| /* |
| * Copyright (C) 2007 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| //#define LOG_NDEBUG 0 |
| #define ATRACE_TAG ATRACE_TAG_GRAPHICS |
| |
| #include <sys/types.h> |
| #include <errno.h> |
| #include <dlfcn.h> |
| |
| #include <algorithm> |
| #include <cinttypes> |
| #include <cmath> |
| #include <cstdint> |
| #include <functional> |
| #include <mutex> |
| #include <optional> |
| #include <unordered_map> |
| |
| #include <cutils/properties.h> |
| #include <log/log.h> |
| |
| #include <binder/IPCThreadState.h> |
| #include <binder/IServiceManager.h> |
| #include <binder/PermissionCache.h> |
| |
| #include <compositionengine/CompositionEngine.h> |
| #include <compositionengine/Display.h> |
| #include <compositionengine/DisplayColorProfile.h> |
| #include <compositionengine/Layer.h> |
| #include <compositionengine/OutputLayer.h> |
| #include <compositionengine/RenderSurface.h> |
| #include <compositionengine/impl/LayerCompositionState.h> |
| #include <compositionengine/impl/OutputCompositionState.h> |
| #include <compositionengine/impl/OutputLayerCompositionState.h> |
| #include <dvr/vr_flinger.h> |
| #include <gui/BufferQueue.h> |
| #include <gui/DebugEGLImageTracker.h> |
| |
| #include <gui/GuiConfig.h> |
| #include <gui/IDisplayEventConnection.h> |
| #include <gui/IProducerListener.h> |
| #include <gui/LayerDebugInfo.h> |
| #include <gui/Surface.h> |
| #include <input/IInputFlinger.h> |
| #include <renderengine/RenderEngine.h> |
| #include <ui/ColorSpace.h> |
| #include <ui/DebugUtils.h> |
| #include <ui/DisplayInfo.h> |
| #include <ui/DisplayStatInfo.h> |
| #include <ui/GraphicBufferAllocator.h> |
| #include <ui/PixelFormat.h> |
| #include <ui/UiConfig.h> |
| #include <utils/StopWatch.h> |
| #include <utils/String16.h> |
| #include <utils/String8.h> |
| #include <utils/Timers.h> |
| #include <utils/Trace.h> |
| #include <utils/misc.h> |
| |
| #include <private/android_filesystem_config.h> |
| #include <private/gui/SyncFeatures.h> |
| |
| #include "BufferLayer.h" |
| #include "BufferQueueLayer.h" |
| #include "BufferStateLayer.h" |
| #include "Client.h" |
| #include "ColorLayer.h" |
| #include "Colorizer.h" |
| #include "ContainerLayer.h" |
| #include "DisplayDevice.h" |
| #include "Layer.h" |
| #include "LayerVector.h" |
| #include "MonitoredProducer.h" |
| #include "NativeWindowSurface.h" |
| #include "RefreshRateOverlay.h" |
| #include "StartPropertySetThread.h" |
| #include "SurfaceFlinger.h" |
| #include "SurfaceInterceptor.h" |
| |
| #include "DisplayHardware/ComposerHal.h" |
| #include "DisplayHardware/DisplayIdentification.h" |
| #include "DisplayHardware/FramebufferSurface.h" |
| #include "DisplayHardware/HWComposer.h" |
| #include "DisplayHardware/VirtualDisplaySurface.h" |
| #include "Effects/Daltonizer.h" |
| #include "RegionSamplingThread.h" |
| #include "Scheduler/DispSync.h" |
| #include "Scheduler/DispSyncSource.h" |
| #include "Scheduler/EventControlThread.h" |
| #include "Scheduler/EventThread.h" |
| #include "Scheduler/InjectVSyncSource.h" |
| #include "Scheduler/MessageQueue.h" |
| #include "Scheduler/PhaseOffsets.h" |
| #include "Scheduler/Scheduler.h" |
| #include "TimeStats/TimeStats.h" |
| |
| #include <cutils/compiler.h> |
| |
| #include "android-base/stringprintf.h" |
| |
| #include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h> |
| #include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h> |
| #include <android/hardware/configstore/1.1/types.h> |
| #include <android/hardware/power/1.0/IPower.h> |
| #include <configstore/Utils.h> |
| |
| #include <layerproto/LayerProtoParser.h> |
| #include "SurfaceFlingerProperties.h" |
| |
| namespace android { |
| |
| using namespace android::hardware::configstore; |
| using namespace android::hardware::configstore::V1_0; |
| using namespace android::sysprop; |
| |
| using android::hardware::power::V1_0::PowerHint; |
| using base::StringAppendF; |
| using ui::ColorMode; |
| using ui::Dataspace; |
| using ui::DisplayPrimaries; |
| using ui::Hdr; |
| using ui::RenderIntent; |
| |
| namespace { |
| |
| #pragma clang diagnostic push |
| #pragma clang diagnostic error "-Wswitch-enum" |
| |
| bool isWideColorMode(const ColorMode colorMode) { |
| switch (colorMode) { |
| case ColorMode::DISPLAY_P3: |
| case ColorMode::ADOBE_RGB: |
| case ColorMode::DCI_P3: |
| case ColorMode::BT2020: |
| case ColorMode::DISPLAY_BT2020: |
| case ColorMode::BT2100_PQ: |
| case ColorMode::BT2100_HLG: |
| return true; |
| case ColorMode::NATIVE: |
| case ColorMode::STANDARD_BT601_625: |
| case ColorMode::STANDARD_BT601_625_UNADJUSTED: |
| case ColorMode::STANDARD_BT601_525: |
| case ColorMode::STANDARD_BT601_525_UNADJUSTED: |
| case ColorMode::STANDARD_BT709: |
| case ColorMode::SRGB: |
| return false; |
| } |
| return false; |
| } |
| |
| bool isHdrColorMode(const ColorMode colorMode) { |
| switch (colorMode) { |
| case ColorMode::BT2100_PQ: |
| case ColorMode::BT2100_HLG: |
| return true; |
| case ColorMode::DISPLAY_P3: |
| case ColorMode::ADOBE_RGB: |
| case ColorMode::DCI_P3: |
| case ColorMode::BT2020: |
| case ColorMode::DISPLAY_BT2020: |
| case ColorMode::NATIVE: |
| case ColorMode::STANDARD_BT601_625: |
| case ColorMode::STANDARD_BT601_625_UNADJUSTED: |
| case ColorMode::STANDARD_BT601_525: |
| case ColorMode::STANDARD_BT601_525_UNADJUSTED: |
| case ColorMode::STANDARD_BT709: |
| case ColorMode::SRGB: |
| return false; |
| } |
| return false; |
| } |
| |
| ui::Transform::orientation_flags fromSurfaceComposerRotation(ISurfaceComposer::Rotation rotation) { |
| switch (rotation) { |
| case ISurfaceComposer::eRotateNone: |
| return ui::Transform::ROT_0; |
| case ISurfaceComposer::eRotate90: |
| return ui::Transform::ROT_90; |
| case ISurfaceComposer::eRotate180: |
| return ui::Transform::ROT_180; |
| case ISurfaceComposer::eRotate270: |
| return ui::Transform::ROT_270; |
| } |
| ALOGE("Invalid rotation passed to captureScreen(): %d\n", rotation); |
| return ui::Transform::ROT_0; |
| } |
| |
| #pragma clang diagnostic pop |
| |
| class ConditionalLock { |
| public: |
| ConditionalLock(Mutex& mutex, bool lock) : mMutex(mutex), mLocked(lock) { |
| if (lock) { |
| mMutex.lock(); |
| } |
| } |
| ~ConditionalLock() { if (mLocked) mMutex.unlock(); } |
| private: |
| Mutex& mMutex; |
| bool mLocked; |
| }; |
| |
| // Currently we only support V0_SRGB and DISPLAY_P3 as composition preference. |
| bool validateCompositionDataspace(Dataspace dataspace) { |
| return dataspace == Dataspace::V0_SRGB || dataspace == Dataspace::DISPLAY_P3; |
| } |
| |
| } // namespace anonymous |
| |
| // --------------------------------------------------------------------------- |
| |
| const String16 sHardwareTest("android.permission.HARDWARE_TEST"); |
| const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER"); |
| const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER"); |
| const String16 sDump("android.permission.DUMP"); |
| |
| // --------------------------------------------------------------------------- |
| int64_t SurfaceFlinger::dispSyncPresentTimeOffset; |
| bool SurfaceFlinger::useHwcForRgbToYuv; |
| uint64_t SurfaceFlinger::maxVirtualDisplaySize; |
| bool SurfaceFlinger::hasSyncFramework; |
| bool SurfaceFlinger::useVrFlinger; |
| int64_t SurfaceFlinger::maxFrameBufferAcquiredBuffers; |
| bool SurfaceFlinger::hasWideColorDisplay; |
| int SurfaceFlinger::primaryDisplayOrientation = DisplayState::eOrientationDefault; |
| bool SurfaceFlinger::useColorManagement; |
| bool SurfaceFlinger::useContextPriority; |
| Dataspace SurfaceFlinger::defaultCompositionDataspace = Dataspace::V0_SRGB; |
| ui::PixelFormat SurfaceFlinger::defaultCompositionPixelFormat = ui::PixelFormat::RGBA_8888; |
| Dataspace SurfaceFlinger::wideColorGamutCompositionDataspace = Dataspace::V0_SRGB; |
| ui::PixelFormat SurfaceFlinger::wideColorGamutCompositionPixelFormat = ui::PixelFormat::RGBA_8888; |
| |
| std::string getHwcServiceName() { |
| char value[PROPERTY_VALUE_MAX] = {}; |
| property_get("debug.sf.hwc_service_name", value, "default"); |
| ALOGI("Using HWComposer service: '%s'", value); |
| return std::string(value); |
| } |
| |
| bool useTrebleTestingOverride() { |
| char value[PROPERTY_VALUE_MAX] = {}; |
| property_get("debug.sf.treble_testing_override", value, "false"); |
| ALOGI("Treble testing override: '%s'", value); |
| return std::string(value) == "true"; |
| } |
| |
| std::string decodeDisplayColorSetting(DisplayColorSetting displayColorSetting) { |
| switch(displayColorSetting) { |
| case DisplayColorSetting::MANAGED: |
| return std::string("Managed"); |
| case DisplayColorSetting::UNMANAGED: |
| return std::string("Unmanaged"); |
| case DisplayColorSetting::ENHANCED: |
| return std::string("Enhanced"); |
| default: |
| return std::string("Unknown ") + |
| std::to_string(static_cast<int>(displayColorSetting)); |
| } |
| } |
| |
| SurfaceFlingerBE::SurfaceFlingerBE() : mHwcServiceName(getHwcServiceName()) {} |
| |
| SurfaceFlinger::SurfaceFlinger(Factory& factory, SkipInitializationTag) |
| : mFactory(factory), |
| mPhaseOffsets(mFactory.createPhaseOffsets()), |
| mInterceptor(mFactory.createSurfaceInterceptor(this)), |
| mTimeStats(mFactory.createTimeStats()), |
| mEventQueue(mFactory.createMessageQueue()), |
| mCompositionEngine(mFactory.createCompositionEngine()) {} |
| |
| SurfaceFlinger::SurfaceFlinger(Factory& factory) : SurfaceFlinger(factory, SkipInitialization) { |
| ALOGI("SurfaceFlinger is starting"); |
| |
| hasSyncFramework = running_without_sync_framework(true); |
| |
| dispSyncPresentTimeOffset = present_time_offset_from_vsync_ns(0); |
| |
| useHwcForRgbToYuv = force_hwc_copy_for_virtual_displays(false); |
| |
| maxVirtualDisplaySize = max_virtual_display_dimension(0); |
| |
| // Vr flinger is only enabled on Daydream ready devices. |
| useVrFlinger = use_vr_flinger(false); |
| |
| maxFrameBufferAcquiredBuffers = max_frame_buffer_acquired_buffers(2); |
| |
| hasWideColorDisplay = has_wide_color_display(false); |
| |
| useColorManagement = use_color_management(false); |
| |
| mDefaultCompositionDataspace = |
| static_cast<ui::Dataspace>(default_composition_dataspace(Dataspace::V0_SRGB)); |
| mWideColorGamutCompositionDataspace = static_cast<ui::Dataspace>(wcg_composition_dataspace( |
| hasWideColorDisplay ? Dataspace::DISPLAY_P3 : Dataspace::V0_SRGB)); |
| defaultCompositionDataspace = mDefaultCompositionDataspace; |
| wideColorGamutCompositionDataspace = mWideColorGamutCompositionDataspace; |
| defaultCompositionPixelFormat = static_cast<ui::PixelFormat>( |
| default_composition_pixel_format(ui::PixelFormat::RGBA_8888)); |
| wideColorGamutCompositionPixelFormat = |
| static_cast<ui::PixelFormat>(wcg_composition_pixel_format(ui::PixelFormat::RGBA_8888)); |
| |
| mColorSpaceAgnosticDataspace = |
| static_cast<ui::Dataspace>(color_space_agnostic_dataspace(Dataspace::UNKNOWN)); |
| |
| useContextPriority = use_context_priority(true); |
| |
| auto tmpPrimaryDisplayOrientation = primary_display_orientation( |
| SurfaceFlingerProperties::primary_display_orientation_values::ORIENTATION_0); |
| switch (tmpPrimaryDisplayOrientation) { |
| case SurfaceFlingerProperties::primary_display_orientation_values::ORIENTATION_90: |
| SurfaceFlinger::primaryDisplayOrientation = DisplayState::eOrientation90; |
| break; |
| case SurfaceFlingerProperties::primary_display_orientation_values::ORIENTATION_180: |
| SurfaceFlinger::primaryDisplayOrientation = DisplayState::eOrientation180; |
| break; |
| case SurfaceFlingerProperties::primary_display_orientation_values::ORIENTATION_270: |
| SurfaceFlinger::primaryDisplayOrientation = DisplayState::eOrientation270; |
| break; |
| default: |
| SurfaceFlinger::primaryDisplayOrientation = DisplayState::eOrientationDefault; |
| break; |
| } |
| ALOGV("Primary Display Orientation is set to %2d.", SurfaceFlinger::primaryDisplayOrientation); |
| |
| mInternalDisplayPrimaries = sysprop::getDisplayNativePrimaries(); |
| |
| // debugging stuff... |
| char value[PROPERTY_VALUE_MAX]; |
| |
| property_get("ro.bq.gpu_to_cpu_unsupported", value, "0"); |
| mGpuToCpuSupported = !atoi(value); |
| |
| property_get("debug.sf.showupdates", value, "0"); |
| mDebugRegion = atoi(value); |
| |
| ALOGI_IF(mDebugRegion, "showupdates enabled"); |
| |
| // DDMS debugging deprecated (b/120782499) |
| property_get("debug.sf.ddms", value, "0"); |
| int debugDdms = atoi(value); |
| ALOGI_IF(debugDdms, "DDMS debugging not supported"); |
| |
| property_get("debug.sf.disable_backpressure", value, "0"); |
| mPropagateBackpressure = !atoi(value); |
| ALOGI_IF(!mPropagateBackpressure, "Disabling backpressure propagation"); |
| |
