blob: e8e3f8e7951c8ef5e96d5202bff6126b7d45c93d [file] [log] [blame]
/*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <inttypes.h>
#define LOG_TAG "BufferQueueProducer"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
//#define LOG_NDEBUG 0
#if DEBUG_ONLY_CODE
#define VALIDATE_CONSISTENCY() do { mCore->validateConsistencyLocked(); } while (0)
#else
#define VALIDATE_CONSISTENCY()
#endif
#define EGL_EGLEXT_PROTOTYPES
#include <binder/IPCThreadState.h>
#include <gui/BufferItem.h>
#include <gui/BufferQueueCore.h>
#include <gui/BufferQueueProducer.h>
#include <gui/GLConsumer.h>
#include <gui/IConsumerListener.h>
#include <gui/IProducerListener.h>
#include <private/gui/BufferQueueThreadState.h>
#include <utils/Log.h>
#include <utils/Trace.h>
#include <system/window.h>
namespace android {
// Macros for include BufferQueueCore information in log messages
#define BQ_LOGV(x, ...) \
ALOGV("[%s](id:%" PRIx64 ",api:%d,p:%d,c:%" PRIu64 ") " x, mConsumerName.string(), \
mCore->mUniqueId, mCore->mConnectedApi, mCore->mConnectedPid, (mCore->mUniqueId) >> 32, \
##__VA_ARGS__)
#define BQ_LOGD(x, ...) \
ALOGD("[%s](id:%" PRIx64 ",api:%d,p:%d,c:%" PRIu64 ") " x, mConsumerName.string(), \
mCore->mUniqueId, mCore->mConnectedApi, mCore->mConnectedPid, (mCore->mUniqueId) >> 32, \
##__VA_ARGS__)
#define BQ_LOGI(x, ...) \
ALOGI("[%s](id:%" PRIx64 ",api:%d,p:%d,c:%" PRIu64 ") " x, mConsumerName.string(), \
mCore->mUniqueId, mCore->mConnectedApi, mCore->mConnectedPid, (mCore->mUniqueId) >> 32, \
##__VA_ARGS__)
#define BQ_LOGW(x, ...) \
ALOGW("[%s](id:%" PRIx64 ",api:%d,p:%d,c:%" PRIu64 ") " x, mConsumerName.string(), \
mCore->mUniqueId, mCore->mConnectedApi, mCore->mConnectedPid, (mCore->mUniqueId) >> 32, \
##__VA_ARGS__)
#define BQ_LOGE(x, ...) \
ALOGE("[%s](id:%" PRIx64 ",api:%d,p:%d,c:%" PRIu64 ") " x, mConsumerName.string(), \
mCore->mUniqueId, mCore->mConnectedApi, mCore->mConnectedPid, (mCore->mUniqueId) >> 32, \
##__VA_ARGS__)
static constexpr uint32_t BQ_LAYER_COUNT = 1;
ProducerListener::~ProducerListener() = default;
BufferQueueProducer::BufferQueueProducer(const sp<BufferQueueCore>& core,
bool consumerIsSurfaceFlinger) :
mCore(core),
mSlots(core->mSlots),
mConsumerName(),
mStickyTransform(0),
mConsumerIsSurfaceFlinger(consumerIsSurfaceFlinger),
mLastQueueBufferFence(Fence::NO_FENCE),
mLastQueuedTransform(0),
mCallbackMutex(),
mNextCallbackTicket(0),
mCurrentCallbackTicket(0),
mCallbackCondition(),
mDequeueTimeout(-1),
mDequeueWaitingForAllocation(false) {}
BufferQueueProducer::~BufferQueueProducer() {}
status_t BufferQueueProducer::requestBuffer(int slot, sp<GraphicBuffer>* buf) {
ATRACE_CALL();
BQ_LOGV("requestBuffer: slot %d", slot);
std::lock_guard<std::mutex> lock(mCore->mMutex);
if (mCore->mIsAbandoned) {
BQ_LOGE("requestBuffer: BufferQueue has been abandoned");
return NO_INIT;
}
if (mCore->mConnectedApi == BufferQueueCore::NO_CONNECTED_API) {
BQ_LOGE("requestBuffer: BufferQueue has no connected producer");
return NO_INIT;
}
if (slot < 0 || slot >= BufferQueueDefs::NUM_BUFFER_SLOTS) {
BQ_LOGE("requestBuffer: slot index %d out of range [0, %d)",
slot, BufferQueueDefs::NUM_BUFFER_SLOTS);
return BAD_VALUE;
} else if (!mSlots[slot].mBufferState.isDequeued()) {
BQ_LOGE("requestBuffer: slot %d is not owned by the producer "
"(state = %s)", slot, mSlots[slot].mBufferState.string());
return BAD_VALUE;
}
mSlots[slot].mRequestBufferCalled = true;
*buf = mSlots[slot].mGraphicBuffer;
return NO_ERROR;
}
status_t BufferQueueProducer::setMaxDequeuedBufferCount(
int maxDequeuedBuffers) {
ATRACE_CALL();
BQ_LOGV("setMaxDequeuedBufferCount: maxDequeuedBuffers = %d",
maxDequeuedBuffers);
sp<IConsumerListener> listener;
{ // Autolock scope
std::unique_lock<std::mutex> lock(mCore->mMutex);
mCore->waitWhileAllocatingLocked(lock);
if (mCore->mIsAbandoned) {
BQ_LOGE("setMaxDequeuedBufferCount: BufferQueue has been "
"abandoned");
return NO_INIT;
}
if (maxDequeuedBuffers == mCore->mMaxDequeuedBufferCount) {
return NO_ERROR;
}
// The new maxDequeuedBuffer count should not be violated by the number
// of currently dequeued buffers
int dequeuedCount = 0;
for (int s : mCore->mActiveBuffers) {
if (mSlots[s].mBufferState.isDequeued()) {
dequeuedCount++;
}
}
if (dequeuedCount > maxDequeuedBuffers) {
BQ_LOGE("setMaxDequeuedBufferCount: the requested maxDequeuedBuffer"
"count (%d) exceeds the current dequeued buffer count (%d)",
maxDequeuedBuffers, dequeuedCount);
return BAD_VALUE;
}
int minUndequedBufferCount = mCore->getMinUndequeuedBufferCountLocked();
int bufferCount = minUndequedBufferCount + maxDequeuedBuffers;
if (bufferCount > BufferQueueDefs::NUM_BUFFER_SLOTS) {
BQ_LOGE("setMaxDequeuedBufferCount: bufferCount %d too large "
"(max %d)", bufferCount, BufferQueueDefs::NUM_BUFFER_SLOTS);
bufferCount = BufferQueueDefs::NUM_BUFFER_SLOTS;
maxDequeuedBuffers = bufferCount - minUndequedBufferCount;
}
const int minBufferSlots = mCore->getMinMaxBufferCountLocked();
if (bufferCount < minBufferSlots) {
BQ_LOGE("setMaxDequeuedBufferCount: requested buffer count %d is "
"less than minimum %d", bufferCount, minBufferSlots);
return BAD_VALUE;
}
if (bufferCount > mCore->mMaxBufferCount) {
BQ_LOGE("setMaxDequeuedBufferCount: %d dequeued buffers would "
"exceed the maxBufferCount (%d) (maxAcquired %d async %d "
"mDequeuedBufferCannotBlock %d)", maxDequeuedBuffers,
mCore->mMaxBufferCount, mCore->mMaxAcquiredBufferCount,
mCore->mAsyncMode, mCore->mDequeueBufferCannotBlock);
return BAD_VALUE;
}
int delta = maxDequeuedBuffers - mCore->mMaxDequeuedBufferCount;
if (!mCore->adjustAvailableSlotsLocked(delta)) {
return BAD_VALUE;
}
mCore->mMaxDequeuedBufferCount = maxDequeuedBuffers;
VALIDATE_CONSISTENCY();
if (delta < 0) {
listener = mCore->mConsumerListener;
}
mCore->mDequeueCondition.notify_all();
} // Autolock scope
// Call back without lock held
if (listener != nullptr) {
listener->onBuffersReleased();
}
return NO_ERROR;
}
status_t BufferQueueProducer::setAsyncMode(bool async) {
ATRACE_CALL();
BQ_LOGV("setAsyncMode: async = %d", async);
sp<IConsumerListener> listener;
{ // Autolock scope
std::unique_lock<std::mutex> lock(mCore->mMutex);
mCore->waitWhileAllocatingLocked(lock);
if (mCore->mIsAbandoned) {
