blob: 93f15294dff52ea99c2805e80e0cbfdea2ab7499 [file] [log] [blame]
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "RpcState"
#include "RpcState.h"
#include <android-base/scopeguard.h>
#include <binder/BpBinder.h>
#include <binder/IPCThreadState.h>
#include <binder/RpcServer.h>
#include "Debug.h"
#include "RpcWireFormat.h"
#include <inttypes.h>
namespace android {
using base::ScopeGuard;
RpcState::RpcState() {}
RpcState::~RpcState() {}
status_t RpcState::onBinderLeaving(const sp<RpcSession>& session, const sp<IBinder>& binder,
RpcAddress* outAddress) {
bool isRemote = binder->remoteBinder();
bool isRpc = isRemote && binder->remoteBinder()->isRpcBinder();
if (isRpc && binder->remoteBinder()->getPrivateAccessorForId().rpcSession() != session) {
// We need to be able to send instructions over the socket for how to
// connect to a different server, and we also need to let the host
// process know that this is happening.
ALOGE("Cannot send binder from unrelated binder RPC session.");
return INVALID_OPERATION;
}
if (isRemote && !isRpc) {
// Without additional work, this would have the effect of using this
// process to proxy calls from the socket over to the other process, and
// it would make those calls look like they come from us (not over the
// sockets). In order to make this work transparently like binder, we
// would instead need to send instructions over the socket for how to
// connect to the host process, and we also need to let the host process
// know this was happening.
ALOGE("Cannot send binder proxy %p over sockets", binder.get());
return INVALID_OPERATION;
}
std::lock_guard<std::mutex> _l(mNodeMutex);
if (mTerminated) return DEAD_OBJECT;
// TODO(b/182939933): maybe move address out of BpBinder, and keep binder->address map
// in RpcState
for (auto& [addr, node] : mNodeForAddress) {
if (binder == node.binder) {
if (isRpc) {
const RpcAddress& actualAddr =
binder->remoteBinder()->getPrivateAccessorForId().rpcAddress();
// TODO(b/182939933): this is only checking integrity of data structure
// a different data structure doesn't need this
LOG_ALWAYS_FATAL_IF(addr < actualAddr, "Address mismatch");
LOG_ALWAYS_FATAL_IF(actualAddr < addr, "Address mismatch");
}
node.timesSent++;
node.sentRef = binder; // might already be set
*outAddress = addr;
return OK;
}
}
LOG_ALWAYS_FATAL_IF(isRpc, "RPC binder must have known address at this point");
auto&& [it, inserted] = mNodeForAddress.insert({RpcAddress::unique(),
BinderNode{
.binder = binder,
.timesSent = 1,
.sentRef = binder,
}});
// TODO(b/182939933): better organization could avoid needing this log
LOG_ALWAYS_FATAL_IF(!inserted);
*outAddress = it->first;
return OK;
}
status_t RpcState::onBinderEntering(const sp<RpcSession>& session, const RpcAddress& address,
sp<IBinder>* out) {
std::unique_lock<std::mutex> _l(mNodeMutex);
if (mTerminated) return DEAD_OBJECT;
if (auto it = mNodeForAddress.find(address); it != mNodeForAddress.end()) {
*out = it->second.binder.promote();
// implicitly have strong RPC refcount, since we received this binder
it->second.timesRecd++;
_l.unlock();
// We have timesRecd RPC refcounts, but we only need to hold on to one
// when we keep the object. All additional dec strongs are sent
// immediately, we wait to send the last one in BpBinder::onLastDecStrong.
(void)session->sendDecStrong(address);
return OK;
}
auto&& [it, inserted] = mNodeForAddress.insert({address, BinderNode{}});
LOG_ALWAYS_FATAL_IF(!inserted, "Failed to insert binder when creating proxy");
// Currently, all binders are assumed to be part of the same session (no
// device global binders in the RPC world).
