::fromPeriodNsecs(stats.vsyncPeriod));
bool needsTraversal = false;
if (clearTransactionFlags(eTransactionFlushNeeded)) {
needsTraversal |= commitCreatedLayers();
needsTraversal |= flushTransactionQueues(vsyncId);
}
const bool shouldCommit =
(getTransactionFlags() & ~eTransactionFlushNeeded) || needsTraversal;
if (shouldCommit) {
commitTransactions();
}
if (transactionFlushNeeded()) {
setTransactionFlags(eTransactionFlushNeeded);
}
mustComposite |= shouldCommit;
mustComposite |= latchBuffers();
// This has to be called after latchBuffers because we want to include the layers that have
// been latched in the commit callback
if (!needsTraversal) {
// Invoke empty transaction callbacks early.
mTransactionCallbackInvoker.sendCallbacks(false /* onCommitOnly */);
} else {
// Invoke OnCommit callbacks.
mTransactionCallbackInvoker.sendCallbacks(true /* onCommitOnly */);
}
updateLayerGeometry();
}
// Layers need to get updated (in the previous line) before we can use them for
// choosing the refresh rate.
// Hold mStateLock as chooseRefreshRateForContent promotes wp<Layer> to sp<Layer>
// and may eventually call to ~Layer() if it holds the last reference
{
Mutex::Autolock _l(mStateLock);
mScheduler->chooseRefreshRateForContent();
setActiveModeInHwcIfNeeded();
}
updateCursorAsync();
updateInputFlinger();
if (mLayerTracingEnabled && !mLayerTracing.flagIsSet(LayerTracing::TRACE_COMPOSITION)) {
// This will block and tracing should only be enabled for debugging.
mLayerTracing.notify(mVisibleRegionsDirty, frameTime);
}
persistDisplayBrightness(mustComposite);
return mustComposite && CC_LIKELY(mBootStage != BootStage::BOOTLOADER);
}
void SurfaceFlinger::composite(nsecs_t frameTime, int64_t vsyncId)
FTL_FAKE_GUARD(kMainThreadContext) {
ATRACE_FORMAT("%s %" PRId64, __func__, vsyncId);
compositionengine::CompositionRefreshArgs refreshArgs;
const auto& displays = FTL_FAKE_GUARD(mStateLock, mDisplays);
refreshArgs.outputs.reserve(displays.size());
std::vector<DisplayId> displayIds;
for (const auto& [_, display] : displays) {
refreshArgs.outputs.push_back(display->getCompositionDisplay());
displayIds.push_back(display->getId());
}
mPowerAdvisor->setDisplays(displayIds);
mDrawingState.traverseInZOrder([&refreshArgs](Layer* layer) {
if (auto layerFE = layer->getCompositionEngineLayerFE())
refreshArgs.layers.push_back(layerFE);
});
refreshArgs.layersWithQueuedFrames.reserve(mLayersWithQueuedFrames.size());
for (auto layer : mLayersWithQueuedFrames) {
if (auto layerFE = layer->getCompositionEngineLayerFE())
refreshArgs.layersWithQueuedFrames.push_back(layerFE);
}
refreshArgs.outputColorSetting = useColorManagement
? mDisplayColorSetting
: compositionengine::OutputColorSetting::kUnmanaged;
refreshArgs.colorSpaceAgnosticDataspace = mColorSpaceAgnosticDataspace;
refreshArgs.forceOutputColorMode = mForceColorMode;
refreshArgs.updatingOutputGeometryThisFrame = mVisibleRegionsDirty;
refreshArgs.updatingGeometryThisFrame = mGeometryDirty.exchange(false) || mVisibleRegionsDirty;
refreshArgs.blursAreExpensive = mBlursAreExpensive;
refreshArgs.internalDisplayRotationFlags = DisplayDevice::getPrimaryDisplayRotationFlags();
if (CC_UNLIKELY(mDrawingState.colorMatrixChanged)) {
refreshArgs.colorTransformMatrix = mDrawingState.colorMatrix;
mDrawingState.colorMatrixChanged = false;
}
refreshArgs.devOptForceClientComposition = mDebugDisableHWC;
if (mDebugFlashDelay != 0) {
refreshArgs.devOptForceClientComposition = true;
refreshArgs.devOptFlashDirtyRegionsDelay = std::chrono::milliseconds(mDebugFlashDelay);
}
const auto expectedPresentTime = mExpectedPresentTime.load();
const auto prevVsyncTime = mScheduler->getPreviousVsyncFrom(expectedPresentTime);
const auto hwcMinWorkDuration = mVsyncConfiguration->getCurrentConfigs().hwcMinWorkDuration;
refreshArgs.earliestPresentTime = prevVsyncTime - hwcMinWorkDuration;
refreshArgs.previousPresentFence = mPreviousPresentFences[0].fenceTime;
refreshArgs.scheduledFrameTime = mScheduler->getScheduledFrameTime();
refreshArgs.expectedPresentTime = expectedPresentTime;
// Store the present time just before calling to the composition engine so we could notify
// the scheduler.
const auto presentTime = systemTime();
mCompositionEngine->present(refreshArgs);
mTimeStats->recordFrameDuration(frameTime, systemTime());
// Send a power hint hint after presentation is finished
if (mPowerHintSessionEnabled) {
mPowerAdvisor->setSfPresentTiming(mPreviousPresentFences[0].fenceTime->getSignalTime(),
systemTime());
if (mPowerHintSessionMode.late) {
mPowerAdvisor->sendActualWorkDuration();
}
}
if (mScheduler->onPostComposition(presentTime)) {
scheduleComposite(FrameHint::kNone);
}
postFrame();
postComposition();
const bool prevFrameHadClientComposition = mHadClientComposition;
mHadClientComposition = mHadDeviceComposition = mReusedClientComposition = false;
TimeStats::ClientCompositionRecord clientCompositionRecord;
for (const auto& [_, display] : displays) {
const auto& state = display->getCompositionDisplay()->getState();
mHadClientComposition |= state.usesClientComposition && !state.reusedClientComposition;
mHadDeviceComposition |= state.usesDeviceComposition;
mReusedClientComposition |= state.reusedClientComposition;
clientCompositionRecord.predicted |=
(state.strategyPrediction != CompositionStrategyPredictionState::DISABLED);
clientCompositionRecord.predictionSucceeded |=
(state.strategyPrediction == CompositionStrategyPredictionState::SUCCESS);
}
clientCompositionRecord.hadClientComposition = mHadClientComposition;
clientCompositionRecord.reused = mReusedClientComposition;
clientCompositionRecord.changed = prevFrameHadClientComposition != mHadClientComposition;
mTimeStats->pushCompositionStrategyState(clientCompositionRecord);
// TODO: b/160583065 Enable skip validation when SF caches all client composition layers
const bool usedGpuComposition = mHadClientComposition || mReusedClientComposition;
modulateVsync(&VsyncModulator::onDisplayRefresh, usedGpuComposition);
mLayersWithQueuedFrames.clear();
if (mLayerTracingEnabled && mLayerTracing.flagIsSet(LayerTracing::TRACE_COMPOSITION)) {
// This will block and should only be used for debugging.
mLayerTracing.notify(mVisibleRegionsDirty, frameTime);
}
mVisibleRegionsWereDirtyThisFrame = mVisibleRegionsDirty; // Cache value for use in post-comp
mVisibleRegionsDirty = false;
if (mCompositionEngine->needsAnotherUpdate()) {
scheduleCommit(FrameHint::kNone);
}
if (mPowerHintSessionEnabled) {
mPowerAdvisor->setCompositeEnd(systemTime());
}
}
void SurfaceFlinger::updateLayerGeometry() {
ATRACE_CALL();
if (mVisibleRegionsDirty) {
computeLayerBounds();
}
for (auto& layer : mLayersPendingRefresh) {
Region visibleReg;
visibleReg.set(layer->getScreenBounds());
invalidateLayerStack(layer, visibleReg);
}
mLayersPendingRefresh.clear();
}
void SurfaceFlinger::updateCompositorTiming(const DisplayStatInfo& stats, nsecs_t compositeTime,
std::shared_ptr<FenceTime>& presentFenceTime) {
// Update queue of past composite+present times and determine the
// most recently known composite to present latency.
getBE().mCompositePresentTimes.push({compositeTime, presentFenceTime});
nsecs_t compositeToPresentLatency = -1;
while (!getBE().mCompositePresentTimes.empty()) {
SurfaceFlingerBE::CompositePresentTime& cpt = getBE().mCompositePresentTimes.front();
// Cached values should have been updated before calling this method,
// which helps avoid duplicate syscalls.
nsecs_t displayTime = cpt.display->getCachedSignalTime();
if (displayTime == Fence::SIGNAL_TIME_PENDING) {
break;
}
compositeToPresentLatency = displayTime - cpt.composite;
getBE().mCompositePresentTimes.pop();
}
// Don't let mCompositePresentTimes grow unbounded, just in case.
while (getBE().mCompositePresentTimes.size() > 16) {
getBE().mCompositePresentTimes.pop();
}
setCompositorTimingSnapped(stats, compositeToPresentLatency);
}
void SurfaceFlinger::setCompositorTimingSnapped(const DisplayStatInfo& stats,
nsecs_t compositeToPresentLatency) {
// Avoid division by 0 by defaulting to 60Hz
const auto vsyncPeriod = stats.vsyncPeriod ?: (60_Hz).getPeriodNsecs();
// Integer division and modulo round toward 0 not -inf, so we need to
// treat negative and positive offsets differently.
nsecs_t idealLatency = (mVsyncConfiguration->getCurrentConfigs().late.sfOffset > 0)
? (vsyncPeriod -
(mVsyncConfiguration->getCurrentConfigs().late.sfOffset % vsyncPeriod))
: ((-mVsyncConfiguration->getCurrentConfigs().late.sfOffset) % vsyncPeriod);
// Just in case mVsyncConfiguration->getCurrentConfigs().late.sf == -vsyncInterval.
if (idealLatency <= 0) {
idealLatency = vsyncPeriod;
}
// Snap the latency to a value that removes scheduling jitter from the
// composition and present times, which often have >1ms of jitter.
// Reducing jitter is important if an app attempts to extrapolate
// something (such as user input) to an accurate diasplay time.
// Snapping also allows an app to precisely calculate
// mVsyncConfiguration->getCurrentConfigs().late.sf with (presentLatency % interval).
const nsecs_t bias = vsyncPeriod / 2;
const int64_t extraVsyncs = ((compositeToPresentLatency - idealLatency + bias) / vsyncPeriod);
const nsecs_t snappedCompositeToPresentLatency =
(extraVsyncs > 0) ? idealLatency + (extraVsyncs * vsyncPeriod) : idealLatency;
std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock);
getBE().mCompositorTiming.deadline = stats.vsyncTime - idealLatency;
getBE().mCompositorTiming.interval = vsyncPeriod;
getBE().mCompositorTiming.presentLatency = snappedCompositeToPresentLatency;
}
bool SurfaceFlinger::isHdrLayer(Layer* layer) const {
// Treat all layers as non-HDR if:
// 1. They do not have a valid HDR dataspace. Currently we treat those as PQ or HLG. and
// 2. The layer is allowed to be dimmed. WindowManager may disable dimming in order to
// keep animations invoking SDR screenshots of HDR layers seamless. Treat such tagged
// layers as HDR so that DisplayManagerService does not try to change the screen brightness
if (!isHdrDataspace(layer->getDataSpace()) && layer->isDimmingEnabled()) {
return false;
}
if (mIgnoreHdrCameraLayers) {
auto buffer = layer->getBuffer();
if (buffer && (buffer->getUsage() & GRALLOC_USAGE_HW_CAMERA_WRITE) != 0) {
return false;
}
}
return true;
}
ui::Rotation SurfaceFlinger::getPhysicalDisplayOrientation(DisplayId displayId,
bool isPrimary) const {
const auto id = PhysicalDisplayId::tryCast(displayId);
if (!id) {
return ui::ROTATION_0;
}
if (getHwComposer().getComposer()->isSupported(
Hwc2::Composer::OptionalFeature::PhysicalDisplayOrientation)) {
switch (getHwComposer().getPhysicalDisplayOrientation(*id)) {
case Hwc2::AidlTransform::ROT_90:
return ui::ROTATION_90;
case Hwc2::AidlTransform::ROT_180:
return ui::ROTATION_180;
case Hwc2::AidlTransform::ROT_270:
return ui::ROTATION_270;
default:
return ui::ROTATION_0;
}
}
if (isPrimary) {
using Values = SurfaceFlingerProperties::primary_display_orientation_values;
switch (primary_display_orientation(Values::ORIENTATION_0)) {
case Values::ORIENTATION_90:
return ui::ROTATION_90;
case Values::ORIENTATION_180:
return ui::ROTATION_180;
case Values::ORIENTATION_270:
return ui::ROTATION_270;
default:
break;
}
}
return ui::ROTATION_0;
}
void SurfaceFlinger::postComposition() {
ATRACE_CALL();
ALOGV("postComposition");
const auto* display = FTL_FAKE_GUARD(mStateLock, getDefaultDisplayDeviceLocked()).get();
std::shared_ptr<FenceTime> glCompositionDoneFenceTime;
if (display && display->getCompositionDisplay()->getState().usesClientComposition) {
glCompositionDoneFenceTime =
std::make_shared<FenceTime>(display->getCompositionDisplay()
->getRenderSurface()
->getClientTargetAcquireFence());
} else {
glCompositionDoneFenceTime = FenceTime::NO_FENCE;
}
mPreviousPresentFences[1] = mPreviousPresentFences[0];
mPreviousPresentFences[0].fence =
display ? getHwComposer().getPresentFence(display->getPhysicalId()) : Fence::NO_FENCE;
mPreviousPresentFences[0].fenceTime =
std::make_shared<FenceTime>(mPreviousPresentFences[0].fence);
nsecs_t now = systemTime();
// Set presentation information before calling Layer::releasePendingBuffer, such that jank
// information from previous' frame classification is already available when sending jank info
// to clients, so they get jank classification as early as possible.
mFrameTimeline->setSfPresent(/* sfPresentTime */ now, mPreviousPresentFences[0].fenceTime,
glCompositionDoneFenceTime);
const DisplayStatInfo stats = mScheduler->getDisplayStatInfo(now);
// We use the CompositionEngine::getLastFrameRefreshTimestamp() which might
// be sampled a little later than when we started doing work for this frame,
// but that should be okay since updateCompositorTiming has snapping logic.
updateCompositorTiming(stats, mCompositionEngine->getLastFrameRefreshTimestamp(),
mPreviousPresentFences[0].fenceTime);
CompositorTiming compositorTiming;
{
std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock);
compositorTiming = getBE().mCompositorTiming;
}
for (const auto& layer: mLayersWithQueuedFrames) {
layer->onPostComposition(display, glCompositionDoneFenceTime,
mPreviousPresentFences[0].fenceTime, compositorTiming);
layer->releasePendingBuffer(/*dequeueReadyTime*/ now);
}
std::vector<std::pair<std::shared_ptr<compositionengine::Display>, sp<HdrLayerInfoReporter>>>
hdrInfoListeners;
bool haveNewListeners = false;
{
Mutex::Autolock lock(mStateLock);
if (mFpsReporter) {
mFpsReporter->dispatchLayerFps();
}
if (mTunnelModeEnabledReporter) {
mTunnelModeEnabledReporter->updateTunnelModeStatus();
}
hdrInfoListeners.reserve(mHdrLayerInfoListeners.size());
for (const auto& [displayId, reporter] : mHdrLayerInfoListeners) {
if (reporter && reporter->hasListeners()) {
if (const auto display = getDisplayDeviceLocked(displayId)) {
hdrInfoListeners.emplace_back(display->getCompositionDisplay(), reporter);
}
}
}
haveNewListeners = mAddingHDRLayerInfoListener; // grab this with state lock
mAddingHDRLayerInfoListener = false;
}
if (haveNewListeners || mSomeDataspaceChanged || mVisibleRegionsWereDirtyThisFrame) {
for (auto& [compositionDisplay, listener] : hdrInfoListeners) {
HdrLayerInfoReporter::HdrLayerInfo info;
int32_t maxArea = 0;
mDrawingState.traverse([&, compositionDisplay = compositionDisplay](Layer* layer) {
const auto layerFe = layer->getCompositionEngineLayerFE();
if (layer->isVisible() && compositionDisplay->includesLayer(layerFe)) {
if (isHdrLayer(layer)) {
const auto* outputLayer =
compositionDisplay->getOutputLayerForLayer(layerFe);
if (outputLayer) {
info.numberOfHdrLayers++;
const auto displayFrame = outputLayer->getState().displayFrame;
const int32_t area = displayFrame.width() * displayFrame.height();
if (area > maxArea) {
maxArea = area;
info.maxW = displayFrame.width();
info.maxH = displayFrame.height();
}
}
}
}
});
listener->dispatchHdrLayerInfo(info);
}
}
mSomeDataspaceChanged = false;
mVisibleRegionsWereDirtyThisFrame = false;
mTransactionCallbackInvoker.addPresentFence(mPreviousPresentFences[0].fence);
mTransactionCallbackInvoker.sendCallbacks(false /* onCommitOnly */);
mTransactionCallbackInvoker.clearCompletedTransactions();
if (display && display->isInternal() && display->getPowerMode() == hal::PowerMode::ON &&
mPreviousPresentFences[0].fenceTime->isValid()) {
mScheduler->addPresentFence(mPreviousPresentFences[0].fenceTime);
}
const bool isDisplayConnected =
display && getHwComposer().isConnected(display->getPhysicalId());
if (!hasSyncFramework) {
if (isDisplayConnected && display->isPoweredOn()) {
mScheduler->enableHardwareVsync();
}
}
if (mAnimCompositionPending) {
mAnimCompositionPending = false;
if (mPreviousPresentFences[0].fenceTime->isValid()) {
mAnimFrameTracker.setActualPresentFence(mPreviousPresentFences[0].fenceTime);
} else if (isDisplayConnected) {
// The HWC doesn't support present fences, so use the refresh
// timestamp instead.
const nsecs_t presentTime = display->getRefreshTimestamp();
mAnimFrameTracker.setActualPresentTime(presentTime);
}
mAnimFrameTracker.advanceFrame();
}
mTimeStats->incrementTotalFrames();
mTimeStats->setPresentFenceGlobal(mPreviousPresentFences[0].fenceTime);
const size_t sfConnections = mScheduler->getEventThreadConnectionCount(mSfConnectionHandle);
const size_t appConnections = mScheduler->getEventThreadConnectionCount(mAppConnectionHandle);
mTimeStats->recordDisplayEventConnectionCount(sfConnections + appConnections);
if (isDisplayConnected && !display->isPoweredOn()) {
getRenderEngine().cleanupPostRender();
return;
}
nsecs_t currentTime = systemTime();
if (mHasPoweredOff) {
mHasPoweredOff = false;
} else {
nsecs_t elapsedTime = currentTime - getBE().mLastSwapTime;
size_t numPeriods = static_cast<size_t>(elapsedTime / stats.vsyncPeriod);
if (numPeriods < SurfaceFlingerBE::NUM_BUCKETS - 1) {
getBE().mFrameBuckets[numPeriods] += elapsedTime;
} else {
getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1] += elapsedTime;
}
getBE().mTotalTime += elapsedTime;
}
getBE().mLastSwapTime = currentTime;
// Cleanup any outstanding resources due to rendering a prior frame.
getRenderEngine().cleanupPostRender();
{
std::lock_guard lock(mTexturePoolMutex);
if (mTexturePool.size() < mTexturePoolSize) {
const size_t refillCount = mTexturePoolSize - mTexturePool.size();
const size_t offset = mTexturePool.size();
mTexturePool.resize(mTexturePoolSize);
getRenderEngine().genTextures(refillCount, mTexturePool.data() + offset);
ATRACE_INT("TexturePoolSize", mTexturePool.size());
} else if (mTexturePool.size() > mTexturePoolSize) {
const size_t deleteCount = mTexturePool.size() - mTexturePoolSize;
const size_t offset = mTexturePoolSize;
getRenderEngine().deleteTextures(deleteCount, mTexturePool.data() + offset);
mTexturePool.resize(mTexturePoolSize);
ATRACE_INT("TexturePoolSize", mTexturePool.size());
}
}
// Even though ATRACE_INT64 already checks if tracing is enabled, it doesn't prevent the
// side-effect of getTotalSize(), so we check that again here
if (ATRACE_ENABLED()) {
// getTotalSize returns the total number of buffers that were allocated by SurfaceFlinger
ATRACE_INT64("Total Buffer Size", GraphicBufferAllocator::get().getTotalSize());
}
}
FloatRect SurfaceFlinger::getMaxDisplayBounds() {
const ui::Size maxSize = [this] {
ftl::FakeGuard guard(mStateLock);
// The LayerTraceGenerator tool runs without displays.
if (mDisplays.empty()) return ui::Size{5000, 5000};
return std::accumulate(mDisplays.begin(), mDisplays.end(), ui::kEmptySize,
[](ui::Size size, const auto& pair) -> ui::Size {
const auto& display = pair.second;
return {std::max(size.getWidth(), display->getWidth()),
std::max(size.getHeight(), display->getHeight())};
});
}();
// Ignore display bounds for now since they will be computed later. Use a large Rect bound
// to ensure it's bigger than an actual display will be.
const float xMax = maxSize.getWidth() * 10.f;
const float yMax = maxSize.getHeight() * 10.f;
return {-xMax, -yMax, xMax, yMax};
}
void SurfaceFlinger::computeLayerBounds() {
const FloatRect maxBounds = getMaxDisplayBounds();
for (const auto& layer : mDrawingState.layersSortedByZ) {
layer->computeBounds(maxBounds, ui::Transform(), 0.f /* shadowRadius */);
}
}
void SurfaceFlinger::postFrame() {
const auto display = FTL_FAKE_GUARD(mStateLock, getDefaultDisplayDeviceLocked());
if (display && getHwComposer().isConnected(display->getPhysicalId())) {
uint32_t flipCount = display->getPageFlipCount();
if (flipCount % LOG_FRAME_STATS_PERIOD == 0) {
logFrameStats();
}
}
}
void SurfaceFlinger::commitTransactions() {
ATRACE_CALL();
// Keep a copy of the drawing state (that is going to be overwritten
// by commitTransactionsLocked) outside of mStateLock so that the side
// effects of the State assignment don't happen with mStateLock held,
// which can cause deadlocks.
State drawingState(mDrawingState);
Mutex::Autolock lock(mStateLock);
mDebugInTransaction = systemTime();
// Here we're guaranteed that some transaction flags are set
// so we can call commitTransactionsLocked unconditionally.
