blob: 2467434a7407414aeac33e652937ca007dc5fe30 [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#undef LOG_TAG
#define LOG_TAG "BLASTBufferQueue"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
//#define LOG_NDEBUG 0
#include <gui/BLASTBufferQueue.h>
#include <gui/BufferItemConsumer.h>
#include <gui/BufferQueueConsumer.h>
#include <gui/BufferQueueCore.h>
#include <gui/BufferQueueProducer.h>
#include <gui/GLConsumer.h>
#include <gui/IProducerListener.h>
#include <gui/Surface.h>
#include <gui/TraceUtils.h>
#include <utils/Singleton.h>
#include <utils/Trace.h>
#include <private/gui/ComposerService.h>
#include <chrono>
using namespace std::chrono_literals;
namespace {
inline const char* boolToString(bool b) {
return b ? "true" : "false";
}
} // namespace
namespace android {
// Macros to include adapter info in log messages
#define BQA_LOGD(x, ...) \
ALOGD("[%s](f:%u,a:%u) " x, mName.c_str(), mNumFrameAvailable, mNumAcquired, ##__VA_ARGS__)
#define BQA_LOGV(x, ...) \
ALOGV("[%s](f:%u,a:%u) " x, mName.c_str(), mNumFrameAvailable, mNumAcquired, ##__VA_ARGS__)
// enable logs for a single layer
//#define BQA_LOGV(x, ...) \
// ALOGV_IF((strstr(mName.c_str(), "SurfaceView") != nullptr), "[%s](f:%u,a:%u) " x, \
// mName.c_str(), mNumFrameAvailable, mNumAcquired, ##__VA_ARGS__)
#define BQA_LOGE(x, ...) \
ALOGE("[%s](f:%u,a:%u) " x, mName.c_str(), mNumFrameAvailable, mNumAcquired, ##__VA_ARGS__)
#define BBQ_TRACE(x, ...) \
ATRACE_FORMAT("%s - %s(f:%u,a:%u)" x, __FUNCTION__, mName.c_str(), mNumFrameAvailable, \
mNumAcquired, ##__VA_ARGS__)
void BLASTBufferItemConsumer::onDisconnect() {
Mutex::Autolock lock(mMutex);
mPreviouslyConnected = mCurrentlyConnected;
mCurrentlyConnected = false;
if (mPreviouslyConnected) {
mDisconnectEvents.push(mCurrentFrameNumber);
}
mFrameEventHistory.onDisconnect();
}
void BLASTBufferItemConsumer::addAndGetFrameTimestamps(const NewFrameEventsEntry* newTimestamps,
FrameEventHistoryDelta* outDelta) {
Mutex::Autolock lock(mMutex);
if (newTimestamps) {
// BufferQueueProducer only adds a new timestamp on
// queueBuffer
mCurrentFrameNumber = newTimestamps->frameNumber;
mFrameEventHistory.addQueue(*newTimestamps);
}
if (outDelta) {
// frame event histories will be processed
// only after the producer connects and requests
// deltas for the first time. Forward this intent
// to SF-side to turn event processing back on
mPreviouslyConnected = mCurrentlyConnected;
mCurrentlyConnected = true;
mFrameEventHistory.getAndResetDelta(outDelta);
}
}
void BLASTBufferItemConsumer::updateFrameTimestamps(uint64_t frameNumber, nsecs_t refreshStartTime,
const sp<Fence>& glDoneFence,
const sp<Fence>& presentFence,
const sp<Fence>& prevReleaseFence,
CompositorTiming compositorTiming,
nsecs_t latchTime, nsecs_t dequeueReadyTime) {
Mutex::Autolock lock(mMutex);
// if the producer is not connected, don't bother updating,
// the next producer that connects won't access this frame event
if (!mCurrentlyConnected) return;
std::shared_ptr<FenceTime> glDoneFenceTime = std::make_shared<FenceTime>(glDoneFence);
std::shared_ptr<FenceTime> presentFenceTime = std::make_shared<FenceTime>(presentFence);
std::shared_ptr<FenceTime> releaseFenceTime = std::make_shared<FenceTime>(prevReleaseFence);
mFrameEventHistory.addLatch(frameNumber, latchTime);
mFrameEventHistory.addRelease(frameNumber, dequeueReadyTime, std::move(releaseFenceTime));
mFrameEventHistory.addPreComposition(frameNumber, refreshStartTime);
mFrameEventHistory.addPostComposition(frameNumber, glDoneFenceTime, presentFenceTime,
compositorTiming);
}
void BLASTBufferItemConsumer::getConnectionEvents(uint64_t frameNumber, bool* needsDisconnect) {
bool disconnect = false;
Mutex::Autolock lock(mMutex);
while (!mDisconnectEvents.empty() && mDisconnectEvents.front() <= frameNumber) {
disconnect = true;
mDisconnectEvents.pop();
}
if (needsDisconnect != nullptr) *needsDisconnect = disconnect;
}
void BLASTBufferItemConsumer::onSidebandStreamChanged() {
sp<BLASTBufferQueue> bbq = mBLASTBufferQueue.promote();
if (bbq != nullptr) {
sp<NativeHandle> stream = getSidebandStream();
bbq->setSidebandStream(stream);
}
}
BLASTBufferQueue::BLASTBufferQueue(const std::string& name, bool updateDestinationFrame)
: mSurfaceControl(nullptr),
mSize(1, 1),
mRequestedSize(mSize),
mFormat(PIXEL_FORMAT_RGBA_8888),
mTransactionReadyCallback(nullptr),
mSyncTransaction(nullptr),
mUpdateDestinationFrame(updateDestinationFrame) {
createBufferQueue(&mProducer, &mConsumer);
// since the adapter is in the client process, set dequeue timeout
// explicitly so that dequeueBuffer will block
mProducer->setDequeueTimeout(std::numeric_limits<int64_t>::max());
// safe default, most producers are expected to override this
mProducer->setMaxDequeuedBufferCount(2);
mBufferItemConsumer = new BLASTBufferItemConsumer(mConsumer,
GraphicBuffer::USAGE_HW_COMPOSER |
GraphicBuffer::USAGE_HW_TEXTURE,
1, false, this);
static int32_t id = 0;
mName = name + "#" + std::to_string(id);
auto consumerName = mName + "(BLAST Consumer)" + std::to_string(id);