BQ_LOGE("setAsyncMode: BufferQueue has been abandoned");
return NO_INIT;
}
if (async == mCore->mAsyncMode) {
return NO_ERROR;
}
if ((mCore->mMaxAcquiredBufferCount + mCore->mMaxDequeuedBufferCount +
(async || mCore->mDequeueBufferCannotBlock ? 1 : 0)) >
mCore->mMaxBufferCount) {
BQ_LOGE("setAsyncMode(%d): this call would cause the "
"maxBufferCount (%d) to be exceeded (maxAcquired %d "
"maxDequeued %d mDequeueBufferCannotBlock %d)", async,
mCore->mMaxBufferCount, mCore->mMaxAcquiredBufferCount,
mCore->mMaxDequeuedBufferCount,
mCore->mDequeueBufferCannotBlock);
return BAD_VALUE;
}
int delta = mCore->getMaxBufferCountLocked(async,
mCore->mDequeueBufferCannotBlock, mCore->mMaxBufferCount)
- mCore->getMaxBufferCountLocked();
if (!mCore->adjustAvailableSlotsLocked(delta)) {
BQ_LOGE("setAsyncMode: BufferQueue failed to adjust the number of "
"available slots. Delta = %d", delta);
return BAD_VALUE;
}
mCore->mAsyncMode = async;
VALIDATE_CONSISTENCY();
mCore->mDequeueCondition.notify_all();
if (delta < 0) {
listener = mCore->mConsumerListener;
}
} // Autolock scope
// Call back without lock held
if (listener != nullptr) {
listener->onBuffersReleased();
}
return NO_ERROR;
}
int BufferQueueProducer::getFreeBufferLocked() const {
if (mCore->mFreeBuffers.empty()) {
return BufferQueueCore::INVALID_BUFFER_SLOT;
}
int slot = mCore->mFreeBuffers.front();
mCore->mFreeBuffers.pop_front();
return slot;
}
int BufferQueueProducer::getFreeSlotLocked() const {
if (mCore->mFreeSlots.empty()) {
return BufferQueueCore::INVALID_BUFFER_SLOT;
}
int slot = *(mCore->mFreeSlots.begin());
mCore->mFreeSlots.erase(slot);
return slot;
}
status_t BufferQueueProducer::waitForFreeSlotThenRelock(FreeSlotCaller caller,
std::unique_lock<std::mutex>& lock, int* found) const {
auto callerString = (caller == FreeSlotCaller::Dequeue) ?
"dequeueBuffer" : "attachBuffer";
bool tryAgain = true;
while (tryAgain) {
if (mCore->mIsAbandoned) {
BQ_LOGE("%s: BufferQueue has been abandoned", callerString);
return NO_INIT;
}
int dequeuedCount = 0;
int acquiredCount = 0;
for (int s : mCore->mActiveBuffers) {
if (mSlots[s].mBufferState.isDequeued()) {
++dequeuedCount;
}
if (mSlots[s].mBufferState.isAcquired()) {
++acquiredCount;
}
}
// Producers are not allowed to dequeue more than
// mMaxDequeuedBufferCount buffers.
// This check is only done if a buffer has already been queued
if (mCore->mBufferHasBeenQueued &&
dequeuedCount >= mCore->mMaxDequeuedBufferCount) {
// Supress error logs when timeout is non-negative.
if (mDequeueTimeout < 0) {
BQ_LOGE("%s: attempting to exceed the max dequeued buffer "
"count (%d)", callerString,
mCore->mMaxDequeuedBufferCount);
}
return INVALID_OPERATION;
}
*found = BufferQueueCore::INVALID_BUFFER_SLOT;
// If we disconnect and reconnect quickly, we can be in a state where
// our slots are empty but we have many buffers in the queue. This can
// cause us to run out of memory if we outrun the consumer. Wait here if
// it looks like we have too many buffers queued up.
const int maxBufferCount = mCore->getMaxBufferCountLocked();
bool tooManyBuffers = mCore->mQueue.size()
> static_cast<size_t>(maxBufferCount);
if (tooManyBuffers) {
BQ_LOGV("%s: queue size is %zu, waiting", callerString,
mCore->mQueue.size());
} else {
// If in shared buffer mode and a shared buffer exists, always
// return it.
if (mCore->mSharedBufferMode && mCore->mSharedBufferSlot !=
BufferQueueCore::INVALID_BUFFER_SLOT) {
*found = mCore->mSharedBufferSlot;
} else {
if (caller == FreeSlotCaller::Dequeue) {
// If we're calling this from dequeue, prefer free buffers
int slot = getFreeBufferLocked();
if (slot != BufferQueueCore::INVALID_BUFFER_SLOT) {
*found = slot;
} else if (mCore->mAllowAllocation) {
*found = getFreeSlotLocked();
}
} else {
// If we're calling this from attach, prefer free slots
int slot = getFreeSlotLocked();
if (slot != BufferQueueCore::INVALID_BUFFER_SLOT) {
*found = slot;
} else {
*found = getFreeBufferLocked();
}
}
}
}
// If no buffer is found, or if the queue has too many buffers
// outstanding, wait for a buffer to be acquired or released, or for the
// max buffer count to change.
tryAgain = (*found == BufferQueueCore::INVALID_BUFFER_SLOT) ||
tooManyBuffers;
if (tryAgain) {
// Return an error if we're in non-blocking mode (producer and
// consumer are controlled by the application).
// However, the consumer is allowed to briefly acquire an extra
// buffer (which could cause us to have to wait here), which is
// okay, since it is only used to implement an atomic acquire +
// release (e.g., in GLConsumer::updateTexImage())
if ((mCore->mDequeueBufferCannotBlock || mCore->mAsyncMode) &&
(acquiredCount <= mCore->mMaxAcquiredBufferCount)) {
return WOULD_BLOCK;
}
if (mDequeueTimeout >= 0) {
std::cv_status result = mCore->mDequeueCondition.wait_for(lock,
std::chrono::nanoseconds(mDequeueTimeout));
if (result == std::cv_status::timeout) {
return TIMED_OUT;
}
} else {
mCore->mDequeueCondition.wait(lock);
}
}
} // while (tryAgain)
return NO_ERROR;
}
status_t BufferQueueProducer::dequeueBuffer(int* outSlot, sp<android::Fence>* outFence,
uint32_t width, uint32_t height, PixelFormat format,
uint64_t usage, uint64_t* outBufferAge,
FrameEventHistoryDelta* outTimestamps) {
ATRACE_CALL();
{ // Autolock scope
std::lock_guard<std::mutex> lock(mCore->mMutex);
mConsumerName = mCore->mConsumerName;
if (mCore->mIsAbandoned) {
BQ_LOGE("dequeueBuffer: BufferQueue has been abandoned");
return NO_INIT;
}
if (mCore->mConnectedApi == BufferQueueCore::NO_CONNECTED_API) {
BQ_LOGE("dequeueBuffer: BufferQueue has no connected producer");
return NO_INIT;
}
} // Autolock scope
BQ_LOGV("dequeueBuffer: w=%u h=%u format=%#x, usage=%#" PRIx64, width, height, format, usage);
if ((width && !height) || (!width && height)) {
BQ_LOGE("dequeueBuffer: invalid size: w=%u h=%u", width, height);
return BAD_VALUE;
}
status_t returnFlags = NO_ERROR;
EGLDisplay eglDisplay = EGL_NO_DISPLAY;
EGLSyncKHR eglFence = EGL_NO_SYNC_KHR;
bool attachedByConsumer = false;
{ // Autolock scope
std::unique_lock<std::mutex> lock(mCore->mMutex);
// If we don't have a free buffer, but we are currently allocating, we wait until allocation
// is finished such that we don't allocate in parallel.
