| /* |
| * Copyright 2018 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #undef LOG_TAG |
| #define LOG_TAG "Scheduler" |
| #define ATRACE_TAG ATRACE_TAG_GRAPHICS |
| |
| #include "Scheduler.h" |
| |
| #include <android-base/properties.h> |
| #include <android-base/stringprintf.h> |
| #include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h> |
| #include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h> |
| #include <configstore/Utils.h> |
| #include <input/InputWindow.h> |
| #include <system/window.h> |
| #include <ui/DisplayStatInfo.h> |
| #include <utils/Timers.h> |
| #include <utils/Trace.h> |
| |
| #include <algorithm> |
| #include <cinttypes> |
| #include <cstdint> |
| #include <functional> |
| #include <memory> |
| #include <numeric> |
| |
| #include "../Layer.h" |
| #include "DispSyncSource.h" |
| #include "EventThread.h" |
| #include "InjectVSyncSource.h" |
| #include "OneShotTimer.h" |
| #include "SchedulerUtils.h" |
| #include "SurfaceFlingerProperties.h" |
| #include "Timer.h" |
| #include "VSyncDispatchTimerQueue.h" |
| #include "VSyncPredictor.h" |
| #include "VSyncReactor.h" |
| #include "VsyncController.h" |
| |
| #define RETURN_IF_INVALID_HANDLE(handle, ...) \ |
| do { \ |
| if (mConnections.count(handle) == 0) { \ |
| ALOGE("Invalid connection handle %" PRIuPTR, handle.id); \ |
| return __VA_ARGS__; \ |
| } \ |
| } while (false) |
| |
| using namespace std::string_literals; |
| |
| namespace android { |
| |
| namespace { |
| |
| std::unique_ptr<scheduler::VSyncTracker> createVSyncTracker() { |
| // TODO(b/144707443): Tune constants. |
| constexpr int kDefaultRate = 60; |
| constexpr auto initialPeriod = std::chrono::duration<nsecs_t, std::ratio<1, kDefaultRate>>(1); |
| constexpr nsecs_t idealPeriod = |
| std::chrono::duration_cast<std::chrono::nanoseconds>(initialPeriod).count(); |
| constexpr size_t vsyncTimestampHistorySize = 20; |
| constexpr size_t minimumSamplesForPrediction = 6; |
| constexpr uint32_t discardOutlierPercent = 20; |
| return std::make_unique<scheduler::VSyncPredictor>(idealPeriod, vsyncTimestampHistorySize, |
| minimumSamplesForPrediction, |
| discardOutlierPercent); |
| } |
| |
| std::unique_ptr<scheduler::VSyncDispatch> createVSyncDispatch(scheduler::VSyncTracker& tracker) { |
| // TODO(b/144707443): Tune constants. |
| constexpr std::chrono::nanoseconds vsyncMoveThreshold = 3ms; |
| constexpr std::chrono::nanoseconds timerSlack = 500us; |
| return std::make_unique< |
| scheduler::VSyncDispatchTimerQueue>(std::make_unique<scheduler::Timer>(), tracker, |
| timerSlack.count(), vsyncMoveThreshold.count()); |
| } |
| |
| const char* toContentDetectionString(bool useContentDetection, bool useContentDetectionV2) { |
| if (!useContentDetection) return "off"; |
| return useContentDetectionV2 ? "V2" : "V1"; |
| } |
| |
| } // namespace |
| |
| class PredictedVsyncTracer { |
| public: |
| PredictedVsyncTracer(scheduler::VSyncDispatch& dispatch) |
| : mRegistration(dispatch, std::bind(&PredictedVsyncTracer::callback, this), |
| "PredictedVsyncTracer") { |
| scheduleRegistration(); |
| } |
| |
| private: |
| TracedOrdinal<bool> mParity = {"VSYNC-predicted", 0}; |
| scheduler::VSyncCallbackRegistration mRegistration; |
| |
| void scheduleRegistration() { mRegistration.schedule({0, 0, 0}); } |
| |
| void callback() { |
| mParity = !mParity; |
| scheduleRegistration(); |
| } |
| }; |
| |