// We clear the flags with mStateLock held to guarantee that
// mCurrentState won't change until the transaction is committed.
modulateVsync(&VsyncModulator::onTransactionCommit);
commitTransactionsLocked(clearTransactionFlags(eTransactionMask));
mDebugInTransaction = 0;
}
std::pair<DisplayModes, DisplayModePtr> SurfaceFlinger::loadDisplayModes(
PhysicalDisplayId displayId) const {
std::vector<HWComposer::HWCDisplayMode> hwcModes;
std::optional<hal::HWDisplayId> activeModeHwcId;
int attempt = 0;
constexpr int kMaxAttempts = 3;
do {
hwcModes = getHwComposer().getModes(displayId);
activeModeHwcId = getHwComposer().getActiveMode(displayId);
LOG_ALWAYS_FATAL_IF(!activeModeHwcId, "HWC returned no active mode");
const auto isActiveMode = [activeModeHwcId](const HWComposer::HWCDisplayMode& mode) {
return mode.hwcId == *activeModeHwcId;
};
if (std::any_of(hwcModes.begin(), hwcModes.end(), isActiveMode)) {
break;
}
} while (++attempt < kMaxAttempts);
LOG_ALWAYS_FATAL_IF(attempt == kMaxAttempts,
"After %d attempts HWC still returns an active mode which is not"
" supported. Active mode ID = %" PRIu64 ". Supported modes = %s",
kMaxAttempts, *activeModeHwcId, base::Join(hwcModes, ", ").c_str());
DisplayModes oldModes;
if (const auto token = getPhysicalDisplayTokenLocked(displayId)) {
oldModes = getDisplayDeviceLocked(token)->getSupportedModes();
}
ui::DisplayModeId nextModeId = 1 +
std::accumulate(oldModes.begin(), oldModes.end(), static_cast<ui::DisplayModeId>(-1),
[](ui::DisplayModeId max, const auto& pair) {
return std::max(max, pair.first.value());
});
DisplayModes newModes;
for (const auto& hwcMode : hwcModes) {
const DisplayModeId id{nextModeId++};
newModes.try_emplace(id,
DisplayMode::Builder(hwcMode.hwcId)
.setId(id)
.setPhysicalDisplayId(displayId)
.setResolution({hwcMode.width, hwcMode.height})
.setVsyncPeriod(hwcMode.vsyncPeriod)
.setDpiX(hwcMode.dpiX)
.setDpiY(hwcMode.dpiY)
.setGroup(hwcMode.configGroup)
.build());
}
const bool sameModes =
std::equal(newModes.begin(), newModes.end(), oldModes.begin(), oldModes.end(),
[](const auto& lhs, const auto& rhs) {
return equalsExceptDisplayModeId(*lhs.second, *rhs.second);
});
// Keep IDs if modes have not changed.
const auto& modes = sameModes ? oldModes : newModes;
const DisplayModePtr activeMode =
std::find_if(modes.begin(), modes.end(), [activeModeHwcId](const auto& pair) {
return pair.second->getHwcId() == activeModeHwcId;
})->second;
return {modes, activeMode};
}
void SurfaceFlinger::processDisplayHotplugEventsLocked() {
for (const auto& event : mPendingHotplugEvents) {
std::optional<DisplayIdentificationInfo> info =
getHwComposer().onHotplug(event.hwcDisplayId, event.connection);
if (!info) {
continue;
}
const auto displayId = info->id;
const auto token = mPhysicalDisplayTokens.get(displayId);
if (event.connection == hal::Connection::CONNECTED) {
auto [supportedModes, activeMode] = loadDisplayModes(displayId);
if (!token) {
ALOGV("Creating display %s", to_string(displayId).c_str());
DisplayDeviceState state;
state.physical = {.id = displayId,
.type = getHwComposer().getDisplayConnectionType(displayId),
.hwcDisplayId = event.hwcDisplayId,
.deviceProductInfo = std::move(info->deviceProductInfo),
.supportedModes = std::move(supportedModes),
.activeMode = std::move(activeMode)};
state.isSecure = true; // All physical displays are currently considered secure.
state.displayName = std::move(info->name);
sp<IBinder> token = new BBinder();
mCurrentState.displays.add(token, state);
mPhysicalDisplayTokens.try_emplace(displayId, std::move(token));
mInterceptor->saveDisplayCreation(state);
} else {
ALOGV("Recreating display %s", to_string(displayId).c_str());
auto& state = mCurrentState.displays.editValueFor(token->get());
state.sequenceId = DisplayDeviceState{}.sequenceId; // Generate new sequenceId.
state.physical->supportedModes = std::move(supportedModes);
state.physical->activeMode = std::move(activeMode);
if (getHwComposer().updatesDeviceProductInfoOnHotplugReconnect()) {
state.physical->deviceProductInfo = std::move(info->deviceProductInfo);
}
}
} else {
ALOGV("Removing display %s", to_string(displayId).c_str());
if (const ssize_t index = mCurrentState.displays.indexOfKey(token->get()); index >= 0) {
const DisplayDeviceState& state = mCurrentState.displays.valueAt(index);
mInterceptor->saveDisplayDeletion(state.sequenceId);
mCurrentState.displays.removeItemsAt(index);
}
mPhysicalDisplayTokens.erase(displayId);
}
processDisplayChangesLocked();
}
mPendingHotplugEvents.clear();
}
void SurfaceFlinger::dispatchDisplayHotplugEvent(PhysicalDisplayId displayId, bool connected) {
ALOGI("Dispatching display hotplug event displayId=%s, connected=%d",
to_string(displayId).c_str(), connected);
mScheduler->onHotplugReceived(mAppConnectionHandle, displayId, connected);
mScheduler->onHotplugReceived(mSfConnectionHandle, displayId, connected);
}
sp<DisplayDevice> SurfaceFlinger::setupNewDisplayDeviceInternal(
const wp<IBinder>& displayToken,
std::shared_ptr<compositionengine::Display> compositionDisplay,
const DisplayDeviceState& state,
const sp<compositionengine::DisplaySurface>& displaySurface,
const sp<IGraphicBufferProducer>& producer) {
DisplayDeviceCreationArgs creationArgs(this, getHwComposer(), displayToken, compositionDisplay);
creationArgs.sequenceId = state.sequenceId;
creationArgs.isSecure = state.isSecure;
creationArgs.displaySurface = displaySurface;
creationArgs.hasWideColorGamut = false;
creationArgs.supportedPerFrameMetadata = 0;
if (const auto& physical = state.physical) {
creationArgs.connectionType = physical->type;
creationArgs.supportedModes = physical->supportedModes;
creationArgs.activeModeId = physical->activeMode->getId();
const auto [kernelIdleTimerController, idleTimerTimeoutMs] =
getKernelIdleTimerProperties(compositionDisplay->getId());
scheduler::RefreshRateConfigs::Config config =
{.enableFrameRateOverride = android::sysprop::enable_frame_rate_override(false),
.frameRateMultipleThreshold =
base::GetIntProperty("debug.sf.frame_rate_multiple_threshold", 0),
.idleTimerTimeout = idleTimerTimeoutMs,
.kernelIdleTimerController = kernelIdleTimerController};
creationArgs.refreshRateConfigs =
std::make_shared<scheduler::RefreshRateConfigs>(creationArgs.supportedModes,
creationArgs.activeModeId, config);
}
if (const auto id = PhysicalDisplayId::tryCast(compositionDisplay->getId())) {
creationArgs.isPrimary = id == getPrimaryDisplayIdLocked();
if (useColorManagement) {
std::vector<ColorMode> modes = getHwComposer().getColorModes(*id);
for (ColorMode colorMode : modes) {
if (isWideColorMode(colorMode)) {
creationArgs.hasWideColorGamut = true;
}
std::vector<RenderIntent> renderIntents =
getHwComposer().getRenderIntents(*id, colorMode);
creationArgs.hwcColorModes.emplace(colorMode, renderIntents);
}
}
}
if (const auto id = HalDisplayId::tryCast(compositionDisplay->getId())) {
getHwComposer().getHdrCapabilities(*id, &creationArgs.hdrCapabilities);
creationArgs.supportedPerFrameMetadata = getHwComposer().getSupportedPerFrameMetadata(*id);
}
auto nativeWindowSurface = getFactory().createNativeWindowSurface(producer);
auto nativeWindow = nativeWindowSurface->getNativeWindow();
creationArgs.nativeWindow = nativeWindow;
// Make sure that composition can never be stalled by a virtual display
// consumer that isn't processing buffers fast enough. We have to do this
// here, in case the display is composed entirely by HWC.
if (state.isVirtual()) {
nativeWindow->setSwapInterval(nativeWindow.get(), 0);
}
creationArgs.physicalOrientation =
getPhysicalDisplayOrientation(compositionDisplay->getId(), creationArgs.isPrimary);
ALOGV("Display Orientation: %s", toCString(creationArgs.physicalOrientation));
// virtual displays are always considered enabled
creationArgs.initialPowerMode =
state.isVirtual() ? std::make_optional(hal::PowerMode::ON) : std::nullopt;
sp<DisplayDevice> display = getFactory().createDisplayDevice(creationArgs);
nativeWindowSurface->preallocateBuffers();
ColorMode defaultColorMode = ColorMode::NATIVE;
Dataspace defaultDataSpace = Dataspace::UNKNOWN;
if (display->hasWideColorGamut()) {
defaultColorMode = ColorMode::SRGB;
defaultDataSpace = Dataspace::V0_SRGB;
}
display->getCompositionDisplay()->setColorProfile(
compositionengine::Output::ColorProfile{defaultColorMode, defaultDataSpace,
RenderIntent::COLORIMETRIC,
Dataspace::UNKNOWN});
if (!state.isVirtual()) {
FTL_FAKE_GUARD(kMainThreadContext,
display->setActiveMode(state.physical->activeMode->getId()));
display->setDeviceProductInfo(state.physical->deviceProductInfo);
}
display->setLayerStack(state.layerStack);
display->setProjection(state.orientation, state.layerStackSpaceRect,
state.orientedDisplaySpaceRect);
display->setDisplayName(state.displayName);
display->setFlags(state.flags);
return display;
}
void SurfaceFlinger::processDisplayAdded(const wp<IBinder>& displayToken,
const DisplayDeviceState& state) {
#ifdef QCOM_UM_FAMILY
bool canAllocateHwcForVDS = false;
#else
bool canAllocateHwcForVDS = true;
#endif
ui::Size resolution(0, 0);
ui::PixelFormat pixelFormat = static_cast<ui::PixelFormat>(PIXEL_FORMAT_UNKNOWN);
if (state.physical) {
resolution = state.physical->activeMode->getResolution();
pixelFormat = static_cast<ui::PixelFormat>(PIXEL_FORMAT_RGBA_8888);
} else if (state.surface != nullptr) {
int status = state.surface->query(NATIVE_WINDOW_WIDTH, &resolution.width);
ALOGE_IF(status != NO_ERROR, "Unable to query width (%d)", status);
status = state.surface->query(NATIVE_WINDOW_HEIGHT, &resolution.height);
ALOGE_IF(status != NO_ERROR, "Unable to query height (%d)", status);
int format;
status = state.surface->query(NATIVE_WINDOW_FORMAT, &format);
ALOGE_IF(status != NO_ERROR, "Unable to query format (%d)", status);
pixelFormat = static_cast<ui::PixelFormat>(format);
#ifdef QCOM_UM_FAMILY
// Check if VDS is allowed to use HWC
size_t maxVirtualDisplaySize = getHwComposer().getMaxVirtualDisplayDimension();
if (maxVirtualDisplaySize == 0 || ((uint64_t)resolution.width <= maxVirtualDisplaySize &&
(uint64_t)resolution.height <= maxVirtualDisplaySize)) {
uint64_t usage = 0;
// Replace with native_window_get_consumer_usage ?
status = state .surface->getConsumerUsage(&usage);
ALOGW_IF(status != NO_ERROR, "Unable to query usage (%d)", status);
if ((status == NO_ERROR) && canAllocateHwcDisplayIdForVDS(usage)) {
canAllocateHwcForVDS = true;
}
}
#endif
} else {
// Virtual displays without a surface are dormant:
// they have external state (layer stack, projection,
// etc.) but no internal state (i.e. a DisplayDevice).
return;
}
compositionengine::DisplayCreationArgsBuilder builder;
if (const auto& physical = state.physical) {
builder.setId(physical->id);
} else {
builder.setId(acquireVirtualDisplay(resolution, pixelFormat, canAllocateHwcForVDS));
}
builder.setPixels(resolution);
builder.setIsSecure(state.isSecure);
builder.setPowerAdvisor(mPowerAdvisor.get());
builder.setName(state.displayName);
auto compositionDisplay = getCompositionEngine().createDisplay(builder.build());
compositionDisplay->setLayerCachingEnabled(mLayerCachingEnabled);
sp<compositionengine::DisplaySurface> displaySurface;
sp<IGraphicBufferProducer> producer;
sp<IGraphicBufferProducer> bqProducer;
sp<IGraphicBufferConsumer> bqConsumer;
getFactory().createBufferQueue(&bqProducer, &bqConsumer, /*consumerIsSurfaceFlinger =*/false);
if (state.isVirtual()) {
const auto displayId = VirtualDisplayId::tryCast(compositionDisplay->getId());
LOG_FATAL_IF(!displayId);
auto surface = sp<VirtualDisplaySurface>::make(getHwComposer(), *displayId, state.surface,
bqProducer, bqConsumer, state.displayName,
state.isSecure);
displaySurface = surface;
producer = std::move(surface);
} else {
ALOGE_IF(state.surface != nullptr,
"adding a supported display, but rendering "
"surface is provided (%p), ignoring it",
state.surface.get());
const auto displayId = PhysicalDisplayId::tryCast(compositionDisplay->getId());
LOG_FATAL_IF(!displayId);
displaySurface =
sp<FramebufferSurface>::make(getHwComposer(), *displayId, bqConsumer,
state.physical->activeMode->getResolution(),
ui::Size(maxGraphicsWidth, maxGraphicsHeight));
producer = bqProducer;
}
LOG_FATAL_IF(!displaySurface);
auto display = setupNewDisplayDeviceInternal(displayToken, std::move(compositionDisplay), state,
displaySurface, producer);
if (display->isPrimary()) {
initScheduler(display);
}
if (!state.isVirtual()) {
dispatchDisplayHotplugEvent(display->getPhysicalId(), true);
}
mDisplays.try_emplace(displayToken, std::move(display));
}
void SurfaceFlinger::processDisplayRemoved(const wp<IBinder>& displayToken) {
auto display = getDisplayDeviceLocked(displayToken);
if (display) {
display->disconnect();
if (display->isVirtual()) {
releaseVirtualDisplay(display->getVirtualId());
} else {
dispatchDisplayHotplugEvent(display->getPhysicalId(), false);
}
}
mDisplays.erase(displayToken);
if (display && display->isVirtual()) {
static_cast<void>(mScheduler->schedule([display = std::move(display)] {
// Destroy the display without holding the mStateLock.
// This is a temporary solution until we can manage transaction queues without
// holding the mStateLock.
// With blast, the IGBP that is passed to the VirtualDisplaySurface is owned by the
// client. When the IGBP is disconnected, its buffer cache in SF will be cleared
// via SurfaceComposerClient::doUncacheBufferTransaction. This call from the client
// ends up running on the main thread causing a deadlock since setTransactionstate
// will try to acquire the mStateLock. Instead we extend the lifetime of
// DisplayDevice and destroy it in the main thread without holding the mStateLock.
// The display will be disconnected and removed from the mDisplays list so it will
// not be accessible.
}));
}
}
void SurfaceFlinger::processDisplayChanged(const wp<IBinder>& displayToken,
const DisplayDeviceState& currentState,
const DisplayDeviceState& drawingState) {
const sp<IBinder> currentBinder = IInterface::asBinder(currentState.surface);
const sp<IBinder> drawingBinder = IInterface::asBinder(drawingState.surface);
// Recreate the DisplayDevice if the surface or sequence ID changed.
if (currentBinder != drawingBinder || currentState.sequenceId != drawingState.sequenceId) {
getRenderEngine().cleanFramebufferCache();
if (const auto display = getDisplayDeviceLocked(displayToken)) {
display->disconnect();
if (display->isVirtual()) {
releaseVirtualDisplay(display->getVirtualId());
}
}
mDisplays.erase(displayToken);
if (const auto& physical = currentState.physical) {
getHwComposer().allocatePhysicalDisplay(physical->hwcDisplayId, physical->id);
}
processDisplayAdded(displayToken, currentState);
if (currentState.physical) {
const auto display = getDisplayDeviceLocked(displayToken);
setPowerModeInternal(display, hal::PowerMode::ON);
// TODO(b/175678251) Call a listener instead.
if (currentState.physical->hwcDisplayId == getHwComposer().getPrimaryHwcDisplayId()) {
updateInternalDisplayVsyncLocked(display);
}
}
return;
}
if (const auto display = getDisplayDeviceLocked(displayToken)) {
if (currentState.layerStack != drawingState.layerStack) {
display->setLayerStack(currentState.layerStack);
}
if (currentState.flags != drawingState.flags) {
display->setFlags(currentState.flags);
}
if ((currentState.orientation != drawingState.orientation) ||
(currentState.layerStackSpaceRect != drawingState.layerStackSpaceRect) ||
(currentState.orientedDisplaySpaceRect != drawingState.orientedDisplaySpaceRect)) {
display->setProjection(currentState.orientation, currentState.layerStackSpaceRect,
currentState.orientedDisplaySpaceRect);
if (isDisplayActiveLocked(display)) {
mActiveDisplayTransformHint = display->getTransformHint();
}
}
if (currentState.width != drawingState.width ||
currentState.height != drawingState.height) {
display->setDisplaySize(currentState.width, currentState.height);
if (isDisplayActiveLocked(display)) {
onActiveDisplaySizeChanged(display);
}
}
}
}
void SurfaceFlinger::updateInternalDisplayVsyncLocked(const sp<DisplayDevice>& activeDisplay) {
mVsyncConfiguration->reset();
const Fps refreshRate = activeDisplay->refreshRateConfigs().getActiveMode()->getFps();
updatePhaseConfiguration(refreshRate);
mRefreshRateStats->setRefreshRate(refreshRate);
}
void SurfaceFlinger::processDisplayChangesLocked() {
// here we take advantage of Vector's copy-on-write semantics to
// improve performance by skipping the transaction entirely when
// know that the lists are identical
const KeyedVector<wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
const KeyedVector<wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
if (!curr.isIdenticalTo(draw)) {
mVisibleRegionsDirty = true;
// find the displays that were removed
// (ie: in drawing state but not in current state)
// also handle displays that changed
// (ie: displays that are in both lists)
for (size_t i = 0; i < draw.size(); i++) {
const wp<IBinder>& displayToken = draw.keyAt(i);
const ssize_t j = curr.indexOfKey(displayToken);
if (j < 0) {
// in drawing state but not in current state
processDisplayRemoved(displayToken);
} else {
// this display is in both lists. see if something changed.
const DisplayDeviceState& currentState = curr[j];
const DisplayDeviceState& drawingState = draw[i];
processDisplayChanged(displayToken, currentState, drawingState);
}
}
// find displays that were added
// (ie: in current state but not in drawing state)
for (size_t i = 0; i < curr.size(); i++) {
const wp<IBinder>& displayToken = curr.keyAt(i);
if (draw.indexOfKey(displayToken) < 0) {
processDisplayAdded(displayToken, curr[i]);
}
}
}
mDrawingState.displays = mCurrentState.displays;
}
void SurfaceFlinger::commitTransactionsLocked(uint32_t transactionFlags) {
// Commit display transactions.
const bool displayTransactionNeeded = transactionFlags & eDisplayTransactionNeeded;
if (displayTransactionNeeded) {
processDisplayChangesLocked();
processDisplayHotplugEventsLocked();
}
mForceTransactionDisplayChange = displayTransactionNeeded;
if (mSomeChildrenChanged) {
mVisibleRegionsDirty = true;
mSomeChildrenChanged = false;
}
// Update transform hint.
if (transactionFlags & (eTransformHintUpdateNeeded | eDisplayTransactionNeeded)) {
// Layers and/or displays have changed, so update the transform hint for each layer.
//
// NOTE: we do this here, rather than when presenting the display so that
// the hint is set before we acquire a buffer from the surface texture.
//
// NOTE: layer transactions have taken place already, so we use their
// drawing state. However, SurfaceFlinger's own transaction has not
// happened yet, so we must use the current state layer list
// (soon to become the drawing state list).
//
sp<const DisplayDevice> hintDisplay;
ui::LayerStack layerStack;
mCurrentState.traverse([&](Layer* layer) REQUIRES(mStateLock) {
// NOTE: we rely on the fact that layers are sorted by
// layerStack first (so we don't have to traverse the list
// of displays for every layer).
if (const auto filter = layer->getOutputFilter(); layerStack != filter.layerStack) {
layerStack = filter.layerStack;
hintDisplay = nullptr;
// Find the display that includes the layer.
for (const auto& [token, display] : mDisplays) {
if (!display->getCompositionDisplay()->includesLayer(filter)) {
continue;
}
// Pick the primary display if another display mirrors the layer.
if (hintDisplay) {
hintDisplay = nullptr;
break;
}
hintDisplay = display;
}
}
if (!hintDisplay) {
// NOTE: TEMPORARY FIX ONLY. Real fix should cause layers to
// redraw after transform hint changes. See bug 8508397.
// could be null when this layer is using a layerStack
// that is not visible on any display. Also can occur at
// screen off/on times.
hintDisplay = getDefaultDisplayDeviceLocked();
}
layer->updateTransformHint(hintDisplay->getTransformHint());
});
}
if (mLayersAdded) {
mLayersAdded = false;
// Layers have been added.
mVisibleRegionsDirty = true;
}
// some layers might have been removed, so
// we need to update the regions they're exposing.
if (mLayersRemoved) {
mLayersRemoved = false;
mVisibleRegionsDirty = true;
mDrawingState.traverseInZOrder([&](Layer* layer) {
if (mLayersPendingRemoval.indexOf(layer) >= 0) {
// this layer is not visible anymore
Region visibleReg;
visibleReg.set(layer->getScreenBounds());
invalidateLayerStack(layer, visibleReg);
}
});
}
doCommitTransactions();
signalSynchronousTransactions(CountDownLatch::eSyncTransaction);
mAnimTransactionPending = false;
}
void SurfaceFlinger::updateInputFlinger() {
ATRACE_CALL();
if (!mInputFlinger) {
return;
}
std::vector<WindowInfo> windowInfos;
std::vector<DisplayInfo> displayInfos;
bool updateWindowInfo = false;
if (mVisibleRegionsDirty || mInputInfoChanged) {
mInputInfoChanged = false;
updateWindowInfo = true;
buildWindowInfos(windowInfos, displayInfos);
}
if (!updateWindowInfo && mInputWindowCommands.empty()) {
return;
}
BackgroundExecutor::getInstance().sendCallbacks({[updateWindowInfo,
windowInfos = std::move(windowInfos),
displayInfos = std::move(displayInfos),
inputWindowCommands =
std::move(mInputWindowCommands),
inputFlinger = mInputFlinger, this]() {
ATRACE_NAME("BackgroundExecutor::updateInputFlinger");
if (updateWindowInfo) {
mWindowInfosListenerInvoker->windowInfosChanged(windowInfos, displayInfos,
inputWindowCommands.syncInputWindows);
} else if (inputWindowCommands.syncInputWindows) {
// If the caller requested to sync input windows, but there are no
// changes to input windows, notify immediately.
windowInfosReported();
}
for (const auto& focusRequest : inputWindowCommands.focusRequests) {
inputFlinger->setFocusedWindow(focusRequest);
}
}});
mInputWindowCommands.clear();
}
void SurfaceFlinger::persistDisplayBrightness(bool needsComposite) {
const bool supportsDisplayBrightnessCommand = getHwComposer().getComposer()->isSupported(
Hwc2::Composer::OptionalFeature::DisplayBrightnessCommand);
if (!supportsDisplayBrightnessCommand) {
return;
}
for (const auto& [_, display] : FTL_FAKE_GUARD(mStateLock, mDisplays)) {
if (const auto brightness = display->getStagedBrightness(); brightness) {
if (!needsComposite) {
const status_t error =
getHwComposer()
.setDisplayBrightness(display->getPhysicalId(), *brightness,
display->getCompositionDisplay()
->getState()
.displayBrightnessNits,
Hwc2::Composer::DisplayBrightnessOptions{
.applyImmediately = true})
.get();
ALOGE_IF(error != NO_ERROR,
"Error setting display brightness for display %s: %d (%s)",
display->getDebugName().c_str(), error, strerror(error));
}
display->persistBrightness(needsComposite);
}
}
}
void SurfaceFlinger::buildWindowInfos(std::vector<WindowInfo>& outWindowInfos,
std::vector<DisplayInfo>& outDisplayInfos) {
ftl::SmallMap<ui::LayerStack, DisplayDevice::InputInfo, 4> displayInputInfos;
for (const auto& [_, display] : FTL_FAKE_GUARD(mStateLock, mDisplays)) {
const auto layerStack = display->getLayerStack();
const auto info = display->getInputInfo();
const auto [it, emplaced] = displayInputInfos.try_emplace(layerStack, info);
if (emplaced) {
continue;
}
// If the layer stack is mirrored on multiple displays, the first display that is configured
// to receive input takes precedence.
auto& otherInfo = it->second;
if (otherInfo.receivesInput) {
ALOGW_IF(display->receivesInput(),
"Multiple displays claim to accept input for the same layer stack: %u",
layerStack.id);
} else {
otherInfo = info;
}
}
static size_t sNumWindowInfos = 0;
outWindowInfos.reserve(sNumWindowInfos);
sNumWindowInfos = 0;
mDrawingState.traverseInReverseZOrder([&](Layer* layer) {
if (!layer->needsInputInfo()) return;
const auto opt = displayInputInfos.get(layer->getLayerStack(),
[](const auto& info) -> Layer::InputDisplayArgs {
return {&info.transform, info.isSecure};
});
outWindowInfos.push_back(layer->fillInputInfo(opt.value_or(Layer::InputDisplayArgs{})));
});
sNumWindowInfos = outWindowInfos.size();
outDisplayInfos.reserve(displayInputInfos.size());
for (const auto& [_, info] : displayInputInfos) {
outDisplayInfos.push_back(info.info);
}
}
void SurfaceFlinger::updateCursorAsync() {
compositionengine::CompositionRefreshArgs refreshArgs;
for (const auto& [_, display] : FTL_FAKE_GUARD(mStateLock, mDisplays)) {
if (HalDisplayId::tryCast(display->getId())) {
refreshArgs.outputs.push_back(display->getCompositionDisplay());
}
}
mCompositionEngine->updateCursorAsync(refreshArgs);
}
void SurfaceFlinger::requestDisplayMode(DisplayModePtr mode, DisplayModeEvent event) {
// If this is called from the main thread mStateLock must be locked before
// Currently the only way to call this function from the main thread is from
// Scheduler::chooseRefreshRateForContent
ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId);
const auto display = getDefaultDisplayDeviceLocked();
if (!display || mBootStage != BootStage::FINISHED) {
return;
}
ATRACE_CALL();
if (display->isInternal() && !isDisplayActiveLocked(display)) {
ALOGV("%s(%s): Inactive display", __func__, to_string(display->getId()).c_str());
return;
}
if (!display->refreshRateConfigs().isModeAllowed(mode->getId())) {
ALOGV("%s(%s): Disallowed mode %d", __func__, to_string(display->getId()).c_str(),
mode->getId().value());
return;
}
setDesiredActiveMode({std::move(mode), event});
}
void SurfaceFlinger::triggerOnFrameRateOverridesChanged() {
PhysicalDisplayId displayId = [&]() {
ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId);
return getDefaultDisplayDeviceLocked()->getPhysicalId();
}();
mScheduler->onFrameRateOverridesChanged(mAppConnectionHandle, displayId);
}
void SurfaceFlinger::initScheduler(const sp<DisplayDevice>& display) {
if (mScheduler) {
// If the scheduler is already initialized, this means that we received
// a hotplug(connected) on the primary display. In that case we should
// update the scheduler with the most recent display information.
ALOGW("Scheduler already initialized, updating instead");
mScheduler->setRefreshRateConfigs(display->holdRefreshRateConfigs());
return;
}
const auto currRefreshRate = display->getActiveMode()->getFps();
mRefreshRateStats = std::make_unique<scheduler::RefreshRateStats>(*mTimeStats, currRefreshRate,
hal::PowerMode::OFF);
mVsyncConfiguration = getFactory().createVsyncConfiguration(currRefreshRate);
mVsyncModulator = sp<VsyncModulator>::make(mVsyncConfiguration->getCurrentConfigs());
using Feature = scheduler::Feature;
scheduler::FeatureFlags features;
if (sysprop::use_content_detection_for_refresh_rate(false)) {
features |= Feature::kContentDetection;
}
if (base::GetBoolProperty("debug.sf.show_predicted_vsync"s, false)) {
features |= Feature::kTracePredictedVsync;
}
if (!base::GetBoolProperty("debug.sf.vsync_reactor_ignore_present_fences"s, false) &&
!getHwComposer().hasCapability(Capability::PRESENT_FENCE_IS_NOT_RELIABLE)) {
features |= Feature::kPresentFences;
}
mScheduler = std::make_unique<scheduler::Scheduler>(static_cast<ICompositor&>(*this),
static_cast<ISchedulerCallback&>(*this),
features);
{
auto configs = display->holdRefreshRateConfigs();
if (configs->kernelIdleTimerController().has_value()) {
features |= Feature::kKernelIdleTimer;
}
mScheduler->createVsyncSchedule(features);
mScheduler->setRefreshRateConfigs(std::move(configs));
}
setVsyncEnabled(false);
mScheduler->startTimers();
const auto configs = mVsyncConfiguration->getCurrentConfigs();
const nsecs_t vsyncPeriod = currRefreshRate.getPeriodNsecs();
mAppConnectionHandle =
mScheduler->createConnection("app", mFrameTimeline->getTokenManager(),
/*workDuration=*/configs.late.appWorkDuration,
/*readyDuration=*/configs.late.sfWorkDuration,
impl::EventThread::InterceptVSyncsCallback());
mSfConnectionHandle =
mScheduler->createConnection("appSf", mFrameTimeline->getTokenManager(),
/*workDuration=*/std::chrono::nanoseconds(vsyncPeriod),
/*readyDuration=*/configs.late.sfWorkDuration,
[this](nsecs_t timestamp) {
mInterceptor->saveVSyncEvent(timestamp);
});
mScheduler->initVsync(mScheduler->getVsyncDispatch(), *mFrameTimeline->getTokenManager(),
configs.late.sfWorkDuration);
mRegionSamplingThread =
new RegionSamplingThread(*this, RegionSamplingThread::EnvironmentTimingTunables());
mFpsReporter = new FpsReporter(*mFrameTimeline, *this);
// Dispatch a mode change request for the primary display on scheduler
// initialization, so that the EventThreads always contain a reference to a
// prior configuration.
