| /* |
| * Copyright (C) 2018 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| |
| #include <bpf_timeinstate.h> |
| |
| #include <sys/sysinfo.h> |
| |
| #include <pthread.h> |
| #include <semaphore.h> |
| #include <numeric> |
| #include <unordered_map> |
| #include <vector> |
| |
| #include <gtest/gtest.h> |
| |
| #include <android-base/properties.h> |
| #include <android-base/unique_fd.h> |
| #include <bpf/BpfMap.h> |
| #include <cputimeinstate.h> |
| #include <cutils/android_filesystem_config.h> |
| #include <libbpf.h> |
| |
| namespace android { |
| namespace bpf { |
| |
| static constexpr uint64_t NSEC_PER_SEC = 1000000000; |
| static constexpr uint64_t NSEC_PER_YEAR = NSEC_PER_SEC * 60 * 60 * 24 * 365; |
| |
| using std::vector; |
| |
| class TimeInStateTest : public testing::Test { |
| protected: |
| TimeInStateTest() {}; |
| |
| void SetUp() { |
| if (!isTrackingUidTimesSupported() || |
| !android::base::GetBoolProperty("sys.init.perf_lsm_hooks", false)) { |
| GTEST_SKIP(); |
| } |
| } |
| }; |
| |
| TEST_F(TimeInStateTest, TotalTimeInState) { |
| auto times = getTotalCpuFreqTimes(); |
| ASSERT_TRUE(times.has_value()); |
| EXPECT_FALSE(times->empty()); |
| } |
| |
| TEST_F(TimeInStateTest, SingleUidTimeInState) { |
| auto times = getUidCpuFreqTimes(0); |
| ASSERT_TRUE(times.has_value()); |
| EXPECT_FALSE(times->empty()); |
| } |
| |
| TEST_F(TimeInStateTest, SingleUidConcurrentTimes) { |
| auto concurrentTimes = getUidConcurrentTimes(0); |
| ASSERT_TRUE(concurrentTimes.has_value()); |
| ASSERT_FALSE(concurrentTimes->active.empty()); |
| ASSERT_FALSE(concurrentTimes->policy.empty()); |
| |
| uint64_t policyEntries = 0; |
| for (const auto &policyTimeVec : concurrentTimes->policy) policyEntries += policyTimeVec.size(); |
| ASSERT_EQ(concurrentTimes->active.size(), policyEntries); |
| } |
| |
| static void TestConcurrentTimesConsistent(const struct concurrent_time_t &concurrentTime) { |
| size_t maxPolicyCpus = 0; |
| for (const auto &vec : concurrentTime.policy) { |
| maxPolicyCpus = std::max(maxPolicyCpus, vec.size()); |
| } |
| uint64_t policySum = 0; |
| for (size_t i = 0; i < maxPolicyCpus; ++i) { |
| for (const auto &vec : concurrentTime.policy) { |
| if (i < vec.size()) policySum += vec[i]; |
| } |
| ASSERT_LE(concurrentTime.active[i], policySum); |
| policySum -= concurrentTime.active[i]; |
| } |
| policySum = 0; |
| for (size_t i = 0; i < concurrentTime.active.size(); ++i) { |
| for (const auto &vec : concurrentTime.policy) { |
| if (i < vec.size()) policySum += vec[vec.size() - 1 - i]; |
| } |
| auto activeSum = concurrentTime.active[concurrentTime.active.size() - 1 - i]; |
| // This check is slightly flaky because we may read a map entry in the middle of an update |
| // when active times have been updated but policy times have not. This happens infrequently |
| // and can be distinguished from more serious bugs by re-running the test: if the underlying |