| Scheduler::Scheduler(const scheduler::RefreshRateConfigs& configs, ISchedulerCallback& callback) |
| : Scheduler(configs, callback, |
| {.supportKernelTimer = sysprop::support_kernel_idle_timer(false), |
| .useContentDetection = sysprop::use_content_detection_for_refresh_rate(false), |
| .useContentDetectionV2 = |
| base::GetBoolProperty("debug.sf.use_content_detection_v2"s, true)}) {} |
| |
| Scheduler::Scheduler(const scheduler::RefreshRateConfigs& configs, ISchedulerCallback& callback, |
| Options options) |
| : Scheduler(createVsyncSchedule(options.supportKernelTimer), configs, callback, |
| createLayerHistory(configs, options.useContentDetectionV2), options) { |
| using namespace sysprop; |
| |
| const int setIdleTimerMs = base::GetIntProperty("debug.sf.set_idle_timer_ms"s, 0); |
| |
| if (const auto millis = setIdleTimerMs ? setIdleTimerMs : set_idle_timer_ms(0); millis > 0) { |
| const auto callback = mOptions.supportKernelTimer ? &Scheduler::kernelIdleTimerCallback |
| : &Scheduler::idleTimerCallback; |
| mIdleTimer.emplace( |
| std::chrono::milliseconds(millis), |
| [this, callback] { std::invoke(callback, this, TimerState::Reset); }, |
| [this, callback] { std::invoke(callback, this, TimerState::Expired); }); |
| mIdleTimer->start(); |
| } |
| |
| if (const int64_t millis = set_touch_timer_ms(0); millis > 0) { |
| // Touch events are coming to SF every 100ms, so the timer needs to be higher than that |
| mTouchTimer.emplace( |
| std::chrono::milliseconds(millis), |
| [this] { touchTimerCallback(TimerState::Reset); }, |
| [this] { touchTimerCallback(TimerState::Expired); }); |
| mTouchTimer->start(); |
| } |
| |
| if (const int64_t millis = set_display_power_timer_ms(0); millis > 0) { |
| mDisplayPowerTimer.emplace( |
| std::chrono::milliseconds(millis), |
| [this] { displayPowerTimerCallback(TimerState::Reset); }, |
| [this] { displayPowerTimerCallback(TimerState::Expired); }); |
| mDisplayPowerTimer->start(); |
| } |
| } |
| |
| Scheduler::Scheduler(VsyncSchedule schedule, const scheduler::RefreshRateConfigs& configs, |
| ISchedulerCallback& schedulerCallback, |
| std::unique_ptr<LayerHistory> layerHistory, Options options) |
| : mOptions(options), |
| mVsyncSchedule(std::move(schedule)), |
| mLayerHistory(std::move(layerHistory)), |
| mSchedulerCallback(schedulerCallback), |
| mRefreshRateConfigs(configs), |
| mPredictedVsyncTracer( |
| base::GetBoolProperty("debug.sf.show_predicted_vsync", false) |
| ? std::make_unique<PredictedVsyncTracer>(*mVsyncSchedule.dispatch) |
| : nullptr) { |
| mSchedulerCallback.setVsyncEnabled(false); |
| } |
| |
| Scheduler::~Scheduler() { |
| // Ensure the OneShotTimer threads are joined before we start destroying state. |
| mDisplayPowerTimer.reset(); |
| mTouchTimer.reset(); |
| mIdleTimer.reset(); |
| } |
| |
| Scheduler::VsyncSchedule Scheduler::createVsyncSchedule(bool supportKernelTimer) { |
| auto clock = std::make_unique<scheduler::SystemClock>(); |
| auto tracker = createVSyncTracker(); |
| auto dispatch = createVSyncDispatch(*tracker); |
| |
| // TODO(b/144707443): Tune constants. |
| constexpr size_t pendingFenceLimit = 20; |
| auto controller = |
| std::make_unique<scheduler::VSyncReactor>(std::move(clock), *tracker, pendingFenceLimit, |
| supportKernelTimer); |
| return {std::move(controller), std::move(tracker), std::move(dispatch)}; |
| } |
| |
| std::unique_ptr<LayerHistory> Scheduler::createLayerHistory( |
| const scheduler::RefreshRateConfigs& configs, bool useContentDetectionV2) { |