mQueuedBufferTrace = "QueuedBuffer - " + mName + "BLAST#" + std::to_string(id);
id++;
mBufferItemConsumer->setName(String8(consumerName.c_str()));
mBufferItemConsumer->setFrameAvailableListener(this);
mBufferItemConsumer->setBufferFreedListener(this);
ComposerService::getComposerService()->getMaxAcquiredBufferCount(&mMaxAcquiredBuffers);
mBufferItemConsumer->setMaxAcquiredBufferCount(mMaxAcquiredBuffers);
mCurrentMaxAcquiredBufferCount = mMaxAcquiredBuffers;
mNumAcquired = 0;
mNumFrameAvailable = 0;
TransactionCompletedListener::getInstance()->addQueueStallListener(
[&]() {
std::function<void(bool)> callbackCopy;
{
std::unique_lock _lock{mMutex};
callbackCopy = mTransactionHangCallback;
}
if (callbackCopy) callbackCopy(true);
}, this);
BQA_LOGV("BLASTBufferQueue created");
}
BLASTBufferQueue::BLASTBufferQueue(const std::string& name, const sp<SurfaceControl>& surface,
int width, int height, int32_t format)
: BLASTBufferQueue(name) {
update(surface, width, height, format);
}
BLASTBufferQueue::~BLASTBufferQueue() {
TransactionCompletedListener::getInstance()->removeQueueStallListener(this);
if (mPendingTransactions.empty()) {
return;
}
BQA_LOGE("Applying pending transactions on dtor %d",
static_cast<uint32_t>(mPendingTransactions.size()));
SurfaceComposerClient::Transaction t;
mergePendingTransactions(&t, std::numeric_limits<uint64_t>::max() /* frameNumber */);
// All transactions on our apply token are one-way. See comment on mAppliedLastTransaction
t.setApplyToken(mApplyToken).apply(false, true);
if (mTransactionReadyCallback) {
mTransactionReadyCallback(mSyncTransaction);
}
}
void BLASTBufferQueue::update(const sp<SurfaceControl>& surface, uint32_t width, uint32_t height,
int32_t format) {
LOG_ALWAYS_FATAL_IF(surface == nullptr, "BLASTBufferQueue: mSurfaceControl must not be NULL");
std::unique_lock _lock{mMutex};
if (mFormat != format) {
mFormat = format;
mBufferItemConsumer->setDefaultBufferFormat(convertBufferFormat(format));
}
const bool surfaceControlChanged = !SurfaceControl::isSameSurface(mSurfaceControl, surface);
if (surfaceControlChanged && mSurfaceControl != nullptr) {
BQA_LOGD("Updating SurfaceControl without recreating BBQ");
}
bool applyTransaction = false;
// Always update the native object even though they might have the same layer handle, so we can
// get the updated transform hint from WM.
mSurfaceControl = surface;
SurfaceComposerClient::Transaction t;
if (surfaceControlChanged) {
t.setFlags(mSurfaceControl, layer_state_t::eEnableBackpressure,
layer_state_t::eEnableBackpressure);
applyTransaction = true;
}
mTransformHint = mSurfaceControl->getTransformHint();
mBufferItemConsumer->setTransformHint(mTransformHint);
BQA_LOGV("update width=%d height=%d format=%d mTransformHint=%d", width, height, format,
mTransformHint);
ui::Size newSize(width, height);
if (mRequestedSize != newSize) {
mRequestedSize.set(newSize);
mBufferItemConsumer->setDefaultBufferSize(mRequestedSize.width, mRequestedSize.height);
if (mLastBufferInfo.scalingMode != NATIVE_WINDOW_SCALING_MODE_FREEZE) {
// If the buffer supports scaling, update the frame immediately since the client may
// want to scale the existing buffer to the new size.
mSize = mRequestedSize;
if (mUpdateDestinationFrame) {
t.setDestinationFrame(mSurfaceControl, Rect(newSize));
applyTransaction = true;
}
}
}
if (applyTransaction) {
// All transactions on our apply token are one-way. See comment on mAppliedLastTransaction
t.setApplyToken(mApplyToken).apply(false, true);
}
}
static std::optional<SurfaceControlStats> findMatchingStat(
const std::vector<SurfaceControlStats>& stats, const sp<SurfaceControl>& sc) {
for (auto stat : stats) {
if (SurfaceControl::isSameSurface(sc, stat.surfaceControl)) {
return stat;
}
}
return std::nullopt;
}
static void transactionCommittedCallbackThunk(void* context, nsecs_t latchTime,
const sp<Fence>& presentFence,
const std::vector<SurfaceControlStats>& stats) {
if (context == nullptr) {
return;
}
sp<BLASTBufferQueue> bq = static_cast<BLASTBufferQueue*>(context);
bq->transactionCommittedCallback(latchTime, presentFence, stats);
}
void BLASTBufferQueue::transactionCommittedCallback(nsecs_t /*latchTime*/,
const sp<Fence>& /*presentFence*/,
const std::vector<SurfaceControlStats>& stats) {
{
std::unique_lock _lock{mMutex};
BBQ_TRACE();
BQA_LOGV("transactionCommittedCallback");
if (!mSurfaceControlsWithPendingCallback.empty()) {
sp<SurfaceControl> pendingSC = mSurfaceControlsWithPendingCallback.front();
std::optional<SurfaceControlStats> stat = findMatchingStat(stats, pendingSC);
if (stat) {
uint64_t currFrameNumber = stat->frameEventStats.frameNumber;
// We need to check if we were waiting for a transaction callback in order to
// process any pending buffers and unblock. It's possible to get transaction
// callbacks for previous requests so we need to ensure that there are no pending
// frame numbers that were in a sync. We remove the frame from mSyncedFrameNumbers
// set and then check if it's empty. If there are no more pending syncs, we can
// proceed with flushing the shadow queue.