| // data itself is inconsistent, the test will fail every time. |
| ASSERT_LE(activeSum, policySum); |
| policySum -= activeSum; |
| } |
| } |
| |
| static void TestUidTimesConsistent(const std::vector<std::vector<uint64_t>> &timeInState, |
| const struct concurrent_time_t &concurrentTime) { |
| ASSERT_NO_FATAL_FAILURE(TestConcurrentTimesConsistent(concurrentTime)); |
| ASSERT_EQ(timeInState.size(), concurrentTime.policy.size()); |
| uint64_t policySum = 0; |
| for (uint32_t i = 0; i < timeInState.size(); ++i) { |
| uint64_t tisSum = |
| std::accumulate(timeInState[i].begin(), timeInState[i].end(), (uint64_t)0); |
| uint64_t concurrentSum = std::accumulate(concurrentTime.policy[i].begin(), |
| concurrentTime.policy[i].end(), (uint64_t)0); |
| if (tisSum < concurrentSum) |
| ASSERT_LE(concurrentSum - tisSum, NSEC_PER_SEC); |
| else |
| ASSERT_LE(tisSum - concurrentSum, NSEC_PER_SEC); |
| policySum += concurrentSum; |
| } |
| uint64_t activeSum = std::accumulate(concurrentTime.active.begin(), concurrentTime.active.end(), |
| (uint64_t)0); |
| EXPECT_EQ(activeSum, policySum); |
| } |
| |
| TEST_F(TimeInStateTest, SingleUidTimesConsistent) { |
| auto times = getUidCpuFreqTimes(0); |
| ASSERT_TRUE(times.has_value()); |
| |
| auto concurrentTimes = getUidConcurrentTimes(0); |
| ASSERT_TRUE(concurrentTimes.has_value()); |
| |
| ASSERT_NO_FATAL_FAILURE(TestUidTimesConsistent(*times, *concurrentTimes)); |
| } |
| |
| TEST_F(TimeInStateTest, AllUidTimeInState) { |
| uint64_t zero = 0; |
| auto maps = {getUidsCpuFreqTimes(), getUidsUpdatedCpuFreqTimes(&zero)}; |
| for (const auto &map : maps) { |
| ASSERT_TRUE(map.has_value()); |
| |
| ASSERT_FALSE(map->empty()); |
| |
| vector<size_t> sizes; |
| auto firstEntry = map->begin()->second; |
| for (const auto &subEntry : firstEntry) sizes.emplace_back(subEntry.size()); |
| |
| for (const auto &vec : *map) { |
| ASSERT_EQ(vec.second.size(), sizes.size()); |
| for (size_t i = 0; i < vec.second.size(); ++i) ASSERT_EQ(vec.second[i].size(), sizes[i]); |
| } |
| } |
| } |
| |
| void TestCheckUpdate(const std::vector<std::vector<uint64_t>> &before, |
| const std::vector<std::vector<uint64_t>> &after) { |
| ASSERT_EQ(before.size(), after.size()); |
| uint64_t sumBefore = 0, sumAfter = 0; |
| for (size_t i = 0; i < before.size(); ++i) { |
| ASSERT_EQ(before[i].size(), after[i].size()); |
| for (size_t j = 0; j < before[i].size(); ++j) { |
| // Times should never decrease |
| ASSERT_LE(before[i][j], after[i][j]); |
| } |
| sumBefore += std::accumulate(before[i].begin(), before[i].end(), (uint64_t)0); |
| sumAfter += std::accumulate(after[i].begin(), after[i].end(), (uint64_t)0); |
| } |
| ASSERT_LE(sumBefore, sumAfter); |
| ASSERT_LE(sumAfter - sumBefore, NSEC_PER_SEC); |
| } |
| |
| TEST_F(TimeInStateTest, AllUidUpdatedTimeInState) { |
| uint64_t lastUpdate = 0; |
| auto map1 = getUidsUpdatedCpuFreqTimes(&lastUpdate); |
| ASSERT_TRUE(map1.has_value()); |