| if (!configs.canSwitch()) return nullptr; |
| |
| if (useContentDetectionV2) { |
| return std::make_unique<scheduler::impl::LayerHistoryV2>(configs); |
| } |
| |
| return std::make_unique<scheduler::impl::LayerHistory>(); |
| } |
| |
| std::unique_ptr<VSyncSource> Scheduler::makePrimaryDispSyncSource( |
| const char* name, std::chrono::nanoseconds workDuration, |
| std::chrono::nanoseconds readyDuration, bool traceVsync) { |
| return std::make_unique<scheduler::DispSyncSource>(*mVsyncSchedule.dispatch, workDuration, |
| readyDuration, traceVsync, name); |
| } |
| |
| Scheduler::ConnectionHandle Scheduler::createConnection( |
| const char* connectionName, std::chrono::nanoseconds workDuration, |
| std::chrono::nanoseconds readyDuration, |
| impl::EventThread::InterceptVSyncsCallback interceptCallback) { |
| auto vsyncSource = makePrimaryDispSyncSource(connectionName, workDuration, readyDuration); |
| auto eventThread = std::make_unique<impl::EventThread>(std::move(vsyncSource), |
| std::move(interceptCallback)); |
| return createConnection(std::move(eventThread)); |
| } |
| |
| Scheduler::ConnectionHandle Scheduler::createConnection(std::unique_ptr<EventThread> eventThread) { |
| const ConnectionHandle handle = ConnectionHandle{mNextConnectionHandleId++}; |
| ALOGV("Creating a connection handle with ID %" PRIuPTR, handle.id); |
| |
| auto connection = |
| createConnectionInternal(eventThread.get(), ISurfaceComposer::eConfigChangedSuppress); |
| |
| mConnections.emplace(handle, Connection{connection, std::move(eventThread)}); |
| return handle; |
| } |
| |
| sp<EventThreadConnection> Scheduler::createConnectionInternal( |
| EventThread* eventThread, ISurfaceComposer::ConfigChanged configChanged) { |
| return eventThread->createEventConnection([&] { resync(); }, configChanged); |
| } |
| |
| sp<IDisplayEventConnection> Scheduler::createDisplayEventConnection( |
| ConnectionHandle handle, ISurfaceComposer::ConfigChanged configChanged) { |
| RETURN_IF_INVALID_HANDLE(handle, nullptr); |
| return createConnectionInternal(mConnections[handle].thread.get(), configChanged); |
| } |
| |
| sp<EventThreadConnection> Scheduler::getEventConnection(ConnectionHandle handle) { |
| RETURN_IF_INVALID_HANDLE(handle, nullptr); |
| return mConnections[handle].connection; |
| } |
| |
| void Scheduler::onHotplugReceived(ConnectionHandle handle, PhysicalDisplayId displayId, |
| bool connected) { |
| RETURN_IF_INVALID_HANDLE(handle); |
| mConnections[handle].thread->onHotplugReceived(displayId, connected); |
| } |
| |
| void Scheduler::onScreenAcquired(ConnectionHandle handle) { |
| RETURN_IF_INVALID_HANDLE(handle); |
| mConnections[handle].thread->onScreenAcquired(); |
| } |
| |
| void Scheduler::onScreenReleased(ConnectionHandle handle) { |
| RETURN_IF_INVALID_HANDLE(handle); |
| mConnections[handle].thread->onScreenReleased(); |
| } |
| |
| void Scheduler::onPrimaryDisplayConfigChanged(ConnectionHandle handle, PhysicalDisplayId displayId, |
| HwcConfigIndexType configId, nsecs_t vsyncPeriod) { |
| std::lock_guard<std::mutex> lock(mFeatureStateLock); |
| // Cache the last reported config for primary display. |
| mFeatures.cachedConfigChangedParams = {handle, displayId, configId, vsyncPeriod}; |
| onNonPrimaryDisplayConfigChanged(handle, displayId, configId, vsyncPeriod); |
| } |
| |
| void Scheduler::dispatchCachedReportedConfig() { |
| const auto configId = *mFeatures.configId; |