// We also want to check if mSyncTransaction is null because it's possible another
// sync request came in while waiting, but it hasn't started processing yet. In that
// case, we don't actually want to flush the frames in between since they will get
// processed and merged with the sync transaction and released earlier than if they
// were sent to SF
mSyncedFrameNumbers.erase(currFrameNumber);
if (mSyncedFrameNumbers.empty() && mSyncTransaction == nullptr) {
flushShadowQueue();
}
} else {
BQA_LOGE("Failed to find matching SurfaceControl in transactionCommittedCallback");
}
} else {
BQA_LOGE("No matching SurfaceControls found: mSurfaceControlsWithPendingCallback was "
"empty.");
}
decStrong((void*)transactionCommittedCallbackThunk);
}
}
static void transactionCallbackThunk(void* context, nsecs_t latchTime,
const sp<Fence>& presentFence,
const std::vector<SurfaceControlStats>& stats) {
if (context == nullptr) {
return;
}
sp<BLASTBufferQueue> bq = static_cast<BLASTBufferQueue*>(context);
bq->transactionCallback(latchTime, presentFence, stats);
}
void BLASTBufferQueue::transactionCallback(nsecs_t /*latchTime*/, const sp<Fence>& /*presentFence*/,
const std::vector<SurfaceControlStats>& stats) {
{
std::unique_lock _lock{mMutex};
BBQ_TRACE();
BQA_LOGV("transactionCallback");
if (!mSurfaceControlsWithPendingCallback.empty()) {
sp<SurfaceControl> pendingSC = mSurfaceControlsWithPendingCallback.front();
mSurfaceControlsWithPendingCallback.pop();
std::optional<SurfaceControlStats> statsOptional = findMatchingStat(stats, pendingSC);
if (statsOptional) {
SurfaceControlStats stat = *statsOptional;
mTransformHint = stat.transformHint;
mBufferItemConsumer->setTransformHint(mTransformHint);
BQA_LOGV("updated mTransformHint=%d", mTransformHint);
// Update frametime stamps if the frame was latched and presented, indicated by a
// valid latch time.
if (stat.latchTime > 0) {
mBufferItemConsumer
->updateFrameTimestamps(stat.frameEventStats.frameNumber,
stat.frameEventStats.refreshStartTime,
stat.frameEventStats.gpuCompositionDoneFence,
stat.presentFence, stat.previousReleaseFence,
stat.frameEventStats.compositorTiming,
stat.latchTime,
stat.frameEventStats.dequeueReadyTime);
}
auto currFrameNumber = stat.frameEventStats.frameNumber;
std::vector<ReleaseCallbackId> staleReleases;
for (const auto& [key, value]: mSubmitted) {
if (currFrameNumber > key.framenumber) {
staleReleases.push_back(key);
}
}
for (const auto& staleRelease : staleReleases) {
BBQ_TRACE("FakeReleaseCallback");
releaseBufferCallbackLocked(staleRelease,
stat.previousReleaseFence ? stat.previousReleaseFence : Fence::NO_FENCE,
stat.currentMaxAcquiredBufferCount);
}
} else {
BQA_LOGE("Failed to find matching SurfaceControl in transactionCallback");
}
} else {
BQA_LOGE("No matching SurfaceControls found: mSurfaceControlsWithPendingCallback was "
"empty.");
}
decStrong((void*)transactionCallbackThunk);
}
}
// Unlike transactionCallbackThunk the release buffer callback does not extend the life of the
// BBQ. This is because if the BBQ is destroyed, then the buffers will be released by the client.
// So we pass in a weak pointer to the BBQ and if it still alive, then we release the buffer.
// Otherwise, this is a no-op.
static void releaseBufferCallbackThunk(wp<BLASTBufferQueue> context, const ReleaseCallbackId& id,
const sp<Fence>& releaseFence,
std::optional<uint32_t> currentMaxAcquiredBufferCount) {
sp<BLASTBufferQueue> blastBufferQueue = context.promote();
if (blastBufferQueue) {
blastBufferQueue->releaseBufferCallback(id, releaseFence, currentMaxAcquiredBufferCount);
} else {
ALOGV("releaseBufferCallbackThunk %s blastBufferQueue is dead", id.to_string().c_str());
}
}
void BLASTBufferQueue::flushShadowQueue() {
BQA_LOGV("flushShadowQueue");
int numFramesToFlush = mNumFrameAvailable;
while (numFramesToFlush > 0) {
acquireNextBufferLocked(std::nullopt);
numFramesToFlush--;
}
}
void BLASTBufferQueue::releaseBufferCallback(
const ReleaseCallbackId& id, const sp<Fence>& releaseFence,
std::optional<uint32_t> currentMaxAcquiredBufferCount) {
BBQ_TRACE();
std::unique_lock _lock{mMutex};
releaseBufferCallbackLocked(id, releaseFence, currentMaxAcquiredBufferCount);
}
void BLASTBufferQueue::releaseBufferCallbackLocked(const ReleaseCallbackId& id,
const sp<Fence>& releaseFence, std::optional<uint32_t> currentMaxAcquiredBufferCount) {
ATRACE_CALL();
BQA_LOGV("releaseBufferCallback %s", id.to_string().c_str());
// Calculate how many buffers we need to hold before we release them back
// to the buffer queue. This will prevent higher latency when we are running
// on a lower refresh rate than the max supported. We only do that for EGL
// clients as others don't care about latency
const bool isEGL = [&] {
const auto it = mSubmitted.find(id);
return it != mSubmitted.end() && it->second.mApi == NATIVE_WINDOW_API_EGL;
}();
if (currentMaxAcquiredBufferCount) {
mCurrentMaxAcquiredBufferCount = *currentMaxAcquiredBufferCount;
}
const auto numPendingBuffersToHold =
isEGL ? std::max(0u, mMaxAcquiredBuffers - mCurrentMaxAcquiredBufferCount) : 0;
auto rb = ReleasedBuffer{id, releaseFence};
if (std::find(mPendingRelease.begin(), mPendingRelease.end(), rb) == mPendingRelease.end()) {
mPendingRelease.emplace_back(rb);
}
// Release all buffers that are beyond the ones that we need to hold
while (mPendingRelease.size() > numPendingBuffersToHold) {
const auto releasedBuffer = mPendingRelease.front();
mPendingRelease.pop_front();
releaseBuffer(releasedBuffer.callbackId, releasedBuffer.releaseFence);
// Don't process the transactions here if mSyncedFrameNumbers is not empty. That means
// are still transactions that have sync buffers in them that have not been applied or
// dropped. Instead, let onFrameAvailable handle processing them since it will merge with
// the syncTransaction.