it->second.binder = *out = BpBinder::create(session, it->first);
it->second.timesRecd = 1;
return OK;
}
size_t RpcState::countBinders() {
std::lock_guard<std::mutex> _l(mNodeMutex);
return mNodeForAddress.size();
}
void RpcState::dump() {
std::lock_guard<std::mutex> _l(mNodeMutex);
dumpLocked();
}
void RpcState::terminate() {
std::unique_lock<std::mutex> _l(mNodeMutex);
terminate(_l);
}
void RpcState::dumpLocked() {
ALOGE("DUMP OF RpcState %p", this);
ALOGE("DUMP OF RpcState (%zu nodes)", mNodeForAddress.size());
for (const auto& [address, node] : mNodeForAddress) {
sp<IBinder> binder = node.binder.promote();
const char* desc;
if (binder) {
if (binder->remoteBinder()) {
if (binder->remoteBinder()->isRpcBinder()) {
desc = "(rpc binder proxy)";
} else {
desc = "(binder proxy)";
}
} else {
desc = "(local binder)";
}
} else {
desc = "(null)";
}
ALOGE("- BINDER NODE: %p times sent:%zu times recd: %zu a:%s type:%s",
node.binder.unsafe_get(), node.timesSent, node.timesRecd, address.toString().c_str(),
desc);
}
ALOGE("END DUMP OF RpcState");
}
void RpcState::terminate(std::unique_lock<std::mutex>& lock) {
if (SHOULD_LOG_RPC_DETAIL) {
ALOGE("RpcState::terminate()");
dumpLocked();
}
// if the destructor of a binder object makes another RPC call, then calling
// decStrong could deadlock. So, we must hold onto these binders until
// mNodeMutex is no longer taken.
std::vector<sp<IBinder>> tempHoldBinder;
mTerminated = true;
for (auto& [address, node] : mNodeForAddress) {
sp<IBinder> binder = node.binder.promote();
LOG_ALWAYS_FATAL_IF(binder == nullptr, "Binder %p expected to be owned.", binder.get());
if (node.sentRef != nullptr) {
tempHoldBinder.push_back(node.sentRef);
}
}
mNodeForAddress.clear();
lock.unlock();
tempHoldBinder.clear(); // explicit
}
RpcState::CommandData::CommandData(size_t size) : mSize(size) {
// The maximum size for regular binder is 1MB for all concurrent
// transactions. A very small proportion of transactions are even
// larger than a page, but we need to avoid allocating too much
// data on behalf of an arbitrary client, or we could risk being in
// a position where a single additional allocation could run out of
// memory.
//
// Note, this limit may not reflect the total amount of data allocated for a
// transaction (in some cases, additional fixed size amounts are added),
// though for rough consistency, we should avoid cases where this data type
// is used for multiple dynamic allocations for a single transaction.
constexpr size_t kMaxTransactionAllocation = 100 * 1000;
if (size == 0) return;
if (size > kMaxTransactionAllocation) {
ALOGW("Transaction requested too much data allocation %zu", size);
return;
}
mData.reset(new (std::nothrow) uint8_t[size]);
}
status_t RpcState::rpcSend(const base::unique_fd& fd, const char* what, const void* data,
size_t size) {
LOG_RPC_DETAIL("Sending %s on fd %d: %s", what, fd.get(), hexString(data, size).c_str());
if (size > std::numeric_limits<ssize_t>::max()) {
ALOGE("Cannot send %s at size %zu (too big)", what, size);
terminate();
return BAD_VALUE;
}
ssize_t sent = TEMP_FAILURE_RETRY(send(fd.get(), data, size, MSG_NOSIGNAL));
if (sent < 0 || sent != static_cast<ssize_t>(size)) {
int savedErrno = errno;
LOG_RPC_DETAIL("Failed to send %s (sent %zd of %zu bytes) on fd %d, error: %s", what, sent,
size, fd.get(), strerror(savedErrno));
terminate();
return -savedErrno;
}
return OK;
}
status_t RpcState::rpcRec(const base::unique_fd& fd, const sp<RpcSession>& session,
const char* what, void* data, size_t size) {
if (size > std::numeric_limits<ssize_t>::max()) {
ALOGE("Cannot rec %s at size %zu (too big)", what, size);
terminate();
return BAD_VALUE;
}
if (status_t status = session->mShutdownTrigger->interruptableReadFully(fd.get(), data, size);
status != OK) {
LOG_RPC_DETAIL("Failed to read %s (%zu bytes) on fd %d, error: %s", what, size, fd.get(),
statusToString(status).c_str());
return status;
}
LOG_RPC_DETAIL("Received %s on fd %d: %s", what, fd.get(), hexString(data, size).c_str());
return OK;
}