| const auto vsyncPeriod = |
| mRefreshRateConfigs.getRefreshRateFromConfigId(configId).getVsyncPeriod(); |
| |
| // If there is no change from cached config, there is no need to dispatch an event |
| if (configId == mFeatures.cachedConfigChangedParams->configId && |
| vsyncPeriod == mFeatures.cachedConfigChangedParams->vsyncPeriod) { |
| return; |
| } |
| |
| mFeatures.cachedConfigChangedParams->configId = configId; |
| mFeatures.cachedConfigChangedParams->vsyncPeriod = vsyncPeriod; |
| onNonPrimaryDisplayConfigChanged(mFeatures.cachedConfigChangedParams->handle, |
| mFeatures.cachedConfigChangedParams->displayId, |
| mFeatures.cachedConfigChangedParams->configId, |
| mFeatures.cachedConfigChangedParams->vsyncPeriod); |
| } |
| |
| void Scheduler::onNonPrimaryDisplayConfigChanged(ConnectionHandle handle, |
| PhysicalDisplayId displayId, |
| HwcConfigIndexType configId, nsecs_t vsyncPeriod) { |
| RETURN_IF_INVALID_HANDLE(handle); |
| mConnections[handle].thread->onConfigChanged(displayId, configId, vsyncPeriod); |
| } |
| |
| size_t Scheduler::getEventThreadConnectionCount(ConnectionHandle handle) { |
| RETURN_IF_INVALID_HANDLE(handle, 0); |
| return mConnections[handle].thread->getEventThreadConnectionCount(); |
| } |
| |
| void Scheduler::dump(ConnectionHandle handle, std::string& result) const { |
| RETURN_IF_INVALID_HANDLE(handle); |
| mConnections.at(handle).thread->dump(result); |
| } |
| |
| void Scheduler::setDuration(ConnectionHandle handle, std::chrono::nanoseconds workDuration, |
| std::chrono::nanoseconds readyDuration) { |
| RETURN_IF_INVALID_HANDLE(handle); |
| mConnections[handle].thread->setDuration(workDuration, readyDuration); |
| } |
| |
| void Scheduler::getDisplayStatInfo(DisplayStatInfo* stats, nsecs_t now) { |
| stats->vsyncTime = mVsyncSchedule.tracker->nextAnticipatedVSyncTimeFrom(now); |
| stats->vsyncPeriod = mVsyncSchedule.tracker->currentPeriod(); |
| } |
| |
| Scheduler::ConnectionHandle Scheduler::enableVSyncInjection(bool enable) { |
| if (mInjectVSyncs == enable) { |
| return {}; |
| } |
| |
| ALOGV("%s VSYNC injection", enable ? "Enabling" : "Disabling"); |
| |
| if (!mInjectorConnectionHandle) { |
| auto vsyncSource = std::make_unique<InjectVSyncSource>(); |
| mVSyncInjector = vsyncSource.get(); |
| |
| auto eventThread = |
| std::make_unique<impl::EventThread>(std::move(vsyncSource), |
| impl::EventThread::InterceptVSyncsCallback()); |
| |
| mInjectorConnectionHandle = createConnection(std::move(eventThread)); |
| } |
| |
| mInjectVSyncs = enable; |
| return mInjectorConnectionHandle; |
| } |
| |
| bool Scheduler::injectVSync(nsecs_t when, nsecs_t expectedVSyncTime, nsecs_t deadlineTimestamp) { |
| if (!mInjectVSyncs || !mVSyncInjector) { |
| return false; |
| } |
| |
| mVSyncInjector->onInjectSyncEvent(when, expectedVSyncTime, deadlineTimestamp); |
| return true; |
| } |
| |
| void Scheduler::enableHardwareVsync() { |
| std::lock_guard<std::mutex> lock(mHWVsyncLock); |
| if (!mPrimaryHWVsyncEnabled && mHWVsyncAvailable) { |
| mVsyncSchedule.tracker->resetModel(); |
| mSchedulerCallback.setVsyncEnabled(true); |
| mPrimaryHWVsyncEnabled = true; |
| } |
| } |
| |
| void Scheduler::disableHardwareVsync(bool makeUnavailable) { |
| std::lock_guard<std::mutex> lock(mHWVsyncLock); |
| if (mPrimaryHWVsyncEnabled) { |
| mSchedulerCallback.setVsyncEnabled(false); |
| mPrimaryHWVsyncEnabled = false; |
| } |
| if (makeUnavailable) { |
| mHWVsyncAvailable = false; |