if (mSyncedFrameNumbers.empty()) {
acquireNextBufferLocked(std::nullopt);
}
}
ATRACE_INT("PendingRelease", mPendingRelease.size());
ATRACE_INT(mQueuedBufferTrace.c_str(),
mNumFrameAvailable + mNumAcquired - mPendingRelease.size());
mCallbackCV.notify_all();
}
void BLASTBufferQueue::releaseBuffer(const ReleaseCallbackId& callbackId,
const sp<Fence>& releaseFence) {
auto it = mSubmitted.find(callbackId);
if (it == mSubmitted.end()) {
BQA_LOGE("ERROR: releaseBufferCallback without corresponding submitted buffer %s",
callbackId.to_string().c_str());
return;
}
mNumAcquired--;
BBQ_TRACE("frame=%" PRIu64, callbackId.framenumber);
BQA_LOGV("released %s", callbackId.to_string().c_str());
mBufferItemConsumer->releaseBuffer(it->second, releaseFence);
mSubmitted.erase(it);
// Remove the frame number from mSyncedFrameNumbers since we can get a release callback
// without getting a transaction committed if the buffer was dropped.
mSyncedFrameNumbers.erase(callbackId.framenumber);
}
void BLASTBufferQueue::acquireNextBufferLocked(
const std::optional<SurfaceComposerClient::Transaction*> transaction) {
// If the next transaction is set, we want to guarantee the our acquire will not fail, so don't
// include the extra buffer when checking if we can acquire the next buffer.
const bool includeExtraAcquire = !transaction;
const bool maxAcquired = maxBuffersAcquired(includeExtraAcquire);
if (mNumFrameAvailable == 0 || maxAcquired) {
BQA_LOGV("Can't process next buffer maxBuffersAcquired=%s", boolToString(maxAcquired));
return;
}
if (mSurfaceControl == nullptr) {
BQA_LOGE("ERROR : surface control is null");
return;
}
SurfaceComposerClient::Transaction localTransaction;
bool applyTransaction = true;
SurfaceComposerClient::Transaction* t = &localTransaction;
if (transaction) {
t = *transaction;
applyTransaction = false;
}
BufferItem bufferItem;
status_t status =
mBufferItemConsumer->acquireBuffer(&bufferItem, 0 /* expectedPresent */, false);
if (status == BufferQueue::NO_BUFFER_AVAILABLE) {
BQA_LOGV("Failed to acquire a buffer, err=NO_BUFFER_AVAILABLE");
return;
} else if (status != OK) {
BQA_LOGE("Failed to acquire a buffer, err=%s", statusToString(status).c_str());
return;
}
auto buffer = bufferItem.mGraphicBuffer;
mNumFrameAvailable--;
BBQ_TRACE("frame=%" PRIu64, bufferItem.mFrameNumber);
if (buffer == nullptr) {
mBufferItemConsumer->releaseBuffer(bufferItem, Fence::NO_FENCE);
BQA_LOGE("Buffer was empty");
return;
}
if (rejectBuffer(bufferItem)) {
BQA_LOGE("rejecting buffer:active_size=%dx%d, requested_size=%dx%d "
"buffer{size=%dx%d transform=%d}",
mSize.width, mSize.height, mRequestedSize.width, mRequestedSize.height,
buffer->getWidth(), buffer->getHeight(), bufferItem.mTransform);
mBufferItemConsumer->releaseBuffer(bufferItem, Fence::NO_FENCE);
acquireNextBufferLocked(transaction);
return;
}
mNumAcquired++;
mLastAcquiredFrameNumber = bufferItem.mFrameNumber;
ReleaseCallbackId releaseCallbackId(buffer->getId(), mLastAcquiredFrameNumber);
mSubmitted[releaseCallbackId] = bufferItem;
bool needsDisconnect = false;
mBufferItemConsumer->getConnectionEvents(bufferItem.mFrameNumber, &needsDisconnect);
// if producer disconnected before, notify SurfaceFlinger
if (needsDisconnect) {
t->notifyProducerDisconnect(mSurfaceControl);
}
// Ensure BLASTBufferQueue stays alive until we receive the transaction complete callback.