sp<IBinder> RpcState::getRootObject(const base::unique_fd& fd, const sp<RpcSession>& session) {
Parcel data;
data.markForRpc(session);
Parcel reply;
status_t status = transactAddress(fd, RpcAddress::zero(), RPC_SPECIAL_TRANSACT_GET_ROOT, data,
session, &reply, 0);
if (status != OK) {
ALOGE("Error getting root object: %s", statusToString(status).c_str());
return nullptr;
}
return reply.readStrongBinder();
}
status_t RpcState::getMaxThreads(const base::unique_fd& fd, const sp<RpcSession>& session,
size_t* maxThreadsOut) {
Parcel data;
data.markForRpc(session);
Parcel reply;
status_t status = transactAddress(fd, RpcAddress::zero(), RPC_SPECIAL_TRANSACT_GET_MAX_THREADS,
data, session, &reply, 0);
if (status != OK) {
ALOGE("Error getting max threads: %s", statusToString(status).c_str());
return status;
}
int32_t maxThreads;
status = reply.readInt32(&maxThreads);
if (status != OK) return status;
if (maxThreads <= 0) {
ALOGE("Error invalid max maxThreads: %d", maxThreads);
return BAD_VALUE;
}
*maxThreadsOut = maxThreads;
return OK;
}
status_t RpcState::getSessionId(const base::unique_fd& fd, const sp<RpcSession>& session,
int32_t* sessionIdOut) {
Parcel data;
data.markForRpc(session);
Parcel reply;
status_t status = transactAddress(fd, RpcAddress::zero(), RPC_SPECIAL_TRANSACT_GET_SESSION_ID,
data, session, &reply, 0);
if (status != OK) {
ALOGE("Error getting session ID: %s", statusToString(status).c_str());
return status;
}
int32_t sessionId;
status = reply.readInt32(&sessionId);
if (status != OK) return status;
*sessionIdOut = sessionId;
return OK;
}
status_t RpcState::transact(const base::unique_fd& fd, const sp<IBinder>& binder, uint32_t code,
const Parcel& data, const sp<RpcSession>& session, Parcel* reply,
uint32_t flags) {
if (!data.isForRpc()) {
ALOGE("Refusing to send RPC with parcel not crafted for RPC");
return BAD_TYPE;
}
if (data.objectsCount() != 0) {
ALOGE("Parcel at %p has attached objects but is being used in an RPC call", &data);
return BAD_TYPE;
}
RpcAddress address = RpcAddress::zero();
if (status_t status = onBinderLeaving(session, binder, &address); status != OK) return status;
return transactAddress(fd, address, code, data, session, reply, flags);
}
status_t RpcState::transactAddress(const base::unique_fd& fd, const RpcAddress& address,
uint32_t code, const Parcel& data, const sp<RpcSession>& session,
Parcel* reply, uint32_t flags) {
LOG_ALWAYS_FATAL_IF(!data.isForRpc());
LOG_ALWAYS_FATAL_IF(data.objectsCount() != 0);
uint64_t asyncNumber = 0;
if (!address.isZero()) {
std::unique_lock<std::mutex> _l(mNodeMutex);
if (mTerminated) return DEAD_OBJECT; // avoid fatal only, otherwise races
auto it = mNodeForAddress.find(address);
LOG_ALWAYS_FATAL_IF(it == mNodeForAddress.end(), "Sending transact on unknown address %s",
address.toString().c_str());
if (flags & IBinder::FLAG_ONEWAY) {
asyncNumber = it->second.asyncNumber;
if (!nodeProgressAsyncNumber(&it->second, _l)) return DEAD_OBJECT;
}
}
LOG_ALWAYS_FATAL_IF(std::numeric_limits<int32_t>::max() - sizeof(RpcWireHeader) -
sizeof(RpcWireTransaction) <
data.dataSize(),
"Too much data %zu", data.dataSize());
RpcWireHeader command{
.command = RPC_COMMAND_TRANSACT,
.bodySize = static_cast<uint32_t>(sizeof(RpcWireTransaction) + data.dataSize()),
};
RpcWireTransaction transaction{
.address = address.viewRawEmbedded(),
.code = code,
.flags = flags,
.asyncNumber = asyncNumber,
};
CommandData transactionData(sizeof(RpcWireHeader) + sizeof(RpcWireTransaction) +
data.dataSize());
if (!transactionData.valid()) {
return NO_MEMORY;
}
memcpy(transactionData.data() + 0, &command, sizeof(RpcWireHeader));
memcpy(transactionData.data() + sizeof(RpcWireHeader), &transaction,
sizeof(RpcWireTransaction));
memcpy(transactionData.data() + sizeof(RpcWireHeader) + sizeof(RpcWireTransaction), data.data(),
data.dataSize());
if (status_t status =
rpcSend(fd, "transaction", transactionData.data(), transactionData.size());
status != OK)
return status;
if (flags & IBinder::FLAG_ONEWAY) {
LOG_RPC_DETAIL("Oneway command, so no longer waiting on %d", fd.get());
// Do not wait on result.