| property_get("debug.sf.enable_gl_backpressure", value, "0"); |
| mPropagateBackpressureClientComposition = atoi(value); |
| ALOGI_IF(mPropagateBackpressureClientComposition, |
| "Enabling backpressure propagation for Client Composition"); |
| |
| property_get("debug.sf.enable_hwc_vds", value, "0"); |
| mUseHwcVirtualDisplays = atoi(value); |
| ALOGI_IF(mUseHwcVirtualDisplays, "Enabling HWC virtual displays"); |
| |
| property_get("ro.sf.disable_triple_buffer", value, "0"); |
| mLayerTripleBufferingDisabled = atoi(value); |
| ALOGI_IF(mLayerTripleBufferingDisabled, "Disabling Triple Buffering"); |
| |
| const size_t defaultListSize = MAX_LAYERS; |
| auto listSize = property_get_int32("debug.sf.max_igbp_list_size", int32_t(defaultListSize)); |
| mMaxGraphicBufferProducerListSize = (listSize > 0) ? size_t(listSize) : defaultListSize; |
| |
| mUseSmart90ForVideo = use_smart_90_for_video(false); |
| property_get("debug.sf.use_smart_90_for_video", value, "0"); |
| |
| int int_value = atoi(value); |
| if (int_value) { |
| mUseSmart90ForVideo = true; |
| } |
| |
| property_get("debug.sf.luma_sampling", value, "1"); |
| mLumaSampling = atoi(value); |
| |
| const auto [early, gl, late] = mPhaseOffsets->getCurrentOffsets(); |
| mVsyncModulator.setPhaseOffsets(early, gl, late, |
| mPhaseOffsets->getOffsetThresholdForNextVsync()); |
| |
| // We should be reading 'persist.sys.sf.color_saturation' here |
| // but since /data may be encrypted, we need to wait until after vold |
| // comes online to attempt to read the property. The property is |
| // instead read after the boot animation |
| |
| if (useTrebleTestingOverride()) { |
| // Without the override SurfaceFlinger cannot connect to HIDL |
| // services that are not listed in the manifests. Considered |
| // deriving the setting from the set service name, but it |
| // would be brittle if the name that's not 'default' is used |
| // for production purposes later on. |
| setenv("TREBLE_TESTING_OVERRIDE", "true", true); |
| } |
| } |
| |
| void SurfaceFlinger::onFirstRef() |
| { |
| mEventQueue->init(this); |
| } |
| |
| SurfaceFlinger::~SurfaceFlinger() = default; |
| |
| void SurfaceFlinger::binderDied(const wp<IBinder>& /* who */) |
| { |
| // the window manager died on us. prepare its eulogy. |
| |
| // restore initial conditions (default device unblank, etc) |
| initializeDisplays(); |
| |
| // restart the boot-animation |
| startBootAnim(); |
| } |
| |
| static sp<ISurfaceComposerClient> initClient(const sp<Client>& client) { |
| status_t err = client->initCheck(); |
| if (err == NO_ERROR) { |
| return client; |
| } |
| return nullptr; |
| } |
| |
| sp<ISurfaceComposerClient> SurfaceFlinger::createConnection() { |
| return initClient(new Client(this)); |
| } |
| |
| sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName, |
| bool secure) |
| { |
| class DisplayToken : public BBinder { |
| sp<SurfaceFlinger> flinger; |
| virtual ~DisplayToken() { |
| // no more references, this display must be terminated |
| Mutex::Autolock _l(flinger->mStateLock); |
| flinger->mCurrentState.displays.removeItem(this); |
| flinger->setTransactionFlags(eDisplayTransactionNeeded); |
| } |
| public: |
| explicit DisplayToken(const sp<SurfaceFlinger>& flinger) |
| : flinger(flinger) { |
| } |
| }; |
| |
| sp<BBinder> token = new DisplayToken(this); |
| |
| Mutex::Autolock _l(mStateLock); |
| // Display ID is assigned when virtual display is allocated by HWC. |
| DisplayDeviceState state; |
| state.isSecure = secure; |
| state.displayName = displayName; |
| mCurrentState.displays.add(token, state); |
| mInterceptor->saveDisplayCreation(state); |
| return token; |
| } |
| |
| void SurfaceFlinger::destroyDisplay(const sp<IBinder>& displayToken) { |
| Mutex::Autolock _l(mStateLock); |
| |
| ssize_t index = mCurrentState.displays.indexOfKey(displayToken); |
| if (index < 0) { |
| ALOGE("destroyDisplay: Invalid display token %p", displayToken.get()); |
| return; |
| } |
| |
| const DisplayDeviceState& state = mCurrentState.displays.valueAt(index); |
| if (!state.isVirtual()) { |
| ALOGE("destroyDisplay called for non-virtual display"); |
| return; |
| } |
| mInterceptor->saveDisplayDeletion(state.sequenceId); |
| mCurrentState.displays.removeItemsAt(index); |
| setTransactionFlags(eDisplayTransactionNeeded); |
| } |
| |
| std::vector<PhysicalDisplayId> SurfaceFlinger::getPhysicalDisplayIds() const { |
| Mutex::Autolock lock(mStateLock); |
| |
| const auto internalDisplayId = getInternalDisplayIdLocked(); |
| if (!internalDisplayId) { |
| return {}; |
| } |
| |
| std::vector<PhysicalDisplayId> displayIds; |
| displayIds.reserve(mPhysicalDisplayTokens.size()); |
| displayIds.push_back(internalDisplayId->value); |
| |
| for (const auto& [id, token] : mPhysicalDisplayTokens) { |
| if (id != *internalDisplayId) { |
| displayIds.push_back(id.value); |
| } |
| } |
| |
| return displayIds; |
| } |
| |
| sp<IBinder> SurfaceFlinger::getPhysicalDisplayToken(PhysicalDisplayId displayId) const { |
| Mutex::Autolock lock(mStateLock); |
| return getPhysicalDisplayTokenLocked(DisplayId{displayId}); |
| } |
| |
| status_t SurfaceFlinger::getColorManagement(bool* outGetColorManagement) const { |
| if (!outGetColorManagement) { |
| return BAD_VALUE; |
| } |
| *outGetColorManagement = useColorManagement; |
| return NO_ERROR; |
| } |
| |
| HWComposer& SurfaceFlinger::getHwComposer() const { |
| return mCompositionEngine->getHwComposer(); |
| } |
| |
| renderengine::RenderEngine& SurfaceFlinger::getRenderEngine() const { |
| return mCompositionEngine->getRenderEngine(); |
| } |
| |
| compositionengine::CompositionEngine& SurfaceFlinger::getCompositionEngine() const { |
| return *mCompositionEngine.get(); |
| } |
| |
| void SurfaceFlinger::bootFinished() |
| { |
| if (mStartPropertySetThread->join() != NO_ERROR) { |
| ALOGE("Join StartPropertySetThread failed!"); |
| } |
| const nsecs_t now = systemTime(); |
| const nsecs_t duration = now - mBootTime; |
| ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) ); |
| |
| // wait patiently for the window manager death |
| const String16 name("window"); |
| mWindowManager = defaultServiceManager()->getService(name); |
| if (mWindowManager != 0) { |
| mWindowManager->linkToDeath(static_cast<IBinder::DeathRecipient*>(this)); |
| } |
| sp<IBinder> input(defaultServiceManager()->getService( |
| String16("inputflinger"))); |
| if (input == nullptr) { |
| ALOGE("Failed to link to input service"); |
| } else { |
| mInputFlinger = interface_cast<IInputFlinger>(input); |
| } |
| |
| if (mVrFlinger) { |
| mVrFlinger->OnBootFinished(); |
| } |
| |
| // stop boot animation |
| // formerly we would just kill the process, but we now ask it to exit so it |
| // can choose where to stop the animation. |
| property_set("service.bootanim.exit", "1"); |
| |
| const int LOGTAG_SF_STOP_BOOTANIM = 60110; |
| LOG_EVENT_LONG(LOGTAG_SF_STOP_BOOTANIM, |
| ns2ms(systemTime(SYSTEM_TIME_MONOTONIC))); |
| |
| postMessageAsync(new LambdaMessage([this]() NO_THREAD_SAFETY_ANALYSIS { |
| readPersistentProperties(); |
| mBootStage = BootStage::FINISHED; |
| |
| // set the refresh rate according to the policy |
| const auto& performanceRefreshRate = |
| mRefreshRateConfigs.getRefreshRate(RefreshRateType::PERFORMANCE); |
| |
| if (performanceRefreshRate && isDisplayConfigAllowed(performanceRefreshRate->configId)) { |
| setRefreshRateTo(RefreshRateType::PERFORMANCE, Scheduler::ConfigEvent::None); |
| } else { |
| setRefreshRateTo(RefreshRateType::DEFAULT, Scheduler::ConfigEvent::None); |
| } |
| })); |
| } |
| |
| uint32_t SurfaceFlinger::getNewTexture() { |
| { |
| std::lock_guard lock(mTexturePoolMutex); |
| if (!mTexturePool.empty()) { |
| uint32_t name = mTexturePool.back(); |
| mTexturePool.pop_back(); |
| ATRACE_INT("TexturePoolSize", mTexturePool.size()); |
| return name; |
| } |
| |
| // The pool was too small, so increase it for the future |
| ++mTexturePoolSize; |
| } |
| |
| // The pool was empty, so we need to get a new texture name directly using a |
| // blocking call to the main thread |
| uint32_t name = 0; |
| postMessageSync(new LambdaMessage([&]() { getRenderEngine().genTextures(1, &name); })); |
| return name; |
| } |
| |
| void SurfaceFlinger::deleteTextureAsync(uint32_t texture) { |
| std::lock_guard lock(mTexturePoolMutex); |
| // We don't change the pool size, so the fix-up logic in postComposition will decide whether |
| // to actually delete this or not based on mTexturePoolSize |
| mTexturePool.push_back(texture); |
| ATRACE_INT("TexturePoolSize", mTexturePool.size()); |
| } |
| |
| // Do not call property_set on main thread which will be blocked by init |
| // Use StartPropertySetThread instead. |
| void SurfaceFlinger::init() { |
| ALOGI( "SurfaceFlinger's main thread ready to run. " |
| "Initializing graphics H/W..."); |
| |
| ALOGI("Phase offset NS: %" PRId64 "", mPhaseOffsets->getCurrentAppOffset()); |
| |
| Mutex::Autolock _l(mStateLock); |
| // start the EventThread |
| mScheduler = |
| getFactory().createScheduler([this](bool enabled) { setPrimaryVsyncEnabled(enabled); }, |
| mRefreshRateConfigs); |
| auto resyncCallback = |
| mScheduler->makeResyncCallback(std::bind(&SurfaceFlinger::getVsyncPeriod, this)); |
| |
| mAppConnectionHandle = |
| mScheduler->createConnection("app", mVsyncModulator.getOffsets().app, |
| mPhaseOffsets->getOffsetThresholdForNextVsync(), |
| resyncCallback, |
| impl::EventThread::InterceptVSyncsCallback()); |
| mSfConnectionHandle = |
| mScheduler->createConnection("sf", mVsyncModulator.getOffsets().sf, |
| mPhaseOffsets->getOffsetThresholdForNextVsync(), |
| resyncCallback, [this](nsecs_t timestamp) { |
| mInterceptor->saveVSyncEvent(timestamp); |
| }); |
| |
| mEventQueue->setEventConnection(mScheduler->getEventConnection(mSfConnectionHandle)); |
| mVsyncModulator.setSchedulerAndHandles(mScheduler.get(), mAppConnectionHandle.get(), |
| mSfConnectionHandle.get()); |
| |
| mRegionSamplingThread = |
| new RegionSamplingThread(*this, *mScheduler, |
| RegionSamplingThread::EnvironmentTimingTunables()); |
| |
| // Get a RenderEngine for the given display / config (can't fail) |
| int32_t renderEngineFeature = 0; |
| renderEngineFeature |= (useColorManagement ? |
| renderengine::RenderEngine::USE_COLOR_MANAGEMENT : 0); |
| renderEngineFeature |= (useContextPriority ? |
| renderengine::RenderEngine::USE_HIGH_PRIORITY_CONTEXT : 0); |
| renderEngineFeature |= |
| (enable_protected_contents(false) ? renderengine::RenderEngine::ENABLE_PROTECTED_CONTEXT |
| : 0); |
| |
| // TODO(b/77156734): We need to stop casting and use HAL types when possible. |
| // Sending maxFrameBufferAcquiredBuffers as the cache size is tightly tuned to single-display. |
| mCompositionEngine->setRenderEngine( |
| renderengine::RenderEngine::create(static_cast<int32_t>(defaultCompositionPixelFormat), |
| renderEngineFeature, maxFrameBufferAcquiredBuffers)); |
| |
| LOG_ALWAYS_FATAL_IF(mVrFlingerRequestsDisplay, |
| "Starting with vr flinger active is not currently supported."); |
| mCompositionEngine->setHwComposer(getFactory().createHWComposer(getBE().mHwcServiceName)); |
| mCompositionEngine->getHwComposer().registerCallback(this, getBE().mComposerSequenceId); |
| // Process any initial hotplug and resulting display changes. |
| processDisplayHotplugEventsLocked(); |
| const auto display = getDefaultDisplayDeviceLocked(); |
| LOG_ALWAYS_FATAL_IF(!display, "Missing internal display after registering composer callback."); |
| LOG_ALWAYS_FATAL_IF(!getHwComposer().isConnected(*display->getId()), |
| "Internal display is disconnected."); |
| |
| if (useVrFlinger) { |
| auto vrFlingerRequestDisplayCallback = [this](bool requestDisplay) { |
| // This callback is called from the vr flinger dispatch thread. We |
| // need to call signalTransaction(), which requires holding |
| // mStateLock when we're not on the main thread. Acquiring |
| // mStateLock from the vr flinger dispatch thread might trigger a |
| // deadlock in surface flinger (see b/66916578), so post a message |
| // to be handled on the main thread instead. |
| postMessageAsync(new LambdaMessage([=] { |
| ALOGI("VR request display mode: requestDisplay=%d", requestDisplay); |
| mVrFlingerRequestsDisplay = requestDisplay; |
| signalTransaction(); |
| })); |
| }; |
| mVrFlinger = dvr::VrFlinger::Create(getHwComposer().getComposer(), |
| getHwComposer() |
| .fromPhysicalDisplayId(*display->getId()) |
| .value_or(0), |
| vrFlingerRequestDisplayCallback); |
| if (!mVrFlinger) { |
| ALOGE("Failed to start vrflinger"); |
| } |
| } |
| |
| // initialize our drawing state |
| mDrawingState = mCurrentState; |
| |