incStrong((void*)transactionCallbackThunk);
mSize = mRequestedSize;
Rect crop = computeCrop(bufferItem);
mLastBufferInfo.update(true /* hasBuffer */, bufferItem.mGraphicBuffer->getWidth(),
bufferItem.mGraphicBuffer->getHeight(), bufferItem.mTransform,
bufferItem.mScalingMode, crop);
auto releaseBufferCallback =
std::bind(releaseBufferCallbackThunk, wp<BLASTBufferQueue>(this) /* callbackContext */,
std::placeholders::_1, std::placeholders::_2, std::placeholders::_3);
sp<Fence> fence = bufferItem.mFence ? new Fence(bufferItem.mFence->dup()) : Fence::NO_FENCE;
t->setBuffer(mSurfaceControl, buffer, fence, bufferItem.mFrameNumber, releaseBufferCallback);
t->setDataspace(mSurfaceControl, static_cast<ui::Dataspace>(bufferItem.mDataSpace));
t->setHdrMetadata(mSurfaceControl, bufferItem.mHdrMetadata);
t->setSurfaceDamageRegion(mSurfaceControl, bufferItem.mSurfaceDamage);
t->addTransactionCompletedCallback(transactionCallbackThunk, static_cast<void*>(this));
mSurfaceControlsWithPendingCallback.push(mSurfaceControl);
if (mUpdateDestinationFrame) {
t->setDestinationFrame(mSurfaceControl, Rect(mSize));
} else {
const bool ignoreDestinationFrame =
bufferItem.mScalingMode == NATIVE_WINDOW_SCALING_MODE_FREEZE;
t->setFlags(mSurfaceControl,
ignoreDestinationFrame ? layer_state_t::eIgnoreDestinationFrame : 0,
layer_state_t::eIgnoreDestinationFrame);
}
t->setBufferCrop(mSurfaceControl, crop);
t->setTransform(mSurfaceControl, bufferItem.mTransform);
t->setTransformToDisplayInverse(mSurfaceControl, bufferItem.mTransformToDisplayInverse);
t->setAutoRefresh(mSurfaceControl, bufferItem.mAutoRefresh);
if (!bufferItem.mIsAutoTimestamp) {
t->setDesiredPresentTime(bufferItem.mTimestamp);
}
if (!mNextFrameTimelineInfoQueue.empty()) {
t->setFrameTimelineInfo(mNextFrameTimelineInfoQueue.front());
mNextFrameTimelineInfoQueue.pop();
}
{
std::unique_lock _lock{mTimestampMutex};
auto dequeueTime = mDequeueTimestamps.find(buffer->getId());
if (dequeueTime != mDequeueTimestamps.end()) {
Parcel p;
p.writeInt64(dequeueTime->second);
t->setMetadata(mSurfaceControl, METADATA_DEQUEUE_TIME, p);
mDequeueTimestamps.erase(dequeueTime);
}
}
mergePendingTransactions(t, bufferItem.mFrameNumber);
if (applyTransaction) {
// All transactions on our apply token are one-way. See comment on mAppliedLastTransaction
t->setApplyToken(mApplyToken).apply(false, true);
mAppliedLastTransaction = true;
mLastAppliedFrameNumber = bufferItem.mFrameNumber;
} else {
t->setBufferHasBarrier(mSurfaceControl, mLastAppliedFrameNumber);
mAppliedLastTransaction = false;
}
BQA_LOGV("acquireNextBufferLocked size=%dx%d mFrameNumber=%" PRIu64
" applyTransaction=%s mTimestamp=%" PRId64 "%s mPendingTransactions.size=%d"
" graphicBufferId=%" PRIu64 "%s transform=%d",
mSize.width, mSize.height, bufferItem.mFrameNumber, boolToString(applyTransaction),
bufferItem.mTimestamp, bufferItem.mIsAutoTimestamp ? "(auto)" : "",
static_cast<uint32_t>(mPendingTransactions.size()), bufferItem.mGraphicBuffer->getId(),
bufferItem.mAutoRefresh ? " mAutoRefresh" : "", bufferItem.mTransform);
}
Rect BLASTBufferQueue::computeCrop(const BufferItem& item) {
if (item.mScalingMode == NATIVE_WINDOW_SCALING_MODE_SCALE_CROP) {
return GLConsumer::scaleDownCrop(item.mCrop, mSize.width, mSize.height);
}
return item.mCrop;
}
void BLASTBufferQueue::acquireAndReleaseBuffer() {
BufferItem bufferItem;
status_t status =
mBufferItemConsumer->acquireBuffer(&bufferItem, 0 /* expectedPresent */, false);
if (status != OK) {
BQA_LOGE("Failed to acquire a buffer in acquireAndReleaseBuffer, err=%s",
statusToString(status).c_str());
return;
}
mNumFrameAvailable--;
mBufferItemConsumer->releaseBuffer(bufferItem, bufferItem.mFence);
}
void BLASTBufferQueue::flushAndWaitForFreeBuffer(std::unique_lock<std::mutex>& lock) {
if (!mSyncedFrameNumbers.empty() && mNumFrameAvailable > 0) {
// We are waiting on a previous sync's transaction callback so allow another sync
// transaction to proceed.
//
// We need to first flush out the transactions that were in between the two syncs.
// We do this by merging them into mSyncTransaction so any buffer merging will get
// a release callback invoked. The release callback will be async so we need to wait
// on max acquired to make sure we have the capacity to acquire another buffer.
if (maxBuffersAcquired(false /* includeExtraAcquire */)) {
BQA_LOGD("waiting to flush shadow queue...");
mCallbackCV.wait(lock);
}
while (mNumFrameAvailable > 0) {
// flush out the shadow queue
acquireAndReleaseBuffer();
}
}
while (maxBuffersAcquired(false /* includeExtraAcquire */)) {
BQA_LOGD("waiting for free buffer.");
mCallbackCV.wait(lock);
}
}
void BLASTBufferQueue::onFrameAvailable(const BufferItem& item) {
std::function<void(SurfaceComposerClient::Transaction*)> prevCallback = nullptr;
SurfaceComposerClient::Transaction* prevTransaction = nullptr;
bool waitForTransactionCallback = !mSyncedFrameNumbers.empty();
{
BBQ_TRACE();
std::unique_lock _lock{mMutex};
const bool syncTransactionSet = mTransactionReadyCallback != nullptr;
BQA_LOGV("onFrameAvailable-start syncTransactionSet=%s", boolToString(syncTransactionSet));
if (syncTransactionSet) {
bool mayNeedToWaitForBuffer = true;
// If we are going to re-use the same mSyncTransaction, release the buffer that may
// already be set in the Transaction. This is to allow us a free slot early to continue
// processing a new buffer.