//
// This is a bit hacky, but this avoids a back-pointer into the main SF
// classes from EventThread, and there should be no run-time binder cost
// anyway since there are no connected apps at this point.
mScheduler->onPrimaryDisplayModeChanged(mAppConnectionHandle, display->getActiveMode());
}
void SurfaceFlinger::updatePhaseConfiguration(const Fps& refreshRate) {
mVsyncConfiguration->setRefreshRateFps(refreshRate);
setVsyncConfig(mVsyncModulator->setVsyncConfigSet(mVsyncConfiguration->getCurrentConfigs()),
refreshRate.getPeriodNsecs());
}
void SurfaceFlinger::setVsyncConfig(const VsyncModulator::VsyncConfig& config,
nsecs_t vsyncPeriod) {
mScheduler->setDuration(mAppConnectionHandle,
/*workDuration=*/config.appWorkDuration,
/*readyDuration=*/config.sfWorkDuration);
mScheduler->setDuration(mSfConnectionHandle,
/*workDuration=*/std::chrono::nanoseconds(vsyncPeriod),
/*readyDuration=*/config.sfWorkDuration);
mScheduler->setDuration(config.sfWorkDuration);
}
void SurfaceFlinger::doCommitTransactions() {
ATRACE_CALL();
if (!mLayersPendingRemoval.isEmpty()) {
// Notify removed layers now that they can't be drawn from
for (const auto& l : mLayersPendingRemoval) {
// Ensure any buffers set to display on any children are released.
if (l->isRemovedFromCurrentState()) {
l->latchAndReleaseBuffer();
}
// If a layer has a parent, we allow it to out-live it's handle
// with the idea that the parent holds a reference and will eventually
// be cleaned up. However no one cleans up the top-level so we do so
// here.
if (l->isAtRoot()) {
l->setIsAtRoot(false);
mCurrentState.layersSortedByZ.remove(l);
}
// If the layer has been removed and has no parent, then it will not be reachable
// when traversing layers on screen. Add the layer to the offscreenLayers set to
// ensure we can copy its current to drawing state.
if (!l->getParent()) {
mOffscreenLayers.emplace(l.get());
}
}
mLayersPendingRemoval.clear();
}
// If this transaction is part of a window animation then the next frame
// we composite should be considered an animation as well.
mAnimCompositionPending = mAnimTransactionPending;
mDrawingState = mCurrentState;
// clear the "changed" flags in current state
mCurrentState.colorMatrixChanged = false;
if (mVisibleRegionsDirty) {
for (const auto& rootLayer : mDrawingState.layersSortedByZ) {
rootLayer->commitChildList();
}
}
commitOffscreenLayers();
if (mNumClones > 0) {
mDrawingState.traverse([&](Layer* layer) { layer->updateMirrorInfo(); });
}
}
void SurfaceFlinger::commitOffscreenLayers() {
for (Layer* offscreenLayer : mOffscreenLayers) {
offscreenLayer->traverse(LayerVector::StateSet::Drawing, [](Layer* layer) {
if (layer->clearTransactionFlags(eTransactionNeeded)) {
layer->doTransaction(0);
layer->commitChildList();
}
});
}
}
void SurfaceFlinger::invalidateLayerStack(const sp<const Layer>& layer, const Region& dirty) {
for (const auto& [token, displayDevice] : FTL_FAKE_GUARD(mStateLock, mDisplays)) {
auto display = displayDevice->getCompositionDisplay();
if (display->includesLayer(layer->getOutputFilter())) {
display->editState().dirtyRegion.orSelf(dirty);
}
}
}
bool SurfaceFlinger::latchBuffers() {
ATRACE_CALL();
const nsecs_t latchTime = systemTime();
bool visibleRegions = false;
bool frameQueued = false;
bool newDataLatched = false;
const nsecs_t expectedPresentTime = mExpectedPresentTime.load();
// Store the set of layers that need updates. This set must not change as
// buffers are being latched, as this could result in a deadlock.
// Example: Two producers share the same command stream and:
// 1.) Layer 0 is latched
// 2.) Layer 0 gets a new frame
// 2.) Layer 1 gets a new frame
// 3.) Layer 1 is latched.
// Display is now waiting on Layer 1's frame, which is behind layer 0's
// second frame. But layer 0's second frame could be waiting on display.
mDrawingState.traverse([&](Layer* layer) {
if (layer->clearTransactionFlags(eTransactionNeeded) || mForceTransactionDisplayChange) {
const uint32_t flags = layer->doTransaction(0);
if (flags & Layer::eVisibleRegion) {
mVisibleRegionsDirty = true;
}
}
if (layer->hasReadyFrame()) {
frameQueued = true;
if (layer->shouldPresentNow(expectedPresentTime)) {
mLayersWithQueuedFrames.emplace(layer);
} else {
ATRACE_NAME("!layer->shouldPresentNow()");
layer->useEmptyDamage();
}
} else {
layer->useEmptyDamage();
}
});
mForceTransactionDisplayChange = false;
// The client can continue submitting buffers for offscreen layers, but they will not
// be shown on screen. Therefore, we need to latch and release buffers of offscreen
// layers to ensure dequeueBuffer doesn't block indefinitely.
for (Layer* offscreenLayer : mOffscreenLayers) {
offscreenLayer->traverse(LayerVector::StateSet::Drawing,
[&](Layer* l) { l->latchAndReleaseBuffer(); });
}
if (!mLayersWithQueuedFrames.empty()) {
// mStateLock is needed for latchBuffer as LayerRejecter::reject()
// writes to Layer current state. See also b/119481871
Mutex::Autolock lock(mStateLock);
for (const auto& layer : mLayersWithQueuedFrames) {
if (layer->latchBuffer(visibleRegions, latchTime, expectedPresentTime)) {
mLayersPendingRefresh.push_back(layer);
newDataLatched = true;
}
layer->useSurfaceDamage();
}
}
mVisibleRegionsDirty |= visibleRegions;
// If we will need to wake up at some time in the future to deal with a
// queued frame that shouldn't be displayed during this vsync period, wake
// up during the next vsync period to check again.
if (frameQueued && (mLayersWithQueuedFrames.empty() || !newDataLatched)) {
scheduleCommit(FrameHint::kNone);
}
// enter boot animation on first buffer latch
if (CC_UNLIKELY(mBootStage == BootStage::BOOTLOADER && newDataLatched)) {
ALOGI("Enter boot animation");
mBootStage = BootStage::BOOTANIMATION;
}
if (mNumClones > 0) {
mDrawingState.traverse([&](Layer* layer) { layer->updateCloneBufferInfo(); });
}
// Only continue with the refresh if there is actually new work to do
return !mLayersWithQueuedFrames.empty() && newDataLatched;
}
status_t SurfaceFlinger::addClientLayer(const sp<Client>& client, const sp<IBinder>& handle,
const sp<Layer>& layer, const wp<Layer>& parent,
bool addToRoot, uint32_t* outTransformHint) {
if (mNumLayers >= ISurfaceComposer::MAX_LAYERS) {
ALOGE("AddClientLayer failed, mNumLayers (%zu) >= MAX_LAYERS (%zu)", mNumLayers.load(),
ISurfaceComposer::MAX_LAYERS);
static_cast<void>(mScheduler->schedule([=] {
ALOGE("Dumping random sampling of on-screen layers: ");
mDrawingState.traverse([&](Layer *layer) {
// Aim to dump about 200 layers to avoid totally trashing
// logcat. On the other hand, if there really are 4096 layers
// something has gone totally wrong its probably the most
// useful information in logcat.
if (rand() % 20 == 13) {
ALOGE("Layer: %s", layer->getName().c_str());
}
});
for (Layer* offscreenLayer : mOffscreenLayers) {
if (rand() % 20 == 13) {
ALOGE("Offscreen-layer: %s", offscreenLayer->getName().c_str());
}
}
}));
return NO_MEMORY;
}
{
std::scoped_lock<std::mutex> lock(mCreatedLayersLock);
mCreatedLayers.emplace_back(layer, parent, addToRoot);
}
layer->updateTransformHint(mActiveDisplayTransformHint);
if (outTransformHint) {
*outTransformHint = mActiveDisplayTransformHint;
}
// attach this layer to the client
if (client != nullptr) {
client->attachLayer(handle, layer);
}
setTransactionFlags(eTransactionNeeded);
return NO_ERROR;
}
uint32_t SurfaceFlinger::getTransactionFlags() const {
return mTransactionFlags;
}
uint32_t SurfaceFlinger::clearTransactionFlags(uint32_t mask) {
return mTransactionFlags.fetch_and(~mask) & mask;
}
void SurfaceFlinger::setTransactionFlags(uint32_t mask, TransactionSchedule schedule,
const sp<IBinder>& applyToken, FrameHint frameHint) {
modulateVsync(&VsyncModulator::setTransactionSchedule, schedule, applyToken);
if (const bool scheduled = mTransactionFlags.fetch_or(mask) & mask; !scheduled) {
scheduleCommit(frameHint);
}
}
bool SurfaceFlinger::stopTransactionProcessing(
const std::unordered_set<sp<IBinder>, SpHash<IBinder>>&
applyTokensWithUnsignaledTransactions) const {
if (enableLatchUnsignaledConfig == LatchUnsignaledConfig::AutoSingleLayer) {
// if we are in LatchUnsignaledConfig::AutoSingleLayer
// then we should have only one applyToken for processing.
// so we can stop further transactions on this applyToken.
return !applyTokensWithUnsignaledTransactions.empty();
}
return false;
}
int SurfaceFlinger::flushUnsignaledPendingTransactionQueues(
std::vector<TransactionState>& transactions,
std::unordered_map<sp<IBinder>, uint64_t, SpHash<IBinder>>& bufferLayersReadyToPresent,
std::unordered_set<sp<IBinder>, SpHash<IBinder>>& applyTokensWithUnsignaledTransactions) {
return flushPendingTransactionQueues(transactions, bufferLayersReadyToPresent,
applyTokensWithUnsignaledTransactions,
/*tryApplyUnsignaled*/ true);
}
int SurfaceFlinger::flushPendingTransactionQueues(
std::vector<TransactionState>& transactions,
std::unordered_map<sp<IBinder>, uint64_t, SpHash<IBinder>>& bufferLayersReadyToPresent,
std::unordered_set<sp<IBinder>, SpHash<IBinder>>& applyTokensWithUnsignaledTransactions,
bool tryApplyUnsignaled) {
int transactionsPendingBarrier = 0;
auto it = mPendingTransactionQueues.begin();
while (it != mPendingTransactionQueues.end()) {
auto& [applyToken, transactionQueue] = *it;
while (!transactionQueue.empty()) {
if (stopTransactionProcessing(applyTokensWithUnsignaledTransactions)) {
ATRACE_NAME("stopTransactionProcessing");
break;
}
auto& transaction = transactionQueue.front();
const auto ready =
transactionIsReadyToBeApplied(transaction,
transaction.frameTimelineInfo,
transaction.isAutoTimestamp,
transaction.desiredPresentTime,
transaction.originUid, transaction.states,
bufferLayersReadyToPresent, transactions.size(),
tryApplyUnsignaled);
ATRACE_INT("TransactionReadiness", static_cast<int>(ready));
if (ready == TransactionReadiness::NotReady) {
setTransactionFlags(eTransactionFlushNeeded);
break;
}
if (ready == TransactionReadiness::NotReadyBarrier) {
transactionsPendingBarrier++;
setTransactionFlags(eTransactionFlushNeeded);
break;
}
transaction.traverseStatesWithBuffers([&](const layer_state_t& state) {
const bool frameNumberChanged = state.bufferData->flags.test(
BufferData::BufferDataChange::frameNumberChanged);
if (frameNumberChanged) {
bufferLayersReadyToPresent[state.surface] = state.bufferData->frameNumber;
} else {
// Barrier function only used for BBQ which always includes a frame number
bufferLayersReadyToPresent[state.surface] =
std::numeric_limits<uint64_t>::max();
}
});
const bool appliedUnsignaled = (ready == TransactionReadiness::ReadyUnsignaled);
if (appliedUnsignaled) {
applyTokensWithUnsignaledTransactions.insert(transaction.applyToken);
}
transactions.emplace_back(std::move(transaction));
transactionQueue.pop();
}
if (transactionQueue.empty()) {
it = mPendingTransactionQueues.erase(it);
mTransactionQueueCV.broadcast();
} else {
it = std::next(it, 1);
}
}
return transactionsPendingBarrier;
}
bool SurfaceFlinger::flushTransactionQueues(int64_t vsyncId) {
// to prevent onHandleDestroyed from being called while the lock is held,
// we must keep a copy of the transactions (specifically the composer
// states) around outside the scope of the lock
std::vector<TransactionState> transactions;
// Layer handles that have transactions with buffers that are ready to be applied.
std::unordered_map<sp<IBinder>, uint64_t, SpHash<IBinder>> bufferLayersReadyToPresent;
std::unordered_set<sp<IBinder>, SpHash<IBinder>> applyTokensWithUnsignaledTransactions;
{
Mutex::Autolock _l(mStateLock);
{
Mutex::Autolock _l(mQueueLock);
int lastTransactionsPendingBarrier = 0;
int transactionsPendingBarrier = 0;
// First collect transactions from the pending transaction queues.
// We are not allowing unsignaled buffers here as we want to
// collect all the transactions from applyTokens that are ready first.
transactionsPendingBarrier =
flushPendingTransactionQueues(transactions, bufferLayersReadyToPresent,
applyTokensWithUnsignaledTransactions, /*tryApplyUnsignaled*/ false);
// Second, collect transactions from the transaction queue.
// Here as well we are not allowing unsignaled buffers for the same
// reason as above.
while (!mTransactionQueue.empty()) {
auto& transaction = mTransactionQueue.front();
const bool pendingTransactions =
mPendingTransactionQueues.find(transaction.applyToken) !=
mPendingTransactionQueues.end();
const auto ready = [&]() REQUIRES(mStateLock) {
if (pendingTransactions) {
ATRACE_NAME("pendingTransactions");
return TransactionReadiness::NotReady;
}
return transactionIsReadyToBeApplied(transaction, transaction.frameTimelineInfo,
transaction.isAutoTimestamp,
transaction.desiredPresentTime,
transaction.originUid, transaction.states,
bufferLayersReadyToPresent,
transactions.size(),
/*tryApplyUnsignaled*/ false);
}();
ATRACE_INT("TransactionReadiness", static_cast<int>(ready));
if (ready != TransactionReadiness::Ready) {
if (ready == TransactionReadiness::NotReadyBarrier) {
transactionsPendingBarrier++;
}
mPendingTransactionQueues[transaction.applyToken].push(std::move(transaction));
} else {
transaction.traverseStatesWithBuffers([&](const layer_state_t& state) {
const bool frameNumberChanged = state.bufferData->flags.test(
BufferData::BufferDataChange::frameNumberChanged);
if (frameNumberChanged) {
bufferLayersReadyToPresent[state.surface] = state.bufferData->frameNumber;
} else {
// Barrier function only used for BBQ which always includes a frame number.
// This value only used for barrier logic.
bufferLayersReadyToPresent[state.surface] =
std::numeric_limits<uint64_t>::max();
}
});
transactions.emplace_back(std::move(transaction));
}
mTransactionQueue.pop_front();
ATRACE_INT("TransactionQueue", mTransactionQueue.size());
}
// Transactions with a buffer pending on a barrier may be on a different applyToken
// than the transaction which satisfies our barrier. In fact this is the exact use case
// that the primitive is designed for. This means we may first process
// the barrier dependent transaction, determine it ineligible to complete
// and then satisfy in a later inner iteration of flushPendingTransactionQueues.
// The barrier dependent transaction was eligible to be presented in this frame
// but we would have prevented it without case. To fix this we continually
// loop through flushPendingTransactionQueues until we perform an iteration
// where the number of transactionsPendingBarrier doesn't change. This way
// we can continue to resolve dependency chains of barriers as far as possible.
while (lastTransactionsPendingBarrier != transactionsPendingBarrier) {
lastTransactionsPendingBarrier = transactionsPendingBarrier;
transactionsPendingBarrier =
flushPendingTransactionQueues(transactions, bufferLayersReadyToPresent,
applyTokensWithUnsignaledTransactions,
/*tryApplyUnsignaled*/ false);
}
// We collected all transactions that could apply without latching unsignaled buffers.
// If we are allowing latch unsignaled of some form, now it's the time to go over the
// transactions that were not applied and try to apply them unsignaled.
if (enableLatchUnsignaledConfig != LatchUnsignaledConfig::Disabled) {
flushUnsignaledPendingTransactionQueues(transactions, bufferLayersReadyToPresent,
applyTokensWithUnsignaledTransactions);
}
return applyTransactions(transactions, vsyncId);
}
}
}
bool SurfaceFlinger::applyTransactions(std::vector<TransactionState>& transactions,
int64_t vsyncId) {
bool needsTraversal = false;
// Now apply all transactions.
for (auto& transaction : transactions) {
needsTraversal |=
applyTransactionState(transaction.frameTimelineInfo, transaction.states,
transaction.displays, transaction.flags,
transaction.inputWindowCommands,
transaction.desiredPresentTime, transaction.isAutoTimestamp,
transaction.buffer, transaction.postTime,
transaction.permissions, transaction.hasListenerCallbacks,
transaction.listenerCallbacks, transaction.originPid,
transaction.originUid, transaction.id);
if (transaction.transactionCommittedSignal) {
mTransactionCommittedSignals.emplace_back(
std::move(transaction.transactionCommittedSignal));
}
}
if (mTransactionTracing) {
mTransactionTracing->addCommittedTransactions(transactions, vsyncId);
}
return needsTraversal;
}
bool SurfaceFlinger::transactionFlushNeeded() {
Mutex::Autolock _l(mQueueLock);
return !mPendingTransactionQueues.empty() || !mTransactionQueue.empty();
}
bool SurfaceFlinger::frameIsEarly(nsecs_t expectedPresentTime, int64_t vsyncId) const {
// The amount of time SF can delay a frame if it is considered early based
// on the VsyncModulator::VsyncConfig::appWorkDuration
constexpr static std::chrono::nanoseconds kEarlyLatchMaxThreshold = 100ms;
const auto currentVsyncPeriod = mScheduler->getDisplayStatInfo(systemTime()).vsyncPeriod;
const auto earlyLatchVsyncThreshold = currentVsyncPeriod / 2;
const auto prediction = mFrameTimeline->getTokenManager()->getPredictionsForToken(vsyncId);
if (!prediction.has_value()) {
return false;
}
if (std::abs(prediction->presentTime - expectedPresentTime) >=
kEarlyLatchMaxThreshold.count()) {
return false;
}
return prediction->presentTime >= expectedPresentTime &&
prediction->presentTime - expectedPresentTime >= earlyLatchVsyncThreshold;
}
bool SurfaceFlinger::shouldLatchUnsignaled(const sp<Layer>& layer, const layer_state_t& state,
size_t numStates, size_t totalTXapplied) const {
if (enableLatchUnsignaledConfig == LatchUnsignaledConfig::Disabled) {
ALOGV("%s: false (LatchUnsignaledConfig::Disabled)", __func__);
return false;
}
if (enableLatchUnsignaledConfig == LatchUnsignaledConfig::Always) {
ALOGV("%s: true (LatchUnsignaledConfig::Always)", __func__);
return true;
}
// We only want to latch unsignaled when a single layer is updated in this
// transaction (i.e. not a blast sync transaction).
if (numStates != 1) {
ALOGV("%s: false (numStates=%zu)", __func__, numStates);
return false;
}
if (enableLatchUnsignaledConfig == LatchUnsignaledConfig::AutoSingleLayer) {
if (totalTXapplied > 0) {
ALOGV("%s: false (LatchUnsignaledConfig::AutoSingleLayer; totalTXapplied=%zu)",
__func__, totalTXapplied);
return false;
}
// We don't want to latch unsignaled if are in early / client composition
// as it leads to jank due to RenderEngine waiting for unsignaled buffer
// or window animations being slow.
const auto isDefaultVsyncConfig = mVsyncModulator->isVsyncConfigDefault();
if (!isDefaultVsyncConfig) {
ALOGV("%s: false (LatchUnsignaledConfig::AutoSingleLayer; !isDefaultVsyncConfig)",
__func__);
return false;
}
}
if (!layer->simpleBufferUpdate(state)) {
ALOGV("%s: false (!simpleBufferUpdate)", __func__);
return false;
}
ALOGV("%s: true", __func__);
return true;
}
auto SurfaceFlinger::transactionIsReadyToBeApplied(TransactionState& transaction,
const FrameTimelineInfo& info, bool isAutoTimestamp, int64_t desiredPresentTime,
uid_t originUid, const Vector<ComposerState>& states,
const std::unordered_map<
sp<IBinder>, uint64_t, SpHash<IBinder>>& bufferLayersReadyToPresent,
size_t totalTXapplied, bool tryApplyUnsignaled) const -> TransactionReadiness {
ATRACE_FORMAT("transactionIsReadyToBeApplied vsyncId: %" PRId64, info.vsyncId);
const nsecs_t expectedPresentTime = mExpectedPresentTime.load();
// Do not present if the desiredPresentTime has not passed unless it is more than one second
// in the future. We ignore timestamps more than 1 second in the future for stability reasons.
if (!isAutoTimestamp && desiredPresentTime >= expectedPresentTime &&
desiredPresentTime < expectedPresentTime + s2ns(1)) {
ATRACE_NAME("not current");
return TransactionReadiness::NotReady;
}
if (!mScheduler->isVsyncValid(expectedPresentTime, originUid)) {
ATRACE_NAME("!isVsyncValid");
return TransactionReadiness::NotReady;
}
// If the client didn't specify desiredPresentTime, use the vsyncId to determine the expected
// present time of this transaction.
if (isAutoTimestamp && frameIsEarly(expectedPresentTime, info.vsyncId)) {
ATRACE_NAME("frameIsEarly");
return TransactionReadiness::NotReady;
}
bool fenceUnsignaled = false;
auto queueProcessTime = systemTime();
for (const ComposerState& state : states) {
const layer_state_t& s = state.state;
sp<Layer> layer = nullptr;
if (s.surface) {
layer = fromHandle(s.surface).promote();
} else if (s.hasBufferChanges()) {
ALOGW("Transaction with buffer, but no Layer?");
continue;
}
if (!layer) {
continue;
}
if (s.hasBufferChanges() && s.bufferData->hasBarrier &&
((layer->getDrawingState().frameNumber) < s.bufferData->barrierFrameNumber)) {
const bool willApplyBarrierFrame =
(bufferLayersReadyToPresent.find(s.surface) != bufferLayersReadyToPresent.end()) &&
(bufferLayersReadyToPresent.at(s.surface) >= s.bufferData->barrierFrameNumber);
if (!willApplyBarrierFrame) {
ATRACE_NAME("NotReadyBarrier");
return TransactionReadiness::NotReadyBarrier;
}
}
const bool allowLatchUnsignaled = tryApplyUnsignaled &&
shouldLatchUnsignaled(layer, s, states.size(), totalTXapplied);
ATRACE_FORMAT("%s allowLatchUnsignaled=%s", layer->getName().c_str(),
allowLatchUnsignaled ? "true" : "false");
const bool acquireFenceChanged = s.bufferData &&
s.bufferData->flags.test(BufferData::BufferDataChange::fenceChanged) &&
s.bufferData->acquireFence;
fenceUnsignaled = fenceUnsignaled ||
(acquireFenceChanged &&
s.bufferData->acquireFence->getStatus() == Fence::Status::Unsignaled);
if (fenceUnsignaled && !allowLatchUnsignaled) {
if (!transaction.sentFenceTimeoutWarning &&
queueProcessTime - transaction.queueTime > std::chrono::nanoseconds(4s).count()) {
transaction.sentFenceTimeoutWarning = true;
auto listener = s.bufferData->releaseBufferListener;
if (listener) {
listener->onTransactionQueueStalled();
}
}
ATRACE_NAME("fence unsignaled");
return TransactionReadiness::NotReady;
}
if (s.hasBufferChanges()) {
// If backpressure is enabled and we already have a buffer to commit, keep the
// transaction in the queue.
const bool hasPendingBuffer = bufferLayersReadyToPresent.find(s.surface) !=
bufferLayersReadyToPresent.end();
if (layer->backpressureEnabled() && hasPendingBuffer && isAutoTimestamp) {
ATRACE_NAME("hasPendingBuffer");
return TransactionReadiness::NotReady;
}
}
}
return fenceUnsignaled ? TransactionReadiness::ReadyUnsignaled : TransactionReadiness::Ready;
}
void SurfaceFlinger::queueTransaction(TransactionState& state) {
state.queueTime = systemTime();
Mutex::Autolock lock(mQueueLock);
// Generate a CountDownLatch pending state if this is a synchronous transaction.