if (mCore->mFreeBuffers.empty() && mCore->mIsAllocating) {
mDequeueWaitingForAllocation = true;
mCore->waitWhileAllocatingLocked(lock);
mDequeueWaitingForAllocation = false;
mDequeueWaitingForAllocationCondition.notify_all();
}
if (format == 0) {
format = mCore->mDefaultBufferFormat;
}
// Enable the usage bits the consumer requested
usage |= mCore->mConsumerUsageBits;
const bool useDefaultSize = !width && !height;
if (useDefaultSize) {
width = mCore->mDefaultWidth;
height = mCore->mDefaultHeight;
if (mCore->mAutoPrerotation &&
(mCore->mTransformHintInUse & NATIVE_WINDOW_TRANSFORM_ROT_90)) {
std::swap(width, height);
}
}
int found = BufferItem::INVALID_BUFFER_SLOT;
while (found == BufferItem::INVALID_BUFFER_SLOT) {
status_t status = waitForFreeSlotThenRelock(FreeSlotCaller::Dequeue, lock, &found);
if (status != NO_ERROR) {
return status;
}
// This should not happen
if (found == BufferQueueCore::INVALID_BUFFER_SLOT) {
BQ_LOGE("dequeueBuffer: no available buffer slots");
return -EBUSY;
}
const sp<GraphicBuffer>& buffer(mSlots[found].mGraphicBuffer);
// If we are not allowed to allocate new buffers,
// waitForFreeSlotThenRelock must have returned a slot containing a
// buffer. If this buffer would require reallocation to meet the
// requested attributes, we free it and attempt to get another one.
if (!mCore->mAllowAllocation) {
if (buffer->needsReallocation(width, height, format, BQ_LAYER_COUNT, usage)) {
if (mCore->mSharedBufferSlot == found) {
BQ_LOGE("dequeueBuffer: cannot re-allocate a sharedbuffer");
return BAD_VALUE;
}
mCore->mFreeSlots.insert(found);
mCore->clearBufferSlotLocked(found);
found = BufferItem::INVALID_BUFFER_SLOT;
continue;
}
}
}
const sp<GraphicBuffer>& buffer(mSlots[found].mGraphicBuffer);
if (mCore->mSharedBufferSlot == found &&
buffer->needsReallocation(width, height, format, BQ_LAYER_COUNT, usage)) {
BQ_LOGE("dequeueBuffer: cannot re-allocate a shared"
"buffer");
return BAD_VALUE;
}
if (mCore->mSharedBufferSlot != found) {
mCore->mActiveBuffers.insert(found);
}
*outSlot = found;
ATRACE_BUFFER_INDEX(found);
attachedByConsumer = mSlots[found].mNeedsReallocation;
mSlots[found].mNeedsReallocation = false;
mSlots[found].mBufferState.dequeue();
if ((buffer == nullptr) ||
buffer->needsReallocation(width, height, format, BQ_LAYER_COUNT, usage))
{
mSlots[found].mAcquireCalled = false;
mSlots[found].mGraphicBuffer = nullptr;
mSlots[found].mRequestBufferCalled = false;
mSlots[found].mEglDisplay = EGL_NO_DISPLAY;
mSlots[found].mEglFence = EGL_NO_SYNC_KHR;
mSlots[found].mFence = Fence::NO_FENCE;
mCore->mBufferAge = 0;
mCore->mIsAllocating = true;
returnFlags |= BUFFER_NEEDS_REALLOCATION;
} else {
// We add 1 because that will be the frame number when this buffer
// is queued
mCore->mBufferAge = mCore->mFrameCounter + 1 - mSlots[found].mFrameNumber;
}
BQ_LOGV("dequeueBuffer: setting buffer age to %" PRIu64,
mCore->mBufferAge);
if (CC_UNLIKELY(mSlots[found].mFence == nullptr)) {
BQ_LOGE("dequeueBuffer: about to return a NULL fence - "
"slot=%d w=%d h=%d format=%u",
found, buffer->width, buffer->height, buffer->format);
}
eglDisplay = mSlots[found].mEglDisplay;
eglFence = mSlots[found].mEglFence;
// Don't return a fence in shared buffer mode, except for the first
// frame.
*outFence = (mCore->mSharedBufferMode &&
mCore->mSharedBufferSlot == found) ?
Fence::NO_FENCE : mSlots[found].mFence;
mSlots[found].mEglFence = EGL_NO_SYNC_KHR;
mSlots[found].mFence = Fence::NO_FENCE;
// If shared buffer mode has just been enabled, cache the slot of the
// first buffer that is dequeued and mark it as the shared buffer.
if (mCore->mSharedBufferMode && mCore->mSharedBufferSlot ==
BufferQueueCore::INVALID_BUFFER_SLOT) {
mCore->mSharedBufferSlot = found;
mSlots[found].mBufferState.mShared = true;
}
if (!(returnFlags & BUFFER_NEEDS_REALLOCATION)) {
if (mCore->mConsumerListener != nullptr) {
mCore->mConsumerListener->onFrameDequeued(mSlots[*outSlot].mGraphicBuffer->getId());
}
}
} // Autolock scope
if (returnFlags & BUFFER_NEEDS_REALLOCATION) {
BQ_LOGV("dequeueBuffer: allocating a new buffer for slot %d", *outSlot);
sp<GraphicBuffer> graphicBuffer = new GraphicBuffer(
width, height, format, BQ_LAYER_COUNT, usage,
{mConsumerName.string(), mConsumerName.size()});
status_t error = graphicBuffer->initCheck();
{ // Autolock scope
std::lock_guard<std::mutex> lock(mCore->mMutex);
if (error == NO_ERROR && !mCore->mIsAbandoned) {
graphicBuffer->setGenerationNumber(mCore->mGenerationNumber);
mSlots[*outSlot].mGraphicBuffer = graphicBuffer;
if (mCore->mConsumerListener != nullptr) {
mCore->mConsumerListener->onFrameDequeued(
mSlots[*outSlot].mGraphicBuffer->getId());
}
}
mCore->mIsAllocating = false;
mCore->mIsAllocatingCondition.notify_all();
if (error != NO_ERROR) {
mCore->mFreeSlots.insert(*outSlot);
mCore->clearBufferSlotLocked(*outSlot);
BQ_LOGE("dequeueBuffer: createGraphicBuffer failed");
return error;
}
if (mCore->mIsAbandoned) {
mCore->mFreeSlots.insert(*outSlot);
mCore->clearBufferSlotLocked(*outSlot);
BQ_LOGE("dequeueBuffer: BufferQueue has been abandoned");
return NO_INIT;
}
VALIDATE_CONSISTENCY();
} // Autolock scope
}
if (attachedByConsumer) {
returnFlags |= BUFFER_NEEDS_REALLOCATION;
}
if (eglFence != EGL_NO_SYNC_KHR) {
EGLint result = eglClientWaitSyncKHR(eglDisplay, eglFence, 0,
1000000000);
// If something goes wrong, log the error, but return the buffer without
// synchronizing access to it. It's too late at this point to abort the
// dequeue operation.
if (result == EGL_FALSE) {
BQ_LOGE("dequeueBuffer: error %#x waiting for fence",
eglGetError());
} else if (result == EGL_TIMEOUT_EXPIRED_KHR) {
BQ_LOGE("dequeueBuffer: timeout waiting for fence");
}
eglDestroySyncKHR(eglDisplay, eglFence);
}
BQ_LOGV("dequeueBuffer: returning slot=%d/%" PRIu64 " buf=%p flags=%#x",
*outSlot,
mSlots[*outSlot].mFrameNumber,
mSlots[*outSlot].mGraphicBuffer->handle, returnFlags);
if (outBufferAge) {
*outBufferAge = mCore->mBufferAge;
}
addAndGetFrameTimestamps(nullptr, outTimestamps);
return returnFlags;
}
status_t BufferQueueProducer::detachBuffer(int slot) {
ATRACE_CALL();
ATRACE_BUFFER_INDEX(slot);
BQ_LOGV("detachBuffer: slot %d", slot);
sp<IConsumerListener> listener;
{
std::lock_guard<std::mutex> lock(mCore->mMutex);
if (mCore->mIsAbandoned) {
BQ_LOGE("detachBuffer: BufferQueue has been abandoned");
return NO_INIT;
}
if (mCore->mConnectedApi == BufferQueueCore::NO_CONNECTED_API) {
BQ_LOGE("detachBuffer: BufferQueue has no connected producer");
return NO_INIT;
}
if (mCore->mSharedBufferMode || mCore->mSharedBufferSlot == slot) {
BQ_LOGE("detachBuffer: cannot detach a buffer in shared buffer mode");
return BAD_VALUE;
}
if (slot < 0 || slot >= BufferQueueDefs::NUM_BUFFER_SLOTS) {
BQ_LOGE("detachBuffer: slot index %d out of range [0, %d)",
slot, BufferQueueDefs::NUM_BUFFER_SLOTS);
return BAD_VALUE;
} else if (!mSlots[slot].mBufferState.isDequeued()) {
// TODO(http://b/140581935): This message is BQ_LOGW because it
// often logs when no actionable errors are present. Return to
// using BQ_LOGE after ensuring this only logs during errors.