if (!mAcquireSingleBuffer) {
auto bufferData = mSyncTransaction->getAndClearBuffer(mSurfaceControl);
if (bufferData) {
BQA_LOGD("Releasing previous buffer when syncing: framenumber=%" PRIu64,
bufferData->frameNumber);
releaseBuffer(bufferData->generateReleaseCallbackId(),
bufferData->acquireFence);
// Because we just released a buffer, we know there's no need to wait for a free
// buffer.
mayNeedToWaitForBuffer = false;
}
}
if (mayNeedToWaitForBuffer) {
flushAndWaitForFreeBuffer(_lock);
}
}
// add to shadow queue
mNumFrameAvailable++;
if (waitForTransactionCallback && mNumFrameAvailable >= 2) {
acquireAndReleaseBuffer();
}
ATRACE_INT(mQueuedBufferTrace.c_str(),
mNumFrameAvailable + mNumAcquired - mPendingRelease.size());
BQA_LOGV("onFrameAvailable framenumber=%" PRIu64 " syncTransactionSet=%s",
item.mFrameNumber, boolToString(syncTransactionSet));
if (syncTransactionSet) {
acquireNextBufferLocked(mSyncTransaction);
// Only need a commit callback when syncing to ensure the buffer that's synced has been
// sent to SF
incStrong((void*)transactionCommittedCallbackThunk);
mSyncTransaction->addTransactionCommittedCallback(transactionCommittedCallbackThunk,
static_cast<void*>(this));
mSyncedFrameNumbers.emplace(item.mFrameNumber);
if (mAcquireSingleBuffer) {
prevCallback = mTransactionReadyCallback;
prevTransaction = mSyncTransaction;
mTransactionReadyCallback = nullptr;
mSyncTransaction = nullptr;
}
} else if (!waitForTransactionCallback) {
acquireNextBufferLocked(std::nullopt);
}
}
if (prevCallback) {
prevCallback(prevTransaction);
}
}
void BLASTBufferQueue::onFrameReplaced(const BufferItem& item) {
BQA_LOGV("onFrameReplaced framenumber=%" PRIu64, item.mFrameNumber);
// Do nothing since we are not storing unacquired buffer items locally.
}
void BLASTBufferQueue::onFrameDequeued(const uint64_t bufferId) {
std::unique_lock _lock{mTimestampMutex};
mDequeueTimestamps[bufferId] = systemTime();
};
void BLASTBufferQueue::onFrameCancelled(const uint64_t bufferId) {
std::unique_lock _lock{mTimestampMutex};
mDequeueTimestamps.erase(bufferId);
};
void BLASTBufferQueue::syncNextTransaction(
std::function<void(SurfaceComposerClient::Transaction*)> callback,
bool acquireSingleBuffer) {
BBQ_TRACE();
std::function<void(SurfaceComposerClient::Transaction*)> prevCallback = nullptr;
SurfaceComposerClient::Transaction* prevTransaction = nullptr;
{
std::lock_guard _lock{mMutex};
// We're about to overwrite the previous call so we should invoke that callback
// immediately.
if (mTransactionReadyCallback) {
prevCallback = mTransactionReadyCallback;
prevTransaction = mSyncTransaction;
}
mTransactionReadyCallback = callback;
if (callback) {
mSyncTransaction = new SurfaceComposerClient::Transaction();
} else {
mSyncTransaction = nullptr;
}
mAcquireSingleBuffer = mTransactionReadyCallback ? acquireSingleBuffer : true;
}
if (prevCallback) {
prevCallback(prevTransaction);
}
}
void BLASTBufferQueue::stopContinuousSyncTransaction() {
std::function<void(SurfaceComposerClient::Transaction*)> prevCallback = nullptr;
SurfaceComposerClient::Transaction* prevTransaction = nullptr;
{
std::lock_guard _lock{mMutex};
bool invokeCallback = mTransactionReadyCallback && !mAcquireSingleBuffer;
if (invokeCallback) {
prevCallback = mTransactionReadyCallback;
prevTransaction = mSyncTransaction;
}
mTransactionReadyCallback = nullptr;
mSyncTransaction = nullptr;
mAcquireSingleBuffer = true;
}
if (prevCallback) {
prevCallback(prevTransaction);
}
}
bool BLASTBufferQueue::rejectBuffer(const BufferItem& item) {
if (item.mScalingMode != NATIVE_WINDOW_SCALING_MODE_FREEZE) {
// Only reject buffers if scaling mode is freeze.
return false;
}
uint32_t bufWidth = item.mGraphicBuffer->getWidth();
uint32_t bufHeight = item.mGraphicBuffer->getHeight();
// Take the buffer's orientation into account
if (item.mTransform & ui::Transform::ROT_90) {
std::swap(bufWidth, bufHeight);
}
ui::Size bufferSize(bufWidth, bufHeight);
if (mRequestedSize != mSize && mRequestedSize == bufferSize) {
return false;
}
// reject buffers if the buffer size doesn't match.
return mSize != bufferSize;
}
// Check if we have acquired the maximum number of buffers.
// Consumer can acquire an additional buffer if that buffer is not droppable. Set
// includeExtraAcquire is true to include this buffer to the count. Since this depends on the state
// of the buffer, the next acquire may return with NO_BUFFER_AVAILABLE.