| // set initial conditions (e.g. unblank default device) |
| initializeDisplays(); |
| |
| getRenderEngine().primeCache(); |
| |
| // Inform native graphics APIs whether the present timestamp is supported: |
| |
| const bool presentFenceReliable = |
| !getHwComposer().hasCapability(HWC2::Capability::PresentFenceIsNotReliable); |
| mStartPropertySetThread = getFactory().createStartPropertySetThread(presentFenceReliable); |
| |
| if (mStartPropertySetThread->Start() != NO_ERROR) { |
| ALOGE("Run StartPropertySetThread failed!"); |
| } |
| |
| mScheduler->setChangeRefreshRateCallback( |
| [this](RefreshRateType type, Scheduler::ConfigEvent event) { |
| Mutex::Autolock lock(mStateLock); |
| setRefreshRateTo(type, event); |
| }); |
| mScheduler->setGetCurrentRefreshRateTypeCallback([this] { |
| Mutex::Autolock lock(mStateLock); |
| const auto display = getDefaultDisplayDeviceLocked(); |
| if (!display) { |
| // If we don't have a default display the fallback to the default |
| // refresh rate type |
| return RefreshRateType::DEFAULT; |
| } |
| |
| const int configId = display->getActiveConfig(); |
| for (const auto& [type, refresh] : mRefreshRateConfigs.getRefreshRates()) { |
| if (refresh && refresh->configId == configId) { |
| return type; |
| } |
| } |
| // This should never happen, but just gracefully fallback to default. |
| return RefreshRateType::DEFAULT; |
| }); |
| mScheduler->setGetVsyncPeriodCallback([this] { |
| Mutex::Autolock lock(mStateLock); |
| return getVsyncPeriod(); |
| }); |
| |
| mRefreshRateConfigs.populate(getHwComposer().getConfigs(*display->getId())); |
| mRefreshRateStats.setConfigMode(getHwComposer().getActiveConfigIndex(*display->getId())); |
| |
| ALOGV("Done initializing"); |
| } |
| |
| void SurfaceFlinger::readPersistentProperties() { |
| Mutex::Autolock _l(mStateLock); |
| |
| char value[PROPERTY_VALUE_MAX]; |
| |
| property_get("persist.sys.sf.color_saturation", value, "1.0"); |
| mGlobalSaturationFactor = atof(value); |
| updateColorMatrixLocked(); |
| ALOGV("Saturation is set to %.2f", mGlobalSaturationFactor); |
| |
| property_get("persist.sys.sf.native_mode", value, "0"); |
| mDisplayColorSetting = static_cast<DisplayColorSetting>(atoi(value)); |
| |
| property_get("persist.sys.sf.color_mode", value, "0"); |
| mForceColorMode = static_cast<ColorMode>(atoi(value)); |
| } |
| |
| void SurfaceFlinger::startBootAnim() { |
| // Start boot animation service by setting a property mailbox |
| // if property setting thread is already running, Start() will be just a NOP |
| mStartPropertySetThread->Start(); |
| // Wait until property was set |
| if (mStartPropertySetThread->join() != NO_ERROR) { |
| ALOGE("Join StartPropertySetThread failed!"); |
| } |
| } |
| |
| size_t SurfaceFlinger::getMaxTextureSize() const { |
| return getRenderEngine().getMaxTextureSize(); |
| } |
| |
| size_t SurfaceFlinger::getMaxViewportDims() const { |
| return getRenderEngine().getMaxViewportDims(); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| |
| bool SurfaceFlinger::authenticateSurfaceTexture( |
| const sp<IGraphicBufferProducer>& bufferProducer) const { |
| Mutex::Autolock _l(mStateLock); |
| return authenticateSurfaceTextureLocked(bufferProducer); |
| } |
| |
| bool SurfaceFlinger::authenticateSurfaceTextureLocked( |
| const sp<IGraphicBufferProducer>& bufferProducer) const { |
| sp<IBinder> surfaceTextureBinder(IInterface::asBinder(bufferProducer)); |
| return mGraphicBufferProducerList.count(surfaceTextureBinder.get()) > 0; |
| } |
| |
| status_t SurfaceFlinger::getSupportedFrameTimestamps( |
| std::vector<FrameEvent>* outSupported) const { |
| *outSupported = { |
| FrameEvent::REQUESTED_PRESENT, |
| FrameEvent::ACQUIRE, |
| FrameEvent::LATCH, |
| FrameEvent::FIRST_REFRESH_START, |
| FrameEvent::LAST_REFRESH_START, |
| FrameEvent::GPU_COMPOSITION_DONE, |
| FrameEvent::DEQUEUE_READY, |
| FrameEvent::RELEASE, |
| }; |
| ConditionalLock _l(mStateLock, |
| std::this_thread::get_id() != mMainThreadId); |
| if (!getHwComposer().hasCapability( |
| HWC2::Capability::PresentFenceIsNotReliable)) { |
| outSupported->push_back(FrameEvent::DISPLAY_PRESENT); |
| } |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::getDisplayConfigs(const sp<IBinder>& displayToken, |
| Vector<DisplayInfo>* configs) { |
| if (!displayToken || !configs) { |
| return BAD_VALUE; |
| } |
| |
| Mutex::Autolock lock(mStateLock); |
| |
| const auto displayId = getPhysicalDisplayIdLocked(displayToken); |
| if (!displayId) { |
| return NAME_NOT_FOUND; |
| } |
| |
| // TODO: Not sure if display density should handled by SF any longer |
| class Density { |
| static float getDensityFromProperty(char const* propName) { |
| char property[PROPERTY_VALUE_MAX]; |
| float density = 0.0f; |
| if (property_get(propName, property, nullptr) > 0) { |
| density = strtof(property, nullptr); |
| } |
| return density; |
| } |
| public: |
| static float getEmuDensity() { |
| return getDensityFromProperty("qemu.sf.lcd_density"); } |
| static float getBuildDensity() { |
| return getDensityFromProperty("ro.sf.lcd_density"); } |
| }; |
| |
| configs->clear(); |
| |
| for (const auto& hwConfig : getHwComposer().getConfigs(*displayId)) { |
| DisplayInfo info = DisplayInfo(); |
| |
| float xdpi = hwConfig->getDpiX(); |
| float ydpi = hwConfig->getDpiY(); |
| |
| info.w = hwConfig->getWidth(); |
| info.h = hwConfig->getHeight(); |
| // Default display viewport to display width and height |
| info.viewportW = info.w; |
| info.viewportH = info.h; |
| |
| if (displayId == getInternalDisplayIdLocked()) { |
| // The density of the device is provided by a build property |
| float density = Density::getBuildDensity() / 160.0f; |
| if (density == 0) { |
| // the build doesn't provide a density -- this is wrong! |
| // use xdpi instead |
| ALOGE("ro.sf.lcd_density must be defined as a build property"); |
| density = xdpi / 160.0f; |
| } |
| if (Density::getEmuDensity()) { |
| // if "qemu.sf.lcd_density" is specified, it overrides everything |
| xdpi = ydpi = density = Density::getEmuDensity(); |
| density /= 160.0f; |
| } |
| info.density = density; |
| |
| // TODO: this needs to go away (currently needed only by webkit) |
| const auto display = getDefaultDisplayDeviceLocked(); |
| info.orientation = display ? display->getOrientation() : 0; |
| |
| // This is for screenrecord |
| const Rect viewport = display->getViewport(); |
| if (viewport.isValid()) { |
| info.viewportW = uint32_t(viewport.getWidth()); |
| info.viewportH = uint32_t(viewport.getHeight()); |
| } |
| } else { |
| // TODO: where should this value come from? |
| static const int TV_DENSITY = 213; |
| info.density = TV_DENSITY / 160.0f; |
| info.orientation = 0; |
| } |
| |
| info.xdpi = xdpi; |
| info.ydpi = ydpi; |
| info.fps = 1e9 / hwConfig->getVsyncPeriod(); |
| const auto refreshRateType = mRefreshRateConfigs.getRefreshRateType(hwConfig->getId()); |
| const auto offset = mPhaseOffsets->getOffsetsForRefreshRate(refreshRateType); |
| info.appVsyncOffset = offset.late.app; |
| |
| // This is how far in advance a buffer must be queued for |
| // presentation at a given time. If you want a buffer to appear |
| // on the screen at time N, you must submit the buffer before |
| // (N - presentationDeadline). |
| // |
| // Normally it's one full refresh period (to give SF a chance to |
| // latch the buffer), but this can be reduced by configuring a |
| // DispSync offset. Any additional delays introduced by the hardware |
| // composer or panel must be accounted for here. |
| // |
| // We add an additional 1ms to allow for processing time and |
| // differences between the ideal and actual refresh rate. |
| info.presentationDeadline = hwConfig->getVsyncPeriod() - offset.late.sf + 1000000; |
| |
| // All non-virtual displays are currently considered secure. |
| info.secure = true; |
| |
| if (displayId == getInternalDisplayIdLocked() && |
| primaryDisplayOrientation & DisplayState::eOrientationSwapMask) { |
| std::swap(info.w, info.h); |
| } |
| |
| configs->push_back(info); |
| } |
| |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::getDisplayStats(const sp<IBinder>&, DisplayStatInfo* stats) { |
| if (!stats) { |
| return BAD_VALUE; |
| } |
| |
| mScheduler->getDisplayStatInfo(stats); |
| return NO_ERROR; |
| } |
| |
| int SurfaceFlinger::getActiveConfig(const sp<IBinder>& displayToken) { |
| const auto display = getDisplayDevice(displayToken); |
| if (!display) { |
| ALOGE("getActiveConfig: Invalid display token %p", displayToken.get()); |
| return BAD_VALUE; |
| } |
| |
| return display->getActiveConfig(); |
| } |
| |
| void SurfaceFlinger::setDesiredActiveConfig(const ActiveConfigInfo& info) { |
| ATRACE_CALL(); |
| |
| // Don't check against the current mode yet. Worst case we set the desired |
| // config twice. However event generation config might have changed so we need to update it |
| // accordingly |
| std::lock_guard<std::mutex> lock(mActiveConfigLock); |
| const Scheduler::ConfigEvent prevConfig = mDesiredActiveConfig.event; |
| mDesiredActiveConfig = info; |
| mDesiredActiveConfig.event = mDesiredActiveConfig.event | prevConfig; |
| |
| if (!mDesiredActiveConfigChanged) { |
| // This will trigger HWC refresh without resetting the idle timer. |
| repaintEverythingForHWC(); |
| // Start receiving vsync samples now, so that we can detect a period |
| // switch. |
| mScheduler->resyncToHardwareVsync(true, getVsyncPeriod()); |
| // As we called to set period, we will call to onRefreshRateChangeCompleted once |
| // DispSync model is locked. |
| mVsyncModulator.onRefreshRateChangeInitiated(); |
| mPhaseOffsets->setRefreshRateType(info.type); |
| const auto [early, gl, late] = mPhaseOffsets->getCurrentOffsets(); |
| mVsyncModulator.setPhaseOffsets(early, gl, late, |
| mPhaseOffsets->getOffsetThresholdForNextVsync()); |
| } |
| mDesiredActiveConfigChanged = true; |
| ATRACE_INT("DesiredActiveConfigChanged", mDesiredActiveConfigChanged); |
| |
| if (mRefreshRateOverlay) { |
| mRefreshRateOverlay->changeRefreshRate(mDesiredActiveConfig.type); |
| } |
| } |
| |
| status_t SurfaceFlinger::setActiveConfig(const sp<IBinder>& displayToken, int mode) { |
| ATRACE_CALL(); |
| |
| std::vector<int32_t> allowedConfig; |
| allowedConfig.push_back(mode); |
| |
| return setAllowedDisplayConfigs(displayToken, allowedConfig); |
| } |
| |
| void SurfaceFlinger::setActiveConfigInternal() { |
| ATRACE_CALL(); |
| |
| const auto display = getDefaultDisplayDeviceLocked(); |
| if (!display) { |
| return; |
| } |
| |
| std::lock_guard<std::mutex> lock(mActiveConfigLock); |
| mRefreshRateStats.setConfigMode(mUpcomingActiveConfig.configId); |
| |
| display->setActiveConfig(mUpcomingActiveConfig.configId); |
| |
| mPhaseOffsets->setRefreshRateType(mUpcomingActiveConfig.type); |
| const auto [early, gl, late] = mPhaseOffsets->getCurrentOffsets(); |
| mVsyncModulator.setPhaseOffsets(early, gl, late, |
| mPhaseOffsets->getOffsetThresholdForNextVsync()); |
| ATRACE_INT("ActiveConfigMode", mUpcomingActiveConfig.configId); |
| |
| if (mUpcomingActiveConfig.event != Scheduler::ConfigEvent::None) { |
| mScheduler->onConfigChanged(mAppConnectionHandle, display->getId()->value, |
| mUpcomingActiveConfig.configId); |
| } |
| } |
| |
| void SurfaceFlinger::desiredActiveConfigChangeDone() { |
| std::lock_guard<std::mutex> lock(mActiveConfigLock); |
| mDesiredActiveConfig.event = Scheduler::ConfigEvent::None; |
| mDesiredActiveConfigChanged = false; |
| ATRACE_INT("DesiredActiveConfigChanged", mDesiredActiveConfigChanged); |
| |
| mScheduler->resyncToHardwareVsync(true, getVsyncPeriod()); |
| mPhaseOffsets->setRefreshRateType(mUpcomingActiveConfig.type); |
| const auto [early, gl, late] = mPhaseOffsets->getCurrentOffsets(); |
| mVsyncModulator.setPhaseOffsets(early, gl, late, |
| mPhaseOffsets->getOffsetThresholdForNextVsync()); |
| } |
| |
| bool SurfaceFlinger::performSetActiveConfig() { |
| ATRACE_CALL(); |
| if (mCheckPendingFence) { |
| if (previousFrameMissed()) { |
| // fence has not signaled yet. wait for the next invalidate |
| mEventQueue->invalidate(); |
| return true; |
| } |
| |
| // We received the present fence from the HWC, so we assume it successfully updated |
| // the config, hence we update SF. |
| mCheckPendingFence = false; |
| setActiveConfigInternal(); |
| } |
| |
| // Store the local variable to release the lock. |
| ActiveConfigInfo desiredActiveConfig; |
| { |
| std::lock_guard<std::mutex> lock(mActiveConfigLock); |
| if (!mDesiredActiveConfigChanged) { |
| return false; |
| } |
| desiredActiveConfig = mDesiredActiveConfig; |
| } |
| |
| const auto display = getDefaultDisplayDeviceLocked(); |