// However, too many oneway calls may cause refcounts to build up and fill up the socket,
// so process those.
return drainCommands(fd, session, CommandType::CONTROL_ONLY);
}
LOG_ALWAYS_FATAL_IF(reply == nullptr, "Reply parcel must be used for synchronous transaction.");
return waitForReply(fd, session, reply);
}
static void cleanup_reply_data(Parcel* p, const uint8_t* data, size_t dataSize,
const binder_size_t* objects, size_t objectsCount) {
(void)p;
delete[] const_cast<uint8_t*>(data - offsetof(RpcWireReply, data));
(void)dataSize;
LOG_ALWAYS_FATAL_IF(objects != nullptr);
LOG_ALWAYS_FATAL_IF(objectsCount, 0);
}
status_t RpcState::waitForReply(const base::unique_fd& fd, const sp<RpcSession>& session,
Parcel* reply) {
RpcWireHeader command;
while (true) {
if (status_t status = rpcRec(fd, session, "command header", &command, sizeof(command));
status != OK)
return status;
if (command.command == RPC_COMMAND_REPLY) break;
if (status_t status = processServerCommand(fd, session, command, CommandType::ANY);
status != OK)
return status;
}
CommandData data(command.bodySize);
if (!data.valid()) return NO_MEMORY;
if (status_t status = rpcRec(fd, session, "reply body", data.data(), command.bodySize);
status != OK)
return status;
if (command.bodySize < sizeof(RpcWireReply)) {
ALOGE("Expecting %zu but got %" PRId32 " bytes for RpcWireReply. Terminating!",
sizeof(RpcWireReply), command.bodySize);
terminate();
return BAD_VALUE;
}
RpcWireReply* rpcReply = reinterpret_cast<RpcWireReply*>(data.data());
if (rpcReply->status != OK) return rpcReply->status;
data.release();
reply->ipcSetDataReference(rpcReply->data, command.bodySize - offsetof(RpcWireReply, data),
nullptr, 0, cleanup_reply_data);
reply->markForRpc(session);
return OK;
}
status_t RpcState::sendDecStrong(const base::unique_fd& fd, const RpcAddress& addr) {
{
std::lock_guard<std::mutex> _l(mNodeMutex);
if (mTerminated) return DEAD_OBJECT; // avoid fatal only, otherwise races
auto it = mNodeForAddress.find(addr);
LOG_ALWAYS_FATAL_IF(it == mNodeForAddress.end(), "Sending dec strong on unknown address %s",
addr.toString().c_str());
LOG_ALWAYS_FATAL_IF(it->second.timesRecd <= 0, "Bad dec strong %s",
addr.toString().c_str());
it->second.timesRecd--;
LOG_ALWAYS_FATAL_IF(nullptr != tryEraseNode(it),
"Bad state. RpcState shouldn't own received binder");
}
RpcWireHeader cmd = {
.command = RPC_COMMAND_DEC_STRONG,
.bodySize = sizeof(RpcWireAddress),
};
if (status_t status = rpcSend(fd, "dec ref header", &cmd, sizeof(cmd)); status != OK)
return status;
if (status_t status =
rpcSend(fd, "dec ref body", &addr.viewRawEmbedded(), sizeof(RpcWireAddress));
status != OK)
return status;
return OK;
}
status_t RpcState::getAndExecuteCommand(const base::unique_fd& fd, const sp<RpcSession>& session,
CommandType type) {
LOG_RPC_DETAIL("getAndExecuteCommand on fd %d", fd.get());
RpcWireHeader command;
if (status_t status = rpcRec(fd, session, "command header", &command, sizeof(command));
status != OK)
return status;
return processServerCommand(fd, session, command, type);
}
status_t RpcState::drainCommands(const base::unique_fd& fd, const sp<RpcSession>& session,
CommandType type) {
uint8_t buf;
while (0 < TEMP_FAILURE_RETRY(recv(fd.get(), &buf, sizeof(buf), MSG_PEEK | MSG_DONTWAIT))) {
status_t status = getAndExecuteCommand(fd, session, type);
if (status != OK) return status;