bool BLASTBufferQueue::maxBuffersAcquired(bool includeExtraAcquire) const {
int maxAcquiredBuffers = mMaxAcquiredBuffers + (includeExtraAcquire ? 2 : 1);
return mNumAcquired >= maxAcquiredBuffers;
}
class BBQSurface : public Surface {
private:
std::mutex mMutex;
sp<BLASTBufferQueue> mBbq;
bool mDestroyed = false;
public:
BBQSurface(const sp<IGraphicBufferProducer>& igbp, bool controlledByApp,
const sp<IBinder>& scHandle, const sp<BLASTBufferQueue>& bbq)
: Surface(igbp, controlledByApp, scHandle), mBbq(bbq) {}
void allocateBuffers() override {
uint32_t reqWidth = mReqWidth ? mReqWidth : mUserWidth;
uint32_t reqHeight = mReqHeight ? mReqHeight : mUserHeight;
auto gbp = getIGraphicBufferProducer();
std::thread ([reqWidth, reqHeight, gbp=getIGraphicBufferProducer(),
reqFormat=mReqFormat, reqUsage=mReqUsage] () {
gbp->allocateBuffers(reqWidth, reqHeight,
reqFormat, reqUsage);
}).detach();
}
status_t setFrameRate(float frameRate, int8_t compatibility,
int8_t changeFrameRateStrategy) override {
std::unique_lock _lock{mMutex};
if (mDestroyed) {
return DEAD_OBJECT;
}
if (!ValidateFrameRate(frameRate, compatibility, changeFrameRateStrategy,
"BBQSurface::setFrameRate")) {
return BAD_VALUE;
}
return mBbq->setFrameRate(frameRate, compatibility, changeFrameRateStrategy);
}
status_t setFrameTimelineInfo(const FrameTimelineInfo& frameTimelineInfo) override {
std::unique_lock _lock{mMutex};
if (mDestroyed) {
return DEAD_OBJECT;
}
return mBbq->setFrameTimelineInfo(frameTimelineInfo);
}
void destroy() override {
Surface::destroy();
std::unique_lock _lock{mMutex};
mDestroyed = true;
mBbq = nullptr;
}
};
// TODO: Can we coalesce this with frame updates? Need to confirm
// no timing issues.
status_t BLASTBufferQueue::setFrameRate(float frameRate, int8_t compatibility,
bool shouldBeSeamless) {
std::unique_lock _lock{mMutex};
SurfaceComposerClient::Transaction t;
return t.setFrameRate(mSurfaceControl, frameRate, compatibility, shouldBeSeamless).apply();
}
status_t BLASTBufferQueue::setFrameTimelineInfo(const FrameTimelineInfo& frameTimelineInfo) {
std::unique_lock _lock{mMutex};
mNextFrameTimelineInfoQueue.push(frameTimelineInfo);
return OK;
}
void BLASTBufferQueue::setSidebandStream(const sp<NativeHandle>& stream) {
std::unique_lock _lock{mMutex};
SurfaceComposerClient::Transaction t;
t.setSidebandStream(mSurfaceControl, stream).apply();
}
sp<Surface> BLASTBufferQueue::getSurface(bool includeSurfaceControlHandle) {
std::unique_lock _lock{mMutex};
sp<IBinder> scHandle = nullptr;
if (includeSurfaceControlHandle && mSurfaceControl) {
scHandle = mSurfaceControl->getHandle();
}
return new BBQSurface(mProducer, true, scHandle, this);
}
void BLASTBufferQueue::mergeWithNextTransaction(SurfaceComposerClient::Transaction* t,
uint64_t frameNumber) {
std::lock_guard _lock{mMutex};
if (mLastAcquiredFrameNumber >= frameNumber) {
// Apply the transaction since we have already acquired the desired frame.
t->apply();
} else {
mPendingTransactions.emplace_back(frameNumber, *t);
// Clear the transaction so it can't be applied elsewhere.
t->clear();
}
}
void BLASTBufferQueue::applyPendingTransactions(uint64_t frameNumber) {
std::lock_guard _lock{mMutex};
SurfaceComposerClient::Transaction t;
mergePendingTransactions(&t, frameNumber);
// All transactions on our apply token are one-way. See comment on mAppliedLastTransaction
t.setApplyToken(mApplyToken).apply(false, true);
}
void BLASTBufferQueue::mergePendingTransactions(SurfaceComposerClient::Transaction* t,
uint64_t frameNumber) {
auto mergeTransaction =
[&t, currentFrameNumber = frameNumber](
std::tuple<uint64_t, SurfaceComposerClient::Transaction> pendingTransaction) {
auto& [targetFrameNumber, transaction] = pendingTransaction;
if (currentFrameNumber < targetFrameNumber) {
return false;
}
t->merge(std::move(transaction));
return true;
};
mPendingTransactions.erase(std::remove_if(mPendingTransactions.begin(),
mPendingTransactions.end(), mergeTransaction),
mPendingTransactions.end());
}
SurfaceComposerClient::Transaction* BLASTBufferQueue::gatherPendingTransactions(
uint64_t frameNumber) {
std::lock_guard _lock{mMutex};
SurfaceComposerClient::Transaction* t = new SurfaceComposerClient::Transaction();
mergePendingTransactions(t, frameNumber);
return t;
}
// Maintains a single worker thread per process that services a list of runnables.
class AsyncWorker : public Singleton<AsyncWorker> {
private:
std::thread mThread;
bool mDone = false;
std::deque<std::function<void()>> mRunnables;
std::mutex mMutex;
std::condition_variable mCv;
void run() {
std::unique_lock<std::mutex> lock(mMutex);
while (!mDone) {
while (!mRunnables.empty()) {
std::deque<std::function<void()>> runnables = std::move(mRunnables);
mRunnables.clear();
lock.unlock();
// Run outside the lock since the runnable might trigger another
// post to the async worker.
execute(runnables);
lock.lock();
}
mCv.wait(lock);
}
}
void execute(std::deque<std::function<void()>>& runnables) {
while (!runnables.empty()) {
std::function<void()> runnable = runnables.front();
runnables.pop_front();
runnable();
}
}
public:
AsyncWorker() : Singleton<AsyncWorker>() { mThread = std::thread(&AsyncWorker::run, this); }
~AsyncWorker() {
mDone = true;
mCv.notify_all();
if (mThread.joinable()) {
mThread.join();
}
}
void post(std::function<void()> runnable) {
std::unique_lock<std::mutex> lock(mMutex);
mRunnables.emplace_back(std::move(runnable));
mCv.notify_one();
}
};
ANDROID_SINGLETON_STATIC_INSTANCE(AsyncWorker);
// Asynchronously calls ProducerListener functions so we can emulate one way binder calls.