| if (!display || display->getActiveConfig() == desiredActiveConfig.configId) { |
| // display is not valid or we are already in the requested mode |
| // on both cases there is nothing left to do |
| desiredActiveConfigChangeDone(); |
| return false; |
| } |
| |
| // Desired active config was set, it is different than the config currently in use, however |
| // allowed configs might have change by the time we process the refresh. |
| // Make sure the desired config is still allowed |
| if (!isDisplayConfigAllowed(desiredActiveConfig.configId)) { |
| desiredActiveConfigChangeDone(); |
| return false; |
| } |
| |
| mUpcomingActiveConfig = desiredActiveConfig; |
| const auto displayId = display->getId(); |
| LOG_ALWAYS_FATAL_IF(!displayId); |
| |
| ATRACE_INT("ActiveConfigModeHWC", mUpcomingActiveConfig.configId); |
| getHwComposer().setActiveConfig(*displayId, mUpcomingActiveConfig.configId); |
| |
| // we need to submit an empty frame to HWC to start the process |
| mCheckPendingFence = true; |
| mEventQueue->invalidate(); |
| return false; |
| } |
| |
| status_t SurfaceFlinger::getDisplayColorModes(const sp<IBinder>& displayToken, |
| Vector<ColorMode>* outColorModes) { |
| if (!displayToken || !outColorModes) { |
| return BAD_VALUE; |
| } |
| |
| std::vector<ColorMode> modes; |
| bool isInternalDisplay = false; |
| { |
| ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId); |
| |
| const auto displayId = getPhysicalDisplayIdLocked(displayToken); |
| if (!displayId) { |
| return NAME_NOT_FOUND; |
| } |
| |
| modes = getHwComposer().getColorModes(*displayId); |
| isInternalDisplay = displayId == getInternalDisplayIdLocked(); |
| } |
| outColorModes->clear(); |
| |
| // If it's built-in display and the configuration claims it's not wide color capable, |
| // filter out all wide color modes. The typical reason why this happens is that the |
| // hardware is not good enough to support GPU composition of wide color, and thus the |
| // OEMs choose to disable this capability. |
| if (isInternalDisplay && !hasWideColorDisplay) { |
| std::remove_copy_if(modes.cbegin(), modes.cend(), std::back_inserter(*outColorModes), |
| isWideColorMode); |
| } else { |
| std::copy(modes.cbegin(), modes.cend(), std::back_inserter(*outColorModes)); |
| } |
| |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::getDisplayNativePrimaries(const sp<IBinder>& displayToken, |
| ui::DisplayPrimaries &primaries) { |
| if (!displayToken) { |
| return BAD_VALUE; |
| } |
| |
| // Currently we only support this API for a single internal display. |
| if (getInternalDisplayToken() != displayToken) { |
| return BAD_VALUE; |
| } |
| |
| memcpy(&primaries, &mInternalDisplayPrimaries, sizeof(ui::DisplayPrimaries)); |
| return NO_ERROR; |
| } |
| |
| ColorMode SurfaceFlinger::getActiveColorMode(const sp<IBinder>& displayToken) { |
| if (const auto display = getDisplayDevice(displayToken)) { |
| return display->getCompositionDisplay()->getState().colorMode; |
| } |
| return static_cast<ColorMode>(BAD_VALUE); |
| } |
| |
| status_t SurfaceFlinger::setActiveColorMode(const sp<IBinder>& displayToken, ColorMode mode) { |
| postMessageSync(new LambdaMessage([&] { |
| Vector<ColorMode> modes; |
| getDisplayColorModes(displayToken, &modes); |
| bool exists = std::find(std::begin(modes), std::end(modes), mode) != std::end(modes); |
| if (mode < ColorMode::NATIVE || !exists) { |
| ALOGE("Attempt to set invalid active color mode %s (%d) for display token %p", |
| decodeColorMode(mode).c_str(), mode, displayToken.get()); |
| return; |
| } |
| const auto display = getDisplayDevice(displayToken); |
| if (!display) { |
| ALOGE("Attempt to set active color mode %s (%d) for invalid display token %p", |
| decodeColorMode(mode).c_str(), mode, displayToken.get()); |
| } else if (display->isVirtual()) { |
| ALOGW("Attempt to set active color mode %s (%d) for virtual display", |
| decodeColorMode(mode).c_str(), mode); |
| } else { |
| display->getCompositionDisplay()->setColorMode(mode, Dataspace::UNKNOWN, |
| RenderIntent::COLORIMETRIC); |
| } |
| })); |
| |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::clearAnimationFrameStats() { |
| Mutex::Autolock _l(mStateLock); |
| mAnimFrameTracker.clearStats(); |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::getAnimationFrameStats(FrameStats* outStats) const { |
| Mutex::Autolock _l(mStateLock); |
| mAnimFrameTracker.getStats(outStats); |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::getHdrCapabilities(const sp<IBinder>& displayToken, |
| HdrCapabilities* outCapabilities) const { |
| Mutex::Autolock _l(mStateLock); |
| |
| const auto display = getDisplayDeviceLocked(displayToken); |
| if (!display) { |
| ALOGE("getHdrCapabilities: Invalid display token %p", displayToken.get()); |
| return BAD_VALUE; |
| } |
| |
| // At this point the DisplayDeivce should already be set up, |
| // meaning the luminance information is already queried from |
| // hardware composer and stored properly. |
| const HdrCapabilities& capabilities = display->getHdrCapabilities(); |
| *outCapabilities = HdrCapabilities(capabilities.getSupportedHdrTypes(), |
| capabilities.getDesiredMaxLuminance(), |
| capabilities.getDesiredMaxAverageLuminance(), |
| capabilities.getDesiredMinLuminance()); |
| |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::getDisplayedContentSamplingAttributes(const sp<IBinder>& displayToken, |
| ui::PixelFormat* outFormat, |
| ui::Dataspace* outDataspace, |
| uint8_t* outComponentMask) const { |
| if (!outFormat || !outDataspace || !outComponentMask) { |
| return BAD_VALUE; |
| } |
| const auto display = getDisplayDevice(displayToken); |
| if (!display || !display->getId()) { |
| ALOGE("getDisplayedContentSamplingAttributes: Bad display token: %p", display.get()); |
| return BAD_VALUE; |
| } |
| return getHwComposer().getDisplayedContentSamplingAttributes(*display->getId(), outFormat, |
| outDataspace, outComponentMask); |
| } |
| |
| status_t SurfaceFlinger::setDisplayContentSamplingEnabled(const sp<IBinder>& displayToken, |
| bool enable, uint8_t componentMask, |
| uint64_t maxFrames) const { |
| const auto display = getDisplayDevice(displayToken); |
| if (!display || !display->getId()) { |
| ALOGE("setDisplayContentSamplingEnabled: Bad display token: %p", display.get()); |
| return BAD_VALUE; |
| } |
| |
| return getHwComposer().setDisplayContentSamplingEnabled(*display->getId(), enable, |
| componentMask, maxFrames); |
| } |
| |
| status_t SurfaceFlinger::getDisplayedContentSample(const sp<IBinder>& displayToken, |
| uint64_t maxFrames, uint64_t timestamp, |
| DisplayedFrameStats* outStats) const { |
| const auto display = getDisplayDevice(displayToken); |
| if (!display || !display->getId()) { |
| ALOGE("getDisplayContentSample: Bad display token: %p", displayToken.get()); |
| return BAD_VALUE; |
| } |
| |
| return getHwComposer().getDisplayedContentSample(*display->getId(), maxFrames, timestamp, |
| outStats); |
| } |
| |
| status_t SurfaceFlinger::getProtectedContentSupport(bool* outSupported) const { |
| if (!outSupported) { |
| return BAD_VALUE; |
| } |
| *outSupported = getRenderEngine().supportsProtectedContent(); |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::isWideColorDisplay(const sp<IBinder>& displayToken, |
| bool* outIsWideColorDisplay) const { |
| if (!displayToken || !outIsWideColorDisplay) { |
| return BAD_VALUE; |
| } |
| Mutex::Autolock _l(mStateLock); |
| const auto display = getDisplayDeviceLocked(displayToken); |
| if (!display) { |
| return BAD_VALUE; |
| } |
| |
| // Use hasWideColorDisplay to override built-in display. |
| const auto displayId = display->getId(); |
| if (displayId && displayId == getInternalDisplayIdLocked()) { |
| *outIsWideColorDisplay = hasWideColorDisplay; |
| return NO_ERROR; |
| } |
| *outIsWideColorDisplay = display->hasWideColorGamut(); |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::enableVSyncInjections(bool enable) { |
| postMessageSync(new LambdaMessage([&] { |
| Mutex::Autolock _l(mStateLock); |
| |
| if (mInjectVSyncs == enable) { |
| return; |
| } |
| |
| auto resyncCallback = |
| mScheduler->makeResyncCallback(std::bind(&SurfaceFlinger::getVsyncPeriod, this)); |
| |
| // TODO(b/128863962): Part of the Injector should be refactored, so that it |
| // can be passed to Scheduler. |
| if (enable) { |
| ALOGV("VSync Injections enabled"); |
| if (mVSyncInjector.get() == nullptr) { |
| mVSyncInjector = std::make_unique<InjectVSyncSource>(); |
| mInjectorEventThread = std::make_unique< |
| impl::EventThread>(mVSyncInjector.get(), |
| impl::EventThread::InterceptVSyncsCallback(), |
| "injEventThread"); |
| } |
| mEventQueue->setEventThread(mInjectorEventThread.get(), std::move(resyncCallback)); |
| } else { |
| ALOGV("VSync Injections disabled"); |
| mEventQueue->setEventThread(mScheduler->getEventThread(mSfConnectionHandle), |
| std::move(resyncCallback)); |
| } |
| |
| mInjectVSyncs = enable; |
| })); |
| |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::injectVSync(nsecs_t when) { |
| Mutex::Autolock _l(mStateLock); |
| |
| if (!mInjectVSyncs) { |
| ALOGE("VSync Injections not enabled"); |
| return BAD_VALUE; |
| } |
| if (mInjectVSyncs && mInjectorEventThread.get() != nullptr) { |
| ALOGV("Injecting VSync inside SurfaceFlinger"); |
| mVSyncInjector->onInjectSyncEvent(when); |
| } |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::getLayerDebugInfo(std::vector<LayerDebugInfo>* outLayers) const |
| NO_THREAD_SAFETY_ANALYSIS { |
| // Try to acquire a lock for 1s, fail gracefully |
| const status_t err = mStateLock.timedLock(s2ns(1)); |
| const bool locked = (err == NO_ERROR); |
| if (!locked) { |
| ALOGE("LayerDebugInfo: SurfaceFlinger unresponsive (%s [%d]) - exit", strerror(-err), err); |
| return TIMED_OUT; |
| } |
| |
| outLayers->clear(); |
| mCurrentState.traverseInZOrder([&](Layer* layer) { |
| outLayers->push_back(layer->getLayerDebugInfo()); |
| }); |
| |
| mStateLock.unlock(); |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::getCompositionPreference( |
| Dataspace* outDataspace, ui::PixelFormat* outPixelFormat, |
| Dataspace* outWideColorGamutDataspace, |
| ui::PixelFormat* outWideColorGamutPixelFormat) const { |
| *outDataspace = mDefaultCompositionDataspace; |
| *outPixelFormat = defaultCompositionPixelFormat; |
| *outWideColorGamutDataspace = mWideColorGamutCompositionDataspace; |
| *outWideColorGamutPixelFormat = wideColorGamutCompositionPixelFormat; |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::addRegionSamplingListener(const Rect& samplingArea, |
| const sp<IBinder>& stopLayerHandle, |
| const sp<IRegionSamplingListener>& listener) { |
| if (!listener || samplingArea == Rect::INVALID_RECT) { |
| return BAD_VALUE; |
| } |
| mRegionSamplingThread->addListener(samplingArea, stopLayerHandle, listener); |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::removeRegionSamplingListener(const sp<IRegionSamplingListener>& listener) { |
| if (!listener) { |
| return BAD_VALUE; |
| } |
| mRegionSamplingThread->removeListener(listener); |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::getDisplayBrightnessSupport(const sp<IBinder>& displayToken, |
| bool* outSupport) const { |
| if (!displayToken || !outSupport) { |
| return BAD_VALUE; |
| } |
| const auto displayId = getPhysicalDisplayIdLocked(displayToken); |
| if (!displayId) { |
| return NAME_NOT_FOUND; |
| } |
| *outSupport = |
| getHwComposer().hasDisplayCapability(displayId, HWC2::DisplayCapability::Brightness); |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::setDisplayBrightness(const sp<IBinder>& displayToken, |
| float brightness) const { |
| if (!displayToken) { |
| return BAD_VALUE; |
| } |
| const auto displayId = getPhysicalDisplayIdLocked(displayToken); |
| if (!displayId) { |
| return NAME_NOT_FOUND; |
| } |
| return getHwComposer().setDisplayBrightness(*displayId, brightness); |
| } |
| |
| status_t SurfaceFlinger::notifyPowerHint(int32_t hintId) { |
| PowerHint powerHint = static_cast<PowerHint>(hintId); |
| |
| if (powerHint == PowerHint::INTERACTION) { |
| mScheduler->notifyTouchEvent(); |
| } |
| |
| return NO_ERROR; |
| } |
| |
| // ---------------------------------------------------------------------------- |
| |
| sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection( |
| ISurfaceComposer::VsyncSource vsyncSource, ISurfaceComposer::ConfigChanged configChanged) { |
| auto resyncCallback = mScheduler->makeResyncCallback([this] { |
| Mutex::Autolock lock(mStateLock); |
| return getVsyncPeriod(); |
| }); |
| |
| const auto& handle = |