| ASSERT_FALSE(map1->empty()); |
| ASSERT_NE(lastUpdate, (uint64_t)0); |
| uint64_t oldLastUpdate = lastUpdate; |
| |
| // Sleep briefly to trigger a context switch, ensuring we see at least one update. |
| struct timespec ts; |
| ts.tv_sec = 0; |
| ts.tv_nsec = 1000000; |
| nanosleep (&ts, NULL); |
| |
| auto map2 = getUidsUpdatedCpuFreqTimes(&lastUpdate); |
| ASSERT_TRUE(map2.has_value()); |
| ASSERT_FALSE(map2->empty()); |
| ASSERT_NE(lastUpdate, oldLastUpdate); |
| |
| bool someUidsExcluded = false; |
| for (const auto &[uid, v] : *map1) { |
| if (map2->find(uid) == map2->end()) { |
| someUidsExcluded = true; |
| break; |
| } |
| } |
| ASSERT_TRUE(someUidsExcluded); |
| |
| for (const auto &[uid, newTimes] : *map2) { |
| ASSERT_NE(map1->find(uid), map1->end()); |
| ASSERT_NO_FATAL_FAILURE(TestCheckUpdate((*map1)[uid], newTimes)); |
| } |
| } |
| |
| TEST_F(TimeInStateTest, TotalAndAllUidTimeInStateConsistent) { |
| auto allUid = getUidsCpuFreqTimes(); |
| auto total = getTotalCpuFreqTimes(); |
| |
| ASSERT_TRUE(allUid.has_value() && total.has_value()); |
| |
| // Check the number of policies. |
| ASSERT_EQ(allUid->at(0).size(), total->size()); |
| |
| for (uint32_t policyIdx = 0; policyIdx < total->size(); ++policyIdx) { |
| std::vector<uint64_t> totalTimes = total->at(policyIdx); |
| uint32_t totalFreqsCount = totalTimes.size(); |
| std::vector<uint64_t> allUidTimes(totalFreqsCount, 0); |
| for (auto const &[uid, uidTimes]: *allUid) { |
| if (uid == AID_SDK_SANDBOX) continue; |
| for (uint32_t freqIdx = 0; freqIdx < uidTimes[policyIdx].size(); ++freqIdx) { |
| allUidTimes[std::min(freqIdx, totalFreqsCount - 1)] += uidTimes[policyIdx][freqIdx]; |
| } |
| } |
| |
| for (uint32_t freqIdx = 0; freqIdx < totalFreqsCount; ++freqIdx) { |
| ASSERT_LE(allUidTimes[freqIdx], totalTimes[freqIdx]); |
| } |
| } |
| } |
| |
| TEST_F(TimeInStateTest, SingleAndAllUidTimeInStateConsistent) { |
| uint64_t zero = 0; |
| auto maps = {getUidsCpuFreqTimes(), getUidsUpdatedCpuFreqTimes(&zero)}; |
| for (const auto &map : maps) { |
| ASSERT_TRUE(map.has_value()); |
| ASSERT_FALSE(map->empty()); |
| |
| for (const auto &kv : *map) { |
| uint32_t uid = kv.first; |
| auto times1 = kv.second; |
| auto times2 = getUidCpuFreqTimes(uid); |
| ASSERT_TRUE(times2.has_value()); |
| |
| ASSERT_EQ(times1.size(), times2->size()); |
| for (uint32_t i = 0; i < times1.size(); ++i) { |
| ASSERT_EQ(times1[i].size(), (*times2)[i].size()); |
| for (uint32_t j = 0; j < times1[i].size(); ++j) { |
| ASSERT_LE((*times2)[i][j] - times1[i][j], NSEC_PER_SEC); |
| } |
| } |
| } |
| } |
| } |
| |
| TEST_F(TimeInStateTest, AllUidConcurrentTimes) { |
| uint64_t zero = 0; |
| auto maps = {getUidsConcurrentTimes(), getUidsUpdatedConcurrentTimes(&zero)}; |
| for (const auto &map : maps) { |
| ASSERT_TRUE(map.has_value()); |
| ASSERT_FALSE(map->empty()); |
| |
| auto firstEntry = map->begin()->second; |
| for (const auto &kv : *map) { |