BQ_LOGW("detachBuffer: slot %d is not owned by the producer "
"(state = %s)", slot, mSlots[slot].mBufferState.string());
return BAD_VALUE;
} else if (!mSlots[slot].mRequestBufferCalled) {
BQ_LOGE("detachBuffer: buffer in slot %d has not been requested",
slot);
return BAD_VALUE;
}
listener = mCore->mConsumerListener;
auto gb = mSlots[slot].mGraphicBuffer;
if (listener != nullptr && gb != nullptr) {
listener->onFrameDetached(gb->getId());
}
mSlots[slot].mBufferState.detachProducer();
mCore->mActiveBuffers.erase(slot);
mCore->mFreeSlots.insert(slot);
mCore->clearBufferSlotLocked(slot);
mCore->mDequeueCondition.notify_all();
VALIDATE_CONSISTENCY();
}
if (listener != nullptr) {
listener->onBuffersReleased();
}
return NO_ERROR;
}
status_t BufferQueueProducer::detachNextBuffer(sp<GraphicBuffer>* outBuffer,
sp<Fence>* outFence) {
ATRACE_CALL();
if (outBuffer == nullptr) {
BQ_LOGE("detachNextBuffer: outBuffer must not be NULL");
return BAD_VALUE;
} else if (outFence == nullptr) {
BQ_LOGE("detachNextBuffer: outFence must not be NULL");
return BAD_VALUE;
}
sp<IConsumerListener> listener;
{
std::unique_lock<std::mutex> lock(mCore->mMutex);
if (mCore->mIsAbandoned) {
BQ_LOGE("detachNextBuffer: BufferQueue has been abandoned");
return NO_INIT;
}
if (mCore->mConnectedApi == BufferQueueCore::NO_CONNECTED_API) {
BQ_LOGE("detachNextBuffer: BufferQueue has no connected producer");
return NO_INIT;
}
if (mCore->mSharedBufferMode) {
BQ_LOGE("detachNextBuffer: cannot detach a buffer in shared buffer "
"mode");
return BAD_VALUE;
}
mCore->waitWhileAllocatingLocked(lock);
if (mCore->mFreeBuffers.empty()) {
return NO_MEMORY;
}
int found = mCore->mFreeBuffers.front();
mCore->mFreeBuffers.remove(found);
mCore->mFreeSlots.insert(found);
BQ_LOGV("detachNextBuffer detached slot %d", found);
*outBuffer = mSlots[found].mGraphicBuffer;
*outFence = mSlots[found].mFence;
mCore->clearBufferSlotLocked(found);
VALIDATE_CONSISTENCY();
listener = mCore->mConsumerListener;
}
if (listener != nullptr) {
listener->onBuffersReleased();
}
return NO_ERROR;
}
status_t BufferQueueProducer::attachBuffer(int* outSlot,
const sp<android::GraphicBuffer>& buffer) {
ATRACE_CALL();
if (outSlot == nullptr) {
BQ_LOGE("attachBuffer: outSlot must not be NULL");
return BAD_VALUE;
} else if (buffer == nullptr) {
BQ_LOGE("attachBuffer: cannot attach NULL buffer");
return BAD_VALUE;
}
std::unique_lock<std::mutex> lock(mCore->mMutex);
if (mCore->mIsAbandoned) {
BQ_LOGE("attachBuffer: BufferQueue has been abandoned");
return NO_INIT;
}
if (mCore->mConnectedApi == BufferQueueCore::NO_CONNECTED_API) {
BQ_LOGE("attachBuffer: BufferQueue has no connected producer");
return NO_INIT;
}
if (mCore->mSharedBufferMode) {
BQ_LOGE("attachBuffer: cannot attach a buffer in shared buffer mode");
return BAD_VALUE;
}
if (buffer->getGenerationNumber() != mCore->mGenerationNumber) {
BQ_LOGE("attachBuffer: generation number mismatch [buffer %u] "
"[queue %u]", buffer->getGenerationNumber(),
mCore->mGenerationNumber);
return BAD_VALUE;
}
mCore->waitWhileAllocatingLocked(lock);
status_t returnFlags = NO_ERROR;
int found;
status_t status = waitForFreeSlotThenRelock(FreeSlotCaller::Attach, lock, &found);
if (status != NO_ERROR) {
return status;
}
// This should not happen
if (found == BufferQueueCore::INVALID_BUFFER_SLOT) {
BQ_LOGE("attachBuffer: no available buffer slots");
return -EBUSY;
}
*outSlot = found;
ATRACE_BUFFER_INDEX(*outSlot);
BQ_LOGV("attachBuffer: returning slot %d flags=%#x",
*outSlot, returnFlags);
mSlots[*outSlot].mGraphicBuffer = buffer;
mSlots[*outSlot].mBufferState.attachProducer();
mSlots[*outSlot].mEglFence = EGL_NO_SYNC_KHR;
mSlots[*outSlot].mFence = Fence::NO_FENCE;
mSlots[*outSlot].mRequestBufferCalled = true;
mSlots[*outSlot].mAcquireCalled = false;
mSlots[*outSlot].mNeedsReallocation = false;
mCore->mActiveBuffers.insert(found);
VALIDATE_CONSISTENCY();
return returnFlags;
}
status_t BufferQueueProducer::queueBuffer(int slot,
const QueueBufferInput &input, QueueBufferOutput *output) {
ATRACE_CALL();
ATRACE_BUFFER_INDEX(slot);
int64_t requestedPresentTimestamp;
bool isAutoTimestamp;
android_dataspace dataSpace;
Rect crop(Rect::EMPTY_RECT);
int scalingMode;
uint32_t transform;
uint32_t stickyTransform;
sp<Fence> acquireFence;
bool getFrameTimestamps = false;
input.deflate(&requestedPresentTimestamp, &isAutoTimestamp, &dataSpace,
&crop, &scalingMode, &transform, &acquireFence, &stickyTransform,
&getFrameTimestamps);
const Region& surfaceDamage = input.getSurfaceDamage();
const HdrMetadata& hdrMetadata = input.getHdrMetadata();
if (acquireFence == nullptr) {
BQ_LOGE("queueBuffer: fence is NULL");
return BAD_VALUE;
}
auto acquireFenceTime = std::make_shared<FenceTime>(acquireFence);
switch (scalingMode) {
case NATIVE_WINDOW_SCALING_MODE_FREEZE:
case NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW:
case NATIVE_WINDOW_SCALING_MODE_SCALE_CROP:
case NATIVE_WINDOW_SCALING_MODE_NO_SCALE_CROP:
break;
default:
BQ_LOGE("queueBuffer: unknown scaling mode %d", scalingMode);
return BAD_VALUE;
}
sp<IConsumerListener> frameAvailableListener;
sp<IConsumerListener> frameReplacedListener;
int callbackTicket = 0;
uint64_t currentFrameNumber = 0;
BufferItem item;
{ // Autolock scope
std::lock_guard<std::mutex> lock(mCore->mMutex);
if (mCore->mIsAbandoned) {
BQ_LOGE("queueBuffer: BufferQueue has been abandoned");
return NO_INIT;
}
if (mCore->mConnectedApi == BufferQueueCore::NO_CONNECTED_API) {
BQ_LOGE("queueBuffer: BufferQueue has no connected producer");
return NO_INIT;
}
if (slot < 0 || slot >= BufferQueueDefs::NUM_BUFFER_SLOTS) {
BQ_LOGE("queueBuffer: slot index %d out of range [0, %d)",
slot, BufferQueueDefs::NUM_BUFFER_SLOTS);
return BAD_VALUE;
} else if (!mSlots[slot].mBufferState.isDequeued()) {
BQ_LOGE("queueBuffer: slot %d is not owned by the producer "
"(state = %s)", slot, mSlots[slot].mBufferState.string());
return BAD_VALUE;
} else if (!mSlots[slot].mRequestBufferCalled) {
BQ_LOGE("queueBuffer: slot %d was queued without requesting "
"a buffer", slot);
return BAD_VALUE;
}
// If shared buffer mode has just been enabled, cache the slot of the
// first buffer that is queued and mark it as the shared buffer.