| } |
| } |
| |
| void Scheduler::resyncToHardwareVsync(bool makeAvailable, nsecs_t period) { |
| { |
| std::lock_guard<std::mutex> lock(mHWVsyncLock); |
| if (makeAvailable) { |
| mHWVsyncAvailable = makeAvailable; |
| } else if (!mHWVsyncAvailable) { |
| // Hardware vsync is not currently available, so abort the resync |
| // attempt for now |
| return; |
| } |
| } |
| |
| if (period <= 0) { |
| return; |
| } |
| |
| setVsyncPeriod(period); |
| } |
| |
| void Scheduler::resync() { |
| static constexpr nsecs_t kIgnoreDelay = ms2ns(750); |
| |
| const nsecs_t now = systemTime(); |
| const nsecs_t last = mLastResyncTime.exchange(now); |
| |
| if (now - last > kIgnoreDelay) { |
| resyncToHardwareVsync(false, mRefreshRateConfigs.getCurrentRefreshRate().getVsyncPeriod()); |
| } |
| } |
| |
| void Scheduler::setVsyncPeriod(nsecs_t period) { |
| std::lock_guard<std::mutex> lock(mHWVsyncLock); |
| mVsyncSchedule.controller->startPeriodTransition(period); |
| |
| if (!mPrimaryHWVsyncEnabled) { |
| mVsyncSchedule.tracker->resetModel(); |
| mSchedulerCallback.setVsyncEnabled(true); |
| mPrimaryHWVsyncEnabled = true; |
| } |
| } |
| |
| void Scheduler::addResyncSample(nsecs_t timestamp, std::optional<nsecs_t> hwcVsyncPeriod, |
| bool* periodFlushed) { |
| bool needsHwVsync = false; |
| *periodFlushed = false; |
| { // Scope for the lock |
| std::lock_guard<std::mutex> lock(mHWVsyncLock); |
| if (mPrimaryHWVsyncEnabled) { |
| needsHwVsync = mVsyncSchedule.controller->addHwVsyncTimestamp(timestamp, hwcVsyncPeriod, |
| periodFlushed); |
| } |
| } |
| |
| if (needsHwVsync) { |
| enableHardwareVsync(); |
| } else { |
| disableHardwareVsync(false); |
| } |
| } |
| |
| void Scheduler::addPresentFence(const std::shared_ptr<FenceTime>& fenceTime) { |
| if (mVsyncSchedule.controller->addPresentFence(fenceTime)) { |
| enableHardwareVsync(); |
| } else { |
| disableHardwareVsync(false); |
| } |
| } |
| |
| void Scheduler::setIgnorePresentFences(bool ignore) { |
| mVsyncSchedule.controller->setIgnorePresentFences(ignore); |
| } |
| |
| void Scheduler::registerLayer(Layer* layer) { |
| if (!mLayerHistory) return; |
| |
| const auto minFps = mRefreshRateConfigs.getMinRefreshRate().getFps(); |
| const auto maxFps = mRefreshRateConfigs.getMaxRefreshRate().getFps(); |
| |
| if (layer->getWindowType() == InputWindowInfo::Type::STATUS_BAR) { |
| mLayerHistory->registerLayer(layer, minFps, maxFps, |
| scheduler::LayerHistory::LayerVoteType::NoVote); |
| } else if (!mOptions.useContentDetection) { |
| // If the content detection feature is off, all layers are registered at Max. We still keep |
| // the layer history, since we use it for other features (like Frame Rate API), so layers |
| // still need to be registered. |
| mLayerHistory->registerLayer(layer, minFps, maxFps, |
| scheduler::LayerHistory::LayerVoteType::Max); |
| } else if (!mOptions.useContentDetectionV2) { |
| // In V1 of content detection, all layers are registered as Heuristic (unless it's |
| // wallpaper). |
| const auto highFps = |
| layer->getWindowType() == InputWindowInfo::Type::WALLPAPER ? minFps : maxFps; |
| |
| mLayerHistory->registerLayer(layer, minFps, highFps, |
| scheduler::LayerHistory::LayerVoteType::Heuristic); |
| } else { |
| if (layer->getWindowType() == InputWindowInfo::Type::WALLPAPER) { |
| // Running Wallpaper at Min is considered as part of content detection. |
| mLayerHistory->registerLayer(layer, minFps, maxFps, |