| ASSERT_EQ(kv.second.active.size(), firstEntry.active.size()); |
| ASSERT_EQ(kv.second.policy.size(), firstEntry.policy.size()); |
| for (size_t i = 0; i < kv.second.policy.size(); ++i) { |
| ASSERT_EQ(kv.second.policy[i].size(), firstEntry.policy[i].size()); |
| } |
| } |
| } |
| } |
| |
| TEST_F(TimeInStateTest, AllUidUpdatedConcurrentTimes) { |
| uint64_t lastUpdate = 0; |
| auto map1 = getUidsUpdatedConcurrentTimes(&lastUpdate); |
| ASSERT_TRUE(map1.has_value()); |
| ASSERT_FALSE(map1->empty()); |
| ASSERT_NE(lastUpdate, (uint64_t)0); |
| |
| // Sleep briefly to trigger a context switch, ensuring we see at least one update. |
| struct timespec ts; |
| ts.tv_sec = 0; |
| ts.tv_nsec = 1000000; |
| nanosleep (&ts, NULL); |
| |
| uint64_t oldLastUpdate = lastUpdate; |
| auto map2 = getUidsUpdatedConcurrentTimes(&lastUpdate); |
| ASSERT_TRUE(map2.has_value()); |
| ASSERT_FALSE(map2->empty()); |
| ASSERT_NE(lastUpdate, oldLastUpdate); |
| |
| bool someUidsExcluded = false; |
| for (const auto &[uid, v] : *map1) { |
| if (map2->find(uid) == map2->end()) { |
| someUidsExcluded = true; |
| break; |
| } |
| } |
| ASSERT_TRUE(someUidsExcluded); |
| |
| for (const auto &[uid, newTimes] : *map2) { |
| ASSERT_NE(map1->find(uid), map1->end()); |
| ASSERT_NO_FATAL_FAILURE(TestCheckUpdate({(*map1)[uid].active},{newTimes.active})); |
| ASSERT_NO_FATAL_FAILURE(TestCheckUpdate((*map1)[uid].policy, newTimes.policy)); |
| } |
| } |
| |
| TEST_F(TimeInStateTest, SingleAndAllUidConcurrentTimesConsistent) { |
| uint64_t zero = 0; |
| auto maps = {getUidsConcurrentTimes(), getUidsUpdatedConcurrentTimes(&zero)}; |
| for (const auto &map : maps) { |
| ASSERT_TRUE(map.has_value()); |
| for (const auto &kv : *map) { |
| uint32_t uid = kv.first; |
| auto times1 = kv.second; |
| auto times2 = getUidConcurrentTimes(uid); |
| ASSERT_TRUE(times2.has_value()); |
| for (uint32_t i = 0; i < times1.active.size(); ++i) { |
| ASSERT_LE(times2->active[i] - times1.active[i], NSEC_PER_SEC); |
| } |
| for (uint32_t i = 0; i < times1.policy.size(); ++i) { |
| for (uint32_t j = 0; j < times1.policy[i].size(); ++j) { |
| ASSERT_LE(times2->policy[i][j] - times1.policy[i][j], NSEC_PER_SEC); |
| } |
| } |
| } |
| } |
| } |
| |
| void TestCheckDelta(uint64_t before, uint64_t after) { |
| // Times should never decrease |
| ASSERT_LE(before, after); |
| // UID can't have run for more than ~1s on each CPU |
| ASSERT_LE(after - before, NSEC_PER_SEC * 2 * get_nprocs_conf()); |
| } |
| |
| TEST_F(TimeInStateTest, TotalTimeInStateMonotonic) { |
| auto before = getTotalCpuFreqTimes(); |
| ASSERT_TRUE(before.has_value()); |
| sleep(1); |
| auto after = getTotalCpuFreqTimes(); |
| ASSERT_TRUE(after.has_value()); |
| |
| for (uint32_t policyIdx = 0; policyIdx < after->size(); ++policyIdx) { |
| auto timesBefore = before->at(policyIdx); |
| auto timesAfter = after->at(policyIdx); |
| for (uint32_t freqIdx = 0; freqIdx < timesAfter.size(); ++freqIdx) { |