if (mCore->mSharedBufferMode && mCore->mSharedBufferSlot ==
BufferQueueCore::INVALID_BUFFER_SLOT) {
mCore->mSharedBufferSlot = slot;
mSlots[slot].mBufferState.mShared = true;
}
BQ_LOGV("queueBuffer: slot=%d/%" PRIu64 " time=%" PRIu64 " dataSpace=%d"
" validHdrMetadataTypes=0x%x crop=[%d,%d,%d,%d] transform=%#x scale=%s",
slot, mCore->mFrameCounter + 1, requestedPresentTimestamp, dataSpace,
hdrMetadata.validTypes, crop.left, crop.top, crop.right, crop.bottom,
transform,
BufferItem::scalingModeName(static_cast<uint32_t>(scalingMode)));
const sp<GraphicBuffer>& graphicBuffer(mSlots[slot].mGraphicBuffer);
Rect bufferRect(graphicBuffer->getWidth(), graphicBuffer->getHeight());
Rect croppedRect(Rect::EMPTY_RECT);
crop.intersect(bufferRect, &croppedRect);
if (croppedRect != crop) {
BQ_LOGE("queueBuffer: crop rect is not contained within the "
"buffer in slot %d", slot);
return BAD_VALUE;
}
// Override UNKNOWN dataspace with consumer default
if (dataSpace == HAL_DATASPACE_UNKNOWN) {
dataSpace = mCore->mDefaultBufferDataSpace;
}
mSlots[slot].mFence = acquireFence;
mSlots[slot].mBufferState.queue();
// Increment the frame counter and store a local version of it
// for use outside the lock on mCore->mMutex.
++mCore->mFrameCounter;
currentFrameNumber = mCore->mFrameCounter;
mSlots[slot].mFrameNumber = currentFrameNumber;
item.mAcquireCalled = mSlots[slot].mAcquireCalled;
item.mGraphicBuffer = mSlots[slot].mGraphicBuffer;
item.mCrop = crop;
item.mTransform = transform &
~static_cast<uint32_t>(NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY);
item.mTransformToDisplayInverse =
(transform & NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY) != 0;
item.mScalingMode = static_cast<uint32_t>(scalingMode);
item.mTimestamp = requestedPresentTimestamp;
item.mIsAutoTimestamp = isAutoTimestamp;
item.mDataSpace = dataSpace;
item.mHdrMetadata = hdrMetadata;
item.mFrameNumber = currentFrameNumber;
item.mSlot = slot;
item.mFence = acquireFence;
item.mFenceTime = acquireFenceTime;
item.mIsDroppable = mCore->mAsyncMode ||
(mConsumerIsSurfaceFlinger && mCore->mQueueBufferCanDrop) ||
(mCore->mLegacyBufferDrop && mCore->mQueueBufferCanDrop) ||
(mCore->mSharedBufferMode && mCore->mSharedBufferSlot == slot);
item.mSurfaceDamage = surfaceDamage;
item.mQueuedBuffer = true;
item.mAutoRefresh = mCore->mSharedBufferMode && mCore->mAutoRefresh;
item.mApi = mCore->mConnectedApi;
mStickyTransform = stickyTransform;
// Cache the shared buffer data so that the BufferItem can be recreated.
if (mCore->mSharedBufferMode) {
mCore->mSharedBufferCache.crop = crop;
mCore->mSharedBufferCache.transform = transform;
mCore->mSharedBufferCache.scalingMode = static_cast<uint32_t>(
scalingMode);
mCore->mSharedBufferCache.dataspace = dataSpace;
}
output->bufferReplaced = false;
if (mCore->mQueue.empty()) {
// When the queue is empty, we can ignore mDequeueBufferCannotBlock
// and simply queue this buffer
mCore->mQueue.push_back(item);
frameAvailableListener = mCore->mConsumerListener;
} else {
// When the queue is not empty, we need to look at the last buffer
// in the queue to see if we need to replace it
const BufferItem& last = mCore->mQueue.itemAt(
mCore->mQueue.size() - 1);
if (last.mIsDroppable) {
if (!last.mIsStale) {
mSlots[last.mSlot].mBufferState.freeQueued();
// After leaving shared buffer mode, the shared buffer will
// still be around. Mark it as no longer shared if this
// operation causes it to be free.
if (!mCore->mSharedBufferMode &&
mSlots[last.mSlot].mBufferState.isFree()) {
mSlots[last.mSlot].mBufferState.mShared = false;
}
// Don't put the shared buffer on the free list.
if (!mSlots[last.mSlot].mBufferState.isShared()) {
mCore->mActiveBuffers.erase(last.mSlot);
mCore->mFreeBuffers.push_back(last.mSlot);
output->bufferReplaced = true;
}
}
// Make sure to merge the damage rect from the frame we're about
// to drop into the new frame's damage rect.
if (last.mSurfaceDamage.bounds() == Rect::INVALID_RECT ||
item.mSurfaceDamage.bounds() == Rect::INVALID_RECT) {
item.mSurfaceDamage = Region::INVALID_REGION;
} else {
item.mSurfaceDamage |= last.mSurfaceDamage;
}
// Overwrite the droppable buffer with the incoming one
mCore->mQueue.editItemAt(mCore->mQueue.size() - 1) = item;
frameReplacedListener = mCore->mConsumerListener;
} else {
mCore->mQueue.push_back(item);
frameAvailableListener = mCore->mConsumerListener;
}
}
mCore->mBufferHasBeenQueued = true;
mCore->mDequeueCondition.notify_all();
mCore->mLastQueuedSlot = slot;
output->width = mCore->mDefaultWidth;
output->height = mCore->mDefaultHeight;
output->transformHint = mCore->mTransformHintInUse = mCore->mTransformHint;
output->numPendingBuffers = static_cast<uint32_t>(mCore->mQueue.size());
output->nextFrameNumber = mCore->mFrameCounter + 1;
ATRACE_INT(mCore->mConsumerName.string(),
static_cast<int32_t>(mCore->mQueue.size()));
#ifndef NO_BINDER
mCore->mOccupancyTracker.registerOccupancyChange(mCore->mQueue.size());
#endif
// Take a ticket for the callback functions
callbackTicket = mNextCallbackTicket++;
VALIDATE_CONSISTENCY();
} // Autolock scope
// It is okay not to clear the GraphicBuffer when the consumer is SurfaceFlinger because
// it is guaranteed that the BufferQueue is inside SurfaceFlinger's process and
// there will be no Binder call
if (!mConsumerIsSurfaceFlinger) {
item.mGraphicBuffer.clear();
}
// Update and get FrameEventHistory.