class AsyncProducerListener : public BnProducerListener {
private:
const sp<IProducerListener> mListener;
public:
AsyncProducerListener(const sp<IProducerListener>& listener) : mListener(listener) {}
void onBufferReleased() override {
AsyncWorker::getInstance().post([listener = mListener]() { listener->onBufferReleased(); });
}
void onBuffersDiscarded(const std::vector<int32_t>& slots) override {
AsyncWorker::getInstance().post(
[listener = mListener, slots = slots]() { listener->onBuffersDiscarded(slots); });
}
};
// Extends the BufferQueueProducer to create a wrapper around the listener so the listener calls
// can be non-blocking when the producer is in the client process.
class BBQBufferQueueProducer : public BufferQueueProducer {
public:
BBQBufferQueueProducer(const sp<BufferQueueCore>& core)
: BufferQueueProducer(core, false /* consumerIsSurfaceFlinger*/) {}
status_t connect(const sp<IProducerListener>& listener, int api, bool producerControlledByApp,
QueueBufferOutput* output) override {
if (!listener) {
return BufferQueueProducer::connect(listener, api, producerControlledByApp, output);
}
return BufferQueueProducer::connect(new AsyncProducerListener(listener), api,
producerControlledByApp, output);
}
int query(int what, int* value) override {
if (what == NATIVE_WINDOW_QUEUES_TO_WINDOW_COMPOSER) {
*value = 1;
return NO_ERROR;
}
return BufferQueueProducer::query(what, value);
}
};
// Similar to BufferQueue::createBufferQueue but creates an adapter specific bufferqueue producer.
// This BQP allows invoking client specified ProducerListeners and invoke them asynchronously,
// emulating one way binder call behavior. Without this, if the listener calls back into the queue,
// we can deadlock.
void BLASTBufferQueue::createBufferQueue(sp<IGraphicBufferProducer>* outProducer,
sp<IGraphicBufferConsumer>* outConsumer) {
LOG_ALWAYS_FATAL_IF(outProducer == nullptr, "BLASTBufferQueue: outProducer must not be NULL");
LOG_ALWAYS_FATAL_IF(outConsumer == nullptr, "BLASTBufferQueue: outConsumer must not be NULL");
sp<BufferQueueCore> core(new BufferQueueCore());
LOG_ALWAYS_FATAL_IF(core == nullptr, "BLASTBufferQueue: failed to create BufferQueueCore");
sp<IGraphicBufferProducer> producer(new BBQBufferQueueProducer(core));
LOG_ALWAYS_FATAL_IF(producer == nullptr,
"BLASTBufferQueue: failed to create BBQBufferQueueProducer");
sp<BufferQueueConsumer> consumer(new BufferQueueConsumer(core));
consumer->setAllowExtraAcquire(true);
LOG_ALWAYS_FATAL_IF(consumer == nullptr,
"BLASTBufferQueue: failed to create BufferQueueConsumer");
*outProducer = producer;
*outConsumer = consumer;
}
PixelFormat BLASTBufferQueue::convertBufferFormat(PixelFormat& format) {
PixelFormat convertedFormat = format;
switch (format) {
case PIXEL_FORMAT_TRANSPARENT:
case PIXEL_FORMAT_TRANSLUCENT:
convertedFormat = PIXEL_FORMAT_RGBA_8888;
break;
case PIXEL_FORMAT_OPAQUE:
convertedFormat = PIXEL_FORMAT_RGBX_8888;
break;
}
return convertedFormat;
}
uint32_t BLASTBufferQueue::getLastTransformHint() const {
if (mSurfaceControl != nullptr) {
return mSurfaceControl->getTransformHint();
} else {
return 0;
}
}
uint64_t BLASTBufferQueue::getLastAcquiredFrameNum() {
std::unique_lock _lock{mMutex};
return mLastAcquiredFrameNumber;
}
void BLASTBufferQueue::abandon() {
std::unique_lock _lock{mMutex};
// flush out the shadow queue
while (mNumFrameAvailable > 0) {
acquireAndReleaseBuffer();
}
// Clear submitted buffer states
mNumAcquired = 0;
mSubmitted.clear();
mPendingRelease.clear();
if (!mPendingTransactions.empty()) {
BQA_LOGD("Applying pending transactions on abandon %d",
static_cast<uint32_t>(mPendingTransactions.size()));
SurfaceComposerClient::Transaction t;
mergePendingTransactions(&t, std::numeric_limits<uint64_t>::max() /* frameNumber */);
// All transactions on our apply token are one-way. See comment on mAppliedLastTransaction
t.setApplyToken(mApplyToken).apply(false, true);
}
// Clear sync states
if (!mSyncedFrameNumbers.empty()) {
BQA_LOGD("mSyncedFrameNumbers cleared");
mSyncedFrameNumbers.clear();
}
if (mSyncTransaction != nullptr) {
BQA_LOGD("mSyncTransaction cleared mAcquireSingleBuffer=%s",
mAcquireSingleBuffer ? "true" : "false");
mSyncTransaction = nullptr;
mAcquireSingleBuffer = false;
}
// abandon buffer queue
if (mBufferItemConsumer != nullptr) {
mBufferItemConsumer->abandon();
mBufferItemConsumer->setFrameAvailableListener(nullptr);
mBufferItemConsumer->setBufferFreedListener(nullptr);
}
mBufferItemConsumer = nullptr;
mConsumer = nullptr;
mProducer = nullptr;
}
bool BLASTBufferQueue::isSameSurfaceControl(const sp<SurfaceControl>& surfaceControl) const {
std::unique_lock _lock{mMutex};
return SurfaceControl::isSameSurface(mSurfaceControl, surfaceControl);
}
void BLASTBufferQueue::setTransactionHangCallback(std::function<void(bool)> callback) {
std::unique_lock _lock{mMutex};
mTransactionHangCallback = callback;
}
} // namespace android