if ((state.flags & eSynchronous) || state.inputWindowCommands.syncInputWindows) {
state.transactionCommittedSignal = std::make_shared<CountDownLatch>(
(state.inputWindowCommands.syncInputWindows
? (CountDownLatch::eSyncInputWindows | CountDownLatch::eSyncTransaction)
: CountDownLatch::eSyncTransaction));
}
mTransactionQueue.emplace_back(state);
ATRACE_INT("TransactionQueue", mTransactionQueue.size());
const auto schedule = [](uint32_t flags) {
if (flags & eEarlyWakeupEnd) return TransactionSchedule::EarlyEnd;
if (flags & eEarlyWakeupStart) return TransactionSchedule::EarlyStart;
return TransactionSchedule::Late;
}(state.flags);
const auto frameHint = state.isFrameActive() ? FrameHint::kActive : FrameHint::kNone;
setTransactionFlags(eTransactionFlushNeeded, schedule, state.applyToken, frameHint);
}
void SurfaceFlinger::waitForSynchronousTransaction(
const CountDownLatch& transactionCommittedSignal) {
// applyTransactionState is called on the main SF thread. While a given process may wish
// to wait on synchronous transactions, the main SF thread should apply the transaction and
// set the value to notify this after committed.
if (!transactionCommittedSignal.wait_until(
std::chrono::nanoseconds(mAnimationTransactionTimeout))) {
ALOGE("setTransactionState timed out!");
}
}
void SurfaceFlinger::signalSynchronousTransactions(const uint32_t flag) {
for (auto it = mTransactionCommittedSignals.begin();
it != mTransactionCommittedSignals.end();) {
if ((*it)->countDown(flag)) {
it = mTransactionCommittedSignals.erase(it);
} else {
it++;
}
}
}
status_t SurfaceFlinger::setTransactionState(
const FrameTimelineInfo& frameTimelineInfo, const Vector<ComposerState>& states,
const Vector<DisplayState>& displays, uint32_t flags, const sp<IBinder>& applyToken,
const InputWindowCommands& inputWindowCommands, int64_t desiredPresentTime,
bool isAutoTimestamp, const client_cache_t& uncacheBuffer, bool hasListenerCallbacks,
const std::vector<ListenerCallbacks>& listenerCallbacks, uint64_t transactionId) {
ATRACE_CALL();
uint32_t permissions =
callingThreadHasUnscopedSurfaceFlingerAccess() ?
layer_state_t::Permission::ACCESS_SURFACE_FLINGER : 0;
// Avoid checking for rotation permissions if the caller already has ACCESS_SURFACE_FLINGER
// permissions.
if ((permissions & layer_state_t::Permission::ACCESS_SURFACE_FLINGER) ||
callingThreadHasRotateSurfaceFlingerAccess()) {
permissions |= layer_state_t::Permission::ROTATE_SURFACE_FLINGER;
}
if (callingThreadHasInternalSystemWindowAccess()) {
permissions |= layer_state_t::Permission::INTERNAL_SYSTEM_WINDOW;
}
if (!(permissions & layer_state_t::Permission::ACCESS_SURFACE_FLINGER) &&
(flags & (eEarlyWakeupStart | eEarlyWakeupEnd))) {
ALOGE("Only WindowManager is allowed to use eEarlyWakeup[Start|End] flags");
flags &= ~(eEarlyWakeupStart | eEarlyWakeupEnd);
}
const int64_t postTime = systemTime();
IPCThreadState* ipc = IPCThreadState::self();
const int originPid = ipc->getCallingPid();
const int originUid = ipc->getCallingUid();
TransactionState state{frameTimelineInfo, states,
displays, flags,
applyToken, inputWindowCommands,
desiredPresentTime, isAutoTimestamp,
uncacheBuffer, postTime,
permissions, hasListenerCallbacks,
listenerCallbacks, originPid,
originUid, transactionId};
// Check for incoming buffer updates and increment the pending buffer count.
state.traverseStatesWithBuffers([&](const layer_state_t& state) {
mBufferCountTracker.increment(state.surface->localBinder());
});
if (mTransactionTracing) {
mTransactionTracing->addQueuedTransaction(state);
}
queueTransaction(state);
// Check the pending state to make sure the transaction is synchronous.
if (state.transactionCommittedSignal) {
waitForSynchronousTransaction(*state.transactionCommittedSignal);
}
return NO_ERROR;
}
bool SurfaceFlinger::applyTransactionState(const FrameTimelineInfo& frameTimelineInfo,
Vector<ComposerState>& states,
Vector<DisplayState>& displays, uint32_t flags,
const InputWindowCommands& inputWindowCommands,
const int64_t desiredPresentTime, bool isAutoTimestamp,
const client_cache_t& uncacheBuffer,
const int64_t postTime, uint32_t permissions,
bool hasListenerCallbacks,
const std::vector<ListenerCallbacks>& listenerCallbacks,
int originPid, int originUid, uint64_t transactionId) {
uint32_t transactionFlags = 0;
for (DisplayState& display : displays) {
display.sanitize(permissions);
transactionFlags |= setDisplayStateLocked(display);
}
// start and end registration for listeners w/ no surface so they can get their callback. Note
// that listeners with SurfaceControls will start registration during setClientStateLocked
// below.
for (const auto& listener : listenerCallbacks) {
mTransactionCallbackInvoker.addEmptyTransaction(listener);
}
uint32_t clientStateFlags = 0;
for (int i = 0; i < states.size(); i++) {
ComposerState& state = states.editItemAt(i);
clientStateFlags |= setClientStateLocked(frameTimelineInfo, state, desiredPresentTime,
isAutoTimestamp, postTime, permissions);
if ((flags & eAnimation) && state.state.surface) {
if (const auto layer = fromHandle(state.state.surface).promote()) {
using LayerUpdateType = scheduler::LayerHistory::LayerUpdateType;
mScheduler->recordLayerHistory(layer.get(),
isAutoTimestamp ? 0 : desiredPresentTime,
LayerUpdateType::AnimationTX);
}
}
}
transactionFlags |= clientStateFlags;
if (permissions & layer_state_t::Permission::ACCESS_SURFACE_FLINGER) {
transactionFlags |= addInputWindowCommands(inputWindowCommands);
} else if (!inputWindowCommands.empty()) {
ALOGE("Only privileged callers are allowed to send input commands.");
}
if (uncacheBuffer.isValid()) {
ClientCache::getInstance().erase(uncacheBuffer);
}
// If a synchronous transaction is explicitly requested without any changes, force a transaction
// anyway. This can be used as a flush mechanism for previous async transactions.
// Empty animation transaction can be used to simulate back-pressure, so also force a
// transaction for empty animation transactions.
if (transactionFlags == 0 &&
((flags & eSynchronous) || (flags & eAnimation))) {
transactionFlags = eTransactionNeeded;
}
bool needsTraversal = false;
if (transactionFlags) {
if (mInterceptor->isEnabled()) {
mInterceptor->saveTransaction(states, mCurrentState.displays, displays, flags,
originPid, originUid, transactionId);
}
// We are on the main thread, we are about to preform a traversal. Clear the traversal bit
// so we don't have to wake up again next frame to preform an unnecessary traversal.
if (transactionFlags & eTraversalNeeded) {
transactionFlags = transactionFlags & (~eTraversalNeeded);
needsTraversal = true;
}
if (transactionFlags) {
setTransactionFlags(transactionFlags);
}
if (flags & eAnimation) {
mAnimTransactionPending = true;
}
}
return needsTraversal;
}
uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s) {
const ssize_t index = mCurrentState.displays.indexOfKey(s.token);
if (index < 0) return 0;
uint32_t flags = 0;
DisplayDeviceState& state = mCurrentState.displays.editValueAt(index);
const uint32_t what = s.what;
if (what & DisplayState::eSurfaceChanged) {
if (IInterface::asBinder(state.surface) != IInterface::asBinder(s.surface)) {
state.surface = s.surface;
flags |= eDisplayTransactionNeeded;
}
}
if (what & DisplayState::eLayerStackChanged) {
if (state.layerStack != s.layerStack) {
state.layerStack = s.layerStack;
flags |= eDisplayTransactionNeeded;
}
}
if (what & DisplayState::eFlagsChanged) {
if (state.flags != s.flags) {
state.flags = s.flags;
flags |= eDisplayTransactionNeeded;
}
}
if (what & DisplayState::eDisplayProjectionChanged) {
if (state.orientation != s.orientation) {
state.orientation = s.orientation;
flags |= eDisplayTransactionNeeded;
}
if (state.orientedDisplaySpaceRect != s.orientedDisplaySpaceRect) {
state.orientedDisplaySpaceRect = s.orientedDisplaySpaceRect;
flags |= eDisplayTransactionNeeded;
}
if (state.layerStackSpaceRect != s.layerStackSpaceRect) {
state.layerStackSpaceRect = s.layerStackSpaceRect;
flags |= eDisplayTransactionNeeded;
}
}
if (what & DisplayState::eDisplaySizeChanged) {
if (state.width != s.width) {
state.width = s.width;
flags |= eDisplayTransactionNeeded;
}
if (state.height != s.height) {
state.height = s.height;
flags |= eDisplayTransactionNeeded;
}
}
return flags;
}
bool SurfaceFlinger::callingThreadHasUnscopedSurfaceFlingerAccess(bool usePermissionCache) {
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_GRAPHICS && uid != AID_SYSTEM) &&
(usePermissionCache ? !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)
: !checkPermission(sAccessSurfaceFlinger, pid, uid))) {
return false;
}
return true;
}
uint32_t SurfaceFlinger::setClientStateLocked(const FrameTimelineInfo& frameTimelineInfo,
ComposerState& composerState,
int64_t desiredPresentTime, bool isAutoTimestamp,
int64_t postTime, uint32_t permissions) {
layer_state_t& s = composerState.state;
s.sanitize(permissions);
std::vector<ListenerCallbacks> filteredListeners;
for (auto& listener : s.listeners) {
// Starts a registration but separates the callback ids according to callback type. This
// allows the callback invoker to send on latch callbacks earlier.
// note that startRegistration will not re-register if the listener has
// already be registered for a prior surface control
ListenerCallbacks onCommitCallbacks = listener.filter(CallbackId::Type::ON_COMMIT);
if (!onCommitCallbacks.callbackIds.empty()) {
filteredListeners.push_back(onCommitCallbacks);
}
ListenerCallbacks onCompleteCallbacks = listener.filter(CallbackId::Type::ON_COMPLETE);
if (!onCompleteCallbacks.callbackIds.empty()) {
filteredListeners.push_back(onCompleteCallbacks);
}
}
const uint64_t what = s.what;
uint32_t flags = 0;
sp<Layer> layer = nullptr;
if (s.surface) {
layer = fromHandle(s.surface).promote();
} else {
// The client may provide us a null handle. Treat it as if the layer was removed.
ALOGW("Attempt to set client state with a null layer handle");
}
if (layer == nullptr) {
for (auto& [listener, callbackIds] : s.listeners) {
mTransactionCallbackInvoker.registerUnpresentedCallbackHandle(
new CallbackHandle(listener, callbackIds, s.surface));
}
return 0;
}
// Only set by BLAST adapter layers
if (what & layer_state_t::eProducerDisconnect) {
layer->onDisconnect();
}
if (what & layer_state_t::ePositionChanged) {
if (layer->setPosition(s.x, s.y)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eLayerChanged) {
// NOTE: index needs to be calculated before we update the state
const auto& p = layer->getParent();
if (p == nullptr) {
ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
if (layer->setLayer(s.z) && idx >= 0) {
mCurrentState.layersSortedByZ.removeAt(idx);
mCurrentState.layersSortedByZ.add(layer);
// we need traversal (state changed)
// AND transaction (list changed)
flags |= eTransactionNeeded|eTraversalNeeded;
}
} else {
if (p->setChildLayer(layer, s.z)) {
flags |= eTransactionNeeded|eTraversalNeeded;
}
}
}
if (what & layer_state_t::eRelativeLayerChanged) {
// NOTE: index needs to be calculated before we update the state
const auto& p = layer->getParent();
const auto& relativeHandle = s.relativeLayerSurfaceControl ?
s.relativeLayerSurfaceControl->getHandle() : nullptr;
if (p == nullptr) {
ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
if (layer->setRelativeLayer(relativeHandle, s.z) &&
idx >= 0) {
mCurrentState.layersSortedByZ.removeAt(idx);
mCurrentState.layersSortedByZ.add(layer);
// we need traversal (state changed)
// AND transaction (list changed)
flags |= eTransactionNeeded|eTraversalNeeded;
}
} else {
if (p->setChildRelativeLayer(layer, relativeHandle, s.z)) {
flags |= eTransactionNeeded|eTraversalNeeded;
}
}
}
if (what & layer_state_t::eSizeChanged) {
if (layer->setSize(s.w, s.h)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eAlphaChanged) {
if (layer->setAlpha(s.alpha))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eColorChanged) {
if (layer->setColor(s.color))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eColorTransformChanged) {
if (layer->setColorTransform(s.colorTransform)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eBackgroundColorChanged) {
if (layer->setBackgroundColor(s.color, s.bgColorAlpha, s.bgColorDataspace)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eMatrixChanged) {
if (layer->setMatrix(s.matrix)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eTransparentRegionChanged) {
if (layer->setTransparentRegionHint(s.transparentRegion))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eFlagsChanged) {
if (layer->setFlags(s.flags, s.mask)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eCornerRadiusChanged) {
if (layer->setCornerRadius(s.cornerRadius))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eBackgroundBlurRadiusChanged && mSupportsBlur) {
if (layer->setBackgroundBlurRadius(s.backgroundBlurRadius)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eBlurRegionsChanged) {
if (layer->setBlurRegions(s.blurRegions)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eLayerStackChanged) {
ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
// We only allow setting layer stacks for top level layers,
// everything else inherits layer stack from its parent.
if (layer->hasParent()) {
ALOGE("Attempt to set layer stack on layer with parent (%s) is invalid",
layer->getDebugName());
} else if (idx < 0) {
ALOGE("Attempt to set layer stack on layer without parent (%s) that "
"that also does not appear in the top level layer list. Something"
" has gone wrong.",
layer->getDebugName());
} else if (layer->setLayerStack(s.layerStack)) {
mCurrentState.layersSortedByZ.removeAt(idx);
mCurrentState.layersSortedByZ.add(layer);
// we need traversal (state changed)
// AND transaction (list changed)
flags |= eTransactionNeeded | eTraversalNeeded | eTransformHintUpdateNeeded;
}
}
if (what & layer_state_t::eTransformChanged) {
if (layer->setTransform(s.transform)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eTransformToDisplayInverseChanged) {
if (layer->setTransformToDisplayInverse(s.transformToDisplayInverse))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eCropChanged) {
if (layer->setCrop(s.crop)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eDataspaceChanged) {
if (layer->setDataspace(s.dataspace)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eHdrMetadataChanged) {
if (layer->setHdrMetadata(s.hdrMetadata)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eSurfaceDamageRegionChanged) {
if (layer->setSurfaceDamageRegion(s.surfaceDamageRegion)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eApiChanged) {
if (layer->setApi(s.api)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eSidebandStreamChanged) {
if (layer->setSidebandStream(s.sidebandStream)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eInputInfoChanged) {
layer->setInputInfo(*s.windowInfoHandle->getInfo());
flags |= eTraversalNeeded;
}
std::optional<nsecs_t> dequeueBufferTimestamp;
if (what & layer_state_t::eMetadataChanged) {
dequeueBufferTimestamp = s.metadata.getInt64(METADATA_DEQUEUE_TIME);
if (const int32_t gameMode = s.metadata.getInt32(METADATA_GAME_MODE, -1); gameMode != -1) {
// The transaction will be received on the Task layer and needs to be applied to all
// child layers. Child layers that are added at a later point will obtain the game mode
// info through addChild().
layer->setGameModeForTree(static_cast<GameMode>(gameMode));
}
if (layer->setMetadata(s.metadata)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eColorSpaceAgnosticChanged) {
if (layer->setColorSpaceAgnostic(s.colorSpaceAgnostic)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eShadowRadiusChanged) {
if (layer->setShadowRadius(s.shadowRadius)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eFrameRateSelectionPriority) {
if (layer->setFrameRateSelectionPriority(s.frameRateSelectionPriority)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eFrameRateChanged) {
const auto compatibility =
Layer::FrameRate::convertCompatibility(s.frameRateCompatibility);
const auto strategy =
Layer::FrameRate::convertChangeFrameRateStrategy(s.changeFrameRateStrategy);
if (layer->setFrameRate(
Layer::FrameRate(Fps::fromValue(s.frameRate), compatibility, strategy))) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eFixedTransformHintChanged) {
if (layer->setFixedTransformHint(s.fixedTransformHint)) {
flags |= eTraversalNeeded | eTransformHintUpdateNeeded;
}
}
if (what & layer_state_t::eAutoRefreshChanged) {
layer->setAutoRefresh(s.autoRefresh);
}
if (what & layer_state_t::eDimmingEnabledChanged) {
if (layer->setDimmingEnabled(s.dimmingEnabled)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eTrustedOverlayChanged) {
if (layer->setTrustedOverlay(s.isTrustedOverlay)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eStretchChanged) {
if (layer->setStretchEffect(s.stretchEffect)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eBufferCropChanged) {
if (layer->setBufferCrop(s.bufferCrop)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eDestinationFrameChanged) {
if (layer->setDestinationFrame(s.destinationFrame)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eDropInputModeChanged) {
if (layer->setDropInputMode(s.dropInputMode)) {
flags |= eTraversalNeeded;
mInputInfoChanged = true;
}
}
// This has to happen after we reparent children because when we reparent to null we remove
// child layers from current state and remove its relative z. If the children are reparented in
// the same transaction, then we have to make sure we reparent the children first so we do not
// lose its relative z order.
if (what & layer_state_t::eReparent) {
bool hadParent = layer->hasParent();
auto parentHandle = (s.parentSurfaceControlForChild)
? s.parentSurfaceControlForChild->getHandle()
: nullptr;
if (layer->reparent(parentHandle)) {
if (!hadParent) {
layer->setIsAtRoot(false);
mCurrentState.layersSortedByZ.remove(layer);
}
flags |= eTransactionNeeded | eTraversalNeeded;
}
}
std::vector<sp<CallbackHandle>> callbackHandles;
if ((what & layer_state_t::eHasListenerCallbacksChanged) && (!filteredListeners.empty())) {
for (auto& [listener, callbackIds] : filteredListeners) {
callbackHandles.emplace_back(new CallbackHandle(listener, callbackIds, s.surface));
}
}
if (what & layer_state_t::eBufferChanged) {
std::shared_ptr<renderengine::ExternalTexture> buffer =
getExternalTextureFromBufferData(*s.bufferData, layer->getDebugName());
if (layer->setBuffer(buffer, *s.bufferData, postTime, desiredPresentTime, isAutoTimestamp,
dequeueBufferTimestamp, frameTimelineInfo)) {
flags |= eTraversalNeeded;
}
} else if (frameTimelineInfo.vsyncId != FrameTimelineInfo::INVALID_VSYNC_ID) {
layer->setFrameTimelineVsyncForBufferlessTransaction(frameTimelineInfo, postTime);
}
if (layer->setTransactionCompletedListeners(callbackHandles)) flags |= eTraversalNeeded;
// Do not put anything that updates layer state or modifies flags after
// setTransactionCompletedListener
return flags;
}
uint32_t SurfaceFlinger::addInputWindowCommands(const InputWindowCommands& inputWindowCommands) {
bool hasChanges = mInputWindowCommands.merge(inputWindowCommands);
return hasChanges ? eTraversalNeeded : 0;
}
status_t SurfaceFlinger::mirrorLayer(const LayerCreationArgs& args,
const sp<IBinder>& mirrorFromHandle, sp<IBinder>* outHandle,
int32_t* outLayerId) {
if (!mirrorFromHandle) {
return NAME_NOT_FOUND;
}
sp<Layer> mirrorLayer;
sp<Layer> mirrorFrom;
{
Mutex::Autolock _l(mStateLock);
mirrorFrom = fromHandle(mirrorFromHandle).promote();
if (!mirrorFrom) {
return NAME_NOT_FOUND;
}
status_t result = createContainerLayer(args, outHandle, &mirrorLayer);
if (result != NO_ERROR) {
return result;
}
mirrorLayer->setClonedChild(mirrorFrom->createClone());
}
*outLayerId = mirrorLayer->sequence;
if (mTransactionTracing) {
mTransactionTracing->onMirrorLayerAdded((*outHandle)->localBinder(), mirrorLayer->sequence,
args.name, mirrorFrom->sequence);
}
return addClientLayer(args.client, *outHandle, mirrorLayer /* layer */, nullptr /* parent */,
false /* addToRoot */, nullptr /* outTransformHint */);
}
status_t SurfaceFlinger::createLayer(LayerCreationArgs& args, sp<IBinder>* outHandle,
const sp<IBinder>& parentHandle, int32_t* outLayerId,
const sp<Layer>& parentLayer, uint32_t* outTransformHint) {
ALOG_ASSERT(parentLayer == nullptr || parentHandle == nullptr,
"Expected only one of parentLayer or parentHandle to be non-null. "
"Programmer error?");
status_t result = NO_ERROR;
sp<Layer> layer;
switch (args.flags & ISurfaceComposerClient::eFXSurfaceMask) {
case ISurfaceComposerClient::eFXSurfaceBufferQueue:
case ISurfaceComposerClient::eFXSurfaceBufferState: {
result = createBufferStateLayer(args, outHandle, &layer);
std::atomic<int32_t>* pendingBufferCounter = layer->getPendingBufferCounter();
if (pendingBufferCounter) {
std::string counterName = layer->getPendingBufferCounterName();
mBufferCountTracker.add((*outHandle)->localBinder(), counterName,
pendingBufferCounter);
}
} break;
case ISurfaceComposerClient::eFXSurfaceEffect:
result = createEffectLayer(args, outHandle, &layer);
break;
case ISurfaceComposerClient::eFXSurfaceContainer:
result = createContainerLayer(args, outHandle, &layer);
break;
default:
result = BAD_VALUE;
break;
}
if (result != NO_ERROR) {
return result;
}
bool addToRoot = args.addToRoot && callingThreadHasUnscopedSurfaceFlingerAccess();
wp<Layer> parent(parentHandle != nullptr ? fromHandle(parentHandle) : parentLayer);
if (parentHandle != nullptr && parent == nullptr) {
ALOGE("Invalid parent handle %p.", parentHandle.get());
addToRoot = false;
}
if (parentLayer != nullptr) {
addToRoot = false;
}
int parentId = -1;
// We can safely promote the layer in binder thread because we have a strong reference
// to the layer's handle inside this scope or we were passed in a sp reference to the layer.
sp<Layer> parentSp = parent.promote();
if (parentSp != nullptr) {
parentId = parentSp->getSequence();
}
if (mTransactionTracing) {
mTransactionTracing->onLayerAdded((*outHandle)->localBinder(), layer->sequence, args.name,
args.flags, parentId);
}
result = addClientLayer(args.client, *outHandle, layer, parent, addToRoot, outTransformHint);
if (result != NO_ERROR) {
return result;
}
*outLayerId = layer->sequence;
return result;
}
status_t SurfaceFlinger::createBufferQueueLayer(LayerCreationArgs& args, PixelFormat& format,
sp<IBinder>* handle,
sp<IGraphicBufferProducer>* gbp,
sp<Layer>* outLayer) {
// initialize the surfaces
switch (format) {
case PIXEL_FORMAT_TRANSPARENT:
case PIXEL_FORMAT_TRANSLUCENT:
format = PIXEL_FORMAT_RGBA_8888;
break;
case PIXEL_FORMAT_OPAQUE:
format = PIXEL_FORMAT_RGBX_8888;
break;
}
sp<BufferQueueLayer> layer;
args.textureName = getNewTexture();
{
// Grab the SF state lock during this since it's the only safe way to access
// RenderEngine when creating a BufferLayerConsumer
// TODO: Check if this lock is still needed here
Mutex::Autolock lock(mStateLock);
layer = getFactory().createBufferQueueLayer(args);
}
status_t err = layer->setDefaultBufferProperties(0, 0, format);
if (err == NO_ERROR) {
*handle = layer->getHandle();
*gbp = layer->getProducer();
*outLayer = layer;
}
ALOGE_IF(err, "createBufferQueueLayer() failed (%s)", strerror(-err));
return err;
}
status_t SurfaceFlinger::createBufferStateLayer(LayerCreationArgs& args, sp<IBinder>* handle,
sp<Layer>* outLayer) {
args.textureName = getNewTexture();
*outLayer = getFactory().createBufferStateLayer(args);
*handle = (*outLayer)->getHandle();
return NO_ERROR;
}
status_t SurfaceFlinger::createEffectLayer(const LayerCreationArgs& args, sp<IBinder>* handle,
sp<Layer>* outLayer) {
*outLayer = getFactory().createEffectLayer(args);
*handle = (*outLayer)->getHandle();
return NO_ERROR;
}
status_t SurfaceFlinger::createContainerLayer(const LayerCreationArgs& args, sp<IBinder>* handle,
sp<Layer>* outLayer) {
*outLayer = getFactory().createContainerLayer(args);
*handle = (*outLayer)->getHandle();
return NO_ERROR;
}
void SurfaceFlinger::markLayerPendingRemovalLocked(const sp<Layer>& layer) {
mLayersPendingRemoval.add(layer);
mLayersRemoved = true;
setTransactionFlags(eTransactionNeeded);
}
void SurfaceFlinger::onHandleDestroyed(BBinder* handle, sp<Layer>& layer) {
Mutex::Autolock lock(mStateLock);
markLayerPendingRemovalLocked(layer);
mBufferCountTracker.remove(handle);
layer.clear();
if (mTransactionTracing) {
mTransactionTracing->onHandleRemoved(handle);
}
}
// ---------------------------------------------------------------------------
void SurfaceFlinger::onInitializeDisplays() {
const auto display = getDefaultDisplayDeviceLocked();
if (!display) return;
const sp<IBinder> token = display->getDisplayToken().promote();
LOG_ALWAYS_FATAL_IF(token == nullptr);
// reset screen orientation and use primary layer stack
Vector<ComposerState> state;
Vector<DisplayState> displays;
DisplayState d;
d.what = DisplayState::eDisplayProjectionChanged |
DisplayState::eLayerStackChanged;
d.token = token;
d.layerStack = ui::DEFAULT_LAYER_STACK;
d.orientation = ui::ROTATION_0;
d.orientedDisplaySpaceRect.makeInvalid();
d.layerStackSpaceRect.makeInvalid();
d.width = 0;
d.height = 0;
displays.add(d);
nsecs_t now = systemTime();
int64_t transactionId = (((int64_t)mPid) << 32) | mUniqueTransactionId++;
// It should be on the main thread, apply it directly.
applyTransactionState(FrameTimelineInfo{}, state, displays, 0, mInputWindowCommands,
/* desiredPresentTime */ now, true, {}, /* postTime */ now, true, false,
{}, mPid, getuid(), transactionId);
setPowerModeInternal(display, hal::PowerMode::ON);
const nsecs_t vsyncPeriod = display->refreshRateConfigs().getActiveMode()->getVsyncPeriod();
mAnimFrameTracker.setDisplayRefreshPeriod(vsyncPeriod);
mActiveDisplayTransformHint = display->getTransformHint();
// Use phase of 0 since phase is not known.