nsecs_t postedTime = systemTime(SYSTEM_TIME_MONOTONIC);
NewFrameEventsEntry newFrameEventsEntry = {
currentFrameNumber,
postedTime,
requestedPresentTimestamp,
std::move(acquireFenceTime)
};
addAndGetFrameTimestamps(&newFrameEventsEntry,
getFrameTimestamps ? &output->frameTimestamps : nullptr);
// Call back without the main BufferQueue lock held, but with the callback
// lock held so we can ensure that callbacks occur in order
int connectedApi;
sp<Fence> lastQueuedFence;
{ // scope for the lock
std::unique_lock<std::mutex> lock(mCallbackMutex);
while (callbackTicket != mCurrentCallbackTicket) {
mCallbackCondition.wait(lock);
}
if (frameAvailableListener != nullptr) {
frameAvailableListener->onFrameAvailable(item);
} else if (frameReplacedListener != nullptr) {
frameReplacedListener->onFrameReplaced(item);
}
connectedApi = mCore->mConnectedApi;
lastQueuedFence = std::move(mLastQueueBufferFence);
mLastQueueBufferFence = std::move(acquireFence);
mLastQueuedCrop = item.mCrop;
mLastQueuedTransform = item.mTransform;
++mCurrentCallbackTicket;
mCallbackCondition.notify_all();
}
// Wait without lock held
if (connectedApi == NATIVE_WINDOW_API_EGL) {
// Waiting here allows for two full buffers to be queued but not a
// third. In the event that frames take varying time, this makes a
// small trade-off in favor of latency rather than throughput.
lastQueuedFence->waitForever("Throttling EGL Production");
}
return NO_ERROR;
}
status_t BufferQueueProducer::cancelBuffer(int slot, const sp<Fence>& fence) {
ATRACE_CALL();
BQ_LOGV("cancelBuffer: slot %d", slot);
std::lock_guard<std::mutex> lock(mCore->mMutex);
if (mCore->mIsAbandoned) {
BQ_LOGE("cancelBuffer: BufferQueue has been abandoned");
return NO_INIT;
}
if (mCore->mConnectedApi == BufferQueueCore::NO_CONNECTED_API) {
BQ_LOGE("cancelBuffer: BufferQueue has no connected producer");
return NO_INIT;
}
if (mCore->mSharedBufferMode) {
BQ_LOGE("cancelBuffer: cannot cancel a buffer in shared buffer mode");
return BAD_VALUE;
}
if (slot < 0 || slot >= BufferQueueDefs::NUM_BUFFER_SLOTS) {
BQ_LOGE("cancelBuffer: slot index %d out of range [0, %d)",
slot, BufferQueueDefs::NUM_BUFFER_SLOTS);
return BAD_VALUE;
} else if (!mSlots[slot].mBufferState.isDequeued()) {
BQ_LOGE("cancelBuffer: slot %d is not owned by the producer "
"(state = %s)", slot, mSlots[slot].mBufferState.string());
return BAD_VALUE;
} else if (fence == nullptr) {
BQ_LOGE("cancelBuffer: fence is NULL");
return BAD_VALUE;
}
mSlots[slot].mBufferState.cancel();
// After leaving shared buffer mode, the shared buffer will still be around.
// Mark it as no longer shared if this operation causes it to be free.
if (!mCore->mSharedBufferMode && mSlots[slot].mBufferState.isFree()) {
mSlots[slot].mBufferState.mShared = false;
}
// Don't put the shared buffer on the free list.
if (!mSlots[slot].mBufferState.isShared()) {
mCore->mActiveBuffers.erase(slot);
mCore->mFreeBuffers.push_back(slot);
}
auto gb = mSlots[slot].mGraphicBuffer;
if (mCore->mConsumerListener != nullptr && gb != nullptr) {
mCore->mConsumerListener->onFrameCancelled(gb->getId());
}
mSlots[slot].mFence = fence;
mCore->mDequeueCondition.notify_all();
VALIDATE_CONSISTENCY();
return NO_ERROR;
}
int BufferQueueProducer::query(int what, int *outValue) {
ATRACE_CALL();
std::lock_guard<std::mutex> lock(mCore->mMutex);
if (outValue == nullptr) {
BQ_LOGE("query: outValue was NULL");
return BAD_VALUE;
}
if (mCore->mIsAbandoned) {
BQ_LOGE("query: BufferQueue has been abandoned");
return NO_INIT;
}
int value;
switch (what) {
case NATIVE_WINDOW_WIDTH:
value = static_cast<int32_t>(mCore->mDefaultWidth);
break;
case NATIVE_WINDOW_HEIGHT:
value = static_cast<int32_t>(mCore->mDefaultHeight);
break;
case NATIVE_WINDOW_FORMAT:
value = static_cast<int32_t>(mCore->mDefaultBufferFormat);
break;
case NATIVE_WINDOW_LAYER_COUNT:
// All BufferQueue buffers have a single layer.
value = BQ_LAYER_COUNT;
break;
case NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS:
value = mCore->getMinUndequeuedBufferCountLocked();
break;
case NATIVE_WINDOW_STICKY_TRANSFORM:
value = static_cast<int32_t>(mStickyTransform);
break;
case NATIVE_WINDOW_CONSUMER_RUNNING_BEHIND:
value = (mCore->mQueue.size() > 1);
break;
case NATIVE_WINDOW_CONSUMER_USAGE_BITS:
// deprecated; higher 32 bits are truncated
value = static_cast<int32_t>(mCore->mConsumerUsageBits);
break;
case NATIVE_WINDOW_DEFAULT_DATASPACE:
value = static_cast<int32_t>(mCore->mDefaultBufferDataSpace);
break;
case NATIVE_WINDOW_BUFFER_AGE:
if (mCore->mBufferAge > INT32_MAX) {
value = 0;
} else {
value = static_cast<int32_t>(mCore->mBufferAge);
}
break;
case NATIVE_WINDOW_CONSUMER_IS_PROTECTED:
value = static_cast<int32_t>(mCore->mConsumerIsProtected);
break;
default:
return BAD_VALUE;
}
BQ_LOGV("query: %d? %d", what, value);
*outValue = value;
return NO_ERROR;
}
status_t BufferQueueProducer::connect(const sp<IProducerListener>& listener,
int api, bool producerControlledByApp, QueueBufferOutput *output) {
ATRACE_CALL();
std::lock_guard<std::mutex> lock(mCore->mMutex);
mConsumerName = mCore->mConsumerName;
BQ_LOGV("connect: api=%d producerControlledByApp=%s", api,
producerControlledByApp ? "true" : "false");
if (mCore->mIsAbandoned) {
BQ_LOGE("connect: BufferQueue has been abandoned");
return NO_INIT;
}
if (mCore->mConsumerListener == nullptr) {
BQ_LOGE("connect: BufferQueue has no consumer");
return NO_INIT;
}
if (output == nullptr) {
BQ_LOGE("connect: output was NULL");
return BAD_VALUE;
}
if (mCore->mConnectedApi != BufferQueueCore::NO_CONNECTED_API) {
BQ_LOGE("connect: already connected (cur=%d req=%d)",
mCore->mConnectedApi, api);
return BAD_VALUE;
}
int delta = mCore->getMaxBufferCountLocked(mCore->mAsyncMode,
mDequeueTimeout < 0 ?