| scheduler::LayerHistory::LayerVoteType::Min); |
| } else { |
| mLayerHistory->registerLayer(layer, minFps, maxFps, |
| scheduler::LayerHistory::LayerVoteType::Heuristic); |
| } |
| } |
| } |
| |
| void Scheduler::recordLayerHistory(Layer* layer, nsecs_t presentTime, |
| LayerHistory::LayerUpdateType updateType) { |
| if (mLayerHistory) { |
| mLayerHistory->record(layer, presentTime, systemTime(), updateType); |
| } |
| } |
| |
| void Scheduler::setConfigChangePending(bool pending) { |
| if (mLayerHistory) { |
| mLayerHistory->setConfigChangePending(pending); |
| } |
| } |
| |
| void Scheduler::chooseRefreshRateForContent() { |
| if (!mLayerHistory) return; |
| |
| ATRACE_CALL(); |
| |
| scheduler::LayerHistory::Summary summary = mLayerHistory->summarize(systemTime()); |
| HwcConfigIndexType newConfigId; |
| { |
| std::lock_guard<std::mutex> lock(mFeatureStateLock); |
| if (mFeatures.contentRequirements == summary) { |
| return; |
| } |
| mFeatures.contentRequirements = summary; |
| mFeatures.contentDetectionV1 = |
| !summary.empty() ? ContentDetectionState::On : ContentDetectionState::Off; |
| |
| scheduler::RefreshRateConfigs::GlobalSignals consideredSignals; |
| newConfigId = calculateRefreshRateConfigIndexType(&consideredSignals); |
| if (mFeatures.configId == newConfigId) { |
| // We don't need to change the config, but we might need to send an event |
| // about a config change, since it was suppressed due to a previous idleConsidered |
| if (!consideredSignals.idle) { |
| dispatchCachedReportedConfig(); |
| } |
| return; |
| } |
| mFeatures.configId = newConfigId; |
| auto& newRefreshRate = mRefreshRateConfigs.getRefreshRateFromConfigId(newConfigId); |
| mSchedulerCallback.changeRefreshRate(newRefreshRate, |
| consideredSignals.idle ? ConfigEvent::None |
| : ConfigEvent::Changed); |
| } |
| } |
| |
| void Scheduler::resetIdleTimer() { |
| if (mIdleTimer) { |
| mIdleTimer->reset(); |
| } |
| } |
| |
| void Scheduler::notifyTouchEvent() { |
| if (mTouchTimer) { |
| mTouchTimer->reset(); |
| |
| if (mOptions.supportKernelTimer && mIdleTimer) { |
| mIdleTimer->reset(); |
| } |
| } |
| } |
| |
| void Scheduler::setDisplayPowerState(bool normal) { |
| { |
| std::lock_guard<std::mutex> lock(mFeatureStateLock); |
| mFeatures.isDisplayPowerStateNormal = normal; |
| } |
| |
| if (mDisplayPowerTimer) { |
| mDisplayPowerTimer->reset(); |
| } |
| |
| // Display Power event will boost the refresh rate to performance. |
| // Clear Layer History to get fresh FPS detection |
| if (mLayerHistory) { |
| mLayerHistory->clear(); |
| } |
| } |
| |
| void Scheduler::kernelIdleTimerCallback(TimerState state) { |
| ATRACE_INT("ExpiredKernelIdleTimer", static_cast<int>(state)); |
| |
| // TODO(145561154): cleanup the kernel idle timer implementation and the refresh rate |
| // magic number |
| const auto& refreshRate = mRefreshRateConfigs.getCurrentRefreshRate(); |
| constexpr float FPS_THRESHOLD_FOR_KERNEL_TIMER = 65.0f; |
| if (state == TimerState::Reset && refreshRate.getFps() > FPS_THRESHOLD_FOR_KERNEL_TIMER) { |
| // If we're not in performance mode then the kernel timer shouldn't do |
| // anything, as the refresh rate during DPU power collapse will be the |
| // same. |
| resyncToHardwareVsync(true /* makeAvailable */, refreshRate.getVsyncPeriod()); |
| } else if (state == TimerState::Expired && |
| refreshRate.getFps() <= FPS_THRESHOLD_FOR_KERNEL_TIMER) { |