| ASSERT_NO_FATAL_FAILURE(TestCheckDelta(timesBefore[freqIdx], timesAfter[freqIdx])); |
| } |
| } |
| } |
| |
| TEST_F(TimeInStateTest, AllUidTimeInStateMonotonic) { |
| auto map1 = getUidsCpuFreqTimes(); |
| ASSERT_TRUE(map1.has_value()); |
| sleep(1); |
| auto map2 = getUidsCpuFreqTimes(); |
| ASSERT_TRUE(map2.has_value()); |
| |
| for (const auto &kv : *map1) { |
| uint32_t uid = kv.first; |
| auto times = kv.second; |
| ASSERT_NE(map2->find(uid), map2->end()); |
| for (uint32_t policy = 0; policy < times.size(); ++policy) { |
| for (uint32_t freqIdx = 0; freqIdx < times[policy].size(); ++freqIdx) { |
| auto before = times[policy][freqIdx]; |
| auto after = (*map2)[uid][policy][freqIdx]; |
| ASSERT_NO_FATAL_FAILURE(TestCheckDelta(before, after)); |
| } |
| } |
| } |
| } |
| |
| TEST_F(TimeInStateTest, AllUidConcurrentTimesMonotonic) { |
| auto map1 = getUidsConcurrentTimes(); |
| ASSERT_TRUE(map1.has_value()); |
| ASSERT_FALSE(map1->empty()); |
| sleep(1); |
| auto map2 = getUidsConcurrentTimes(); |
| ASSERT_TRUE(map2.has_value()); |
| ASSERT_FALSE(map2->empty()); |
| |
| for (const auto &kv : *map1) { |
| uint32_t uid = kv.first; |
| auto times = kv.second; |
| ASSERT_NE(map2->find(uid), map2->end()); |
| for (uint32_t i = 0; i < times.active.size(); ++i) { |
| auto before = times.active[i]; |
| auto after = (*map2)[uid].active[i]; |
| ASSERT_NO_FATAL_FAILURE(TestCheckDelta(before, after)); |
| } |
| for (uint32_t policy = 0; policy < times.policy.size(); ++policy) { |
| for (uint32_t idx = 0; idx < times.policy[policy].size(); ++idx) { |
| auto before = times.policy[policy][idx]; |
| auto after = (*map2)[uid].policy[policy][idx]; |
| ASSERT_NO_FATAL_FAILURE(TestCheckDelta(before, after)); |
| } |
| } |
| } |
| } |
| |
| TEST_F(TimeInStateTest, AllUidTimeInStateSanityCheck) { |
| uint64_t zero = 0; |
| auto maps = {getUidsCpuFreqTimes(), getUidsUpdatedCpuFreqTimes(&zero)}; |
| for (const auto &map : maps) { |
| ASSERT_TRUE(map.has_value()); |
| |
| bool foundLargeValue = false; |
| for (const auto &kv : *map) { |
| for (const auto &timeVec : kv.second) { |
| for (const auto &time : timeVec) { |
| ASSERT_LE(time, NSEC_PER_YEAR); |
| if (time > UINT32_MAX) foundLargeValue = true; |
| } |
| } |
| } |
| // UINT32_MAX nanoseconds is less than 5 seconds, so if every part of our pipeline is using |
| // uint64_t as expected, we should have some times higher than that. |
| ASSERT_TRUE(foundLargeValue); |
| } |
| } |
| |
| TEST_F(TimeInStateTest, AllUidConcurrentTimesSanityCheck) { |
| uint64_t zero = 0; |
| auto maps = {getUidsConcurrentTimes(), getUidsUpdatedConcurrentTimes(&zero)}; |
| for (const auto &concurrentMap : maps) { |
| ASSERT_TRUE(concurrentMap); |
| |
| bool activeFoundLargeValue = false; |
| bool policyFoundLargeValue = false; |
| for (const auto &kv : *concurrentMap) { |
| for (const auto &time : kv.second.active) { |
| ASSERT_LE(time, NSEC_PER_YEAR); |