mCore->mConsumerControlledByApp && producerControlledByApp : false,
mCore->mMaxBufferCount) -
mCore->getMaxBufferCountLocked();
if (!mCore->adjustAvailableSlotsLocked(delta)) {
BQ_LOGE("connect: BufferQueue failed to adjust the number of available "
"slots. Delta = %d", delta);
return BAD_VALUE;
}
int status = NO_ERROR;
switch (api) {
case NATIVE_WINDOW_API_EGL:
case NATIVE_WINDOW_API_CPU:
case NATIVE_WINDOW_API_MEDIA:
case NATIVE_WINDOW_API_CAMERA:
mCore->mConnectedApi = api;
output->width = mCore->mDefaultWidth;
output->height = mCore->mDefaultHeight;
output->transformHint = mCore->mTransformHintInUse = mCore->mTransformHint;
output->numPendingBuffers =
static_cast<uint32_t>(mCore->mQueue.size());
output->nextFrameNumber = mCore->mFrameCounter + 1;
output->bufferReplaced = false;
output->maxBufferCount = mCore->mMaxBufferCount;
if (listener != nullptr) {
// Set up a death notification so that we can disconnect
// automatically if the remote producer dies
#ifndef NO_BINDER
if (IInterface::asBinder(listener)->remoteBinder() != nullptr) {
status = IInterface::asBinder(listener)->linkToDeath(
static_cast<IBinder::DeathRecipient*>(this));
if (status != NO_ERROR) {
BQ_LOGE("connect: linkToDeath failed: %s (%d)",
strerror(-status), status);
}
mCore->mLinkedToDeath = listener;
}
#endif
mCore->mConnectedProducerListener = listener;
mCore->mBufferReleasedCbEnabled = listener->needsReleaseNotify();
}
break;
default:
BQ_LOGE("connect: unknown API %d", api);
status = BAD_VALUE;
break;
}
mCore->mConnectedPid = BufferQueueThreadState::getCallingPid();
mCore->mBufferHasBeenQueued = false;
mCore->mDequeueBufferCannotBlock = false;
mCore->mQueueBufferCanDrop = false;
mCore->mLegacyBufferDrop = true;
if (mCore->mConsumerControlledByApp && producerControlledByApp) {
mCore->mDequeueBufferCannotBlock = mDequeueTimeout < 0;
mCore->mQueueBufferCanDrop = mDequeueTimeout <= 0;
}
mCore->mAllowAllocation = true;
VALIDATE_CONSISTENCY();
return status;
}
status_t BufferQueueProducer::disconnect(int api, DisconnectMode mode) {
ATRACE_CALL();
BQ_LOGV("disconnect: api %d", api);
int status = NO_ERROR;
sp<IConsumerListener> listener;
{ // Autolock scope
std::unique_lock<std::mutex> lock(mCore->mMutex);
if (mode == DisconnectMode::AllLocal) {
if (BufferQueueThreadState::getCallingPid() != mCore->mConnectedPid) {
return NO_ERROR;
}
api = BufferQueueCore::CURRENTLY_CONNECTED_API;
}
mCore->waitWhileAllocatingLocked(lock);
if (mCore->mIsAbandoned) {
// It's not really an error to disconnect after the surface has
// been abandoned; it should just be a no-op.
return NO_ERROR;
}
if (api == BufferQueueCore::CURRENTLY_CONNECTED_API) {
if (mCore->mConnectedApi == NATIVE_WINDOW_API_MEDIA) {
ALOGD("About to force-disconnect API_MEDIA, mode=%d", mode);
}
api = mCore->mConnectedApi;
// If we're asked to disconnect the currently connected api but
// nobody is connected, it's not really an error.
if (api == BufferQueueCore::NO_CONNECTED_API) {
return NO_ERROR;
}
}
switch (api) {
case NATIVE_WINDOW_API_EGL:
case NATIVE_WINDOW_API_CPU:
case NATIVE_WINDOW_API_MEDIA:
case NATIVE_WINDOW_API_CAMERA:
if (mCore->mConnectedApi == api) {
mCore->freeAllBuffersLocked();
#ifndef NO_BINDER
// Remove our death notification callback if we have one
if (mCore->mLinkedToDeath != nullptr) {
sp<IBinder> token =
IInterface::asBinder(mCore->mLinkedToDeath);
// This can fail if we're here because of the death
// notification, but we just ignore it
token->unlinkToDeath(
static_cast<IBinder::DeathRecipient*>(this));
}
#endif
mCore->mSharedBufferSlot =
BufferQueueCore::INVALID_BUFFER_SLOT;
mCore->mLinkedToDeath = nullptr;
mCore->mConnectedProducerListener = nullptr;
mCore->mConnectedApi = BufferQueueCore::NO_CONNECTED_API;
mCore->mConnectedPid = -1;
mCore->mSidebandStream.clear();
mCore->mDequeueCondition.notify_all();
mCore->mAutoPrerotation = false;
listener = mCore->mConsumerListener;
} else if (mCore->mConnectedApi == BufferQueueCore::NO_CONNECTED_API) {
BQ_LOGE("disconnect: not connected (req=%d)", api);
status = NO_INIT;
} else {
BQ_LOGE("disconnect: still connected to another API "
"(cur=%d req=%d)", mCore->mConnectedApi, api);
status = BAD_VALUE;
}
break;
default:
BQ_LOGE("disconnect: unknown API %d", api);
status = BAD_VALUE;
break;
}
} // Autolock scope
// Call back without lock held
if (listener != nullptr) {
listener->onBuffersReleased();
listener->onDisconnect();
}
return status;
}
status_t BufferQueueProducer::setSidebandStream(const sp<NativeHandle>& stream) {
sp<IConsumerListener> listener;
{ // Autolock scope
std::lock_guard<std::mutex> _l(mCore->mMutex);
mCore->mSidebandStream = stream;
listener = mCore->mConsumerListener;
} // Autolock scope
if (listener != nullptr) {
listener->onSidebandStreamChanged();
}
return NO_ERROR;
}
void BufferQueueProducer::allocateBuffers(uint32_t width, uint32_t height,
PixelFormat format, uint64_t usage) {
ATRACE_CALL();
const bool useDefaultSize = !width && !height;
while (true) {
size_t newBufferCount = 0;
uint32_t allocWidth = 0;
uint32_t allocHeight = 0;
PixelFormat allocFormat = PIXEL_FORMAT_UNKNOWN;
uint64_t allocUsage = 0;
std::string allocName;
{ // Autolock scope
std::unique_lock<std::mutex> lock(mCore->mMutex);
mCore->waitWhileAllocatingLocked(lock);
if (!mCore->mAllowAllocation) {
BQ_LOGE("allocateBuffers: allocation is not allowed for this "
"BufferQueue");
return;
}
// Only allocate one buffer at a time to reduce risks of overlapping an allocation from
// both allocateBuffers and dequeueBuffer.
newBufferCount = mCore->mFreeSlots.empty() ? 0 : 1;
if (newBufferCount == 0) {
return;
}
allocWidth = width > 0 ? width : mCore->mDefaultWidth;
allocHeight = height > 0 ? height : mCore->mDefaultHeight;
if (useDefaultSize && mCore->mAutoPrerotation &&
(mCore->mTransformHintInUse & NATIVE_WINDOW_TRANSFORM_ROT_90)) {
std::swap(allocWidth, allocHeight);
}
allocFormat = format != 0 ? format : mCore->mDefaultBufferFormat;
allocUsage = usage | mCore->mConsumerUsageBits;
allocName.assign(mCore->mConsumerName.string(), mCore->mConsumerName.size());
mCore->mIsAllocating = true;
} // Autolock scope
Vector<sp<GraphicBuffer>> buffers;
for (size_t i = 0; i < newBufferCount; ++i) {
sp<GraphicBuffer> graphicBuffer = new GraphicBuffer(
allocWidth, allocHeight, allocFormat, BQ_LAYER_COUNT,
allocUsage, allocName);
status_t result = graphicBuffer->initCheck();
if (result != NO_ERROR) {
BQ_LOGE("allocateBuffers: failed to allocate buffer (%u x %u, format"
" %u, usage %#" PRIx64 ")", width, height, format, usage);
std::lock_guard<std::mutex> lock(mCore->mMutex);
mCore->mIsAllocating = false;
mCore->mIsAllocatingCondition.notify_all();
return;
}
buffers.push_back(graphicBuffer);
}
{ // Autolock scope
std::unique_lock<std::mutex> lock(mCore->mMutex);
uint32_t checkWidth = width > 0 ? width : mCore->mDefaultWidth;
uint32_t checkHeight = height > 0 ? height : mCore->mDefaultHeight;
if (useDefaultSize && mCore->mAutoPrerotation &&
(mCore->mTransformHintInUse & NATIVE_WINDOW_TRANSFORM_ROT_90)) {
std::swap(checkWidth, checkHeight);
}
PixelFormat checkFormat = format != 0 ?
format : mCore->mDefaultBufferFormat;
uint64_t checkUsage = usage | mCore->mConsumerUsageBits;
if (checkWidth != allocWidth || checkHeight != allocHeight ||
checkFormat != allocFormat || checkUsage != allocUsage) {
// Something changed while we released the lock. Retry.