}
return OK;
}
status_t RpcState::processServerCommand(const base::unique_fd& fd, const sp<RpcSession>& session,
const RpcWireHeader& command, CommandType type) {
IPCThreadState* kernelBinderState = IPCThreadState::selfOrNull();
IPCThreadState::SpGuard spGuard{
.address = __builtin_frame_address(0),
.context = "processing binder RPC command",
};
const IPCThreadState::SpGuard* origGuard;
if (kernelBinderState != nullptr) {
origGuard = kernelBinderState->pushGetCallingSpGuard(&spGuard);
}
ScopeGuard guardUnguard = [&]() {
if (kernelBinderState != nullptr) {
kernelBinderState->restoreGetCallingSpGuard(origGuard);
}
};
switch (command.command) {
case RPC_COMMAND_TRANSACT:
if (type != CommandType::ANY) return BAD_TYPE;
return processTransact(fd, session, command);
case RPC_COMMAND_DEC_STRONG:
return processDecStrong(fd, session, command);
}
// We should always know the version of the opposing side, and since the
// RPC-binder-level wire protocol is not self synchronizing, we have no way
// to understand where the current command ends and the next one begins. We
// also can't consider it a fatal error because this would allow any client
// to kill us, so ending the session for misbehaving client.
ALOGE("Unknown RPC command %d - terminating session", command.command);
terminate();
return DEAD_OBJECT;
}
status_t RpcState::processTransact(const base::unique_fd& fd, const sp<RpcSession>& session,
const RpcWireHeader& command) {
LOG_ALWAYS_FATAL_IF(command.command != RPC_COMMAND_TRANSACT, "command: %d", command.command);
CommandData transactionData(command.bodySize);
if (!transactionData.valid()) {
return NO_MEMORY;
}
if (status_t status = rpcRec(fd, session, "transaction body", transactionData.data(),
transactionData.size());
status != OK)
return status;
return processTransactInternal(fd, session, std::move(transactionData), nullptr /*targetRef*/);
}
static void do_nothing_to_transact_data(Parcel* p, const uint8_t* data, size_t dataSize,
const binder_size_t* objects, size_t objectsCount) {
(void)p;
(void)data;
(void)dataSize;
(void)objects;
(void)objectsCount;
}
status_t RpcState::processTransactInternal(const base::unique_fd& fd, const sp<RpcSession>& session,
CommandData transactionData, sp<IBinder>&& targetRef) {
if (transactionData.size() < sizeof(RpcWireTransaction)) {
ALOGE("Expecting %zu but got %zu bytes for RpcWireTransaction. Terminating!",
sizeof(RpcWireTransaction), transactionData.size());
terminate();
return BAD_VALUE;
}
RpcWireTransaction* transaction = reinterpret_cast<RpcWireTransaction*>(transactionData.data());
// TODO(b/182939933): heap allocation just for lookup in mNodeForAddress,
// maybe add an RpcAddress 'view' if the type remains 'heavy'
auto addr = RpcAddress::fromRawEmbedded(&transaction->address);
status_t replyStatus = OK;
sp<IBinder> target;
if (!addr.isZero()) {
if (!targetRef) {
replyStatus = onBinderEntering(session, addr, &target);
} else {
target = targetRef;
}
if (replyStatus != OK) {
// do nothing
} else if (target == nullptr) {
// This can happen if the binder is remote in this process, and
// another thread has called the last decStrong on this binder.
// However, for local binders, it indicates a misbehaving client
// (any binder which is being transacted on should be holding a
// strong ref count), so in either case, terminating the
// session.