| vsyncSource == eVsyncSourceSurfaceFlinger ? mSfConnectionHandle : mAppConnectionHandle; |
| |
| return mScheduler->createDisplayEventConnection(handle, std::move(resyncCallback), |
| configChanged); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| |
| void SurfaceFlinger::waitForEvent() { |
| mEventQueue->waitMessage(); |
| } |
| |
| void SurfaceFlinger::signalTransaction() { |
| mScheduler->resetIdleTimer(); |
| mEventQueue->invalidate(); |
| } |
| |
| void SurfaceFlinger::signalLayerUpdate() { |
| mScheduler->resetIdleTimer(); |
| mEventQueue->invalidate(); |
| } |
| |
| void SurfaceFlinger::signalRefresh() { |
| mRefreshPending = true; |
| mEventQueue->refresh(); |
| } |
| |
| status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg, |
| nsecs_t reltime, uint32_t /* flags */) { |
| return mEventQueue->postMessage(msg, reltime); |
| } |
| |
| status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg, |
| nsecs_t reltime, uint32_t /* flags */) { |
| status_t res = mEventQueue->postMessage(msg, reltime); |
| if (res == NO_ERROR) { |
| msg->wait(); |
| } |
| return res; |
| } |
| |
| void SurfaceFlinger::run() { |
| do { |
| waitForEvent(); |
| } while (true); |
| } |
| |
| nsecs_t SurfaceFlinger::getVsyncPeriod() const { |
| const auto displayId = getInternalDisplayIdLocked(); |
| if (!displayId || !getHwComposer().isConnected(*displayId)) { |
| return 0; |
| } |
| |
| const auto config = getHwComposer().getActiveConfig(*displayId); |
| return config ? config->getVsyncPeriod() : 0; |
| } |
| |
| void SurfaceFlinger::onVsyncReceived(int32_t sequenceId, hwc2_display_t hwcDisplayId, |
| int64_t timestamp) { |
| ATRACE_NAME("SF onVsync"); |
| |
| Mutex::Autolock lock(mStateLock); |
| // Ignore any vsyncs from a previous hardware composer. |
| if (sequenceId != getBE().mComposerSequenceId) { |
| return; |
| } |
| |
| if (!getHwComposer().onVsync(hwcDisplayId, timestamp)) { |
| return; |
| } |
| |
| if (hwcDisplayId != getHwComposer().getInternalHwcDisplayId()) { |
| // For now, we don't do anything with external display vsyncs. |
| return; |
| } |
| |
| bool periodFlushed = false; |
| mScheduler->addResyncSample(timestamp, &periodFlushed); |
| if (periodFlushed) { |
| mVsyncModulator.onRefreshRateChangeCompleted(); |
| } |
| } |
| |
| void SurfaceFlinger::getCompositorTiming(CompositorTiming* compositorTiming) { |
| std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock); |
| *compositorTiming = getBE().mCompositorTiming; |
| } |
| |
| bool SurfaceFlinger::isDisplayConfigAllowed(int32_t configId) { |
| return mAllowedDisplayConfigs.empty() || mAllowedDisplayConfigs.count(configId); |
| } |
| |
| void SurfaceFlinger::setRefreshRateTo(RefreshRateType refreshRate, Scheduler::ConfigEvent event) { |
| const auto display = getDefaultDisplayDeviceLocked(); |
| if (!display || mBootStage != BootStage::FINISHED) { |
| return; |
| } |
| ATRACE_CALL(); |
| |
| // Don't do any updating if the current fps is the same as the new one. |
| const auto& refreshRateConfig = mRefreshRateConfigs.getRefreshRate(refreshRate); |
| if (!refreshRateConfig) { |
| ALOGV("Skipping refresh rate change request for unsupported rate."); |
| return; |
| } |
| |
| const int desiredConfigId = refreshRateConfig->configId; |
| |
| if (!isDisplayConfigAllowed(desiredConfigId)) { |
| ALOGV("Skipping config %d as it is not part of allowed configs", desiredConfigId); |
| return; |
| } |
| |
| setDesiredActiveConfig({refreshRate, desiredConfigId, event}); |
| } |
| |
| void SurfaceFlinger::onHotplugReceived(int32_t sequenceId, hwc2_display_t hwcDisplayId, |
| HWC2::Connection connection) { |
| ALOGV("%s(%d, %" PRIu64 ", %s)", __FUNCTION__, sequenceId, hwcDisplayId, |
| connection == HWC2::Connection::Connected ? "connected" : "disconnected"); |
| |
| // Ignore events that do not have the right sequenceId. |
| if (sequenceId != getBE().mComposerSequenceId) { |
| return; |
| } |
| |
| // Only lock if we're not on the main thread. This function is normally |
| // called on a hwbinder thread, but for the primary display it's called on |
| // the main thread with the state lock already held, so don't attempt to |
| // acquire it here. |
| ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId); |
| |
| mPendingHotplugEvents.emplace_back(HotplugEvent{hwcDisplayId, connection}); |
| |
| if (std::this_thread::get_id() == mMainThreadId) { |
| // Process all pending hot plug events immediately if we are on the main thread. |
| processDisplayHotplugEventsLocked(); |
| } |
| |
| setTransactionFlags(eDisplayTransactionNeeded); |
| } |
| |
| void SurfaceFlinger::onRefreshReceived(int sequenceId, hwc2_display_t /*hwcDisplayId*/) { |
| Mutex::Autolock lock(mStateLock); |
| if (sequenceId != getBE().mComposerSequenceId) { |
| return; |
| } |
| repaintEverythingForHWC(); |
| } |
| |
| void SurfaceFlinger::setPrimaryVsyncEnabled(bool enabled) { |
| ATRACE_CALL(); |
| |
| // Enable / Disable HWVsync from the main thread to avoid race conditions with |
| // display power state. |
| postMessageAsync(new LambdaMessage( |
| [=]() NO_THREAD_SAFETY_ANALYSIS { setPrimaryVsyncEnabledInternal(enabled); })); |
| } |
| |
| void SurfaceFlinger::setPrimaryVsyncEnabledInternal(bool enabled) { |
| ATRACE_CALL(); |
| |
| mHWCVsyncPendingState = enabled ? HWC2::Vsync::Enable : HWC2::Vsync::Disable; |
| |
| if (const auto displayId = getInternalDisplayIdLocked()) { |
| sp<DisplayDevice> display = getDefaultDisplayDeviceLocked(); |
| if (display && display->isPoweredOn()) { |
| setVsyncEnabledInHWC(*displayId, mHWCVsyncPendingState); |
| } |
| } |
| } |
| |
| // Note: it is assumed the caller holds |mStateLock| when this is called |
| void SurfaceFlinger::resetDisplayState() { |
| mScheduler->disableHardwareVsync(true); |
| // Clear the drawing state so that the logic inside of |
| // handleTransactionLocked will fire. It will determine the delta between |
| // mCurrentState and mDrawingState and re-apply all changes when we make the |
| // transition. |
| mDrawingState.displays.clear(); |
| mDisplays.clear(); |
| } |
| |
| void SurfaceFlinger::updateVrFlinger() { |
| ATRACE_CALL(); |
| if (!mVrFlinger) |
| return; |
| bool vrFlingerRequestsDisplay = mVrFlingerRequestsDisplay; |
| if (vrFlingerRequestsDisplay == getHwComposer().isUsingVrComposer()) { |
| return; |
| } |
| |
| if (vrFlingerRequestsDisplay && !getHwComposer().getComposer()->isRemote()) { |
| ALOGE("Vr flinger is only supported for remote hardware composer" |
| " service connections. Ignoring request to transition to vr" |
| " flinger."); |
| mVrFlingerRequestsDisplay = false; |
| return; |
| } |
| |
| Mutex::Autolock _l(mStateLock); |
| |
| sp<DisplayDevice> display = getDefaultDisplayDeviceLocked(); |
| LOG_ALWAYS_FATAL_IF(!display); |
| |
| const int currentDisplayPowerMode = display->getPowerMode(); |
| |
| // Clear out all the output layers from the composition engine for all |
| // displays before destroying the hardware composer interface. This ensures |
| // any HWC layers are destroyed through that interface before it becomes |
| // invalid. |
| for (const auto& [token, displayDevice] : mDisplays) { |
| displayDevice->getCompositionDisplay()->setOutputLayersOrderedByZ( |
| compositionengine::Output::OutputLayers()); |
| } |
| |
| // This DisplayDevice will no longer be relevant once resetDisplayState() is |
| // called below. Clear the reference now so we don't accidentally use it |
| // later. |
| display.clear(); |
| |
| if (!vrFlingerRequestsDisplay) { |
| mVrFlinger->SeizeDisplayOwnership(); |
| } |
| |
| resetDisplayState(); |
| // Delete the current instance before creating the new one |
| mCompositionEngine->setHwComposer(std::unique_ptr<HWComposer>()); |
| mCompositionEngine->setHwComposer(getFactory().createHWComposer( |
| vrFlingerRequestsDisplay ? "vr" : getBE().mHwcServiceName)); |
| getHwComposer().registerCallback(this, ++getBE().mComposerSequenceId); |
| |
| LOG_ALWAYS_FATAL_IF(!getHwComposer().getComposer()->isRemote(), |
| "Switched to non-remote hardware composer"); |
| |
| if (vrFlingerRequestsDisplay) { |
| mVrFlinger->GrantDisplayOwnership(); |
| } |
| |
| mVisibleRegionsDirty = true; |
| invalidateHwcGeometry(); |
| |
| // Re-enable default display. |
| display = getDefaultDisplayDeviceLocked(); |
| LOG_ALWAYS_FATAL_IF(!display); |
| setPowerModeInternal(display, currentDisplayPowerMode); |
| |
| // Reset the timing values to account for the period of the swapped in HWC |
| const nsecs_t vsyncPeriod = getVsyncPeriod(); |
| mAnimFrameTracker.setDisplayRefreshPeriod(vsyncPeriod); |
| |
| // The present fences returned from vr_hwc are not an accurate |
| // representation of vsync times. |
| mScheduler->setIgnorePresentFences(getHwComposer().isUsingVrComposer() || !hasSyncFramework); |
| |
| // Use phase of 0 since phase is not known. |
| // Use latency of 0, which will snap to the ideal latency. |
| DisplayStatInfo stats{0 /* vsyncTime */, vsyncPeriod}; |
| setCompositorTimingSnapped(stats, 0); |
| |
| mScheduler->resyncToHardwareVsync(false, vsyncPeriod); |
| |
| mRepaintEverything = true; |
| setTransactionFlags(eDisplayTransactionNeeded); |
| } |
| |
| bool SurfaceFlinger::previousFrameMissed() NO_THREAD_SAFETY_ANALYSIS { |
| // We are storing the last 2 present fences. If sf's phase offset is to be |
| // woken up before the actual vsync but targeting the next vsync, we need to check |
| // fence N-2 |
| const sp<Fence>& fence = |
| mVsyncModulator.getOffsets().sf < mPhaseOffsets->getOffsetThresholdForNextVsync() |
| ? mPreviousPresentFences[0] |
| : mPreviousPresentFences[1]; |
| |
| return fence != Fence::NO_FENCE && (fence->getStatus() == Fence::Status::Unsignaled); |
| } |
| |
| void SurfaceFlinger::populateExpectedPresentTime() NO_THREAD_SAFETY_ANALYSIS { |
| DisplayStatInfo stats; |
| mScheduler->getDisplayStatInfo(&stats); |
| const nsecs_t presentTime = mScheduler->getDispSyncExpectedPresentTime(); |
| // Inflate the expected present time if we're targetting the next vsync. |
| mExpectedPresentTime = |
| mVsyncModulator.getOffsets().sf < mPhaseOffsets->getOffsetThresholdForNextVsync() |
| ? presentTime |
| : presentTime + stats.vsyncPeriod; |
| } |
| |
| void SurfaceFlinger::onMessageReceived(int32_t what) NO_THREAD_SAFETY_ANALYSIS { |
| ATRACE_CALL(); |
| switch (what) { |
| case MessageQueue::INVALIDATE: { |
| // calculate the expected present time once and use the cached |
| // value throughout this frame to make sure all layers are |
| // seeing this same value. |
| populateExpectedPresentTime(); |
| |
| bool frameMissed = previousFrameMissed(); |
| bool hwcFrameMissed = mHadDeviceComposition && frameMissed; |
| bool gpuFrameMissed = mHadClientComposition && frameMissed; |
| ATRACE_INT("FrameMissed", static_cast<int>(frameMissed)); |
| ATRACE_INT("HwcFrameMissed", static_cast<int>(hwcFrameMissed)); |
| ATRACE_INT("GpuFrameMissed", static_cast<int>(gpuFrameMissed)); |
| if (frameMissed) { |
| mFrameMissedCount++; |
| mTimeStats->incrementMissedFrames(); |
| } |
| |
| if (hwcFrameMissed) { |
| mHwcFrameMissedCount++; |
| } |
| |
| if (gpuFrameMissed) { |
| mGpuFrameMissedCount++; |
| } |
| |
| if (mUseSmart90ForVideo) { |
| // This call is made each time SF wakes up and creates a new frame. It is part |
| // of video detection feature. |
| mScheduler->updateFpsBasedOnContent(); |
| } |
| |
| if (performSetActiveConfig()) { |
| break; |
| } |
| |
| if (frameMissed && mPropagateBackpressure) { |
| if ((hwcFrameMissed && !gpuFrameMissed) || |
| mPropagateBackpressureClientComposition) { |
| signalLayerUpdate(); |
| break; |
| } |
| } |
| |
| // Now that we're going to make it to the handleMessageTransaction() |
| // call below it's safe to call updateVrFlinger(), which will |
| // potentially trigger a display handoff. |
| updateVrFlinger(); |
| |
| bool refreshNeeded = handleMessageTransaction(); |
| refreshNeeded |= handleMessageInvalidate(); |
| |
| updateCursorAsync(); |
| updateInputFlinger(); |
| |
| refreshNeeded |= mRepaintEverything; |
| if (refreshNeeded && CC_LIKELY(mBootStage != BootStage::BOOTLOADER)) { |
| // Signal a refresh if a transaction modified the window state, |
| // a new buffer was latched, or if HWC has requested a full |
| // repaint |
| signalRefresh(); |
| } |
| break; |
| } |
| case MessageQueue::REFRESH: { |
| handleMessageRefresh(); |
| break; |
| } |
| } |
| } |
| |
| bool SurfaceFlinger::handleMessageTransaction() { |
| ATRACE_CALL(); |
| uint32_t transactionFlags = peekTransactionFlags(); |
| |
| bool flushedATransaction = flushTransactionQueues(); |
| |
| bool runHandleTransaction = transactionFlags && |