BQ_LOGV("allocateBuffers: size/format/usage changed while allocating. Retrying.");
mCore->mIsAllocating = false;
mCore->mIsAllocatingCondition.notify_all();
continue;
}
for (size_t i = 0; i < newBufferCount; ++i) {
if (mCore->mFreeSlots.empty()) {
BQ_LOGV("allocateBuffers: a slot was occupied while "
"allocating. Dropping allocated buffer.");
continue;
}
auto slot = mCore->mFreeSlots.begin();
mCore->clearBufferSlotLocked(*slot); // Clean up the slot first
mSlots[*slot].mGraphicBuffer = buffers[i];
mSlots[*slot].mFence = Fence::NO_FENCE;
// freeBufferLocked puts this slot on the free slots list. Since
// we then attached a buffer, move the slot to free buffer list.
mCore->mFreeBuffers.push_front(*slot);
BQ_LOGV("allocateBuffers: allocated a new buffer in slot %d",
*slot);
// Make sure the erase is done after all uses of the slot
// iterator since it will be invalid after this point.
mCore->mFreeSlots.erase(slot);
}
mCore->mIsAllocating = false;
mCore->mIsAllocatingCondition.notify_all();
VALIDATE_CONSISTENCY();
// If dequeue is waiting for to allocate a buffer, release the lock until it's not
// waiting anymore so it can use the buffer we just allocated.
while (mDequeueWaitingForAllocation) {
mDequeueWaitingForAllocationCondition.wait(lock);
}
} // Autolock scope
}
}
status_t BufferQueueProducer::allowAllocation(bool allow) {
ATRACE_CALL();
BQ_LOGV("allowAllocation: %s", allow ? "true" : "false");
std::lock_guard<std::mutex> lock(mCore->mMutex);
mCore->mAllowAllocation = allow;
return NO_ERROR;
}
status_t BufferQueueProducer::setGenerationNumber(uint32_t generationNumber) {
ATRACE_CALL();
BQ_LOGV("setGenerationNumber: %u", generationNumber);
std::lock_guard<std::mutex> lock(mCore->mMutex);
mCore->mGenerationNumber = generationNumber;
return NO_ERROR;
}
String8 BufferQueueProducer::getConsumerName() const {
ATRACE_CALL();
std::lock_guard<std::mutex> lock(mCore->mMutex);
BQ_LOGV("getConsumerName: %s", mConsumerName.string());
return mConsumerName;
}
status_t BufferQueueProducer::setSharedBufferMode(bool sharedBufferMode) {
ATRACE_CALL();
BQ_LOGV("setSharedBufferMode: %d", sharedBufferMode);
std::lock_guard<std::mutex> lock(mCore->mMutex);
if (!sharedBufferMode) {
mCore->mSharedBufferSlot = BufferQueueCore::INVALID_BUFFER_SLOT;
}
mCore->mSharedBufferMode = sharedBufferMode;
return NO_ERROR;
}
status_t BufferQueueProducer::setAutoRefresh(bool autoRefresh) {
ATRACE_CALL();
BQ_LOGV("setAutoRefresh: %d", autoRefresh);
std::lock_guard<std::mutex> lock(mCore->mMutex);
mCore->mAutoRefresh = autoRefresh;
return NO_ERROR;
}
status_t BufferQueueProducer::setDequeueTimeout(nsecs_t timeout) {
ATRACE_CALL();
BQ_LOGV("setDequeueTimeout: %" PRId64, timeout);
std::lock_guard<std::mutex> lock(mCore->mMutex);
bool dequeueBufferCannotBlock =
timeout >= 0 ? false : mCore->mDequeueBufferCannotBlock;
int delta = mCore->getMaxBufferCountLocked(mCore->mAsyncMode, dequeueBufferCannotBlock,
mCore->mMaxBufferCount) - mCore->getMaxBufferCountLocked();
if (!mCore->adjustAvailableSlotsLocked(delta)) {
BQ_LOGE("setDequeueTimeout: BufferQueue failed to adjust the number of "
"available slots. Delta = %d", delta);
return BAD_VALUE;
}
mDequeueTimeout = timeout;
mCore->mDequeueBufferCannotBlock = dequeueBufferCannotBlock;
if (timeout > 0) {
mCore->mQueueBufferCanDrop = false;
}
VALIDATE_CONSISTENCY();
return NO_ERROR;
}
status_t BufferQueueProducer::setLegacyBufferDrop(bool drop) {
ATRACE_CALL();
BQ_LOGV("setLegacyBufferDrop: drop = %d", drop);
std::lock_guard<std::mutex> lock(mCore->mMutex);
mCore->mLegacyBufferDrop = drop;
return NO_ERROR;
}
status_t BufferQueueProducer::getLastQueuedBuffer(sp<GraphicBuffer>* outBuffer,
sp<Fence>* outFence, float outTransformMatrix[16]) {
ATRACE_CALL();
BQ_LOGV("getLastQueuedBuffer");
std::lock_guard<std::mutex> lock(mCore->mMutex);
if (mCore->mLastQueuedSlot == BufferItem::INVALID_BUFFER_SLOT) {
*outBuffer = nullptr;
*outFence = Fence::NO_FENCE;
return NO_ERROR;
}
*outBuffer = mSlots[mCore->mLastQueuedSlot].mGraphicBuffer;
*outFence = mLastQueueBufferFence;
// Currently only SurfaceFlinger internally ever changes
// GLConsumer's filtering mode, so we just use 'true' here as
// this is slightly specialized for the current client of this API,
// which does want filtering.
GLConsumer::computeTransformMatrix(outTransformMatrix,
mSlots[mCore->mLastQueuedSlot].mGraphicBuffer, mLastQueuedCrop,
mLastQueuedTransform, true /* filter */);
return NO_ERROR;
}
status_t BufferQueueProducer::getLastQueuedBuffer(sp<GraphicBuffer>* outBuffer, sp<Fence>* outFence,
Rect* outRect, uint32_t* outTransform) {
ATRACE_CALL();
BQ_LOGV("getLastQueuedBuffer");
std::lock_guard<std::mutex> lock(mCore->mMutex);
if (mCore->mLastQueuedSlot == BufferItem::INVALID_BUFFER_SLOT) {
*outBuffer = nullptr;
*outFence = Fence::NO_FENCE;
return NO_ERROR;
}
*outBuffer = mSlots[mCore->mLastQueuedSlot].mGraphicBuffer;
*outFence = mLastQueueBufferFence;
*outRect = mLastQueuedCrop;
*outTransform = mLastQueuedTransform;
return NO_ERROR;
}
void BufferQueueProducer::getFrameTimestamps(FrameEventHistoryDelta* outDelta) {
addAndGetFrameTimestamps(nullptr, outDelta);
}
void BufferQueueProducer::addAndGetFrameTimestamps(
const NewFrameEventsEntry* newTimestamps,
FrameEventHistoryDelta* outDelta) {
if (newTimestamps == nullptr && outDelta == nullptr) {
return;
}
ATRACE_CALL();
BQ_LOGV("addAndGetFrameTimestamps");
sp<IConsumerListener> listener;
{
std::lock_guard<std::mutex> lock(mCore->mMutex);
listener = mCore->mConsumerListener;
}
if (listener != nullptr) {
listener->addAndGetFrameTimestamps(newTimestamps, outDelta);
}
}
void BufferQueueProducer::binderDied(const wp<android::IBinder>& /* who */) {
// If we're here, it means that a producer we were connected to died.
// We're guaranteed that we are still connected to it because we remove
// this callback upon disconnect. It's therefore safe to read mConnectedApi
// without synchronization here.
int api = mCore->mConnectedApi;
disconnect(api);
}
status_t BufferQueueProducer::getUniqueId(uint64_t* outId) const {
BQ_LOGV("getUniqueId");
*outId = mCore->mUniqueId;
return NO_ERROR;
}
status_t BufferQueueProducer::getConsumerUsage(uint64_t* outUsage) const {
BQ_LOGV("getConsumerUsage");
std::lock_guard<std::mutex> lock(mCore->mMutex);
*outUsage = mCore->mConsumerUsageBits;
return NO_ERROR;
}
status_t BufferQueueProducer::setAutoPrerotation(bool autoPrerotation) {
ATRACE_CALL();
BQ_LOGV("setAutoPrerotation: %d", autoPrerotation);
std::lock_guard<std::mutex> lock(mCore->mMutex);
mCore->mAutoPrerotation = autoPrerotation;
return NO_ERROR;
}
} // namespace android