| // Disable HW VSYNC if the timer expired, as we don't need it enabled if |
| // we're not pushing frames, and if we're in PERFORMANCE mode then we'll |
| // need to update the VsyncController model anyway. |
| disableHardwareVsync(false /* makeUnavailable */); |
| } |
| |
| mSchedulerCallback.kernelTimerChanged(state == TimerState::Expired); |
| } |
| |
| void Scheduler::idleTimerCallback(TimerState state) { |
| handleTimerStateChanged(&mFeatures.idleTimer, state); |
| ATRACE_INT("ExpiredIdleTimer", static_cast<int>(state)); |
| } |
| |
| void Scheduler::touchTimerCallback(TimerState state) { |
| const TouchState touch = state == TimerState::Reset ? TouchState::Active : TouchState::Inactive; |
| // Touch event will boost the refresh rate to performance. |
| // Clear layer history to get fresh FPS detection. |
| // NOTE: Instead of checking all the layers, we should be checking the layer |
| // that is currently on top. b/142507166 will give us this capability. |
| if (handleTimerStateChanged(&mFeatures.touch, touch)) { |
| if (mLayerHistory) { |
| mLayerHistory->clear(); |
| } |
| } |
| ATRACE_INT("TouchState", static_cast<int>(touch)); |
| } |
| |
| void Scheduler::displayPowerTimerCallback(TimerState state) { |
| handleTimerStateChanged(&mFeatures.displayPowerTimer, state); |
| ATRACE_INT("ExpiredDisplayPowerTimer", static_cast<int>(state)); |
| } |
| |
| void Scheduler::dump(std::string& result) const { |
| using base::StringAppendF; |
| |
| StringAppendF(&result, "+ Idle timer: %s\n", mIdleTimer ? mIdleTimer->dump().c_str() : "off"); |
| StringAppendF(&result, "+ Touch timer: %s\n", |
| mTouchTimer ? mTouchTimer->dump().c_str() : "off"); |
| StringAppendF(&result, "+ Content detection: %s %s\n\n", |
| toContentDetectionString(mOptions.useContentDetection, |
| mOptions.useContentDetectionV2), |
| mLayerHistory ? mLayerHistory->dump().c_str() : "(no layer history)"); |
| } |
| |
| void Scheduler::dumpVsync(std::string& s) const { |
| using base::StringAppendF; |
| |
| StringAppendF(&s, "VSyncReactor:\n"); |
| mVsyncSchedule.controller->dump(s); |
| StringAppendF(&s, "VSyncDispatch:\n"); |
| mVsyncSchedule.dispatch->dump(s); |
| } |
| |
| template <class T> |
| bool Scheduler::handleTimerStateChanged(T* currentState, T newState) { |
| HwcConfigIndexType newConfigId; |
| scheduler::RefreshRateConfigs::GlobalSignals consideredSignals; |
| { |
| std::lock_guard<std::mutex> lock(mFeatureStateLock); |
| if (*currentState == newState) { |
| return false; |
| } |
| *currentState = newState; |
| newConfigId = calculateRefreshRateConfigIndexType(&consideredSignals); |
| if (mFeatures.configId == newConfigId) { |
| // We don't need to change the config, but we might need to send an event |
| // about a config change, since it was suppressed due to a previous idleConsidered |
| if (!consideredSignals.idle) { |
| dispatchCachedReportedConfig(); |
| } |
| return consideredSignals.touch; |
| } |
| mFeatures.configId = newConfigId; |
| } |
| const RefreshRate& newRefreshRate = mRefreshRateConfigs.getRefreshRateFromConfigId(newConfigId); |
| mSchedulerCallback.changeRefreshRate(newRefreshRate, |
| consideredSignals.idle ? ConfigEvent::None |
| : ConfigEvent::Changed); |
| return consideredSignals.touch; |
| } |
| |
| HwcConfigIndexType Scheduler::calculateRefreshRateConfigIndexType( |
| scheduler::RefreshRateConfigs::GlobalSignals* consideredSignals) { |
| ATRACE_CALL(); |
| if (consideredSignals) *consideredSignals = {}; |