| ((transactionFlags != eTransactionFlushNeeded) || flushedATransaction); |
| |
| if (runHandleTransaction) { |
| handleTransaction(eTransactionMask); |
| } else { |
| getTransactionFlags(eTransactionFlushNeeded); |
| } |
| |
| if (transactionFlushNeeded()) { |
| setTransactionFlags(eTransactionFlushNeeded); |
| } |
| |
| return runHandleTransaction; |
| } |
| |
| void SurfaceFlinger::handleMessageRefresh() { |
| ATRACE_CALL(); |
| |
| mRefreshPending = false; |
| |
| const bool repaintEverything = mRepaintEverything.exchange(false); |
| preComposition(); |
| rebuildLayerStacks(); |
| calculateWorkingSet(); |
| long compositionTime = elapsedRealtimeNano(); |
| for (const auto& [token, display] : mDisplays) { |
| beginFrame(display); |
| prepareFrame(display); |
| doDebugFlashRegions(display, repaintEverything); |
| doComposition(display, repaintEverything); |
| } |
| |
| logLayerStats(); |
| |
| postFrame(); |
| postComposition(); |
| |
| mHadClientComposition = false; |
| mHadDeviceComposition = false; |
| for (const auto& [token, displayDevice] : mDisplays) { |
| auto display = displayDevice->getCompositionDisplay(); |
| const auto displayId = display->getId(); |
| mHadClientComposition = |
| mHadClientComposition || getHwComposer().hasClientComposition(displayId); |
| mHadDeviceComposition = |
| mHadDeviceComposition || getHwComposer().hasDeviceComposition(displayId); |
| } |
| |
| mVsyncModulator.onRefreshed(mHadClientComposition); |
| |
| mLayersWithQueuedFrames.clear(); |
| if (mVisibleRegionsDirty) { |
| mVisibleRegionsDirty = false; |
| if (mTracingEnabled) { |
| mTracing.notify(compositionTime, "visibleRegionsDirty"); |
| } |
| } |
| } |
| |
| |
| bool SurfaceFlinger::handleMessageInvalidate() { |
| ATRACE_CALL(); |
| bool refreshNeeded = handlePageFlip(); |
| |
| if (mVisibleRegionsDirty) { |
| computeLayerBounds(); |
| } |
| |
| for (auto& layer : mLayersPendingRefresh) { |
| Region visibleReg; |
| visibleReg.set(layer->getScreenBounds()); |
| invalidateLayerStack(layer, visibleReg); |
| } |
| mLayersPendingRefresh.clear(); |
| return refreshNeeded; |
| } |
| |
| void SurfaceFlinger::calculateWorkingSet() { |
| ATRACE_CALL(); |
| ALOGV(__FUNCTION__); |
| |
| // build the h/w work list |
| if (CC_UNLIKELY(mGeometryInvalid)) { |
| mGeometryInvalid = false; |
| for (const auto& [token, displayDevice] : mDisplays) { |
| auto display = displayDevice->getCompositionDisplay(); |
| |
| uint32_t zOrder = 0; |
| |
| for (auto& layer : display->getOutputLayersOrderedByZ()) { |
| auto& compositionState = layer->editState(); |
| compositionState.forceClientComposition = false; |
| if (!compositionState.hwc || mDebugDisableHWC || mDebugRegion) { |
| compositionState.forceClientComposition = true; |
| } |
| |
| // The output Z order is set here based on a simple counter. |
| compositionState.z = zOrder++; |
| |
| // Update the display independent composition state. This goes |
| // to the general composition layer state structure. |
| // TODO: Do this once per compositionengine::CompositionLayer. |
| layer->getLayerFE().latchCompositionState(layer->getLayer().editState().frontEnd, |
| true); |
| |
| // Recalculate the geometry state of the output layer. |
| layer->updateCompositionState(true); |
| |
| // Write the updated geometry state to the HWC |
| layer->writeStateToHWC(true); |
| } |
| } |
| } |
| |
| // Set the per-frame data |
| for (const auto& [token, displayDevice] : mDisplays) { |
| auto display = displayDevice->getCompositionDisplay(); |
| const auto displayId = display->getId(); |
| if (!displayId) { |
| continue; |
| } |
| auto* profile = display->getDisplayColorProfile(); |
| |
| if (mDrawingState.colorMatrixChanged) { |
| display->setColorTransform(mDrawingState.colorMatrix); |
| } |
| Dataspace targetDataspace = Dataspace::UNKNOWN; |
| if (useColorManagement) { |
| ColorMode colorMode; |
| RenderIntent renderIntent; |
| pickColorMode(displayDevice, &colorMode, &targetDataspace, &renderIntent); |
| display->setColorMode(colorMode, targetDataspace, renderIntent); |
| |
| if (isHdrColorMode(colorMode)) { |
| targetDataspace = Dataspace::UNKNOWN; |
| } else if (mColorSpaceAgnosticDataspace != Dataspace::UNKNOWN) { |
| targetDataspace = mColorSpaceAgnosticDataspace; |
| } |
| } |
| |
| for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) { |
| if (layer->isHdrY410()) { |
| layer->forceClientComposition(displayDevice); |
| } else if ((layer->getDataSpace() == Dataspace::BT2020_PQ || |
| layer->getDataSpace() == Dataspace::BT2020_ITU_PQ) && |
| !profile->hasHDR10Support()) { |
| layer->forceClientComposition(displayDevice); |
| } else if ((layer->getDataSpace() == Dataspace::BT2020_HLG || |
| layer->getDataSpace() == Dataspace::BT2020_ITU_HLG) && |
| !profile->hasHLGSupport()) { |
| layer->forceClientComposition(displayDevice); |
| } |
| |
| if (layer->getRoundedCornerState().radius > 0.0f) { |
| layer->forceClientComposition(displayDevice); |
| } |
| |
| if (layer->getForceClientComposition(displayDevice)) { |
| ALOGV("[%s] Requesting Client composition", layer->getName().string()); |
| layer->setCompositionType(displayDevice, |
| Hwc2::IComposerClient::Composition::CLIENT); |
| continue; |
| } |
| |
| const auto& displayState = display->getState(); |
| layer->setPerFrameData(displayDevice, displayState.transform, displayState.viewport, |
| displayDevice->getSupportedPerFrameMetadata(), targetDataspace); |
| } |
| } |
| |
| mDrawingState.colorMatrixChanged = false; |
| |
| for (const auto& [token, displayDevice] : mDisplays) { |
| auto display = displayDevice->getCompositionDisplay(); |
| for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) { |
| auto& layerState = layer->getCompositionLayer()->editState().frontEnd; |
| layerState.compositionType = static_cast<Hwc2::IComposerClient::Composition>( |
| layer->getCompositionType(displayDevice)); |
| } |
| } |
| } |
| |
| void SurfaceFlinger::doDebugFlashRegions(const sp<DisplayDevice>& displayDevice, |
| bool repaintEverything) { |
| auto display = displayDevice->getCompositionDisplay(); |
| const auto& displayState = display->getState(); |
| |
| // is debugging enabled |
| if (CC_LIKELY(!mDebugRegion)) |
| return; |
| |
| if (displayState.isEnabled) { |
| // transform the dirty region into this screen's coordinate space |
| const Region dirtyRegion = display->getDirtyRegion(repaintEverything); |
| if (!dirtyRegion.isEmpty()) { |
| base::unique_fd readyFence; |
| // redraw the whole screen |
| doComposeSurfaces(displayDevice, dirtyRegion, &readyFence); |
| |
| display->getRenderSurface()->queueBuffer(std::move(readyFence)); |
| } |
| } |
| |
| postFramebuffer(displayDevice); |
| |
| if (mDebugRegion > 1) { |
| usleep(mDebugRegion * 1000); |
| } |
| |
| prepareFrame(displayDevice); |
| } |
| |
| void SurfaceFlinger::logLayerStats() { |
| ATRACE_CALL(); |
| if (CC_UNLIKELY(mLayerStats.isEnabled())) { |
| for (const auto& [token, display] : mDisplays) { |
| if (display->isPrimary()) { |
| mLayerStats.logLayerStats(dumpVisibleLayersProtoInfo(display)); |
| return; |
| } |
| } |
| |
| ALOGE("logLayerStats: no primary display"); |
| } |
| } |
| |
| void SurfaceFlinger::preComposition() |
| { |
| ATRACE_CALL(); |
| ALOGV("preComposition"); |
| |
| mRefreshStartTime = systemTime(SYSTEM_TIME_MONOTONIC); |
| |
| bool needExtraInvalidate = false; |
| mDrawingState.traverseInZOrder([&](Layer* layer) { |
| if (layer->onPreComposition(mRefreshStartTime)) { |
| needExtraInvalidate = true; |
| } |
| }); |
| |
| if (needExtraInvalidate) { |
| signalLayerUpdate(); |
| } |
| } |
| |
| void SurfaceFlinger::updateCompositorTiming(const DisplayStatInfo& stats, nsecs_t compositeTime, |
| std::shared_ptr<FenceTime>& presentFenceTime) { |
| // Update queue of past composite+present times and determine the |
| // most recently known composite to present latency. |
| getBE().mCompositePresentTimes.push({compositeTime, presentFenceTime}); |
| nsecs_t compositeToPresentLatency = -1; |
| while (!getBE().mCompositePresentTimes.empty()) { |
| SurfaceFlingerBE::CompositePresentTime& cpt = getBE().mCompositePresentTimes.front(); |
| // Cached values should have been updated before calling this method, |
| // which helps avoid duplicate syscalls. |
| nsecs_t displayTime = cpt.display->getCachedSignalTime(); |
| if (displayTime == Fence::SIGNAL_TIME_PENDING) { |
| break; |
| } |
| compositeToPresentLatency = displayTime - cpt.composite; |
| getBE().mCompositePresentTimes.pop(); |
| } |
| |
| // Don't let mCompositePresentTimes grow unbounded, just in case. |
| while (getBE().mCompositePresentTimes.size() > 16) { |
| getBE().mCompositePresentTimes.pop(); |
| } |
| |
| setCompositorTimingSnapped(stats, compositeToPresentLatency); |
| } |
| |
| void SurfaceFlinger::setCompositorTimingSnapped(const DisplayStatInfo& stats, |
| nsecs_t compositeToPresentLatency) { |
| // Integer division and modulo round toward 0 not -inf, so we need to |
| // treat negative and positive offsets differently. |
| nsecs_t idealLatency = (mPhaseOffsets->getCurrentSfOffset() > 0) |
| ? (stats.vsyncPeriod - (mPhaseOffsets->getCurrentSfOffset() % stats.vsyncPeriod)) |
| : ((-mPhaseOffsets->getCurrentSfOffset()) % stats.vsyncPeriod); |
| |
| // Just in case mPhaseOffsets->getCurrentSfOffset() == -vsyncInterval. |
| if (idealLatency <= 0) { |
| idealLatency = stats.vsyncPeriod; |
| } |
| |
| // Snap the latency to a value that removes scheduling jitter from the |
| // composition and present times, which often have >1ms of jitter. |
| // Reducing jitter is important if an app attempts to extrapolate |
| // something (such as user input) to an accurate diasplay time. |
| // Snapping also allows an app to precisely calculate mPhaseOffsets->getCurrentSfOffset() |
| // with (presentLatency % interval). |
| nsecs_t bias = stats.vsyncPeriod / 2; |
| int64_t extraVsyncs = (compositeToPresentLatency - idealLatency + bias) / stats.vsyncPeriod; |
| nsecs_t snappedCompositeToPresentLatency = |
| (extraVsyncs > 0) ? idealLatency + (extraVsyncs * stats.vsyncPeriod) : idealLatency; |
| |
| std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock); |
| getBE().mCompositorTiming.deadline = stats.vsyncTime - idealLatency; |
| getBE().mCompositorTiming.interval = stats.vsyncPeriod; |
| getBE().mCompositorTiming.presentLatency = snappedCompositeToPresentLatency; |
| } |
| |
| void SurfaceFlinger::postComposition() |
| { |
| ATRACE_CALL(); |
| ALOGV("postComposition"); |
| |
| // Release any buffers which were replaced this frame |
| nsecs_t dequeueReadyTime = systemTime(); |
| for (auto& layer : mLayersWithQueuedFrames) { |
| layer->releasePendingBuffer(dequeueReadyTime); |
| } |
| |
| // |mStateLock| not needed as we are on the main thread |
| const auto displayDevice = getDefaultDisplayDeviceLocked(); |
| |
| getBE().mGlCompositionDoneTimeline.updateSignalTimes(); |
| std::shared_ptr<FenceTime> glCompositionDoneFenceTime; |
| if (displayDevice && getHwComposer().hasClientComposition(displayDevice->getId())) { |
| glCompositionDoneFenceTime = |
| std::make_shared<FenceTime>(displayDevice->getCompositionDisplay() |
| ->getRenderSurface() |
| ->getClientTargetAcquireFence()); |
| getBE().mGlCompositionDoneTimeline.push(glCompositionDoneFenceTime); |
| } else { |
| glCompositionDoneFenceTime = FenceTime::NO_FENCE; |
| } |
| |
| getBE().mDisplayTimeline.updateSignalTimes(); |
| mPreviousPresentFences[1] = mPreviousPresentFences[0]; |
| mPreviousPresentFences[0] = displayDevice |
| ? getHwComposer().getPresentFence(*displayDevice->getId()) |
| : Fence::NO_FENCE; |
| auto presentFenceTime = std::make_shared<FenceTime>(mPreviousPresentFences[0]); |
| getBE().mDisplayTimeline.push(presentFenceTime); |
| |
| DisplayStatInfo stats; |
| mScheduler->getDisplayStatInfo(&stats); |
| |
| // We use the mRefreshStartTime which might be sampled a little later than |
| // when we started doing work for this frame, but that should be okay |
| // since updateCompositorTiming has snapping logic. |
| updateCompositorTiming(stats, mRefreshStartTime, presentFenceTime); |
| CompositorTiming compositorTiming; |
| { |
| std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock); |
| compositorTiming = getBE().mCompositorTiming; |
| } |
| |
| mDrawingState.traverseInZOrder([&](Layer* layer) { |
| bool frameLatched = |
| layer->onPostComposition(displayDevice->getId(), glCompositionDoneFenceTime, |
| presentFenceTime, compositorTiming); |
| if (frameLatched) { |
| recordBufferingStats(layer->getName().string(), |
| layer->getOccupancyHistory(false)); |
| } |
| }); |
| |
| if (presentFenceTime->isValid()) { |
| mScheduler->addPresentFence(presentFenceTime); |