| if (time > UINT32_MAX) activeFoundLargeValue = true; |
| } |
| for (const auto &policyTimeVec : kv.second.policy) { |
| for (const auto &time : policyTimeVec) { |
| ASSERT_LE(time, NSEC_PER_YEAR); |
| if (time > UINT32_MAX) policyFoundLargeValue = true; |
| } |
| } |
| } |
| // UINT32_MAX nanoseconds is less than 5 seconds, so if every part of our pipeline is using |
| // uint64_t as expected, we should have some times higher than that. |
| ASSERT_TRUE(activeFoundLargeValue); |
| ASSERT_TRUE(policyFoundLargeValue); |
| } |
| } |
| |
| TEST_F(TimeInStateTest, AllUidConcurrentTimesFailsOnInvalidBucket) { |
| uint32_t uid = 0; |
| { |
| // Find an unused UID |
| auto map = getUidsConcurrentTimes(); |
| ASSERT_TRUE(map.has_value()); |
| ASSERT_FALSE(map->empty()); |
| for (const auto &kv : *map) uid = std::max(uid, kv.first); |
| ++uid; |
| } |
| android::base::unique_fd fd{ |
| bpf_obj_get(BPF_FS_PATH "map_time_in_state_uid_concurrent_times_map")}; |
| ASSERT_GE(fd, 0); |
| uint32_t nCpus = get_nprocs_conf(); |
| uint32_t maxBucket = (nCpus - 1) / CPUS_PER_ENTRY; |
| time_key_t key = {.uid = uid, .bucket = maxBucket + 1}; |
| std::vector<concurrent_val_t> vals(nCpus); |
| ASSERT_FALSE(writeToMapEntry(fd, &key, vals.data(), BPF_NOEXIST)); |
| EXPECT_FALSE(getUidsConcurrentTimes().has_value()); |
| ASSERT_FALSE(deleteMapEntry(fd, &key)); |
| } |
| |
| TEST_F(TimeInStateTest, AllUidTimesConsistent) { |
| auto tisMap = getUidsCpuFreqTimes(); |
| ASSERT_TRUE(tisMap.has_value()); |
| |
| auto concurrentMap = getUidsConcurrentTimes(); |
| ASSERT_TRUE(concurrentMap.has_value()); |
| |
| ASSERT_EQ(tisMap->size(), concurrentMap->size()); |
| for (const auto &kv : *tisMap) { |
| uint32_t uid = kv.first; |
| auto times = kv.second; |
| ASSERT_NE(concurrentMap->find(uid), concurrentMap->end()); |
| |
| auto concurrentTimes = (*concurrentMap)[uid]; |
| ASSERT_NO_FATAL_FAILURE(TestUidTimesConsistent(times, concurrentTimes)); |
| } |
| } |
| |
| TEST_F(TimeInStateTest, RemoveUid) { |
| uint32_t uid = 0; |
| { |
| // Find an unused UID |
| auto times = getUidsCpuFreqTimes(); |
| ASSERT_TRUE(times.has_value()); |
| ASSERT_FALSE(times->empty()); |
| for (const auto &kv : *times) uid = std::max(uid, kv.first); |
| ++uid; |
| } |
| { |
| // Add a map entry for our fake UID by copying a real map entry |
| android::base::unique_fd fd{ |
| bpf_obj_get(BPF_FS_PATH "map_time_in_state_uid_time_in_state_map")}; |
| ASSERT_GE(fd, 0); |
| time_key_t k; |
| ASSERT_FALSE(getFirstMapKey(fd, &k)); |
| std::vector<tis_val_t> vals(get_nprocs_conf()); |
| ASSERT_FALSE(findMapEntry(fd, &k, vals.data())); |
| uint32_t copiedUid = k.uid; |
| k.uid = uid; |
| ASSERT_FALSE(writeToMapEntry(fd, &k, vals.data(), BPF_NOEXIST)); |
| |
| android::base::unique_fd fd2{ |
| bpf_obj_get(BPF_FS_PATH "map_time_in_state_uid_concurrent_times_map")}; |
| k.uid = copiedUid; |
| k.bucket = 0; |
| std::vector<concurrent_val_t> cvals(get_nprocs_conf()); |