| |
| // If Display Power is not in normal operation we want to be in performance mode. When coming |
| // back to normal mode, a grace period is given with DisplayPowerTimer. |
| if (mDisplayPowerTimer && |
| (!mFeatures.isDisplayPowerStateNormal || |
| mFeatures.displayPowerTimer == TimerState::Reset)) { |
| return mRefreshRateConfigs.getMaxRefreshRateByPolicy().getConfigId(); |
| } |
| |
| const bool touchActive = mTouchTimer && mFeatures.touch == TouchState::Active; |
| const bool idle = mIdleTimer && mFeatures.idleTimer == TimerState::Expired; |
| |
| if (!mOptions.useContentDetectionV2) { |
| // As long as touch is active we want to be in performance mode. |
| if (touchActive) { |
| return mRefreshRateConfigs.getMaxRefreshRateByPolicy().getConfigId(); |
| } |
| |
| // If timer has expired as it means there is no new content on the screen. |
| if (idle) { |
| if (consideredSignals) consideredSignals->idle = true; |
| return mRefreshRateConfigs.getMinRefreshRateByPolicy().getConfigId(); |
| } |
| |
| // If content detection is off we choose performance as we don't know the content fps. |
| if (mFeatures.contentDetectionV1 == ContentDetectionState::Off) { |
| // NOTE: V1 always calls this, but this is not a default behavior for V2. |
| return mRefreshRateConfigs.getMaxRefreshRateByPolicy().getConfigId(); |
| } |
| |
| // Content detection is on, find the appropriate refresh rate with minimal error |
| return mRefreshRateConfigs.getRefreshRateForContent(mFeatures.contentRequirements) |
| .getConfigId(); |
| } |
| |
| return mRefreshRateConfigs |
| .getBestRefreshRate(mFeatures.contentRequirements, {.touch = touchActive, .idle = idle}, |
| consideredSignals) |
| .getConfigId(); |
| } |
| |
| std::optional<HwcConfigIndexType> Scheduler::getPreferredConfigId() { |
| std::lock_guard<std::mutex> lock(mFeatureStateLock); |
| // Make sure that the default config ID is first updated, before returned. |
| if (mFeatures.configId.has_value()) { |
| mFeatures.configId = calculateRefreshRateConfigIndexType(); |
| } |
| return mFeatures.configId; |
| } |
| |
| void Scheduler::onNewVsyncPeriodChangeTimeline(const hal::VsyncPeriodChangeTimeline& timeline) { |
| if (timeline.refreshRequired) { |
| mSchedulerCallback.repaintEverythingForHWC(); |
| } |
| |
| std::lock_guard<std::mutex> lock(mVsyncTimelineLock); |
| mLastVsyncPeriodChangeTimeline = std::make_optional(timeline); |
| |
| const auto maxAppliedTime = systemTime() + MAX_VSYNC_APPLIED_TIME.count(); |
| if (timeline.newVsyncAppliedTimeNanos > maxAppliedTime) { |
| mLastVsyncPeriodChangeTimeline->newVsyncAppliedTimeNanos = maxAppliedTime; |
| } |
| } |
| |
| void Scheduler::onDisplayRefreshed(nsecs_t timestamp) { |
| bool callRepaint = false; |
| { |
| std::lock_guard<std::mutex> lock(mVsyncTimelineLock); |
| if (mLastVsyncPeriodChangeTimeline && mLastVsyncPeriodChangeTimeline->refreshRequired) { |
| if (mLastVsyncPeriodChangeTimeline->refreshTimeNanos < timestamp) { |
| mLastVsyncPeriodChangeTimeline->refreshRequired = false; |
| } else { |
| // We need to send another refresh as refreshTimeNanos is still in the future |
| callRepaint = true; |
| } |
| } |
| } |
| |
| if (callRepaint) { |
| mSchedulerCallback.repaintEverythingForHWC(); |
| } |
| } |
| |
| void Scheduler::onPrimaryDisplayAreaChanged(uint32_t displayArea) { |
| if (mLayerHistory) { |
| mLayerHistory->setDisplayArea(displayArea); |
| } |
| } |
| |
| } // namespace android |