| } |
| |
| if (!hasSyncFramework) { |
| if (displayDevice && getHwComposer().isConnected(*displayDevice->getId()) && |
| displayDevice->isPoweredOn()) { |
| mScheduler->enableHardwareVsync(); |
| } |
| } |
| |
| if (mAnimCompositionPending) { |
| mAnimCompositionPending = false; |
| |
| if (presentFenceTime->isValid()) { |
| mAnimFrameTracker.setActualPresentFence( |
| std::move(presentFenceTime)); |
| } else if (displayDevice && getHwComposer().isConnected(*displayDevice->getId())) { |
| // The HWC doesn't support present fences, so use the refresh |
| // timestamp instead. |
| const nsecs_t presentTime = |
| getHwComposer().getRefreshTimestamp(*displayDevice->getId()); |
| mAnimFrameTracker.setActualPresentTime(presentTime); |
| } |
| mAnimFrameTracker.advanceFrame(); |
| } |
| |
| mTimeStats->incrementTotalFrames(); |
| if (mHadClientComposition) { |
| mTimeStats->incrementClientCompositionFrames(); |
| } |
| |
| mTimeStats->setPresentFenceGlobal(presentFenceTime); |
| |
| if (displayDevice && getHwComposer().isConnected(*displayDevice->getId()) && |
| !displayDevice->isPoweredOn()) { |
| return; |
| } |
| |
| nsecs_t currentTime = systemTime(); |
| if (mHasPoweredOff) { |
| mHasPoweredOff = false; |
| } else { |
| nsecs_t elapsedTime = currentTime - getBE().mLastSwapTime; |
| size_t numPeriods = static_cast<size_t>(elapsedTime / stats.vsyncPeriod); |
| if (numPeriods < SurfaceFlingerBE::NUM_BUCKETS - 1) { |
| getBE().mFrameBuckets[numPeriods] += elapsedTime; |
| } else { |
| getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1] += elapsedTime; |
| } |
| getBE().mTotalTime += elapsedTime; |
| } |
| getBE().mLastSwapTime = currentTime; |
| |
| { |
| std::lock_guard lock(mTexturePoolMutex); |
| if (mTexturePool.size() < mTexturePoolSize) { |
| const size_t refillCount = mTexturePoolSize - mTexturePool.size(); |
| const size_t offset = mTexturePool.size(); |
| mTexturePool.resize(mTexturePoolSize); |
| getRenderEngine().genTextures(refillCount, mTexturePool.data() + offset); |
| ATRACE_INT("TexturePoolSize", mTexturePool.size()); |
| } else if (mTexturePool.size() > mTexturePoolSize) { |
| const size_t deleteCount = mTexturePool.size() - mTexturePoolSize; |
| const size_t offset = mTexturePoolSize; |
| getRenderEngine().deleteTextures(deleteCount, mTexturePool.data() + offset); |
| mTexturePool.resize(mTexturePoolSize); |
| ATRACE_INT("TexturePoolSize", mTexturePool.size()); |
| } |
| } |
| |
| mTransactionCompletedThread.addPresentFence(mPreviousPresentFences[0]); |
| |
| // Lock the mStateLock in case SurfaceFlinger is in the middle of applying a transaction. |
| // If we do not lock here, a callback could be sent without all of its SurfaceControls and |
| // metrics. |
| { |
| Mutex::Autolock _l(mStateLock); |
| mTransactionCompletedThread.sendCallbacks(); |
| } |
| |
| if (mLumaSampling && mRegionSamplingThread) { |
| mRegionSamplingThread->notifyNewContent(); |
| } |
| |
| // Even though ATRACE_INT64 already checks if tracing is enabled, it doesn't prevent the |
| // side-effect of getTotalSize(), so we check that again here |
| if (ATRACE_ENABLED()) { |
| ATRACE_INT64("Total Buffer Size", GraphicBufferAllocator::get().getTotalSize()); |
| } |
| } |
| |
| void SurfaceFlinger::computeLayerBounds() { |
| for (const auto& pair : mDisplays) { |
| const auto& displayDevice = pair.second; |
| const auto display = displayDevice->getCompositionDisplay(); |
| for (const auto& layer : mDrawingState.layersSortedByZ) { |
| // only consider the layers on the given layer stack |
| if (!display->belongsInOutput(layer->getLayerStack(), layer->getPrimaryDisplayOnly())) { |
| continue; |
| } |
| |
| layer->computeBounds(displayDevice->getViewport().toFloatRect(), ui::Transform()); |
| } |
| } |
| } |
| |
| void SurfaceFlinger::rebuildLayerStacks() { |
| ATRACE_CALL(); |
| ALOGV("rebuildLayerStacks"); |
| |
| // rebuild the visible layer list per screen |
| if (CC_UNLIKELY(mVisibleRegionsDirty)) { |
| ATRACE_NAME("rebuildLayerStacks VR Dirty"); |
| invalidateHwcGeometry(); |
| |
| for (const auto& pair : mDisplays) { |
| const auto& displayDevice = pair.second; |
| auto display = displayDevice->getCompositionDisplay(); |
| const auto& displayState = display->getState(); |
| Region opaqueRegion; |
| Region dirtyRegion; |
| compositionengine::Output::OutputLayers layersSortedByZ; |
| Vector<sp<Layer>> deprecated_layersSortedByZ; |
| Vector<sp<Layer>> layersNeedingFences; |
| const ui::Transform& tr = displayState.transform; |
| const Rect bounds = displayState.bounds; |
| if (displayState.isEnabled) { |
| computeVisibleRegions(displayDevice, dirtyRegion, opaqueRegion); |
| |
| mDrawingState.traverseInZOrder([&](Layer* layer) { |
| auto compositionLayer = layer->getCompositionLayer(); |
| if (compositionLayer == nullptr) { |
| return; |
| } |
| |
| const auto displayId = displayDevice->getId(); |
| sp<compositionengine::LayerFE> layerFE = compositionLayer->getLayerFE(); |
| LOG_ALWAYS_FATAL_IF(layerFE.get() == nullptr); |
| |
| bool needsOutputLayer = false; |
| |
| if (display->belongsInOutput(layer->getLayerStack(), |
| layer->getPrimaryDisplayOnly())) { |
| Region drawRegion(tr.transform( |
| layer->visibleNonTransparentRegion)); |
| drawRegion.andSelf(bounds); |
| if (!drawRegion.isEmpty()) { |
| needsOutputLayer = true; |
| } |
| } |
| |
| if (needsOutputLayer) { |
| layersSortedByZ.emplace_back( |
| display->getOrCreateOutputLayer(displayId, compositionLayer, |
| layerFE)); |
| deprecated_layersSortedByZ.add(layer); |
| |
| auto& outputLayerState = layersSortedByZ.back()->editState(); |
| outputLayerState.visibleRegion = |
| tr.transform(layer->visibleRegion.intersect(displayState.viewport)); |
| } else if (displayId) { |
| // For layers that are being removed from a HWC display, |
| // and that have queued frames, add them to a a list of |
| // released layers so we can properly set a fence. |
| bool hasExistingOutputLayer = |
| display->getOutputLayerForLayer(compositionLayer.get()) != nullptr; |
| bool hasQueuedFrames = std::find(mLayersWithQueuedFrames.cbegin(), |
| mLayersWithQueuedFrames.cend(), |
| layer) != mLayersWithQueuedFrames.cend(); |
| |
| if (hasExistingOutputLayer && hasQueuedFrames) { |
| layersNeedingFences.add(layer); |
| } |
| } |
| }); |
| } |
| |
| display->setOutputLayersOrderedByZ(std::move(layersSortedByZ)); |
| |
| displayDevice->setVisibleLayersSortedByZ(deprecated_layersSortedByZ); |
| displayDevice->setLayersNeedingFences(layersNeedingFences); |
| |
| Region undefinedRegion{bounds}; |
| undefinedRegion.subtractSelf(tr.transform(opaqueRegion)); |
| |
| display->editState().undefinedRegion = undefinedRegion; |
| display->editState().dirtyRegion.orSelf(dirtyRegion); |
| } |
| } |
| } |
| |
| // Returns a data space that fits all visible layers. The returned data space |
| // can only be one of |
| // - Dataspace::SRGB (use legacy dataspace and let HWC saturate when colors are enhanced) |
| // - Dataspace::DISPLAY_P3 |
| // - Dataspace::DISPLAY_BT2020 |
| // The returned HDR data space is one of |
| // - Dataspace::UNKNOWN |
| // - Dataspace::BT2020_HLG |
| // - Dataspace::BT2020_PQ |
| Dataspace SurfaceFlinger::getBestDataspace(const sp<DisplayDevice>& display, |
| Dataspace* outHdrDataSpace, |
| bool* outIsHdrClientComposition) const { |
| Dataspace bestDataSpace = Dataspace::V0_SRGB; |
| *outHdrDataSpace = Dataspace::UNKNOWN; |
| |
| for (const auto& layer : display->getVisibleLayersSortedByZ()) { |
| switch (layer->getDataSpace()) { |
| case Dataspace::V0_SCRGB: |
| case Dataspace::V0_SCRGB_LINEAR: |
| case Dataspace::BT2020: |
| case Dataspace::BT2020_ITU: |
| case Dataspace::BT2020_LINEAR: |
| case Dataspace::DISPLAY_BT2020: |
| bestDataSpace = Dataspace::DISPLAY_BT2020; |
| break; |
| case Dataspace::DISPLAY_P3: |
| bestDataSpace = Dataspace::DISPLAY_P3; |
| break; |
| case Dataspace::BT2020_PQ: |
| case Dataspace::BT2020_ITU_PQ: |
| bestDataSpace = Dataspace::DISPLAY_P3; |
| *outHdrDataSpace = Dataspace::BT2020_PQ; |
| *outIsHdrClientComposition = layer->getForceClientComposition(display); |
| break; |
| case Dataspace::BT2020_HLG: |
| case Dataspace::BT2020_ITU_HLG: |
| bestDataSpace = Dataspace::DISPLAY_P3; |
| // When there's mixed PQ content and HLG content, we set the HDR |
| // data space to be BT2020_PQ and convert HLG to PQ. |
| if (*outHdrDataSpace == Dataspace::UNKNOWN) { |
| *outHdrDataSpace = Dataspace::BT2020_HLG; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| return bestDataSpace; |
| } |
| |
| // Pick the ColorMode / Dataspace for the display device. |
| void SurfaceFlinger::pickColorMode(const sp<DisplayDevice>& display, ColorMode* outMode, |
| Dataspace* outDataSpace, RenderIntent* outRenderIntent) const { |
| if (mDisplayColorSetting == DisplayColorSetting::UNMANAGED) { |
| *outMode = ColorMode::NATIVE; |
| *outDataSpace = Dataspace::UNKNOWN; |
| *outRenderIntent = RenderIntent::COLORIMETRIC; |
| return; |
| } |
| |
| Dataspace hdrDataSpace; |
| bool isHdrClientComposition = false; |
| Dataspace bestDataSpace = getBestDataspace(display, &hdrDataSpace, &isHdrClientComposition); |
| |
| auto* profile = display->getCompositionDisplay()->getDisplayColorProfile(); |
| |
| switch (mForceColorMode) { |
| case ColorMode::SRGB: |
| bestDataSpace = Dataspace::V0_SRGB; |
| break; |
| case ColorMode::DISPLAY_P3: |
| bestDataSpace = Dataspace::DISPLAY_P3; |
| break; |
| default: |
| break; |
| } |
| |
| // respect hdrDataSpace only when there is no legacy HDR support |
| const bool isHdr = hdrDataSpace != Dataspace::UNKNOWN && |
| !profile->hasLegacyHdrSupport(hdrDataSpace) && !isHdrClientComposition; |
| if (isHdr) { |
| bestDataSpace = hdrDataSpace; |
| } |
| |
| RenderIntent intent; |
| switch (mDisplayColorSetting) { |
| case DisplayColorSetting::MANAGED: |
| case DisplayColorSetting::UNMANAGED: |
| intent = isHdr ? RenderIntent::TONE_MAP_COLORIMETRIC : RenderIntent::COLORIMETRIC; |
| break; |
| case DisplayColorSetting::ENHANCED: |
| intent = isHdr ? RenderIntent::TONE_MAP_ENHANCE : RenderIntent::ENHANCE; |
| break; |
| default: // vendor display color setting |
| intent = static_cast<RenderIntent>(mDisplayColorSetting); |
| break; |
| } |
| |
| profile->getBestColorMode(bestDataSpace, intent, outDataSpace, outMode, outRenderIntent); |
| } |
| |
| void SurfaceFlinger::beginFrame(const sp<DisplayDevice>& displayDevice) { |
| auto display = displayDevice->getCompositionDisplay(); |
| const auto& displayState = display->getState(); |
| |
| bool dirty = !display->getDirtyRegion(false).isEmpty(); |
| bool empty = displayDevice->getVisibleLayersSortedByZ().size() == 0; |
| bool wasEmpty = !displayState.lastCompositionHadVisibleLayers; |
| |
| // If nothing has changed (!dirty), don't recompose. |
| // If something changed, but we don't currently have any visible layers, |
| // and didn't when we last did a composition, then skip it this time. |
| // The second rule does two things: |
| // - When all layers are removed from a display, we'll emit one black |
| // frame, then nothing more until we get new layers. |
| // - When a display is created with a private layer stack, we won't |
| // emit any black frames until a layer is added to the layer stack. |
| bool mustRecompose = dirty && !(empty && wasEmpty); |
| |
| const char flagPrefix[] = {'-', '+'}; |
| static_cast<void>(flagPrefix); |
| ALOGV_IF(displayDevice->isVirtual(), "%s: %s composition for %s (%cdirty %cempty %cwasEmpty)", |
| __FUNCTION__, mustRecompose ? "doing" : "skipping", |
| displayDevice->getDebugName().c_str(), flagPrefix[dirty], flagPrefix[empty], |
| flagPrefix[wasEmpty]); |
| |
| display->getRenderSurface()->beginFrame(mustRecompose); |
| |
| if (mustRecompose) { |
| display->editState().lastCompositionHadVisibleLayers = !empty; |
| } |
| } |
| |
| void SurfaceFlinger::prepareFrame(const sp<DisplayDevice>& displayDevice) { |
| auto display = displayDevice->getCompositionDisplay(); |
| const auto& displayState = display->getState(); |
| |
| if (!displayState.isEnabled) { |
| return; |
| } |
| |
| status_t result = display->getRenderSurface()->prepareFrame(); |
| ALOGE_IF(result != NO_ERROR, "prepareFrame failed for %s: %d (%s)", |
| displayDevice->getDebugName().c_str(), result, strerror(-result)); |
| } |
| |
| void SurfaceFlinger::doComposition(const sp<DisplayDevice>& displayDevice, bool repaintEverything) { |
| ATRACE_CALL(); |
| ALOGV("doComposition"); |
| |
| auto display = displayDevice->getCompositionDisplay(); |
| const auto& displayState = display->getState(); |
| |
| if (displayState.isEnabled) { |
| // transform the dirty region into this screen's coordinate space |