| ASSERT_FALSE(findMapEntry(fd2, &k, cvals.data())); |
| k.uid = uid; |
| ASSERT_FALSE(writeToMapEntry(fd2, &k, cvals.data(), BPF_NOEXIST)); |
| } |
| auto times = getUidCpuFreqTimes(uid); |
| ASSERT_TRUE(times.has_value()); |
| ASSERT_FALSE(times->empty()); |
| |
| auto concurrentTimes = getUidConcurrentTimes(0); |
| ASSERT_TRUE(concurrentTimes.has_value()); |
| ASSERT_FALSE(concurrentTimes->active.empty()); |
| ASSERT_FALSE(concurrentTimes->policy.empty()); |
| |
| uint64_t sum = 0; |
| for (size_t i = 0; i < times->size(); ++i) { |
| for (auto x : (*times)[i]) sum += x; |
| } |
| ASSERT_GT(sum, (uint64_t)0); |
| |
| uint64_t activeSum = 0; |
| for (size_t i = 0; i < concurrentTimes->active.size(); ++i) { |
| activeSum += concurrentTimes->active[i]; |
| } |
| ASSERT_GT(activeSum, (uint64_t)0); |
| |
| ASSERT_TRUE(clearUidTimes(uid)); |
| |
| auto allTimes = getUidsCpuFreqTimes(); |
| ASSERT_TRUE(allTimes.has_value()); |
| ASSERT_FALSE(allTimes->empty()); |
| ASSERT_EQ(allTimes->find(uid), allTimes->end()); |
| |
| auto allConcurrentTimes = getUidsConcurrentTimes(); |
| ASSERT_TRUE(allConcurrentTimes.has_value()); |
| ASSERT_FALSE(allConcurrentTimes->empty()); |
| ASSERT_EQ(allConcurrentTimes->find(uid), allConcurrentTimes->end()); |
| } |
| |
| TEST_F(TimeInStateTest, GetCpuFreqs) { |
| auto freqs = getCpuFreqs(); |
| ASSERT_TRUE(freqs.has_value()); |
| |
| auto times = getUidCpuFreqTimes(0); |
| ASSERT_TRUE(times.has_value()); |
| |
| ASSERT_EQ(freqs->size(), times->size()); |
| for (size_t i = 0; i < freqs->size(); ++i) EXPECT_EQ((*freqs)[i].size(), (*times)[i].size()); |
| } |
| |
| uint64_t timeNanos() { |
| struct timespec spec; |
| clock_gettime(CLOCK_MONOTONIC, &spec); |
| return spec.tv_sec * 1000000000 + spec.tv_nsec; |
| } |
| |
| // Keeps CPU busy with some number crunching |
| void useCpu() { |
| long sum = 0; |
| for (int i = 0; i < 100000; i++) { |
| sum *= i; |
| } |
| } |
| |
| sem_t pingsem, pongsem; |
| |
| void *testThread(void *) { |
| for (int i = 0; i < 10; i++) { |
| sem_wait(&pingsem); |
| useCpu(); |
| sem_post(&pongsem); |
| } |
| return nullptr; |
| } |
| |
| TEST_F(TimeInStateTest, GetAggregatedTaskCpuFreqTimes) { |
| uint64_t startTimeNs = timeNanos(); |
| |
| sem_init(&pingsem, 0, 1); |
| sem_init(&pongsem, 0, 0); |
| |
| pthread_t thread; |
| ASSERT_EQ(pthread_create(&thread, NULL, &testThread, NULL), 0); |
| |
| // This process may have been running for some time, so when we start tracking |
| // CPU time, the very first switch may include the accumulated time. |
| // Yield the remainder of this timeslice to the newly created thread. |
| sem_wait(&pongsem); |
| sem_post(&pingsem); |
| |
| pid_t tgid = getpid(); |
| startTrackingProcessCpuTimes(tgid); |
| |
| pid_t tid = pthread_gettid_np(thread); |
| startAggregatingTaskCpuTimes(tid, 42); |
| |
| // Play ping-pong with the other thread to ensure that both threads get |