// Use latency of 0, which will snap to the ideal latency.
DisplayStatInfo stats{0 /* vsyncTime */, vsyncPeriod};
setCompositorTimingSnapped(stats, 0);
}
void SurfaceFlinger::initializeDisplays() {
// Async since we may be called from the main thread.
static_cast<void>(
mScheduler->schedule([this]() FTL_FAKE_GUARD(mStateLock) { onInitializeDisplays(); }));
}
void SurfaceFlinger::setPowerModeInternal(const sp<DisplayDevice>& display, hal::PowerMode mode) {
if (display->isVirtual()) {
ALOGE("%s: Invalid operation on virtual display", __func__);
return;
}
const auto displayId = display->getPhysicalId();
ALOGD("Setting power mode %d on display %s", mode, to_string(displayId).c_str());
std::optional<hal::PowerMode> currentMode = display->getPowerMode();
if (currentMode.has_value() && mode == *currentMode) {
return;
}
const auto activeDisplay = getDisplayDeviceLocked(mActiveDisplayToken);
if (activeDisplay != display && display->isInternal() && activeDisplay &&
activeDisplay->isPoweredOn()) {
ALOGW("Trying to change power mode on non active display while the active display is ON");
}
display->setPowerMode(mode);
if (mInterceptor->isEnabled()) {
mInterceptor->savePowerModeUpdate(display->getSequenceId(), static_cast<int32_t>(mode));
}
const auto refreshRate = display->refreshRateConfigs().getActiveMode()->getFps();
if (!currentMode || *currentMode == hal::PowerMode::OFF) {
// Turn on the display
if (display->isInternal() && (!activeDisplay || !activeDisplay->isPoweredOn())) {
onActiveDisplayChangedLocked(display);
}
// Keep uclamp in a separate syscall and set it before changing to RT due to b/190237315.
// We can merge the syscall later.
if (SurfaceFlinger::setSchedAttr(true) != NO_ERROR) {
ALOGW("Couldn't set uclamp.min on display on: %s\n", strerror(errno));
}
if (SurfaceFlinger::setSchedFifo(true) != NO_ERROR) {
ALOGW("Couldn't set SCHED_FIFO on display on: %s\n", strerror(errno));
}
getHwComposer().setPowerMode(displayId, mode);
if (isDisplayActiveLocked(display) && mode != hal::PowerMode::DOZE_SUSPEND) {
setHWCVsyncEnabled(displayId, mHWCVsyncPendingState);
mScheduler->onScreenAcquired(mAppConnectionHandle);
mScheduler->resyncToHardwareVsync(true, refreshRate);
}
mVisibleRegionsDirty = true;
mHasPoweredOff = true;
scheduleComposite(FrameHint::kActive);
} else if (mode == hal::PowerMode::OFF) {
// Turn off the display
if (SurfaceFlinger::setSchedFifo(false) != NO_ERROR) {
ALOGW("Couldn't set SCHED_OTHER on display off: %s\n", strerror(errno));
}
if (SurfaceFlinger::setSchedAttr(false) != NO_ERROR) {
ALOGW("Couldn't set uclamp.min on display off: %s\n", strerror(errno));
}
if (isDisplayActiveLocked(display) && *currentMode != hal::PowerMode::DOZE_SUSPEND) {
mScheduler->disableHardwareVsync(true);
mScheduler->onScreenReleased(mAppConnectionHandle);
}
// Make sure HWVsync is disabled before turning off the display
setHWCVsyncEnabled(displayId, hal::Vsync::DISABLE);
getHwComposer().setPowerMode(displayId, mode);
mVisibleRegionsDirty = true;
// from this point on, SF will stop drawing on this display
} else if (mode == hal::PowerMode::DOZE || mode == hal::PowerMode::ON) {
// Update display while dozing
getHwComposer().setPowerMode(displayId, mode);
if (isDisplayActiveLocked(display) && *currentMode == hal::PowerMode::DOZE_SUSPEND) {
mScheduler->onScreenAcquired(mAppConnectionHandle);
mScheduler->resyncToHardwareVsync(true, refreshRate);
}
} else if (mode == hal::PowerMode::DOZE_SUSPEND) {
// Leave display going to doze
if (isDisplayActiveLocked(display)) {
mScheduler->disableHardwareVsync(true);
mScheduler->onScreenReleased(mAppConnectionHandle);
}
getHwComposer().setPowerMode(displayId, mode);
} else {
ALOGE("Attempting to set unknown power mode: %d\n", mode);
getHwComposer().setPowerMode(displayId, mode);
}
if (isDisplayActiveLocked(display)) {
mTimeStats->setPowerMode(mode);
mRefreshRateStats->setPowerMode(mode);
mScheduler->setDisplayPowerMode(mode);
}
ALOGD("Finished setting power mode %d on display %s", mode, to_string(displayId).c_str());
}
void SurfaceFlinger::setPowerMode(const sp<IBinder>& displayToken, int mode) {
auto future = mScheduler->schedule([=]() FTL_FAKE_GUARD(mStateLock) {
const auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
ALOGE("Attempt to set power mode %d for invalid display token %p", mode,
displayToken.get());
} else if (display->isVirtual()) {
ALOGW("Attempt to set power mode %d for virtual display", mode);
} else {
setPowerModeInternal(display, static_cast<hal::PowerMode>(mode));
}
});
future.wait();
}
status_t SurfaceFlinger::doDump(int fd, const DumpArgs& args, bool asProto) {
std::string result;
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_SHELL) &&
!PermissionCache::checkPermission(sDump, pid, uid)) {
StringAppendF(&result, "Permission Denial: can't dump SurfaceFlinger from pid=%d, uid=%d\n",
pid, uid);
} else {
static const std::unordered_map<std::string, Dumper> dumpers = {
{"--comp-displays"s, dumper(&SurfaceFlinger::dumpCompositionDisplays)},
{"--display-id"s, dumper(&SurfaceFlinger::dumpDisplayIdentificationData)},
{"--displays"s, dumper(&SurfaceFlinger::dumpDisplays)},
{"--dispsync"s, dumper([this](std::string& s) { mScheduler->dumpVsync(s); })},
{"--edid"s, argsDumper(&SurfaceFlinger::dumpRawDisplayIdentificationData)},
{"--latency"s, argsDumper(&SurfaceFlinger::dumpStatsLocked)},
{"--latency-clear"s, argsDumper(&SurfaceFlinger::clearStatsLocked)},
{"--list"s, dumper(&SurfaceFlinger::listLayersLocked)},
{"--planner"s, argsDumper(&SurfaceFlinger::dumpPlannerInfo)},
{"--static-screen"s, dumper(&SurfaceFlinger::dumpStaticScreenStats)},
{"--timestats"s, protoDumper(&SurfaceFlinger::dumpTimeStats)},
{"--vsync"s, dumper(&SurfaceFlinger::dumpVSync)},
{"--wide-color"s, dumper(&SurfaceFlinger::dumpWideColorInfo)},
{"--frametimeline"s, argsDumper(&SurfaceFlinger::dumpFrameTimeline)},
};
const auto flag = args.empty() ? ""s : std::string(String8(args[0]));
// Traversal of drawing state must happen on the main thread.
// Otherwise, SortedVector may have shared ownership during concurrent
// traversals, which can result in use-after-frees.
std::string compositionLayers;
mScheduler
->schedule([&] {
StringAppendF(&compositionLayers, "Composition layers\n");
mDrawingState.traverseInZOrder([&](Layer* layer) {
auto* compositionState = layer->getCompositionState();
if (!compositionState || !compositionState->isVisible) return;
android::base::StringAppendF(&compositionLayers, "* Layer %p (%s)\n", layer,
layer->getDebugName() ? layer->getDebugName()
: "<unknown>");
compositionState->dump(compositionLayers);
});
})
.get();
bool dumpLayers = true;
{
TimedLock lock(mStateLock, s2ns(1), __func__);
if (!lock.locked()) {
StringAppendF(&result, "Dumping without lock after timeout: %s (%d)\n",
strerror(-lock.status), lock.status);
}
if (const auto it = dumpers.find(flag); it != dumpers.end()) {
(it->second)(args, asProto, result);
dumpLayers = false;
} else if (!asProto) {
dumpAllLocked(args, compositionLayers, result);
}
}
if (dumpLayers) {
LayersTraceFileProto traceFileProto = mLayerTracing.createTraceFileProto();
LayersTraceProto* layersTrace = traceFileProto.add_entry();
LayersProto layersProto = dumpProtoFromMainThread();
layersTrace->mutable_layers()->Swap(&layersProto);
dumpDisplayProto(*layersTrace);
if (asProto) {
result.append(traceFileProto.SerializeAsString());
} else {
// Dump info that we need to access from the main thread
const auto layerTree = LayerProtoParser::generateLayerTree(layersTrace->layers());
result.append(LayerProtoParser::layerTreeToString(layerTree));
result.append("\n");
dumpOffscreenLayers(result);
}
}
}
write(fd, result.c_str(), result.size());
return NO_ERROR;
}
status_t SurfaceFlinger::dumpCritical(int fd, const DumpArgs&, bool asProto) {
if (asProto) {
mLayerTracing.writeToFile();
if (mTransactionTracing) {
mTransactionTracing->writeToFile();
}
}
return doDump(fd, DumpArgs(), asProto);
}
void SurfaceFlinger::listLayersLocked(std::string& result) const {
mCurrentState.traverseInZOrder(
[&](Layer* layer) { StringAppendF(&result, "%s\n", layer->getDebugName()); });
}
void SurfaceFlinger::dumpStatsLocked(const DumpArgs& args, std::string& result) const {
StringAppendF(&result, "%" PRId64 "\n", getVsyncPeriodFromHWC());
if (args.size() > 1) {
const auto name = String8(args[1]);
mCurrentState.traverseInZOrder([&](Layer* layer) {
if (layer->getName() == name.string()) {
layer->dumpFrameStats(result);
}
});
} else {
mAnimFrameTracker.dumpStats(result);
}
}
void SurfaceFlinger::clearStatsLocked(const DumpArgs& args, std::string&) {
const bool clearAll = args.size() < 2;
const auto name = clearAll ? String8() : String8(args[1]);
mCurrentState.traverse([&](Layer* layer) {
if (clearAll || layer->getName() == name.string()) {
layer->clearFrameStats();
}
});
mAnimFrameTracker.clearStats();
}
void SurfaceFlinger::dumpTimeStats(const DumpArgs& args, bool asProto, std::string& result) const {
mTimeStats->parseArgs(asProto, args, result);
}
void SurfaceFlinger::dumpFrameTimeline(const DumpArgs& args, std::string& result) const {
mFrameTimeline->parseArgs(args, result);
}
void SurfaceFlinger::logFrameStats() {
mDrawingState.traverse([&](Layer* layer) {
layer->logFrameStats();
});
mAnimFrameTracker.logAndResetStats("<win-anim>");
}
void SurfaceFlinger::appendSfConfigString(std::string& result) const {
result.append(" [sf");
StringAppendF(&result, " PRESENT_TIME_OFFSET=%" PRId64, dispSyncPresentTimeOffset);
StringAppendF(&result, " FORCE_HWC_FOR_RBG_TO_YUV=%d", useHwcForRgbToYuv);
StringAppendF(&result, " MAX_VIRT_DISPLAY_DIM=%zu",
getHwComposer().getMaxVirtualDisplayDimension());
StringAppendF(&result, " RUNNING_WITHOUT_SYNC_FRAMEWORK=%d", !hasSyncFramework);
StringAppendF(&result, " NUM_FRAMEBUFFER_SURFACE_BUFFERS=%" PRId64,
maxFrameBufferAcquiredBuffers);
result.append("]");
}
void SurfaceFlinger::dumpVSync(std::string& result) const {
mScheduler->dump(result);
mRefreshRateStats->dump(result);
result.append("\n");
mVsyncConfiguration->dump(result);
StringAppendF(&result,
" present offset: %9" PRId64 " ns\t VSYNC period: %9" PRId64 " ns\n\n",
dispSyncPresentTimeOffset, getVsyncPeriodFromHWC());
StringAppendF(&result, "(mode override by backdoor: %s)\n\n",
mDebugDisplayModeSetByBackdoor ? "yes" : "no");
mScheduler->dump(mAppConnectionHandle, result);
mScheduler->dumpVsync(result);
StringAppendF(&result, "mHWCVsyncPendingState=%s mLastHWCVsyncState=%s\n",
to_string(mHWCVsyncPendingState).c_str(), to_string(mLastHWCVsyncState).c_str());
}
void SurfaceFlinger::dumpPlannerInfo(const DumpArgs& args, std::string& result) const {
for (const auto& [token, display] : mDisplays) {
const auto compositionDisplay = display->getCompositionDisplay();
compositionDisplay->dumpPlannerInfo(args, result);
}
}
void SurfaceFlinger::dumpStaticScreenStats(std::string& result) const {
result.append("Static screen stats:\n");
for (size_t b = 0; b < SurfaceFlingerBE::NUM_BUCKETS - 1; ++b) {
float bucketTimeSec = getBE().mFrameBuckets[b] / 1e9;
float percent = 100.0f *
static_cast<float>(getBE().mFrameBuckets[b]) / getBE().mTotalTime;
StringAppendF(&result, " < %zd frames: %.3f s (%.1f%%)\n", b + 1, bucketTimeSec, percent);
}
float bucketTimeSec = getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1] / 1e9;
float percent = 100.0f *
static_cast<float>(getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1]) / getBE().mTotalTime;
StringAppendF(&result, " %zd+ frames: %.3f s (%.1f%%)\n", SurfaceFlingerBE::NUM_BUCKETS - 1,
bucketTimeSec, percent);
}
void SurfaceFlinger::dumpCompositionDisplays(std::string& result) const {
for (const auto& [token, display] : mDisplays) {
display->getCompositionDisplay()->dump(result);
result += '\n';
}
}
void SurfaceFlinger::dumpDisplays(std::string& result) const {
for (const auto& [token, display] : mDisplays) {
display->dump(result);
result += '\n';
}
}
void SurfaceFlinger::dumpDisplayIdentificationData(std::string& result) const {
for (const auto& [token, display] : mDisplays) {
const auto displayId = PhysicalDisplayId::tryCast(display->getId());
if (!displayId) {
continue;
}
const auto hwcDisplayId = getHwComposer().fromPhysicalDisplayId(*displayId);
if (!hwcDisplayId) {
continue;
}
StringAppendF(&result,
"Display %s (HWC display %" PRIu64 "): ", to_string(*displayId).c_str(),
*hwcDisplayId);
uint8_t port;
DisplayIdentificationData data;
if (!getHwComposer().getDisplayIdentificationData(*hwcDisplayId, &port, &data)) {
result.append("no identification data\n");
continue;
}
if (!isEdid(data)) {
result.append("unknown identification data\n");
continue;
}
const auto edid = parseEdid(data);
if (!edid) {
result.append("invalid EDID\n");
continue;
}
StringAppendF(&result, "port=%u pnpId=%s displayName=\"", port, edid->pnpId.data());
result.append(edid->displayName.data(), edid->displayName.length());
result.append("\"\n");
}
}
void SurfaceFlinger::dumpRawDisplayIdentificationData(const DumpArgs& args,
std::string& result) const {
hal::HWDisplayId hwcDisplayId;
uint8_t port;
DisplayIdentificationData data;
if (args.size() > 1 && base::ParseUint(String8(args[1]), &hwcDisplayId) &&
getHwComposer().getDisplayIdentificationData(hwcDisplayId, &port, &data)) {
result.append(reinterpret_cast<const char*>(data.data()), data.size());
}
}
void SurfaceFlinger::dumpWideColorInfo(std::string& result) const {
StringAppendF(&result, "Device has wide color built-in display: %d\n", hasWideColorDisplay);
StringAppendF(&result, "Device uses color management: %d\n", useColorManagement);
StringAppendF(&result, "DisplayColorSetting: %s\n",
decodeDisplayColorSetting(mDisplayColorSetting).c_str());
// TODO: print out if wide-color mode is active or not
for (const auto& [token, display] : mDisplays) {
const auto displayId = PhysicalDisplayId::tryCast(display->getId());
if (!displayId) {
continue;
}
StringAppendF(&result, "Display %s color modes:\n", to_string(*displayId).c_str());
std::vector<ColorMode> modes = getHwComposer().getColorModes(*displayId);
for (auto&& mode : modes) {
StringAppendF(&result, " %s (%d)\n", decodeColorMode(mode).c_str(), mode);
}
ColorMode currentMode = display->getCompositionDisplay()->getState().colorMode;
StringAppendF(&result, " Current color mode: %s (%d)\n",
decodeColorMode(currentMode).c_str(), currentMode);
}
result.append("\n");
}
LayersProto SurfaceFlinger::dumpDrawingStateProto(uint32_t traceFlags) const {
LayersProto layersProto;
for (const sp<Layer>& layer : mDrawingState.layersSortedByZ) {
layer->writeToProto(layersProto, traceFlags);
}
return layersProto;
}
void SurfaceFlinger::dumpDisplayProto(LayersTraceProto& layersTraceProto) const {
for (const auto& [_, display] : FTL_FAKE_GUARD(mStateLock, mDisplays)) {
DisplayProto* displayProto = layersTraceProto.add_displays();
displayProto->set_id(display->getId().value);
displayProto->set_name(display->getDisplayName());
displayProto->set_layer_stack(display->getLayerStack().id);
LayerProtoHelper::writeSizeToProto(display->getWidth(), display->getHeight(),
[&]() { return displayProto->mutable_size(); });
LayerProtoHelper::writeToProto(display->getLayerStackSpaceRect(), [&]() {
return displayProto->mutable_layer_stack_space_rect();
});
LayerProtoHelper::writeTransformToProto(display->getTransform(),
displayProto->mutable_transform());
displayProto->set_is_virtual(display->isVirtual());
}
}
void SurfaceFlinger::dumpHwc(std::string& result) const {
getHwComposer().dump(result);
}
void SurfaceFlinger::dumpOffscreenLayersProto(LayersProto& layersProto, uint32_t traceFlags) const {
// Add a fake invisible root layer to the proto output and parent all the offscreen layers to
// it.
LayerProto* rootProto = layersProto.add_layers();
const int32_t offscreenRootLayerId = INT32_MAX - 2;
rootProto->set_id(offscreenRootLayerId);
rootProto->set_name("Offscreen Root");
rootProto->set_parent(-1);
for (Layer* offscreenLayer : mOffscreenLayers) {
// Add layer as child of the fake root
rootProto->add_children(offscreenLayer->sequence);
// Add layer
LayerProto* layerProto = offscreenLayer->writeToProto(layersProto, traceFlags);
layerProto->set_parent(offscreenRootLayerId);
}
}
LayersProto SurfaceFlinger::dumpProtoFromMainThread(uint32_t traceFlags) {
return mScheduler->schedule([=] { return dumpDrawingStateProto(traceFlags); }).get();
}
void SurfaceFlinger::dumpOffscreenLayers(std::string& result) {
auto future = mScheduler->schedule([this] {
std::string result;
for (Layer* offscreenLayer : mOffscreenLayers) {
offscreenLayer->traverse(LayerVector::StateSet::Drawing,
[&](Layer* layer) { layer->dumpCallingUidPid(result); });
}
return result;
});
result.append("Offscreen Layers:\n");
result.append(future.get());
}
void SurfaceFlinger::dumpAllLocked(const DumpArgs& args, const std::string& compositionLayers,
std::string& result) const {
const bool colorize = !args.empty() && args[0] == String16("--color");
Colorizer colorizer(colorize);
// figure out if we're stuck somewhere
const nsecs_t now = systemTime();
const nsecs_t inTransaction(mDebugInTransaction);
nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
/*
* Dump library configuration.
*/
colorizer.bold(result);
result.append("Build configuration:");
colorizer.reset(result);
appendSfConfigString(result);
result.append("\n");
result.append("\nDisplay identification data:\n");
dumpDisplayIdentificationData(result);
result.append("\nWide-Color information:\n");
dumpWideColorInfo(result);
colorizer.bold(result);
result.append("Sync configuration: ");
colorizer.reset(result);
result.append(SyncFeatures::getInstance().toString());
result.append("\n\n");
colorizer.bold(result);
result.append("Scheduler:\n");
colorizer.reset(result);
dumpVSync(result);
result.append("\n");
dumpStaticScreenStats(result);
result.append("\n");
StringAppendF(&result, "Total missed frame count: %u\n", mFrameMissedCount.load());
StringAppendF(&result, "HWC missed frame count: %u\n", mHwcFrameMissedCount.load());
StringAppendF(&result, "GPU missed frame count: %u\n\n", mGpuFrameMissedCount.load());
/*
* Dump the visible layer list
*/
colorizer.bold(result);
StringAppendF(&result, "Visible layers (count = %zu)\n", mNumLayers.load());
colorizer.reset(result);
result.append(compositionLayers);
colorizer.bold(result);
StringAppendF(&result, "Displays (%zu entries)\n", mDisplays.size());
colorizer.reset(result);
dumpDisplays(result);
dumpCompositionDisplays(result);
result.push_back('\n');
mCompositionEngine->dump(result);
/*
* Dump SurfaceFlinger global state
*/
colorizer.bold(result);
result.append("SurfaceFlinger global state:\n");
colorizer.reset(result);
getRenderEngine().dump(result);
result.append("ClientCache state:\n");
ClientCache::getInstance().dump(result);
DebugEGLImageTracker::getInstance()->dump(result);
if (const auto display = getDefaultDisplayDeviceLocked()) {
display->getCompositionDisplay()->getState().undefinedRegion.dump(result,
"undefinedRegion");
StringAppendF(&result, " orientation=%s, isPoweredOn=%d\n",
toCString(display->getOrientation()), display->isPoweredOn());
}
StringAppendF(&result,
" transaction-flags : %08x\n"
" gpu_to_cpu_unsupported : %d\n",
mTransactionFlags.load(), !mGpuToCpuSupported);
if (const auto display = getDefaultDisplayDeviceLocked()) {
std::string fps, xDpi, yDpi;
if (const auto activeMode = display->getActiveMode()) {
fps = to_string(activeMode->getFps());
const auto dpi = activeMode->getDpi();
xDpi = base::StringPrintf("%.2f", dpi.x);
yDpi = base::StringPrintf("%.2f", dpi.y);
} else {
fps = "unknown";
xDpi = "unknown";
yDpi = "unknown";
}
StringAppendF(&result,
" refresh-rate : %s\n"
" x-dpi : %s\n"
" y-dpi : %s\n",
fps.c_str(), xDpi.c_str(), yDpi.c_str());
}
StringAppendF(&result, " transaction time: %f us\n", inTransactionDuration / 1000.0);
/*
* Tracing state
*/
mLayerTracing.dump(result);
result.append("\nTransaction tracing: ");
if (mTransactionTracing) {
result.append("enabled\n");
mTransactionTracing->dump(result);
} else {
result.append("disabled\n");
}
result.push_back('\n');
/*
* HWC layer minidump
*/
for (const auto& [token, display] : mDisplays) {
const auto displayId = HalDisplayId::tryCast(display->getId());
if (!displayId) {
continue;
}
StringAppendF(&result, "Display %s (%s) HWC layers:\n", to_string(*displayId).c_str(),
(isDisplayActiveLocked(display) ? "active" : "inactive"));
Layer::miniDumpHeader(result);
const DisplayDevice& ref = *display;
mCurrentState.traverseInZOrder([&](Layer* layer) { layer->miniDump(result, ref); });
result.append("\n");
}
{
DumpArgs plannerArgs;
plannerArgs.add(); // first argument is ignored
plannerArgs.add(String16("--layers"));
dumpPlannerInfo(plannerArgs, result);
}
/*
* Dump HWComposer state
*/
colorizer.bold(result);
result.append("h/w composer state:\n");
colorizer.reset(result);
const bool hwcDisabled = mDebugDisableHWC || mDebugFlashDelay;
StringAppendF(&result, " h/w composer %s\n", hwcDisabled ? "disabled" : "enabled");
dumpHwc(result);
/*
* Dump gralloc state
*/
const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
alloc.dump(result);
/*
* Dump flag/property manager state
*/
mFlagManager.dump(result);
result.append(mTimeStats->miniDump());
result.append("\n");
}
mat4 SurfaceFlinger::calculateColorMatrix(float saturation) {
if (saturation == 1) {
return mat4();
}
float3 luminance{0.213f, 0.715f, 0.072f};
luminance *= 1.0f - saturation;
mat4 saturationMatrix = mat4(vec4{luminance.r + saturation, luminance.r, luminance.r, 0.0f},
vec4{luminance.g, luminance.g + saturation, luminance.g, 0.0f},
vec4{luminance.b, luminance.b, luminance.b + saturation, 0.0f},
vec4{0.0f, 0.0f, 0.0f, 1.0f});
return saturationMatrix;
}
void SurfaceFlinger::updateColorMatrixLocked() {
mat4 colorMatrix =
mClientColorMatrix * calculateColorMatrix(mGlobalSaturationFactor) * mDaltonizer();
if (mCurrentState.colorMatrix != colorMatrix) {
mCurrentState.colorMatrix = colorMatrix;
mCurrentState.colorMatrixChanged = true;
setTransactionFlags(eTransactionNeeded);
}
}
status_t SurfaceFlinger::CheckTransactCodeCredentials(uint32_t code) {
#pragma clang diagnostic push
#pragma clang diagnostic error "-Wswitch-enum"
switch (static_cast<ISurfaceComposerTag>(code)) {
case ENABLE_VSYNC_INJECTIONS:
case INJECT_VSYNC:
if (!hasMockHwc()) return PERMISSION_DENIED;
[[fallthrough]];
// These methods should at minimum make sure that the client requested
// access to SF.