ALOGE("While transacting, binder has been deleted at address %s. Terminating!",
addr.toString().c_str());
terminate();
replyStatus = BAD_VALUE;
} else if (target->localBinder() == nullptr) {
ALOGE("Unknown binder address or non-local binder, not address %s. Terminating!",
addr.toString().c_str());
terminate();
replyStatus = BAD_VALUE;
} else if (transaction->flags & IBinder::FLAG_ONEWAY) {
std::lock_guard<std::mutex> _l(mNodeMutex);
auto it = mNodeForAddress.find(addr);
if (it->second.binder.promote() != target) {
ALOGE("Binder became invalid during transaction. Bad client? %s",
addr.toString().c_str());
replyStatus = BAD_VALUE;
} else if (transaction->asyncNumber != it->second.asyncNumber) {
// we need to process some other asynchronous transaction
// first
// TODO(b/183140903): limit enqueues/detect overfill for bad client
// TODO(b/183140903): detect when an object is deleted when it still has
// pending async transactions
it->second.asyncTodo.push(BinderNode::AsyncTodo{
.ref = target,
.data = std::move(transactionData),
.asyncNumber = transaction->asyncNumber,
});
LOG_RPC_DETAIL("Enqueuing %" PRId64 " on %s", transaction->asyncNumber,
addr.toString().c_str());
return OK;
}
}
}
Parcel reply;
reply.markForRpc(session);
if (replyStatus == OK) {
Parcel data;
// transaction->data is owned by this function. Parcel borrows this data and
// only holds onto it for the duration of this function call. Parcel will be
// deleted before the 'transactionData' object.
data.ipcSetDataReference(transaction->data,
transactionData.size() - offsetof(RpcWireTransaction, data),
nullptr /*object*/, 0 /*objectCount*/,
do_nothing_to_transact_data);
data.markForRpc(session);
if (target) {
replyStatus = target->transact(transaction->code, data, &reply, transaction->flags);
} else {
LOG_RPC_DETAIL("Got special transaction %u", transaction->code);
switch (transaction->code) {
case RPC_SPECIAL_TRANSACT_GET_MAX_THREADS: {
replyStatus = reply.writeInt32(session->getMaxThreads());
break;
}
case RPC_SPECIAL_TRANSACT_GET_SESSION_ID: {
// for client connections, this should always report the value
// originally returned from the server
int32_t id = session->mId.value();
replyStatus = reply.writeInt32(id);
break;
}
default: {
sp<RpcServer> server = session->server().promote();
if (server) {
switch (transaction->code) {
case RPC_SPECIAL_TRANSACT_GET_ROOT: {
replyStatus = reply.writeStrongBinder(server->getRootObject());
break;
}
default: {
replyStatus = UNKNOWN_TRANSACTION;
}
}
} else {
ALOGE("Special command sent, but no server object attached.");
}
}
}
}
}
if (transaction->flags & IBinder::FLAG_ONEWAY) {
if (replyStatus != OK) {
ALOGW("Oneway call failed with error: %d", replyStatus);
}
LOG_RPC_DETAIL("Processed async transaction %" PRId64 " on %s", transaction->asyncNumber,
addr.toString().c_str());
// Check to see if there is another asynchronous transaction to process.
// This behavior differs from binder behavior, since in the binder
// driver, asynchronous transactions will be processed after existing
// pending binder transactions on the queue. The downside of this is
// that asynchronous transactions can be drowned out by synchronous
// transactions. However, we have no easy way to queue these
// transactions after the synchronous transactions we may want to read
// from the wire. So, in socket binder here, we have the opposite
// downside: asynchronous transactions may drown out synchronous
// transactions.