| // some CPU time. |
| for (int i = 0; i < 9; i++) { |
| sem_wait(&pongsem); |
| useCpu(); |
| sem_post(&pingsem); |
| } |
| |
| pthread_join(thread, NULL); |
| |
| std::optional<std::unordered_map<uint16_t, std::vector<std::vector<uint64_t>>>> optionalMap = |
| getAggregatedTaskCpuFreqTimes(tgid, {0, 42}); |
| ASSERT_TRUE(optionalMap); |
| |
| std::unordered_map<uint16_t, std::vector<std::vector<uint64_t>>> map = *optionalMap; |
| ASSERT_EQ(map.size(), 2u); |
| |
| uint64_t testDurationNs = timeNanos() - startTimeNs; |
| for (auto pair : map) { |
| uint16_t aggregationKey = pair.first; |
| ASSERT_TRUE(aggregationKey == 0 || aggregationKey == 42); |
| |
| std::vector<std::vector<uint64_t>> timesInState = pair.second; |
| uint64_t totalCpuTime = 0; |
| for (size_t i = 0; i < timesInState.size(); i++) { |
| for (size_t j = 0; j < timesInState[i].size(); j++) { |
| totalCpuTime += timesInState[i][j]; |
| } |
| } |
| ASSERT_GT(totalCpuTime, 0ul); |
| ASSERT_LE(totalCpuTime, testDurationNs); |
| } |
| } |
| |
| void *forceSwitchWithUid(void *uidPtr) { |
| if (!uidPtr) return nullptr; |
| setuid(*(uint32_t *)uidPtr); |
| |
| // Sleep briefly to trigger a context switch, ensuring we see at least one update. |
| struct timespec ts; |
| ts.tv_sec = 0; |
| ts.tv_nsec = 1000000; |
| nanosleep(&ts, NULL); |
| return nullptr; |
| } |
| |
| TEST_F(TimeInStateTest, SdkSandboxUid) { |
| // Find an unused app UID and its corresponding SDK sandbox uid. |
| uint32_t appUid = AID_APP_START, sandboxUid; |
| { |
| auto times = getUidsCpuFreqTimes(); |
| ASSERT_TRUE(times.has_value()); |
| ASSERT_FALSE(times->empty()); |
| for (const auto &kv : *times) { |
| if (kv.first > AID_APP_END) break; |
| appUid = std::max(appUid, kv.first); |
| } |
| appUid++; |
| sandboxUid = appUid + (AID_SDK_SANDBOX_PROCESS_START - AID_APP_START); |
| } |
| |
| // Create a thread to run with the fake sandbox uid. |
| pthread_t thread; |
| ASSERT_EQ(pthread_create(&thread, NULL, &forceSwitchWithUid, &sandboxUid), 0); |
| pthread_join(thread, NULL); |
| |
| // Confirm we recorded stats for appUid and AID_SDK_SANDBOX but not sandboxUid |
| auto allTimes = getUidsCpuFreqTimes(); |
| ASSERT_TRUE(allTimes.has_value()); |
| ASSERT_FALSE(allTimes->empty()); |
| ASSERT_NE(allTimes->find(appUid), allTimes->end()); |
| ASSERT_NE(allTimes->find(AID_SDK_SANDBOX), allTimes->end()); |
| ASSERT_EQ(allTimes->find(sandboxUid), allTimes->end()); |
| |
| auto allConcurrentTimes = getUidsConcurrentTimes(); |
| ASSERT_TRUE(allConcurrentTimes.has_value()); |
| ASSERT_FALSE(allConcurrentTimes->empty()); |
| ASSERT_NE(allConcurrentTimes->find(appUid), allConcurrentTimes->end()); |
| ASSERT_NE(allConcurrentTimes->find(AID_SDK_SANDBOX), allConcurrentTimes->end()); |
| ASSERT_EQ(allConcurrentTimes->find(sandboxUid), allConcurrentTimes->end()); |
| |
| ASSERT_TRUE(clearUidTimes(appUid)); |
| } |
| |
| } // namespace bpf |
| } // namespace android |