case BOOT_FINISHED:
case CLEAR_ANIMATION_FRAME_STATS:
case GET_ANIMATION_FRAME_STATS:
case OVERRIDE_HDR_TYPES:
case GET_HDR_CAPABILITIES:
case SET_DESIRED_DISPLAY_MODE_SPECS:
case GET_DESIRED_DISPLAY_MODE_SPECS:
case SET_ACTIVE_COLOR_MODE:
case SET_BOOT_DISPLAY_MODE:
case GET_AUTO_LOW_LATENCY_MODE_SUPPORT:
case GET_GAME_CONTENT_TYPE_SUPPORT:
case GET_DISPLAYED_CONTENT_SAMPLING_ATTRIBUTES:
case SET_DISPLAY_CONTENT_SAMPLING_ENABLED:
case GET_DISPLAYED_CONTENT_SAMPLE:
case ADD_TUNNEL_MODE_ENABLED_LISTENER:
case REMOVE_TUNNEL_MODE_ENABLED_LISTENER:
case SET_GLOBAL_SHADOW_SETTINGS:
case ACQUIRE_FRAME_RATE_FLEXIBILITY_TOKEN: {
// OVERRIDE_HDR_TYPES is used by CTS tests, which acquire the necessary
// permission dynamically. Don't use the permission cache for this check.
bool usePermissionCache = code != OVERRIDE_HDR_TYPES;
if (!callingThreadHasUnscopedSurfaceFlingerAccess(usePermissionCache)) {
IPCThreadState* ipc = IPCThreadState::self();
ALOGE("Permission Denial: can't access SurfaceFlinger pid=%d, uid=%d",
ipc->getCallingPid(), ipc->getCallingUid());
return PERMISSION_DENIED;
}
return OK;
}
case GET_LAYER_DEBUG_INFO: {
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_SHELL) && !PermissionCache::checkPermission(sDump, pid, uid)) {
ALOGE("Layer debug info permission denied for pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
return OK;
}
// Used by apps to hook Choreographer to SurfaceFlinger.
case CREATE_DISPLAY_EVENT_CONNECTION:
// The following calls are currently used by clients that do not
// request necessary permissions. However, they do not expose any secret
// information, so it is OK to pass them.
case AUTHENTICATE_SURFACE:
case GET_ACTIVE_COLOR_MODE:
case GET_ACTIVE_DISPLAY_MODE:
case GET_DISPLAY_COLOR_MODES:
case GET_DISPLAY_NATIVE_PRIMARIES:
case GET_STATIC_DISPLAY_INFO:
case GET_DYNAMIC_DISPLAY_INFO:
case GET_DISPLAY_MODES:
case GET_SUPPORTED_FRAME_TIMESTAMPS:
// Calling setTransactionState is safe, because you need to have been
// granted a reference to Client* and Handle* to do anything with it.
case SET_TRANSACTION_STATE:
case CREATE_CONNECTION:
case GET_COLOR_MANAGEMENT:
case GET_COMPOSITION_PREFERENCE:
case GET_PROTECTED_CONTENT_SUPPORT:
// setFrameRate() is deliberately available for apps to call without any
// special permissions.
case SET_FRAME_RATE:
case GET_DISPLAY_DECORATION_SUPPORT:
case SET_FRAME_TIMELINE_INFO:
case GET_GPU_CONTEXT_PRIORITY:
case GET_MAX_ACQUIRED_BUFFER_COUNT: {
// This is not sensitive information, so should not require permission control.
return OK;
}
case ADD_FPS_LISTENER:
case REMOVE_FPS_LISTENER:
case ADD_REGION_SAMPLING_LISTENER:
case REMOVE_REGION_SAMPLING_LISTENER: {
// codes that require permission check
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_GRAPHICS) &&
!PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
ALOGE("Permission Denial: can't read framebuffer pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
return OK;
}
case ADD_TRANSACTION_TRACE_LISTENER: {
IPCThreadState* ipc = IPCThreadState::self();
const int uid = ipc->getCallingUid();
if (uid == AID_ROOT || uid == AID_GRAPHICS || uid == AID_SYSTEM || uid == AID_SHELL) {
return OK;
}
return PERMISSION_DENIED;
}
case SET_OVERRIDE_FRAME_RATE: {
const int uid = IPCThreadState::self()->getCallingUid();
if (uid == AID_ROOT || uid == AID_SYSTEM) {
return OK;
}
return PERMISSION_DENIED;
}
case ON_PULL_ATOM: {
const int uid = IPCThreadState::self()->getCallingUid();
if (uid == AID_SYSTEM) {
return OK;
}
return PERMISSION_DENIED;
}
case ADD_WINDOW_INFOS_LISTENER:
case REMOVE_WINDOW_INFOS_LISTENER: {
const int uid = IPCThreadState::self()->getCallingUid();
if (uid == AID_SYSTEM || uid == AID_GRAPHICS) {
return OK;
}
return PERMISSION_DENIED;
}
case CREATE_DISPLAY:
case DESTROY_DISPLAY:
case GET_PRIMARY_PHYSICAL_DISPLAY_ID:
case GET_PHYSICAL_DISPLAY_IDS:
case GET_PHYSICAL_DISPLAY_TOKEN:
case SET_POWER_MODE:
case GET_DISPLAY_STATE:
case GET_DISPLAY_STATS:
case CLEAR_BOOT_DISPLAY_MODE:
case GET_BOOT_DISPLAY_MODE_SUPPORT:
case SET_AUTO_LOW_LATENCY_MODE:
case SET_GAME_CONTENT_TYPE:
case CAPTURE_LAYERS:
case CAPTURE_DISPLAY:
case CAPTURE_DISPLAY_BY_ID:
case IS_WIDE_COLOR_DISPLAY:
case GET_DISPLAY_BRIGHTNESS_SUPPORT:
case SET_DISPLAY_BRIGHTNESS:
case ADD_HDR_LAYER_INFO_LISTENER:
case REMOVE_HDR_LAYER_INFO_LISTENER:
case NOTIFY_POWER_BOOST:
LOG_FATAL("Deprecated opcode: %d, migrated to AIDL", code);
return PERMISSION_DENIED;
}
// These codes are used for the IBinder protocol to either interrogate the recipient
// side of the transaction for its canonical interface descriptor or to dump its state.
// We let them pass by default.
if (code == IBinder::INTERFACE_TRANSACTION || code == IBinder::DUMP_TRANSACTION ||
code == IBinder::PING_TRANSACTION || code == IBinder::SHELL_COMMAND_TRANSACTION ||
code == IBinder::SYSPROPS_TRANSACTION) {
return OK;
}
// Numbers from 1000 to 1042 are currently used for backdoors. The code
// in onTransact verifies that the user is root, and has access to use SF.
if (code >= 1000 && code <= 1042) {
ALOGV("Accessing SurfaceFlinger through backdoor code: %u", code);
return OK;
}
ALOGE("Permission Denial: SurfaceFlinger did not recognize request code: %u", code);
return PERMISSION_DENIED;
#pragma clang diagnostic pop
}
status_t SurfaceFlinger::onTransact(uint32_t code, const Parcel& data, Parcel* reply,
uint32_t flags) {
if (const status_t error = CheckTransactCodeCredentials(code); error != OK) {
return error;
}
status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
CHECK_INTERFACE(ISurfaceComposer, data, reply);
IPCThreadState* ipc = IPCThreadState::self();
const int uid = ipc->getCallingUid();
if (CC_UNLIKELY(uid != AID_SYSTEM
&& !PermissionCache::checkCallingPermission(sHardwareTest))) {
const int pid = ipc->getCallingPid();
ALOGE("Permission Denial: "
"can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
int n;
switch (code) {
case 1000: // Unused.
case 1001:
return NAME_NOT_FOUND;
case 1002: // Toggle flashing on surface damage.
if (const int delay = data.readInt32(); delay > 0) {
mDebugFlashDelay = delay;
} else {
mDebugFlashDelay = mDebugFlashDelay ? 0 : 1;
}
scheduleRepaint();
return NO_ERROR;
case 1004: // Force composite ahead of next VSYNC.
case 1006:
scheduleComposite(FrameHint::kActive);
return NO_ERROR;
case 1005: { // Force commit ahead of next VSYNC.
Mutex::Autolock lock(mStateLock);
setTransactionFlags(eTransactionNeeded | eDisplayTransactionNeeded |
eTraversalNeeded);
return NO_ERROR;
}
case 1007: // Unused.
return NAME_NOT_FOUND;
case 1008: // Toggle forced GPU composition.
mDebugDisableHWC = data.readInt32() != 0;
scheduleRepaint();
return NO_ERROR;
case 1009: // Toggle use of transform hint.
mDebugDisableTransformHint = data.readInt32() != 0;
scheduleRepaint();
return NO_ERROR;
case 1010: // Interrogate.
reply->writeInt32(0);
reply->writeInt32(0);
reply->writeInt32(mDebugFlashDelay);
reply->writeInt32(0);
reply->writeInt32(mDebugDisableHWC);
return NO_ERROR;
case 1013: {
const auto display = getDefaultDisplayDevice();
if (!display) {
return NAME_NOT_FOUND;
}
reply->writeInt32(display->getPageFlipCount());
return NO_ERROR;
}
case 1014: {
Mutex::Autolock _l(mStateLock);
// daltonize
n = data.readInt32();
switch (n % 10) {
case 1:
mDaltonizer.setType(ColorBlindnessType::Protanomaly);
break;
case 2:
mDaltonizer.setType(ColorBlindnessType::Deuteranomaly);
break;
case 3:
mDaltonizer.setType(ColorBlindnessType::Tritanomaly);
break;
default:
mDaltonizer.setType(ColorBlindnessType::None);
break;
}
if (n >= 10) {
mDaltonizer.setMode(ColorBlindnessMode::Correction);
} else {
mDaltonizer.setMode(ColorBlindnessMode::Simulation);
}
updateColorMatrixLocked();
return NO_ERROR;
}
case 1015: {
Mutex::Autolock _l(mStateLock);
// apply a color matrix
n = data.readInt32();
if (n) {
// color matrix is sent as a column-major mat4 matrix
for (size_t i = 0 ; i < 4; i++) {
for (size_t j = 0; j < 4; j++) {
mClientColorMatrix[i][j] = data.readFloat();
}
}
} else {
mClientColorMatrix = mat4();
}
// Check that supplied matrix's last row is {0,0,0,1} so we can avoid
// the division by w in the fragment shader
float4 lastRow(transpose(mClientColorMatrix)[3]);
if (any(greaterThan(abs(lastRow - float4{0, 0, 0, 1}), float4{1e-4f}))) {
ALOGE("The color transform's last row must be (0, 0, 0, 1)");
}
updateColorMatrixLocked();
return NO_ERROR;
}
case 1016: { // Unused.
return NAME_NOT_FOUND;
}
case 1017: {
n = data.readInt32();
mForceFullDamage = n != 0;
return NO_ERROR;
}
case 1018: { // Modify Choreographer's duration
n = data.readInt32();
mScheduler->setDuration(mAppConnectionHandle, std::chrono::nanoseconds(n), 0ns);
return NO_ERROR;
}
case 1019: { // Modify SurfaceFlinger's duration
n = data.readInt32();
mScheduler->setDuration(mSfConnectionHandle, std::chrono::nanoseconds(n), 0ns);
return NO_ERROR;
}
case 1020: { // Layer updates interceptor
n = data.readInt32();
if (n) {
ALOGV("Interceptor enabled");
mInterceptor->enable(mDrawingState.layersSortedByZ, mDrawingState.displays);
}
else{
ALOGV("Interceptor disabled");
mInterceptor->disable();
}
return NO_ERROR;
}
case 1021: { // Disable HWC virtual displays
const bool enable = data.readInt32() != 0;
static_cast<void>(
mScheduler->schedule([this, enable] { enableHalVirtualDisplays(enable); }));
return NO_ERROR;
}
case 1022: { // Set saturation boost
Mutex::Autolock _l(mStateLock);
mGlobalSaturationFactor = std::max(0.0f, std::min(data.readFloat(), 2.0f));
updateColorMatrixLocked();
return NO_ERROR;
}
case 1023: { // Set native mode
int32_t colorMode;
mDisplayColorSetting = static_cast<DisplayColorSetting>(data.readInt32());
if (data.readInt32(&colorMode) == NO_ERROR) {
mForceColorMode = static_cast<ColorMode>(colorMode);
}
scheduleRepaint();
return NO_ERROR;
}
// Deprecate, use 1030 to check whether the device is color managed.
case 1024: {
return NAME_NOT_FOUND;
}
case 1025: { // Set layer tracing
n = data.readInt32();
bool tracingEnabledChanged;
if (n == 1) {
int64_t fixedStartingTime = data.readInt64();
ALOGD("LayerTracing enabled");
tracingEnabledChanged = mLayerTracing.enable();
if (tracingEnabledChanged) {
int64_t startingTime =
(fixedStartingTime) ? fixedStartingTime : systemTime();
mScheduler
->schedule([&]() FTL_FAKE_GUARD(mStateLock) {
mLayerTracing.notify("start", startingTime);
})
.wait();
}
} else if (n == 2) {
std::string filename = std::string(data.readCString());
ALOGD("LayerTracing disabled. Trace wrote to %s", filename.c_str());
tracingEnabledChanged = mLayerTracing.disable(filename.c_str());
} else {
ALOGD("LayerTracing disabled");
tracingEnabledChanged = mLayerTracing.disable();
}
mTracingEnabledChanged = tracingEnabledChanged;
reply->writeInt32(NO_ERROR);
return NO_ERROR;
}
case 1026: { // Get layer tracing status
reply->writeBool(mLayerTracing.isEnabled());
return NO_ERROR;
}
// Is a DisplayColorSetting supported?
case 1027: {
const auto display = getDefaultDisplayDevice();
if (!display) {
return NAME_NOT_FOUND;
}
DisplayColorSetting setting = static_cast<DisplayColorSetting>(data.readInt32());
switch (setting) {
case DisplayColorSetting::kManaged:
reply->writeBool(useColorManagement);
break;
case DisplayColorSetting::kUnmanaged:
reply->writeBool(true);
break;
case DisplayColorSetting::kEnhanced:
reply->writeBool(display->hasRenderIntent(RenderIntent::ENHANCE));
break;
default: // vendor display color setting
reply->writeBool(
display->hasRenderIntent(static_cast<RenderIntent>(setting)));
break;
}
return NO_ERROR;
}
case 1028: { // Unused.
return NAME_NOT_FOUND;
}
// Set buffer size for SF tracing (value in KB)
case 1029: {
n = data.readInt32();
if (n <= 0 || n > MAX_TRACING_MEMORY) {
ALOGW("Invalid buffer size: %d KB", n);
reply->writeInt32(BAD_VALUE);
return BAD_VALUE;
}
ALOGD("Updating trace buffer to %d KB", n);
mLayerTracing.setBufferSize(n * 1024);
reply->writeInt32(NO_ERROR);
return NO_ERROR;
}
// Is device color managed?
case 1030: {
reply->writeBool(useColorManagement);
return NO_ERROR;
}
// Override default composition data space
// adb shell service call SurfaceFlinger 1031 i32 1 DATASPACE_NUMBER DATASPACE_NUMBER \
// && adb shell stop zygote && adb shell start zygote
// to restore: adb shell service call SurfaceFlinger 1031 i32 0 && \
// adb shell stop zygote && adb shell start zygote
case 1031: {
Mutex::Autolock _l(mStateLock);
n = data.readInt32();
if (n) {
n = data.readInt32();
if (n) {
Dataspace dataspace = static_cast<Dataspace>(n);
if (!validateCompositionDataspace(dataspace)) {
return BAD_VALUE;
}
mDefaultCompositionDataspace = dataspace;
}
n = data.readInt32();
if (n) {
Dataspace dataspace = static_cast<Dataspace>(n);
if (!validateCompositionDataspace(dataspace)) {
return BAD_VALUE;
}
mWideColorGamutCompositionDataspace = dataspace;
}
} else {
// restore composition data space.
mDefaultCompositionDataspace = defaultCompositionDataspace;
mWideColorGamutCompositionDataspace = wideColorGamutCompositionDataspace;
}
return NO_ERROR;
}
// Set trace flags
case 1033: {
n = data.readUint32();
ALOGD("Updating trace flags to 0x%x", n);
mLayerTracing.setTraceFlags(n);
reply->writeInt32(NO_ERROR);
return NO_ERROR;
}
case 1034: {
auto future = mScheduler->schedule([&] {
switch (n = data.readInt32()) {
case 0:
case 1:
FTL_FAKE_GUARD(mStateLock,
enableRefreshRateOverlay(static_cast<bool>(n)));
break;
default: {
reply->writeBool(
FTL_FAKE_GUARD(mStateLock, isRefreshRateOverlayEnabled()));
}
}
});
future.wait();
return NO_ERROR;
}
case 1035: {
const int modeId = data.readInt32();
const auto display = [&]() -> sp<IBinder> {
uint64_t value;
if (data.readUint64(&value) != NO_ERROR) {
return getDefaultDisplayDevice()->getDisplayToken().promote();
}
if (const auto id = DisplayId::fromValue<PhysicalDisplayId>(value)) {
return getPhysicalDisplayToken(*id);
}
ALOGE("Invalid physical display ID");
return nullptr;
}();
mDebugDisplayModeSetByBackdoor = false;
const status_t result = setActiveModeFromBackdoor(display, modeId);
mDebugDisplayModeSetByBackdoor = result == NO_ERROR;
return result;
}
// Turn on/off frame rate flexibility mode. When turned on it overrides the display
// manager frame rate policy a new policy which allows switching between all refresh
// rates.
case 1036: {
if (data.readInt32() > 0) { // turn on
return mScheduler
->schedule([this] {
const auto display =
FTL_FAKE_GUARD(mStateLock, getDefaultDisplayDeviceLocked());
// This is a little racy, but not in a way that hurts anything. As
// we grab the defaultMode from the display manager policy, we could
// be setting a new display manager policy, leaving us using a stale
// defaultMode. The defaultMode doesn't matter for the override
// policy though, since we set allowGroupSwitching to true, so it's
// not a problem.
scheduler::RefreshRateConfigs::Policy overridePolicy;
overridePolicy.defaultMode = display->refreshRateConfigs()
.getDisplayManagerPolicy()
.defaultMode;
overridePolicy.allowGroupSwitching = true;
constexpr bool kOverridePolicy = true;
return setDesiredDisplayModeSpecsInternal(display, overridePolicy,
kOverridePolicy);
})
.get();
} else { // turn off
return mScheduler
->schedule([this] {
const auto display =
FTL_FAKE_GUARD(mStateLock, getDefaultDisplayDeviceLocked());
constexpr bool kOverridePolicy = true;
return setDesiredDisplayModeSpecsInternal(display, {},
kOverridePolicy);
})
.get();
}
}
// Inject a hotplug connected event for the primary display. This will deallocate and
// reallocate the display state including framebuffers.
case 1037: {
const hal::HWDisplayId hwcId =
(Mutex::Autolock(mStateLock), getHwComposer().getPrimaryHwcDisplayId());
onComposerHalHotplug(hwcId, hal::Connection::CONNECTED);
return NO_ERROR;
}
// Modify the max number of display frames stored within FrameTimeline
case 1038: {
n = data.readInt32();
if (n < 0 || n > MAX_ALLOWED_DISPLAY_FRAMES) {
ALOGW("Invalid max size. Maximum allowed is %d", MAX_ALLOWED_DISPLAY_FRAMES);
return BAD_VALUE;
}
if (n == 0) {
// restore to default
mFrameTimeline->reset();
return NO_ERROR;
}
mFrameTimeline->setMaxDisplayFrames(n);
return NO_ERROR;
}
case 1039: {
PhysicalDisplayId displayId = [&]() {
Mutex::Autolock lock(mStateLock);
return getDefaultDisplayDeviceLocked()->getPhysicalId();
}();
auto inUid = static_cast<uid_t>(data.readInt32());
const auto refreshRate = data.readFloat();
mScheduler->setPreferredRefreshRateForUid(FrameRateOverride{inUid, refreshRate});
mScheduler->onFrameRateOverridesChanged(mAppConnectionHandle, displayId);
return NO_ERROR;
}
// Toggle caching feature
// First argument is an int32 - nonzero enables caching and zero disables caching
// Second argument is an optional uint64 - if present, then limits enabling/disabling
// caching to a particular physical display
case 1040: {
auto future = mScheduler->schedule([&] {
n = data.readInt32();
std::optional<PhysicalDisplayId> inputId = std::nullopt;
if (uint64_t inputDisplayId; data.readUint64(&inputDisplayId) == NO_ERROR) {
inputId = DisplayId::fromValue<PhysicalDisplayId>(inputDisplayId);
if (!inputId || getPhysicalDisplayToken(*inputId)) {
ALOGE("No display with id: %" PRIu64, inputDisplayId);
return NAME_NOT_FOUND;
}
}
{
Mutex::Autolock lock(mStateLock);
mLayerCachingEnabled = n != 0;
for (const auto& [_, display] : mDisplays) {
if (!inputId || *inputId == display->getPhysicalId()) {
display->enableLayerCaching(mLayerCachingEnabled);
}
}
}
return OK;
});
if (const status_t error = future.get(); error != OK) {
return error;
}
scheduleRepaint();
return NO_ERROR;
}
case 1041: { // Transaction tracing
if (mTransactionTracing) {
if (data.readInt32()) {
// Transaction tracing is always running but allow the user to temporarily
// increase the buffer when actively debugging.
mTransactionTracing->setBufferSize(
TransactionTracing::ACTIVE_TRACING_BUFFER_SIZE);
} else {
mTransactionTracing->writeToFile();
mTransactionTracing->setBufferSize(
TransactionTracing::CONTINUOUS_TRACING_BUFFER_SIZE);
}
}
reply->writeInt32(NO_ERROR);
return NO_ERROR;
}
case 1042: { // Write layers trace or transaction trace to file
if (mTransactionTracing) {
mTransactionTracing->writeToFile();
}
if (mLayerTracingEnabled) {
mLayerTracing.writeToFile();
}
reply->writeInt32(NO_ERROR);
return NO_ERROR;
}
}
}
return err;
}
void SurfaceFlinger::kernelTimerChanged(bool expired) {
static bool updateOverlay =
property_get_bool("debug.sf.kernel_idle_timer_update_overlay", true);
if (!updateOverlay) return;
// Update the overlay on the main thread to avoid race conditions with
// mRefreshRateConfigs->getActiveMode()
static_cast<void>(mScheduler->schedule([=] {
const auto display = FTL_FAKE_GUARD(mStateLock, getDefaultDisplayDeviceLocked());
if (!display) {
ALOGW("%s: default display is null", __func__);
return;
}
if (!display->isRefreshRateOverlayEnabled()) return;
const auto desiredActiveMode = display->getDesiredActiveMode();
const std::optional<DisplayModeId> desiredModeId = desiredActiveMode
? std::make_optional(desiredActiveMode->mode->getId())
: std::nullopt;
const bool timerExpired = mKernelIdleTimerEnabled && expired;
if (display->onKernelTimerChanged(desiredModeId, timerExpired)) {
mScheduler->scheduleFrame();
}
}));
}
std::pair<std::optional<KernelIdleTimerController>, std::chrono::milliseconds>
SurfaceFlinger::getKernelIdleTimerProperties(DisplayId displayId) {
const bool isKernelIdleTimerHwcSupported = getHwComposer().getComposer()->isSupported(
android::Hwc2::Composer::OptionalFeature::KernelIdleTimer);
const auto timeout = getIdleTimerTimeout(displayId);
if (isKernelIdleTimerHwcSupported) {
if (const auto id = PhysicalDisplayId::tryCast(displayId);
getHwComposer().hasDisplayIdleTimerCapability(*id)) {
// In order to decide if we can use the HWC api for idle timer
// we query DisplayCapability::DISPLAY_IDLE_TIMER directly on the composer
// without relying on hasDisplayCapability.
// hasDisplayCapability relies on DisplayCapabilities
// which are updated after we set the PowerMode::ON.