{
std::unique_lock<std::mutex> _l(mNodeMutex);
auto it = mNodeForAddress.find(addr);
// last refcount dropped after this transaction happened
if (it == mNodeForAddress.end()) return OK;
if (!nodeProgressAsyncNumber(&it->second, _l)) return DEAD_OBJECT;
if (it->second.asyncTodo.size() == 0) return OK;
if (it->second.asyncTodo.top().asyncNumber == it->second.asyncNumber) {
LOG_RPC_DETAIL("Found next async transaction %" PRId64 " on %s",
it->second.asyncNumber, addr.toString().c_str());
// justification for const_cast (consider avoiding priority_queue):
// - AsyncTodo operator< doesn't depend on 'data' or 'ref' objects
// - gotta go fast
auto& todo = const_cast<BinderNode::AsyncTodo&>(it->second.asyncTodo.top());
CommandData nextData = std::move(todo.data);
sp<IBinder> nextRef = std::move(todo.ref);
it->second.asyncTodo.pop();
_l.unlock();
return processTransactInternal(fd, session, std::move(nextData),
std::move(nextRef));
}
}
return OK;
}
LOG_ALWAYS_FATAL_IF(std::numeric_limits<int32_t>::max() - sizeof(RpcWireHeader) -
sizeof(RpcWireReply) <
reply.dataSize(),
"Too much data for reply %zu", reply.dataSize());
RpcWireHeader cmdReply{
.command = RPC_COMMAND_REPLY,
.bodySize = static_cast<uint32_t>(sizeof(RpcWireReply) + reply.dataSize()),
};
RpcWireReply rpcReply{
.status = replyStatus,
};
CommandData replyData(sizeof(RpcWireHeader) + sizeof(RpcWireReply) + reply.dataSize());
if (!replyData.valid()) {
return NO_MEMORY;
}
memcpy(replyData.data() + 0, &cmdReply, sizeof(RpcWireHeader));
memcpy(replyData.data() + sizeof(RpcWireHeader), &rpcReply, sizeof(RpcWireReply));
memcpy(replyData.data() + sizeof(RpcWireHeader) + sizeof(RpcWireReply), reply.data(),
reply.dataSize());
return rpcSend(fd, "reply", replyData.data(), replyData.size());
}
status_t RpcState::processDecStrong(const base::unique_fd& fd, const sp<RpcSession>& session,
const RpcWireHeader& command) {
LOG_ALWAYS_FATAL_IF(command.command != RPC_COMMAND_DEC_STRONG, "command: %d", command.command);
CommandData commandData(command.bodySize);
if (!commandData.valid()) {
return NO_MEMORY;
}
if (status_t status =
rpcRec(fd, session, "dec ref body", commandData.data(), commandData.size());
status != OK)
return status;
if (command.bodySize < sizeof(RpcWireAddress)) {
ALOGE("Expecting %zu but got %" PRId32 " bytes for RpcWireAddress. Terminating!",
sizeof(RpcWireAddress), command.bodySize);
terminate();
return BAD_VALUE;
}
RpcWireAddress* address = reinterpret_cast<RpcWireAddress*>(commandData.data());
// TODO(b/182939933): heap allocation just for lookup
auto addr = RpcAddress::fromRawEmbedded(address);
std::unique_lock<std::mutex> _l(mNodeMutex);
auto it = mNodeForAddress.find(addr);
if (it == mNodeForAddress.end()) {
ALOGE("Unknown binder address %s for dec strong.", addr.toString().c_str());
return OK;
}
sp<IBinder> target = it->second.binder.promote();
if (target == nullptr) {
ALOGE("While requesting dec strong, binder has been deleted at address %s. Terminating!",
addr.toString().c_str());
terminate();
return BAD_VALUE;
}
if (it->second.timesSent == 0) {
ALOGE("No record of sending binder, but requested decStrong: %s", addr.toString().c_str());
return OK;
}
LOG_ALWAYS_FATAL_IF(it->second.sentRef == nullptr, "Inconsistent state, lost ref for %s",
addr.toString().c_str());
it->second.timesSent--;
sp<IBinder> tempHold = tryEraseNode(it);
_l.unlock();
tempHold = nullptr; // destructor may make binder calls on this session
return OK;
}
sp<IBinder> RpcState::tryEraseNode(std::map<RpcAddress, BinderNode>::iterator& it) {
sp<IBinder> ref;
if (it->second.timesSent == 0) {
ref = std::move(it->second.sentRef);
if (it->second.timesRecd == 0) {
LOG_ALWAYS_FATAL_IF(!it->second.asyncTodo.empty(),
"Can't delete binder w/ pending async transactions");
mNodeForAddress.erase(it);
}
}
return ref;
}
bool RpcState::nodeProgressAsyncNumber(BinderNode* node, std::unique_lock<std::mutex>& lock) {
// 2**64 =~ 10**19 =~ 1000 transactions per second for 585 million years to
// a single binder
if (node->asyncNumber >= std::numeric_limits<decltype(node->asyncNumber)>::max()) {
ALOGE("Out of async transaction IDs. Terminating");
terminate(lock);
return false;
}
node->asyncNumber++;
return true;
}
} // namespace android