// DISPLAY_IDLE_TIMER is a display driver property
// and is available before the PowerMode::ON
return {KernelIdleTimerController::HwcApi, timeout};
}
return {std::nullopt, timeout};
}
if (getKernelIdleTimerSyspropConfig(displayId)) {
return {KernelIdleTimerController::Sysprop, timeout};
}
return {std::nullopt, timeout};
}
void SurfaceFlinger::updateKernelIdleTimer(std::chrono::milliseconds timeout,
KernelIdleTimerController controller,
PhysicalDisplayId displayId) {
switch (controller) {
case KernelIdleTimerController::HwcApi: {
getHwComposer().setIdleTimerEnabled(displayId, timeout);
break;
}
case KernelIdleTimerController::Sysprop: {
base::SetProperty(KERNEL_IDLE_TIMER_PROP, timeout > 0ms ? "true" : "false");
break;
}
}
}
void SurfaceFlinger::toggleKernelIdleTimer() {
using KernelIdleTimerAction = scheduler::RefreshRateConfigs::KernelIdleTimerAction;
const auto display = getDefaultDisplayDeviceLocked();
if (!display) {
ALOGW("%s: default display is null", __func__);
return;
}
// If the support for kernel idle timer is disabled for the active display,
// don't do anything.
const std::optional<KernelIdleTimerController> kernelIdleTimerController =
display->refreshRateConfigs().kernelIdleTimerController();
if (!kernelIdleTimerController.has_value()) {
return;
}
const KernelIdleTimerAction action = display->refreshRateConfigs().getIdleTimerAction();
switch (action) {
case KernelIdleTimerAction::TurnOff:
if (mKernelIdleTimerEnabled) {
ATRACE_INT("KernelIdleTimer", 0);
std::chrono::milliseconds constexpr kTimerDisabledTimeout = 0ms;
updateKernelIdleTimer(kTimerDisabledTimeout, kernelIdleTimerController.value(),
display->getPhysicalId());
mKernelIdleTimerEnabled = false;
}
break;
case KernelIdleTimerAction::TurnOn:
if (!mKernelIdleTimerEnabled) {
ATRACE_INT("KernelIdleTimer", 1);
const std::chrono::milliseconds timeout =
display->refreshRateConfigs().getIdleTimerTimeout();
updateKernelIdleTimer(timeout, kernelIdleTimerController.value(),
display->getPhysicalId());
mKernelIdleTimerEnabled = true;
}
break;
}
}
// A simple RAII class to disconnect from an ANativeWindow* when it goes out of scope
class WindowDisconnector {
public:
WindowDisconnector(ANativeWindow* window, int api) : mWindow(window), mApi(api) {}
~WindowDisconnector() {
native_window_api_disconnect(mWindow, mApi);
}
private:
ANativeWindow* mWindow;
const int mApi;
};
static Dataspace pickDataspaceFromColorMode(const ColorMode colorMode) {
switch (colorMode) {
case ColorMode::DISPLAY_P3:
case ColorMode::BT2100_PQ:
case ColorMode::BT2100_HLG:
case ColorMode::DISPLAY_BT2020:
return Dataspace::DISPLAY_P3;
default:
return Dataspace::V0_SRGB;
}
}
static bool hasCaptureBlackoutContentPermission() {
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
return uid == AID_GRAPHICS || uid == AID_SYSTEM ||
PermissionCache::checkPermission(sCaptureBlackoutContent, pid, uid);
}
static status_t validateScreenshotPermissions(const CaptureArgs& captureArgs) {
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if (uid == AID_GRAPHICS || PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
return OK;
}
// If the caller doesn't have the correct permissions but is only attempting to screenshot
// itself, we allow it to continue.
if (captureArgs.uid == uid) {
return OK;
}
ALOGE("Permission Denial: can't take screenshot pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
status_t SurfaceFlinger::setSchedFifo(bool enabled) {
static constexpr int kFifoPriority = 2;
static constexpr int kOtherPriority = 0;
struct sched_param param = {0};
int sched_policy;
if (enabled) {
sched_policy = SCHED_FIFO;
param.sched_priority = kFifoPriority;
} else {
sched_policy = SCHED_OTHER;
param.sched_priority = kOtherPriority;
}
if (sched_setscheduler(0, sched_policy, &param) != 0) {
return -errno;
}
return NO_ERROR;
}
status_t SurfaceFlinger::setSchedAttr(bool enabled) {
static const unsigned int kUclampMin =
base::GetUintProperty<unsigned int>("ro.surface_flinger.uclamp.min", 0U);
if (!kUclampMin) {
// uclamp.min set to 0 (default), skip setting
return NO_ERROR;
}
// Currently, there is no wrapper in bionic: b/183240349.
struct sched_attr {
uint32_t size;
uint32_t sched_policy;
uint64_t sched_flags;
int32_t sched_nice;
uint32_t sched_priority;
uint64_t sched_runtime;
uint64_t sched_deadline;
uint64_t sched_period;
uint32_t sched_util_min;
uint32_t sched_util_max;
};
sched_attr attr = {};
attr.size = sizeof(attr);
attr.sched_flags = (SCHED_FLAG_KEEP_ALL | SCHED_FLAG_UTIL_CLAMP);
attr.sched_util_min = enabled ? kUclampMin : 0;
attr.sched_util_max = 1024;
if (syscall(__NR_sched_setattr, 0, &attr, 0)) {
return -errno;
}
return NO_ERROR;
}
status_t SurfaceFlinger::captureDisplay(const DisplayCaptureArgs& args,
const sp<IScreenCaptureListener>& captureListener) {
ATRACE_CALL();
status_t validate = validateScreenshotPermissions(args);
if (validate != OK) {
return validate;
}
if (!args.displayToken) return BAD_VALUE;
wp<const DisplayDevice> displayWeak;
ui::LayerStack layerStack;
ui::Size reqSize(args.width, args.height);
ui::Dataspace dataspace;
{
Mutex::Autolock lock(mStateLock);
sp<DisplayDevice> display = getDisplayDeviceLocked(args.displayToken);
if (!display) return NAME_NOT_FOUND;
displayWeak = display;
layerStack = display->getLayerStack();
// set the requested width/height to the logical display layer stack rect size by default
if (args.width == 0 || args.height == 0) {
reqSize = display->getLayerStackSpaceRect().getSize();
}
// The dataspace is depended on the color mode of display, that could use non-native mode
// (ex. displayP3) to enhance the content, but some cases are checking native RGB in bytes,
// and failed if display is not in native mode. This provide a way to force using native
// colors when capture.
dataspace = args.dataspace;
if (dataspace == ui::Dataspace::UNKNOWN) {
const ui::ColorMode colorMode = display->getCompositionDisplay()->getState().colorMode;
dataspace = pickDataspaceFromColorMode(colorMode);
}
}
RenderAreaFuture renderAreaFuture = ftl::defer([=] {
return DisplayRenderArea::create(displayWeak, args.sourceCrop, reqSize, dataspace,
args.useIdentityTransform, args.captureSecureLayers);
});
auto traverseLayers = [this, args, layerStack](const LayerVector::Visitor& visitor) {
traverseLayersInLayerStack(layerStack, args.uid, visitor);
};
auto future = captureScreenCommon(std::move(renderAreaFuture), traverseLayers, reqSize,
args.pixelFormat, args.allowProtected, args.grayscale,
captureListener);
return fenceStatus(future.get());
}
status_t SurfaceFlinger::captureDisplay(DisplayId displayId,
const sp<IScreenCaptureListener>& captureListener) {
ui::LayerStack layerStack;
wp<const DisplayDevice> displayWeak;
ui::Size size;
ui::Dataspace dataspace;
{
Mutex::Autolock lock(mStateLock);
const auto display = getDisplayDeviceLocked(displayId);
if (!display) {
return NAME_NOT_FOUND;
}
displayWeak = display;
layerStack = display->getLayerStack();
size = display->getLayerStackSpaceRect().getSize();
dataspace =
pickDataspaceFromColorMode(display->getCompositionDisplay()->getState().colorMode);
}
RenderAreaFuture renderAreaFuture = ftl::defer([=] {
return DisplayRenderArea::create(displayWeak, Rect(), size, dataspace,
false /* useIdentityTransform */,
false /* captureSecureLayers */);
});
auto traverseLayers = [this, layerStack](const LayerVector::Visitor& visitor) {
traverseLayersInLayerStack(layerStack, CaptureArgs::UNSET_UID, visitor);
};
if (captureListener == nullptr) {
ALOGE("capture screen must provide a capture listener callback");
return BAD_VALUE;
}
constexpr bool kAllowProtected = false;
constexpr bool kGrayscale = false;
auto future = captureScreenCommon(std::move(renderAreaFuture), traverseLayers, size,
ui::PixelFormat::RGBA_8888, kAllowProtected, kGrayscale,
captureListener);
return fenceStatus(future.get());
}
status_t SurfaceFlinger::captureLayers(const LayerCaptureArgs& args,
const sp<IScreenCaptureListener>& captureListener) {
ATRACE_CALL();
status_t validate = validateScreenshotPermissions(args);
if (validate != OK) {
return validate;
}
ui::Size reqSize;
sp<Layer> parent;
Rect crop(args.sourceCrop);
std::unordered_set<sp<Layer>, SpHash<Layer>> excludeLayers;
ui::Dataspace dataspace;
// Call this before holding mStateLock to avoid any deadlocking.
bool canCaptureBlackoutContent = hasCaptureBlackoutContentPermission();
{
Mutex::Autolock lock(mStateLock);
parent = fromHandle(args.layerHandle).promote();
if (parent == nullptr) {
ALOGE("captureLayers called with an invalid or removed parent");
return NAME_NOT_FOUND;
}
if (!canCaptureBlackoutContent &&
parent->getDrawingState().flags & layer_state_t::eLayerSecure) {
ALOGW("Attempting to capture secure layer: PERMISSION_DENIED");
return PERMISSION_DENIED;
}
Rect parentSourceBounds = parent->getCroppedBufferSize(parent->getDrawingState());
if (args.sourceCrop.width() <= 0) {
crop.left = 0;
crop.right = parentSourceBounds.getWidth();
}
if (args.sourceCrop.height() <= 0) {
crop.top = 0;
crop.bottom = parentSourceBounds.getHeight();
}
if (crop.isEmpty() || args.frameScaleX <= 0.0f || args.frameScaleY <= 0.0f) {
// Error out if the layer has no source bounds (i.e. they are boundless) and a source
// crop was not specified, or an invalid frame scale was provided.
return BAD_VALUE;
}
reqSize = ui::Size(crop.width() * args.frameScaleX, crop.height() * args.frameScaleY);
for (const auto& handle : args.excludeHandles) {
sp<Layer> excludeLayer = fromHandle(handle).promote();
if (excludeLayer != nullptr) {
excludeLayers.emplace(excludeLayer);
} else {
ALOGW("Invalid layer handle passed as excludeLayer to captureLayers");
return NAME_NOT_FOUND;
}
}
// The dataspace is depended on the color mode of display, that could use non-native mode
// (ex. displayP3) to enhance the content, but some cases are checking native RGB in bytes,
// and failed if display is not in native mode. This provide a way to force using native
// colors when capture.
dataspace = args.dataspace;
} // mStateLock
// really small crop or frameScale
if (reqSize.width <= 0 || reqSize.height <= 0) {
ALOGW("Failed to captureLayes: crop or scale too small");
return BAD_VALUE;
}
Rect layerStackSpaceRect(0, 0, reqSize.width, reqSize.height);
bool childrenOnly = args.childrenOnly;
RenderAreaFuture renderAreaFuture = ftl::defer([=]() -> std::unique_ptr<RenderArea> {
return std::make_unique<LayerRenderArea>(*this, parent, crop, reqSize, dataspace,
childrenOnly, layerStackSpaceRect,
args.captureSecureLayers);
});
auto traverseLayers = [parent, args, excludeLayers](const LayerVector::Visitor& visitor) {
parent->traverseChildrenInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) {
if (!layer->isVisible()) {
return;
} else if (args.childrenOnly && layer == parent.get()) {
return;
} else if (args.uid != CaptureArgs::UNSET_UID && args.uid != layer->getOwnerUid()) {
return;
}
sp<Layer> p = layer;
while (p != nullptr) {
if (excludeLayers.count(p) != 0) {
return;
}
p = p->getParent();
}
visitor(layer);
});
};
if (captureListener == nullptr) {
ALOGE("capture screen must provide a capture listener callback");
return BAD_VALUE;
}
auto future = captureScreenCommon(std::move(renderAreaFuture), traverseLayers, reqSize,
args.pixelFormat, args.allowProtected, args.grayscale,
captureListener);
return fenceStatus(future.get());
}
ftl::SharedFuture<FenceResult> SurfaceFlinger::captureScreenCommon(
RenderAreaFuture renderAreaFuture, TraverseLayersFunction traverseLayers,
ui::Size bufferSize, ui::PixelFormat reqPixelFormat, bool allowProtected, bool grayscale,
const sp<IScreenCaptureListener>& captureListener) {
ATRACE_CALL();
if (exceedsMaxRenderTargetSize(bufferSize.getWidth(), bufferSize.getHeight())) {
ALOGE("Attempted to capture screen with size (%" PRId32 ", %" PRId32
") that exceeds render target size limit.",
bufferSize.getWidth(), bufferSize.getHeight());
return ftl::yield<FenceResult>(base::unexpected(BAD_VALUE)).share();
}
// Loop over all visible layers to see whether there's any protected layer. A protected layer is
// typically a layer with DRM contents, or have the GRALLOC_USAGE_PROTECTED set on the buffer.
// A protected layer has no implication on whether it's secure, which is explicitly set by
// application to avoid being screenshot or drawn via unsecure display.
const bool supportsProtected = getRenderEngine().supportsProtectedContent();
bool hasProtectedLayer = false;
if (allowProtected && supportsProtected) {
auto future = mScheduler->schedule([=]() {
bool protectedLayerFound = false;
traverseLayers([&](Layer* layer) {
protectedLayerFound =
protectedLayerFound || (layer->isVisible() && layer->isProtected());
});
return protectedLayerFound;
});
hasProtectedLayer = future.get();
}
const uint32_t usage = GRALLOC_USAGE_HW_COMPOSER | GRALLOC_USAGE_HW_RENDER |
GRALLOC_USAGE_HW_TEXTURE |
(hasProtectedLayer && allowProtected && supportsProtected
? GRALLOC_USAGE_PROTECTED
: GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN);
sp<GraphicBuffer> buffer =
getFactory().createGraphicBuffer(bufferSize.getWidth(), bufferSize.getHeight(),
static_cast<android_pixel_format>(reqPixelFormat),
1 /* layerCount */, usage, "screenshot");
const status_t bufferStatus = buffer->initCheck();
if (bufferStatus != OK) {
// Animations may end up being really janky, but don't crash here.
// Otherwise an irreponsible process may cause an SF crash by allocating
// too much.
ALOGE("%s: Buffer failed to allocate: %d", __func__, bufferStatus);
return ftl::yield<FenceResult>(base::unexpected(bufferStatus)).share();
}
const std::shared_ptr<renderengine::ExternalTexture> texture = std::make_shared<
renderengine::impl::ExternalTexture>(buffer, getRenderEngine(),
renderengine::impl::ExternalTexture::Usage::
WRITEABLE);
return captureScreenCommon(std::move(renderAreaFuture), traverseLayers, texture,
false /* regionSampling */, grayscale, captureListener);
}
ftl::SharedFuture<FenceResult> SurfaceFlinger::captureScreenCommon(
RenderAreaFuture renderAreaFuture, TraverseLayersFunction traverseLayers,
const std::shared_ptr<renderengine::ExternalTexture>& buffer, bool regionSampling,
bool grayscale, const sp<IScreenCaptureListener>& captureListener) {
ATRACE_CALL();
bool canCaptureBlackoutContent = hasCaptureBlackoutContentPermission();
auto future = mScheduler->schedule([=, renderAreaFuture = std::move(renderAreaFuture)]() mutable
-> ftl::SharedFuture<FenceResult> {
ScreenCaptureResults captureResults;
std::unique_ptr<RenderArea> renderArea = renderAreaFuture.get();
if (!renderArea) {
ALOGW("Skipping screen capture because of invalid render area.");
if (captureListener) {
captureResults.result = NO_MEMORY;
captureListener->onScreenCaptureCompleted(captureResults);
}
return ftl::yield<FenceResult>(base::unexpected(NO_ERROR)).share();
}
ftl::SharedFuture<FenceResult> renderFuture;
renderArea->render([&] {
renderFuture =
renderScreenImpl(*renderArea, traverseLayers, buffer, canCaptureBlackoutContent,
regionSampling, grayscale, captureResults);
});
if (captureListener) {
// TODO: The future returned by std::async blocks the main thread. Return a chain of
// futures to the Binder thread instead.
std::async([=]() mutable {
ATRACE_NAME("captureListener is nonnull!");
auto fenceResult = renderFuture.get();
// TODO(b/232535621): Change ScreenCaptureResults to store a FenceResult.
captureResults.result = fenceStatus(fenceResult);
captureResults.fence = std::move(fenceResult).value_or(Fence::NO_FENCE);
captureListener->onScreenCaptureCompleted(captureResults);
});
}
return renderFuture;
});
if (captureListener) {
return ftl::yield<FenceResult>(base::unexpected(NO_ERROR)).share();
}
// Flatten nested futures.
auto chain = ftl::Future(std::move(future)).then([](ftl::SharedFuture<FenceResult> future) {
return future;
});
return chain.share();
}
ftl::SharedFuture<FenceResult> SurfaceFlinger::renderScreenImpl(
const RenderArea& renderArea, TraverseLayersFunction traverseLayers,
const std::shared_ptr<renderengine::ExternalTexture>& buffer,
bool canCaptureBlackoutContent, bool regionSampling, bool grayscale,
ScreenCaptureResults& captureResults) {
ATRACE_CALL();
traverseLayers([&](Layer* layer) {
captureResults.capturedSecureLayers =
captureResults.capturedSecureLayers || (layer->isVisible() && layer->isSecure());
});
const bool useProtected = buffer->getUsage() & GRALLOC_USAGE_PROTECTED;
// We allow the system server to take screenshots of secure layers for
// use in situations like the Screen-rotation animation and place
// the impetus on WindowManager to not persist them.
if (captureResults.capturedSecureLayers && !canCaptureBlackoutContent) {
ALOGW("FB is protected: PERMISSION_DENIED");
return ftl::yield<FenceResult>(base::unexpected(PERMISSION_DENIED)).share();
}
captureResults.buffer = buffer->getBuffer();
auto dataspace = renderArea.getReqDataSpace();
auto parent = renderArea.getParentLayer();
auto renderIntent = RenderIntent::TONE_MAP_COLORIMETRIC;
auto sdrWhitePointNits = DisplayDevice::sDefaultMaxLumiance;
auto displayBrightnessNits = DisplayDevice::sDefaultMaxLumiance;
if ((dataspace == ui::Dataspace::UNKNOWN) && (parent != nullptr)) {
Mutex::Autolock lock(mStateLock);
auto display = findDisplay([layerStack = parent->getLayerStack()](const auto& display) {
return display.getLayerStack() == layerStack;
});
if (!display) {
// If the layer is not on a display, use the dataspace for the default display.
display = getDefaultDisplayDeviceLocked();
}
const ui::ColorMode colorMode = display->getCompositionDisplay()->getState().colorMode;
dataspace = pickDataspaceFromColorMode(colorMode);
renderIntent = display->getCompositionDisplay()->getState().renderIntent;
sdrWhitePointNits = display->getCompositionDisplay()->getState().sdrWhitePointNits;
displayBrightnessNits = display->getCompositionDisplay()->getState().displayBrightnessNits;
}
captureResults.capturedDataspace = dataspace;
const auto reqWidth = renderArea.getReqWidth();
const auto reqHeight = renderArea.getReqHeight();
const auto sourceCrop = renderArea.getSourceCrop();
const auto transform = renderArea.getTransform();
const auto rotation = renderArea.getRotationFlags();
const auto& layerStackSpaceRect = renderArea.getLayerStackSpaceRect();
renderengine::DisplaySettings clientCompositionDisplay;
std::vector<compositionengine::LayerFE::LayerSettings> clientCompositionLayers;
// assume that bounds are never offset, and that they are the same as the
// buffer bounds.
clientCompositionDisplay.physicalDisplay = Rect(reqWidth, reqHeight);
clientCompositionDisplay.clip = sourceCrop;
clientCompositionDisplay.orientation = rotation;
clientCompositionDisplay.outputDataspace = dataspace;
clientCompositionDisplay.currentLuminanceNits = displayBrightnessNits;
clientCompositionDisplay.maxLuminance = DisplayDevice::sDefaultMaxLumiance;
clientCompositionDisplay.renderIntent =
static_cast<aidl::android::hardware::graphics::composer3::RenderIntent>(renderIntent);
const float colorSaturation = grayscale ? 0 : 1;
clientCompositionDisplay.colorTransform = calculateColorMatrix(colorSaturation);
const float alpha = RenderArea::getCaptureFillValue(renderArea.getCaptureFill());
compositionengine::LayerFE::LayerSettings fillLayer;
fillLayer.source.buffer.buffer = nullptr;
fillLayer.source.solidColor = half3(0.0, 0.0, 0.0);
fillLayer.geometry.boundaries =
FloatRect(sourceCrop.left, sourceCrop.top, sourceCrop.right, sourceCrop.bottom);
fillLayer.alpha = half(alpha);
clientCompositionLayers.push_back(fillLayer);
const auto display = renderArea.getDisplayDevice();
std::vector<Layer*> renderedLayers;
bool disableBlurs = false;
traverseLayers([&](Layer* layer) {
disableBlurs |= layer->getDrawingState().sidebandStream != nullptr;
Region clip(renderArea.getBounds());
compositionengine::LayerFE::ClientCompositionTargetSettings targetSettings{
clip,
layer->needsFilteringForScreenshots(display.get(), transform) ||
renderArea.needsFiltering(),
renderArea.isSecure(),
useProtected,
layerStackSpaceRect,
clientCompositionDisplay.outputDataspace,
true, /* realContentIsVisible */
false, /* clearContent */
disableBlurs ? compositionengine::LayerFE::ClientCompositionTargetSettings::
BlurSetting::Disabled
: compositionengine::LayerFE::ClientCompositionTargetSettings::
BlurSetting::Enabled,
isHdrLayer(layer) ? displayBrightnessNits : sdrWhitePointNits,
};
std::vector<compositionengine::LayerFE::LayerSettings> results =
layer->prepareClientCompositionList(targetSettings);
if (results.size() > 0) {
for (auto& settings : results) {
settings.geometry.positionTransform =
transform.asMatrix4() * settings.geometry.positionTransform;
// There's no need to process blurs when we're executing region sampling,
// we're just trying to understand what we're drawing, and doing so without
// blurs is already a pretty good approximation.
if (regionSampling) {
settings.backgroundBlurRadius = 0;
}
captureResults.capturedHdrLayers |= isHdrLayer(layer);
}
clientCompositionLayers.insert(clientCompositionLayers.end(),
std::make_move_iterator(results.begin()),
std::make_move_iterator(results.end()));
renderedLayers.push_back(layer);
}
});
std::vector<renderengine::LayerSettings> clientRenderEngineLayers;
clientRenderEngineLayers.reserve(clientCompositionLayers.size());
std::transform(clientCompositionLayers.begin(), clientCompositionLayers.end(),
std::back_inserter(clientRenderEngineLayers),
[](compositionengine::LayerFE::LayerSettings& settings)
-> renderengine::LayerSettings { return settings; });
// Use an empty fence for the buffer fence, since we just created the buffer so
// there is no need for synchronization with the GPU.
base::unique_fd bufferFence;
getRenderEngine().useProtectedContext(useProtected);
constexpr bool kUseFramebufferCache = false;
auto chain =
ftl::Future(getRenderEngine().drawLayers(clientCompositionDisplay,
clientRenderEngineLayers, buffer,
kUseFramebufferCache, std::move(bufferFence)))
.then(&toFenceResult);
const auto future = chain.share();
for (auto* layer : renderedLayers) {
layer->onLayerDisplayed(future);
}
// Always switch back to unprotected context.
getRenderEngine().useProtectedContext(false);
return future;
}
void SurfaceFlinger::windowInfosReported() {
Mutex::Autolock _l(mStateLock);
signalSynchronousTransactions(CountDownLatch::eSyncInputWindows);
}
// ---------------------------------------------------------------------------
void SurfaceFlinger::State::traverse(const LayerVector::Visitor& visitor) const {
layersSortedByZ.traverse(visitor);
}
void SurfaceFlinger::State::traverseInZOrder(const LayerVector::Visitor& visitor) const {
layersSortedByZ.traverseInZOrder(stateSet, visitor);
}
void SurfaceFlinger::State::traverseInReverseZOrder(const LayerVector::Visitor& visitor) const {
layersSortedByZ.traverseInReverseZOrder(stateSet, visitor);
}
void SurfaceFlinger::traverseLayersInLayerStack(ui::LayerStack layerStack, const int32_t uid,
const LayerVector::Visitor& visitor) {
// We loop through the first level of layers without traversing,
// as we need to determine which layers belong to the requested display.
for (const auto& layer : mDrawingState.layersSortedByZ) {
if (layer->getLayerStack() != layerStack) {
continue;
}
// relative layers are traversed in Layer::traverseInZOrder
layer->traverseInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) {
if (layer->isInternalDisplayOverlay()) {
return;
}
if (!layer->isVisible()) {
return;
}
if (uid != CaptureArgs::UNSET_UID && layer->getOwnerUid() != uid) {
return;
}
visitor(layer);
});
}
}
status_t SurfaceFlinger::setDesiredDisplayModeSpecsInternal(
const sp<DisplayDevice>& display,
const std::optional<scheduler::RefreshRateConfigs::Policy>& policy, bool overridePolicy) {
Mutex::Autolock lock(mStateLock);
if (mDebugDisplayModeSetByBackdoor) {
// ignore this request as mode is overridden by backdoor
return NO_ERROR;
}
const status_t setPolicyResult = display->setRefreshRatePolicy(policy, overridePolicy);
if (setPolicyResult < 0) {
return BAD_VALUE;
}
if (setPolicyResult == scheduler::RefreshRateConfigs::CURRENT_POLICY_UNCHANGED) {
return NO_ERROR;
}
if (display->isInternal() && !isDisplayActiveLocked(display)) {
// The policy will be be applied when the display becomes active.
ALOGV("%s(%s): Inactive display", __func__, to_string(display->getId()).c_str());
return NO_ERROR;
}
return applyRefreshRateConfigsPolicy(display);
}
status_t SurfaceFlinger::applyRefreshRateConfigsPolicy(const sp<DisplayDevice>& display,
bool force) {
const scheduler::RefreshRateConfigs::Policy currentPolicy =
display->refreshRateConfigs().getCurrentPolicy();
ALOGV("Setting desired display mode specs: %s", currentPolicy.toString().c_str());
// TODO(b/140204874): Leave the event in until we do proper testing with all apps that might
// be depending in this callback.
const auto activeMode = display->getActiveMode();
if (isDisplayActiveLocked(display)) {
mScheduler->onPrimaryDisplayModeChanged(mAppConnectionHandle, activeMode);
toggleKernelIdleTimer();
} else {
mScheduler->onNonPrimaryDisplayModeChanged(mAppConnectionHandle, activeMode);
}
const DisplayModePtr preferredDisplayMode = [&] {
const auto schedulerMode = mScheduler->getPreferredDisplayMode();
if (schedulerMode && schedulerMode->getPhysicalDisplayId() == display->getPhysicalId()) {
return schedulerMode;
}
return display->getMode(currentPolicy.defaultMode);
}();
ALOGV("trying to switch to Scheduler preferred mode %d (%s)",
preferredDisplayMode->getId().value(), to_string(preferredDisplayMode->getFps()).c_str());
if (display->refreshRateConfigs().isModeAllowed(preferredDisplayMode->getId())) {
ALOGV("switching to Scheduler preferred display mode %d",
preferredDisplayMode->getId().value());
setDesiredActiveMode({preferredDisplayMode, DisplayModeEvent::Changed}, force);
} else {
LOG_ALWAYS_FATAL("Desired display mode not allowed: %d",
preferredDisplayMode->getId().value());
}
return NO_ERROR;
}
#ifdef QCOM_UM_FAMILY
bool SurfaceFlinger::canAllocateHwcDisplayIdForVDS(uint64_t usage) {
uint64_t flag_mask_pvt_wfd = ~0;
uint64_t flag_mask_hw_video = ~0;
// Reserve hardware acceleration for WFD use-case
// GRALLOC_USAGE_PRIVATE_WFD + GRALLOC_USAGE_HW_VIDEO_ENCODER = WFD using HW composer.
flag_mask_pvt_wfd = GRALLOC_USAGE_PRIVATE_WFD;
flag_mask_hw_video = GRALLOC_USAGE_HW_VIDEO_ENCODER;
bool isWfd = (usage & flag_mask_pvt_wfd) && (usage & flag_mask_hw_video);
// Enabling only the vendor property would allow WFD to use HWC
// Enabling both the aosp and vendor properties would allow all other VDS to use HWC
// Disabling both would set all virtual displays to fall back to GPU
// In vendor frozen targets, allow WFD to use HWC without any property settings.
bool canAllocate = mAllowHwcForVDS || (isWfd && mAllowHwcForWFD) || (isWfd &&
mFirstApiLevel < __ANDROID_API_T__);
if (canAllocate) {
enableHalVirtualDisplays(true);
}
return canAllocate;
}
#else
bool SurfaceFlinger::canAllocateHwcDisplayIdForVDS(uint64_t) {
return true;
}
#endif
status_t SurfaceFlinger::setDesiredDisplayModeSpecs(
const sp<IBinder>& displayToken, ui::DisplayModeId defaultMode, bool allowGroupSwitching,
float primaryRefreshRateMin, float primaryRefreshRateMax, float appRequestRefreshRateMin,
float appRequestRefreshRateMax) {
ATRACE_CALL();
if (!displayToken) {
return BAD_VALUE;
}
auto future = mScheduler->schedule([=]() -> status_t {
const auto display = FTL_FAKE_GUARD(mStateLock, getDisplayDeviceLocked(displayToken));
if (!display) {
ALOGE("Attempt to set desired display modes for invalid display token %p",
displayToken.get());
return NAME_NOT_FOUND;
} else if (display->isVirtual()) {
ALOGW("Attempt to set desired display modes for virtual display");
return INVALID_OPERATION;
} else {
using Policy = scheduler::RefreshRateConfigs::Policy;
const Policy policy{DisplayModeId(defaultMode),
allowGroupSwitching,
{Fps::fromValue(primaryRefreshRateMin),
Fps::fromValue(primaryRefreshRateMax)},
{Fps::fromValue(appRequestRefreshRateMin),
Fps::fromValue(appRequestRefreshRateMax)}};
constexpr bool kOverridePolicy = false;
return setDesiredDisplayModeSpecsInternal(display, policy, kOverridePolicy);
}
});
return future.get();
}
status_t SurfaceFlinger::getDesiredDisplayModeSpecs(const sp<IBinder>& displayToken,
ui::DisplayModeId* outDefaultMode,
bool* outAllowGroupSwitching,
float* outPrimaryRefreshRateMin,
float* outPrimaryRefreshRateMax,
float* outAppRequestRefreshRateMin,
float* outAppRequestRefreshRateMax) {
ATRACE_CALL();
if (!displayToken || !outDefaultMode || !outPrimaryRefreshRateMin ||
!outPrimaryRefreshRateMax || !outAppRequestRefreshRateMin || !outAppRequestRefreshRateMax) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
return NAME_NOT_FOUND;
}
if (display->isVirtual()) {
return INVALID_OPERATION;
}
scheduler::RefreshRateConfigs::Policy policy =
display->refreshRateConfigs().getDisplayManagerPolicy();
*outDefaultMode = policy.defaultMode.value();
*outAllowGroupSwitching = policy.allowGroupSwitching;
*outPrimaryRefreshRateMin = policy.primaryRange.min.getValue();
*outPrimaryRefreshRateMax = policy.primaryRange.max.getValue();
*outAppRequestRefreshRateMin = policy.appRequestRange.min.getValue();
*outAppRequestRefreshRateMax = policy.appRequestRange.max.getValue();
return NO_ERROR;
}
wp<Layer> SurfaceFlinger::fromHandle(const sp<IBinder>& handle) const {
return Layer::fromHandle(handle);
}
void SurfaceFlinger::onLayerFirstRef(Layer* layer) {
mNumLayers++;
if (!layer->isRemovedFromCurrentState()) {
mScheduler->registerLayer(layer);
}
}
void SurfaceFlinger::onLayerDestroyed(Layer* layer) {
mNumLayers--;
removeHierarchyFromOffscreenLayers(layer);
if (!layer->isRemovedFromCurrentState()) {
mScheduler->deregisterLayer(layer);
}
if (mTransactionTracing) {
mTransactionTracing->onLayerRemoved(layer->getSequence());
}
}
void SurfaceFlinger::onLayerUpdate() {
scheduleCommit(FrameHint::kActive);
}
// WARNING: ONLY CALL THIS FROM LAYER DTOR
// Here we add children in the current state to offscreen layers and remove the
// layer itself from the offscreen layer list. Since
// this is the dtor, it is safe to access the current state. This keeps us
// from dangling children layers such that they are not reachable from the
// Drawing state nor the offscreen layer list
// See b/141111965
void SurfaceFlinger::removeHierarchyFromOffscreenLayers(Layer* layer) {
for (auto& child : layer->getCurrentChildren()) {
mOffscreenLayers.emplace(child.get());
}
mOffscreenLayers.erase(layer);
}
void SurfaceFlinger::removeFromOffscreenLayers(Layer* layer) {
mOffscreenLayers.erase(layer);
}
status_t SurfaceFlinger::setGlobalShadowSettings(const half4& ambientColor, const half4& spotColor,
float lightPosY, float lightPosZ,
float lightRadius) {
Mutex::Autolock _l(mStateLock);
mCurrentState.globalShadowSettings.ambientColor = vec4(ambientColor);
mCurrentState.globalShadowSettings.spotColor = vec4(spotColor);
mCurrentState.globalShadowSettings.lightPos.y = lightPosY;
mCurrentState.globalShadowSettings.lightPos.z = lightPosZ;
mCurrentState.globalShadowSettings.lightRadius = lightRadius;
// these values are overridden when calculating the shadow settings for a layer.
mCurrentState.globalShadowSettings.lightPos.x = 0.f;
mCurrentState.globalShadowSettings.length = 0.f;
return NO_ERROR;
}
const std::unordered_map<std::string, uint32_t>& SurfaceFlinger::getGenericLayerMetadataKeyMap()
const {
// TODO(b/149500060): Remove this fixed/static mapping. Please prefer taking
// on the work to remove the table in that bug rather than adding more to
// it.
static const std::unordered_map<std::string, uint32_t> genericLayerMetadataKeyMap{
{"org.chromium.arc.V1_0.TaskId", METADATA_TASK_ID},
{"org.chromium.arc.V1_0.CursorInfo", METADATA_MOUSE_CURSOR},
};
return genericLayerMetadataKeyMap;
}
status_t SurfaceFlinger::setFrameRate(const sp<IGraphicBufferProducer>& surface, float frameRate,
int8_t compatibility, int8_t changeFrameRateStrategy) {
if (!ValidateFrameRate(frameRate, compatibility, changeFrameRateStrategy,
"SurfaceFlinger::setFrameRate")) {
return BAD_VALUE;
}
static_cast<void>(mScheduler->schedule([=] {
Mutex::Autolock lock(mStateLock);
if (authenticateSurfaceTextureLocked(surface)) {
sp<Layer> layer = (static_cast<MonitoredProducer*>(surface.get()))->getLayer();
if (layer == nullptr) {
ALOGE("Attempt to set frame rate on a layer that no longer exists");
return BAD_VALUE;
}
const auto strategy =
Layer::FrameRate::convertChangeFrameRateStrategy(changeFrameRateStrategy);
if (layer->setFrameRate(
Layer::FrameRate(Fps::fromValue(frameRate),
Layer::FrameRate::convertCompatibility(compatibility),
strategy))) {
setTransactionFlags(eTraversalNeeded);
}
} else {
ALOGE("Attempt to set frame rate on an unrecognized IGraphicBufferProducer");
return BAD_VALUE;
}
return NO_ERROR;
}));
return NO_ERROR;
}
status_t SurfaceFlinger::setOverrideFrameRate(uid_t uid, float frameRate) {
PhysicalDisplayId displayId = [&]() {
Mutex::Autolock lock(mStateLock);
return getDefaultDisplayDeviceLocked()->getPhysicalId();
}();
mScheduler->setGameModeRefreshRateForUid(FrameRateOverride{static_cast<uid_t>(uid), frameRate});
mScheduler->onFrameRateOverridesChanged(mAppConnectionHandle, displayId);
return NO_ERROR;
}
status_t SurfaceFlinger::setFrameTimelineInfo(const sp<IGraphicBufferProducer>& surface,
const FrameTimelineInfo& frameTimelineInfo) {
Mutex::Autolock lock(mStateLock);
if (!authenticateSurfaceTextureLocked(surface)) {
ALOGE("Attempt to set frame timeline info on an unrecognized IGraphicBufferProducer");
return BAD_VALUE;
}
sp<Layer> layer = (static_cast<MonitoredProducer*>(surface.get()))->getLayer();
if (layer == nullptr) {
ALOGE("Attempt to set frame timeline info on a layer that no longer exists");
return BAD_VALUE;
}
layer->setFrameTimelineInfoForBuffer(frameTimelineInfo);
return NO_ERROR;
}
void SurfaceFlinger::enableRefreshRateOverlay(bool enable) {
for (const auto& [ignored, display] : mDisplays) {
if (display->isInternal()) {
display->enableRefreshRateOverlay(enable, mRefreshRateOverlaySpinner);
}
}
}
status_t SurfaceFlinger::addTransactionTraceListener(
const sp<gui::ITransactionTraceListener>& listener) {
if (!listener) {
return BAD_VALUE;
}
mInterceptor->addTransactionTraceListener(listener);
return NO_ERROR;
}
int SurfaceFlinger::getGPUContextPriority() {
return getRenderEngine().getContextPriority();
}
int SurfaceFlinger::calculateMaxAcquiredBufferCount(Fps refreshRate,
std::chrono::nanoseconds presentLatency) {
auto pipelineDepth = presentLatency.count() / refreshRate.getPeriodNsecs();
if (presentLatency.count() % refreshRate.getPeriodNsecs()) {
pipelineDepth++;
}
return std::max(1ll, pipelineDepth - 1);
}
status_t SurfaceFlinger::getMaxAcquiredBufferCount(int* buffers) const {
Fps maxRefreshRate = 60_Hz;
if (!getHwComposer().isHeadless()) {
if (const auto display = getDefaultDisplayDevice()) {
maxRefreshRate = display->refreshRateConfigs().getSupportedRefreshRateRange().max;
}
}
*buffers = getMaxAcquiredBufferCountForRefreshRate(maxRefreshRate);
return NO_ERROR;
}
uint32_t SurfaceFlinger::getMaxAcquiredBufferCountForCurrentRefreshRate(uid_t uid) const {
Fps refreshRate = 60_Hz;
if (const auto frameRateOverride = mScheduler->getFrameRateOverride(uid)) {
refreshRate = *frameRateOverride;
} else if (!getHwComposer().isHeadless()) {
if (const auto display = FTL_FAKE_GUARD(mStateLock, getDefaultDisplayDeviceLocked())) {
refreshRate = display->refreshRateConfigs().getActiveMode()->getFps();
}
}
return getMaxAcquiredBufferCountForRefreshRate(refreshRate);
}
int SurfaceFlinger::getMaxAcquiredBufferCountForRefreshRate(Fps refreshRate) const {
const auto vsyncConfig = mVsyncConfiguration->getConfigsForRefreshRate(refreshRate).late;
const auto presentLatency = vsyncConfig.appWorkDuration + vsyncConfig.sfWorkDuration;
return calculateMaxAcquiredBufferCount(refreshRate, presentLatency);
}
void SurfaceFlinger::handleLayerCreatedLocked(const LayerCreatedState& state) {
sp<Layer> layer = state.layer.promote();
if (!layer) {
ALOGD("Layer was destroyed soon after creation %p", state.layer.unsafe_get());
return;
}
sp<Layer> parent;
bool addToRoot = state.addToRoot;
if (state.initialParent != nullptr) {
parent = state.initialParent.promote();
if (parent == nullptr) {
ALOGD("Parent was destroyed soon after creation %p", state.initialParent.unsafe_get());
addToRoot = false;
}
}
if (parent == nullptr && addToRoot) {
layer->setIsAtRoot(true);
mCurrentState.layersSortedByZ.add(layer);
} else if (parent == nullptr) {
layer->onRemovedFromCurrentState();
} else if (parent->isRemovedFromCurrentState()) {
parent->addChild(layer);
layer->onRemovedFromCurrentState();
} else {
parent->addChild(layer);
}
layer->updateTransformHint(mActiveDisplayTransformHint);
mInterceptor->saveSurfaceCreation(layer);
}
void SurfaceFlinger::sample() {
if (!mLumaSampling || !mRegionSamplingThread) {
return;
}
mRegionSamplingThread->onCompositionComplete(mScheduler->getScheduledFrameTime());
}
void SurfaceFlinger::onActiveDisplaySizeChanged(const sp<DisplayDevice>& activeDisplay) {
mScheduler->onActiveDisplayAreaChanged(activeDisplay->getWidth() * activeDisplay->getHeight());
getRenderEngine().onActiveDisplaySizeChanged(activeDisplay->getSize());
}
void SurfaceFlinger::onActiveDisplayChangedLocked(const sp<DisplayDevice>& activeDisplay) {
ATRACE_CALL();
// During boot, SF powers on the primary display, which is the first display to be active. In
// that case, there is no need to force setDesiredActiveMode, because DM is about to send its
// policy via setDesiredDisplayModeSpecs.
bool forceApplyPolicy = false;
if (const auto display = getDisplayDeviceLocked(mActiveDisplayToken)) {
display->getCompositionDisplay()->setLayerCachingTexturePoolEnabled(false);
forceApplyPolicy = true;
}
if (!activeDisplay) {
ALOGE("%s: activeDisplay is null", __func__);
return;
}
ALOGI("Active display is %s", to_string(activeDisplay->getPhysicalId()).c_str());
mActiveDisplayToken = activeDisplay->getDisplayToken();
activeDisplay->getCompositionDisplay()->setLayerCachingTexturePoolEnabled(true);
updateInternalDisplayVsyncLocked(activeDisplay);
mScheduler->setModeChangePending(false);
mScheduler->setRefreshRateConfigs(activeDisplay->holdRefreshRateConfigs());
onActiveDisplaySizeChanged(activeDisplay);
mActiveDisplayTransformHint = activeDisplay->getTransformHint();
// The policy of the new active/leader display may have changed while it was inactive. In that
// case, its preferred mode has not been propagated to HWC (via setDesiredActiveMode). In either
// case, the Scheduler's cachedModeChangedParams must be initialized to the newly active mode,
// and the kernel idle timer of the newly active display must be toggled.
applyRefreshRateConfigsPolicy(activeDisplay, forceApplyPolicy);
}
status_t SurfaceFlinger::addWindowInfosListener(
const sp<IWindowInfosListener>& windowInfosListener) const {
mWindowInfosListenerInvoker->addWindowInfosListener(windowInfosListener);
return NO_ERROR;
}
status_t SurfaceFlinger::removeWindowInfosListener(
const sp<IWindowInfosListener>& windowInfosListener) const {
mWindowInfosListenerInvoker->removeWindowInfosListener(windowInfosListener);
return NO_ERROR;
}
std::shared_ptr<renderengine::ExternalTexture> SurfaceFlinger::getExternalTextureFromBufferData(
const BufferData& bufferData, const char* layerName) const {
bool cacheIdChanged = bufferData.flags.test(BufferData::BufferDataChange::cachedBufferChanged);
bool bufferSizeExceedsLimit = false;
std::shared_ptr<renderengine::ExternalTexture> buffer = nullptr;
if (cacheIdChanged && bufferData.buffer != nullptr) {
bufferSizeExceedsLimit = exceedsMaxRenderTargetSize(bufferData.buffer->getWidth(),
bufferData.buffer->getHeight());
if (!bufferSizeExceedsLimit) {
ClientCache::getInstance().add(bufferData.cachedBuffer, bufferData.buffer);
buffer = ClientCache::getInstance().get(bufferData.cachedBuffer);
}
} else if (cacheIdChanged) {
buffer = ClientCache::getInstance().get(bufferData.cachedBuffer);
} else if (bufferData.buffer != nullptr) {
bufferSizeExceedsLimit = exceedsMaxRenderTargetSize(bufferData.buffer->getWidth(),
bufferData.buffer->getHeight());
if (!bufferSizeExceedsLimit) {
buffer = std::make_shared<
renderengine::impl::ExternalTexture>(bufferData.buffer, getRenderEngine(),
renderengine::impl::ExternalTexture::
Usage::READABLE);
}
}
ALOGE_IF(bufferSizeExceedsLimit,
"Attempted to create an ExternalTexture for layer %s that exceeds render target size "
"limit.",
layerName);
return buffer;
}
bool SurfaceFlinger::commitCreatedLayers() {
std::vector<LayerCreatedState> createdLayers;
{
std::scoped_lock<std::mutex> lock(mCreatedLayersLock);
createdLayers = std::move(mCreatedLayers);
mCreatedLayers.clear();
if (createdLayers.size() == 0) {
return false;
}
}
Mutex::Autolock _l(mStateLock);
for (const auto& createdLayer : createdLayers) {
handleLayerCreatedLocked(createdLayer);
}
createdLayers.clear();
mLayersAdded = true;
return true;
}
// gui::ISurfaceComposer
binder::Status SurfaceComposerAIDL::createDisplay(const std::string& displayName, bool secure,
sp<IBinder>* outDisplay) {
status_t status = checkAccessPermission();
if (status == OK) {
String8 displayName8 = String8::format("%s", displayName.c_str());
*outDisplay = mFlinger->createDisplay(displayName8, secure);
return binder::Status::ok();
}
return binder::Status::fromStatusT(status);
}
binder::Status SurfaceComposerAIDL::destroyDisplay(const sp<IBinder>& display) {
status_t status = checkAccessPermission();
if (status == OK) {
mFlinger->destroyDisplay(display);
return binder::Status::ok();
}
return binder::Status::fromStatusT(status);
}
binder::Status SurfaceComposerAIDL::getPhysicalDisplayIds(std::vector<int64_t>* outDisplayIds) {
std::vector<PhysicalDisplayId> physicalDisplayIds = mFlinger->getPhysicalDisplayIds();
std::vector<int64_t> displayIds;
displayIds.reserve(physicalDisplayIds.size());
for (auto item : physicalDisplayIds) {
displayIds.push_back(static_cast<int64_t>(item.value));
}
*outDisplayIds = displayIds;
return binder::Status::ok();
}
binder::Status SurfaceComposerAIDL::getPrimaryPhysicalDisplayId(int64_t* outDisplayId) {
status_t status = checkAccessPermission();
if (status != OK) {
return binder::Status::fromStatusT(status);
}
PhysicalDisplayId id;
status = mFlinger->getPrimaryPhysicalDisplayId(&id);
if (status == NO_ERROR) {
*outDisplayId = id.value;
}
return binder::Status::fromStatusT(status);
}
binder::Status SurfaceComposerAIDL::getPhysicalDisplayToken(int64_t displayId,
sp<IBinder>* outDisplay) {
const auto id = DisplayId::fromValue<PhysicalDisplayId>(static_cast<uint64_t>(displayId));
*outDisplay = mFlinger->getPhysicalDisplayToken(*id);
return binder::Status::ok();
}
binder::Status SurfaceComposerAIDL::setPowerMode(const sp<IBinder>& display, int mode) {
status_t status = checkAccessPermission();
if (status != OK) return binder::Status::fromStatusT(status);
mFlinger->setPowerMode(display, mode);
return binder::Status::ok();
}
binder::Status SurfaceComposerAIDL::getDisplayStats(const sp<IBinder>& display,
gui::DisplayStatInfo* outStatInfo) {
DisplayStatInfo statInfo;
status_t status = mFlinger->getDisplayStats(display, &statInfo);
if (status == NO_ERROR) {
outStatInfo->vsyncTime = static_cast<long>(statInfo.vsyncTime);
outStatInfo->vsyncPeriod = static_cast<long>(statInfo.vsyncPeriod);
}
return binder::Status::fromStatusT(status);
}
binder::Status SurfaceComposerAIDL::getDisplayState(const sp<IBinder>& display,
gui::DisplayState* outState) {
ui::DisplayState state;
status_t status = mFlinger->getDisplayState(display, &state);
if (status == NO_ERROR) {
outState->layerStack = state.layerStack.id;
outState->orientation = static_cast<gui::Rotation>(state.orientation);
outState->layerStackSpaceRect.width = state.layerStackSpaceRect.width;
outState->layerStackSpaceRect.height = state.layerStackSpaceRect.height;
}
return binder::Status::fromStatusT(status);
}
binder::Status SurfaceComposerAIDL::clearBootDisplayMode(const sp<IBinder>& display) {
status_t status = checkAccessPermission();
if (status != OK) return binder::Status::fromStatusT(status);
status = mFlinger->clearBootDisplayMode(display);
return binder::Status::fromStatusT(status);
}
binder::Status SurfaceComposerAIDL::getBootDisplayModeSupport(bool* outMode) {
status_t status = checkAccessPermission();
if (status != OK) return binder::Status::fromStatusT(status);
status = mFlinger->getBootDisplayModeSupport(outMode);
return binder::Status::fromStatusT(status);
}
binder::Status SurfaceComposerAIDL::setAutoLowLatencyMode(const sp<IBinder>& display, bool on) {
status_t status = checkAccessPermission();
if (status != OK) return binder::Status::fromStatusT(status);
mFlinger->setAutoLowLatencyMode(display, on);
return binder::Status::ok();
}
binder::Status SurfaceComposerAIDL::setGameContentType(const sp<IBinder>& display, bool on) {
status_t status = checkAccessPermission();
if (status != OK) return binder::Status::fromStatusT(status);
mFlinger->setGameContentType(display, on);
return binder::Status::ok();
}
binder::Status SurfaceComposerAIDL::captureDisplay(
const DisplayCaptureArgs& args, const sp<IScreenCaptureListener>& captureListener) {
status_t status = mFlinger->captureDisplay(args, captureListener);
return binder::Status::fromStatusT(status);
}
binder::Status SurfaceComposerAIDL::captureDisplayById(
int64_t displayId, const sp<IScreenCaptureListener>& captureListener) {
status_t status;
IPCThreadState* ipc = IPCThreadState::self();
const int uid = ipc->getCallingUid();
if (uid == AID_ROOT || uid == AID_GRAPHICS || uid == AID_SYSTEM || uid == AID_SHELL) {
std::optional<DisplayId> id = DisplayId::fromValue(static_cast<uint64_t>(displayId));
status = mFlinger->captureDisplay(*id, captureListener);
} else {
status = PERMISSION_DENIED;
}
return binder::Status::fromStatusT(status);
}
binder::Status SurfaceComposerAIDL::captureLayers(
const LayerCaptureArgs& args, const sp<IScreenCaptureListener>& captureListener) {
status_t status = mFlinger->captureLayers(args, captureListener);
return binder::Status::fromStatusT(status);
}
binder::Status SurfaceComposerAIDL::isWideColorDisplay(const sp<IBinder>& token,
bool* outIsWideColorDisplay) {
status_t status = mFlinger->isWideColorDisplay(token, outIsWideColorDisplay);
return binder::Status::fromStatusT(status);
}
binder::Status SurfaceComposerAIDL::getDisplayBrightnessSupport(const sp<IBinder>& displayToken,
bool* outSupport) {
status_t status = mFlinger->getDisplayBrightnessSupport(displayToken, outSupport);
return binder::Status::fromStatusT(status);
}
binder::Status SurfaceComposerAIDL::setDisplayBrightness(const sp<IBinder>& displayToken,
const gui::DisplayBrightness& brightness) {
status_t status = checkControlDisplayBrightnessPermission();
if (status != OK) return binder::Status::fromStatusT(status);
status = mFlinger->setDisplayBrightness(displayToken, brightness);
return binder::Status::fromStatusT(status);
}
binder::Status SurfaceComposerAIDL::addHdrLayerInfoListener(
const sp<IBinder>& displayToken, const sp<gui::IHdrLayerInfoListener>& listener) {
status_t status = checkControlDisplayBrightnessPermission();
if (status != OK) return binder::Status::fromStatusT(status);
status = mFlinger->addHdrLayerInfoListener(displayToken, listener);
return binder::Status::fromStatusT(status);
}
binder::Status SurfaceComposerAIDL::removeHdrLayerInfoListener(
const sp<IBinder>& displayToken, const sp<gui::IHdrLayerInfoListener>& listener) {
status_t status = checkControlDisplayBrightnessPermission();
if (status != OK) return binder::Status::fromStatusT(status);
status = mFlinger->removeHdrLayerInfoListener(displayToken, listener);
return binder::Status::fromStatusT(status);
}
binder::Status SurfaceComposerAIDL::notifyPowerBoost(int boostId) {
status_t status = checkAccessPermission();
if (status != OK) return binder::Status::fromStatusT(status);
status = mFlinger->notifyPowerBoost(boostId);
return binder::Status::fromStatusT(status);
}
status_t SurfaceComposerAIDL::checkAccessPermission(bool usePermissionCache) {
if (!mFlinger->callingThreadHasUnscopedSurfaceFlingerAccess(usePermissionCache)) {
IPCThreadState* ipc = IPCThreadState::self();
ALOGE("Permission Denial: can't access SurfaceFlinger pid=%d, uid=%d", ipc->getCallingPid(),
ipc->getCallingUid());
return PERMISSION_DENIED;
}
return OK;
}
status_t SurfaceComposerAIDL::checkControlDisplayBrightnessPermission() {
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_GRAPHICS) &&
!PermissionCache::checkPermission(sControlDisplayBrightness, pid, uid)) {
ALOGE("Permission Denial: can't control brightness pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
return OK;
}
} // namespace android
#if defined(__gl_h_)
#error "don't include gl/gl.h in this file"
#endif
#if defined(__gl2_h_)
#error "don't include gl2/gl2.h in this file"
#endif
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic pop // ignored "-Wconversion -Wextra"