| const Region dirtyRegion = display->getDirtyRegion(repaintEverything); |
| |
| // repaint the framebuffer (if needed) |
| doDisplayComposition(displayDevice, dirtyRegion); |
| |
| display->editState().dirtyRegion.clear(); |
| display->getRenderSurface()->flip(); |
| } |
| postFramebuffer(displayDevice); |
| } |
| |
| void SurfaceFlinger::postFrame() |
| { |
| // |mStateLock| not needed as we are on the main thread |
| const auto display = getDefaultDisplayDeviceLocked(); |
| if (display && getHwComposer().isConnected(*display->getId())) { |
| uint32_t flipCount = display->getPageFlipCount(); |
| if (flipCount % LOG_FRAME_STATS_PERIOD == 0) { |
| logFrameStats(); |
| } |
| } |
| } |
| |
| void SurfaceFlinger::postFramebuffer(const sp<DisplayDevice>& displayDevice) { |
| ATRACE_CALL(); |
| ALOGV("postFramebuffer"); |
| |
| auto display = displayDevice->getCompositionDisplay(); |
| const auto& displayState = display->getState(); |
| const auto displayId = display->getId(); |
| |
| if (displayState.isEnabled) { |
| if (displayId) { |
| getHwComposer().presentAndGetReleaseFences(*displayId); |
| } |
| display->getRenderSurface()->onPresentDisplayCompleted(); |
| for (auto& layer : display->getOutputLayersOrderedByZ()) { |
| sp<Fence> releaseFence = Fence::NO_FENCE; |
| bool usedClientComposition = true; |
| |
| // The layer buffer from the previous frame (if any) is released |
| // by HWC only when the release fence from this frame (if any) is |
| // signaled. Always get the release fence from HWC first. |
| if (layer->getState().hwc) { |
| const auto& hwcState = *layer->getState().hwc; |
| releaseFence = |
| getHwComposer().getLayerReleaseFence(*displayId, hwcState.hwcLayer.get()); |
| usedClientComposition = |
| hwcState.hwcCompositionType == Hwc2::IComposerClient::Composition::CLIENT; |
| } |
| |
| // If the layer was client composited in the previous frame, we |
| // need to merge with the previous client target acquire fence. |
| // Since we do not track that, always merge with the current |
| // client target acquire fence when it is available, even though |
| // this is suboptimal. |
| if (usedClientComposition) { |
| releaseFence = |
| Fence::merge("LayerRelease", releaseFence, |
| display->getRenderSurface()->getClientTargetAcquireFence()); |
| } |
| |
| layer->getLayerFE().onLayerDisplayed(releaseFence); |
| } |
| |
| // We've got a list of layers needing fences, that are disjoint with |
| // display->getVisibleLayersSortedByZ. The best we can do is to |
| // supply them with the present fence. |
| if (!displayDevice->getLayersNeedingFences().isEmpty()) { |
| sp<Fence> presentFence = |
| displayId ? getHwComposer().getPresentFence(*displayId) : Fence::NO_FENCE; |
| for (auto& layer : displayDevice->getLayersNeedingFences()) { |
| layer->getCompositionLayer()->getLayerFE()->onLayerDisplayed(presentFence); |
| } |
| } |
| |
| if (displayId) { |
| getHwComposer().clearReleaseFences(*displayId); |
| } |
| } |
| } |
| |
| void SurfaceFlinger::handleTransaction(uint32_t transactionFlags) |
| { |
| ATRACE_CALL(); |
| |
| // here we keep a copy of the drawing state (that is the state that's |
| // going to be overwritten by handleTransactionLocked()) outside of |
| // mStateLock so that the side-effects of the State assignment |
| // don't happen with mStateLock held (which can cause deadlocks). |
| State drawingState(mDrawingState); |
| |
| Mutex::Autolock _l(mStateLock); |
| mDebugInTransaction = systemTime(); |
| |
| // Here we're guaranteed that some transaction flags are set |
| // so we can call handleTransactionLocked() unconditionally. |
| // We call getTransactionFlags(), which will also clear the flags, |
| // with mStateLock held to guarantee that mCurrentState won't change |
| // until the transaction is committed. |
| |
| mVsyncModulator.onTransactionHandled(); |
| transactionFlags = getTransactionFlags(eTransactionMask); |
| handleTransactionLocked(transactionFlags); |
| |
| mDebugInTransaction = 0; |
| invalidateHwcGeometry(); |
| // here the transaction has been committed |
| } |
| |
| void SurfaceFlinger::processDisplayHotplugEventsLocked() { |
| for (const auto& event : mPendingHotplugEvents) { |
| const std::optional<DisplayIdentificationInfo> info = |
| getHwComposer().onHotplug(event.hwcDisplayId, event.connection); |
| |
| if (!info) { |
| continue; |
| } |
| |
| if (event.connection == HWC2::Connection::Connected) { |
| if (!mPhysicalDisplayTokens.count(info->id)) { |
| ALOGV("Creating display %s", to_string(info->id).c_str()); |
| mPhysicalDisplayTokens[info->id] = new BBinder(); |
| DisplayDeviceState state; |
| state.displayId = info->id; |
| state.isSecure = true; // All physical displays are currently considered secure. |
| state.displayName = info->name; |
| mCurrentState.displays.add(mPhysicalDisplayTokens[info->id], state); |
| mInterceptor->saveDisplayCreation(state); |
| } |
| } else { |
| ALOGV("Removing display %s", to_string(info->id).c_str()); |
| |
| ssize_t index = mCurrentState.displays.indexOfKey(mPhysicalDisplayTokens[info->id]); |
| if (index >= 0) { |
| const DisplayDeviceState& state = mCurrentState.displays.valueAt(index); |
| mInterceptor->saveDisplayDeletion(state.sequenceId); |
| mCurrentState.displays.removeItemsAt(index); |
| } |
| mPhysicalDisplayTokens.erase(info->id); |
| } |
| |
| processDisplayChangesLocked(); |
| } |
| |
| mPendingHotplugEvents.clear(); |
| } |
| |
| void SurfaceFlinger::dispatchDisplayHotplugEvent(PhysicalDisplayId displayId, bool connected) { |
| mScheduler->hotplugReceived(mAppConnectionHandle, displayId, connected); |
| mScheduler->hotplugReceived(mSfConnectionHandle, displayId, connected); |
| } |
| |
| sp<DisplayDevice> SurfaceFlinger::setupNewDisplayDeviceInternal( |
| const wp<IBinder>& displayToken, const std::optional<DisplayId>& displayId, |
| const DisplayDeviceState& state, const sp<compositionengine::DisplaySurface>& dispSurface, |
| const sp<IGraphicBufferProducer>& producer) { |
| DisplayDeviceCreationArgs creationArgs(this, displayToken, displayId); |
| creationArgs.sequenceId = state.sequenceId; |
| creationArgs.isVirtual = state.isVirtual(); |
| creationArgs.isSecure = state.isSecure; |
| creationArgs.displaySurface = dispSurface; |
| creationArgs.hasWideColorGamut = false; |
| creationArgs.supportedPerFrameMetadata = 0; |
| |
| const bool isInternalDisplay = displayId && displayId == getInternalDisplayIdLocked(); |
| creationArgs.isPrimary = isInternalDisplay; |
| |
| if (useColorManagement && displayId) { |
| std::vector<ColorMode> modes = getHwComposer().getColorModes(*displayId); |
| for (ColorMode colorMode : modes) { |
| if (isWideColorMode(colorMode)) { |
| creationArgs.hasWideColorGamut = true; |
| } |
| |
| std::vector<RenderIntent> renderIntents = |
| getHwComposer().getRenderIntents(*displayId, colorMode); |
| creationArgs.hwcColorModes.emplace(colorMode, renderIntents); |
| } |
| } |
| |
| if (displayId) { |
| getHwComposer().getHdrCapabilities(*displayId, &creationArgs.hdrCapabilities); |
| creationArgs.supportedPerFrameMetadata = |
| getHwComposer().getSupportedPerFrameMetadata(*displayId); |
| } |
| |
| auto nativeWindowSurface = getFactory().createNativeWindowSurface(producer); |
| auto nativeWindow = nativeWindowSurface->getNativeWindow(); |
| creationArgs.nativeWindow = nativeWindow; |
| |
| // Make sure that composition can never be stalled by a virtual display |
| // consumer that isn't processing buffers fast enough. We have to do this |
| // here, in case the display is composed entirely by HWC. |
| if (state.isVirtual()) { |
| nativeWindow->setSwapInterval(nativeWindow.get(), 0); |
| } |
| |
| creationArgs.displayInstallOrientation = |
| isInternalDisplay ? primaryDisplayOrientation : DisplayState::eOrientationDefault; |
| |
| // virtual displays are always considered enabled |
| creationArgs.initialPowerMode = state.isVirtual() ? HWC_POWER_MODE_NORMAL : HWC_POWER_MODE_OFF; |
| |
| sp<DisplayDevice> display = getFactory().createDisplayDevice(std::move(creationArgs)); |
| |
| if (maxFrameBufferAcquiredBuffers >= 3) { |
| nativeWindowSurface->preallocateBuffers(); |
| } |
| |
| ColorMode defaultColorMode = ColorMode::NATIVE; |
| Dataspace defaultDataSpace = Dataspace::UNKNOWN; |
| if (display->hasWideColorGamut()) { |
| defaultColorMode = ColorMode::SRGB; |
| defaultDataSpace = Dataspace::V0_SRGB; |
| } |
| display->getCompositionDisplay()->setColorMode(defaultColorMode, defaultDataSpace, |
| RenderIntent::COLORIMETRIC); |
| if (!state.isVirtual()) { |
| LOG_ALWAYS_FATAL_IF(!displayId); |
| display->setActiveConfig(getHwComposer().getActiveConfigIndex(*displayId)); |
| } |
| |
| display->setLayerStack(state.layerStack); |
| display->setProjection(state.orientation, state.viewport, state.frame); |
| display->setDisplayName(state.displayName); |
| |
| return display; |
| } |
| |
| void SurfaceFlinger::processDisplayChangesLocked() { |
| // here we take advantage of Vector's copy-on-write semantics to |
| // improve performance by skipping the transaction entirely when |
| // know that the lists are identical |
| const KeyedVector<wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays); |
| const KeyedVector<wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays); |
| if (!curr.isIdenticalTo(draw)) { |
| mVisibleRegionsDirty = true; |
| const size_t cc = curr.size(); |
| size_t dc = draw.size(); |
| |
| // find the displays that were removed |
| // (ie: in drawing state but not in current state) |
| // also handle displays that changed |
| // (ie: displays that are in both lists) |
| for (size_t i = 0; i < dc;) { |
| const ssize_t j = curr.indexOfKey(draw.keyAt(i)); |
| if (j < 0) { |
| // in drawing state but not in current state |
| if (const auto display = getDisplayDeviceLocked(draw.keyAt(i))) { |
| // Save display ID before disconnecting. |
| const auto displayId = display->getId(); |
| display->disconnect(); |
| |
| if (!display->isVirtual()) { |
| LOG_ALWAYS_FATAL_IF(!displayId); |
| dispatchDisplayHotplugEvent(displayId->value, false); |
| } |
| } |
| |
| mDisplays.erase(draw.keyAt(i)); |
| } else { |
| // this display is in both lists. see if something changed. |
| const DisplayDeviceState& state(curr[j]); |
| const wp<IBinder>& displayToken = curr.keyAt(j); |
| const sp<IBinder> state_binder = IInterface::asBinder(state.surface); |
| const sp<IBinder> draw_binder = IInterface::asBinder(draw[i].surface); |
| if (state_binder != draw_binder) { |
| // changing the surface is like destroying and |
| // recreating the DisplayDevice, so we just remove it |
| // from the drawing state, so that it get re-added |
| // below. |
| if (const auto display = getDisplayDeviceLocked(displayToken)) { |
| display->disconnect(); |
| } |
| mDisplays.erase(displayToken); |
| mDrawingState.displays.removeItemsAt(i); |
| dc--; |
| // at this point we must loop to the next item |
| continue; |
| } |
| |
| if (const auto display = getDisplayDeviceLocked(displayToken)) { |
| if (state.layerStack != draw[i].layerStack) { |
| display->setLayerStack(state.layerStack); |
| } |
| if ((state.orientation != draw[i].orientation) || |
| (state.viewport != draw[i].viewport) || (state.frame != draw[i].frame)) { |
| display->setProjection(state.orientation, state.viewport, state.frame); |
| } |
| if (state.width != draw[i].width || state.height != draw[i].height) { |
| display->setDisplaySize(state.width, state.height); |
| } |
| } |
| } |
| ++i; |
| } |
| |
| // find displays that were added |
| // (ie: in current state but not in drawing state) |
| for (size_t i = 0; i < cc; i++) { |
| if (draw.indexOfKey(curr.keyAt(i)) < 0) { |
| const DisplayDeviceState& state(curr[i]); |
| |
| sp<compositionengine::DisplaySurface> dispSurface; |
| sp<IGraphicBufferProducer> producer; |
| sp<IGraphicBufferProducer> bqProducer; |
| sp<IGraphicBufferConsumer> bqConsumer; |
| getFactory().createBufferQueue(&bqProducer, &bqConsumer, false); |
| |
| std::optional<DisplayId> displayId; |
| if (state.isVirtual()) { |
| // Virtual displays without a surface are dormant: |
| // they have external state (layer stack, projection, |
| // etc.) but no internal state (i.e. a DisplayDevice). |
| if (state.surface != nullptr) { |
| // Allow VR composer to use virtual displays. |
| if (mUseHwcVirtualDisplays || getHwComposer().isUsingVrComposer()) { |
| int width = 0; |
| int status = state.surface->query(NATIVE_WINDOW_WIDTH, &width); |
| ALOGE_IF(status != NO_ERROR, "Unable to query width (%d)", status); |
| int height = 0; |
| status = state.surface->query(NATIVE_WINDOW_HEIGHT, &height); |
| ALOGE_IF(status != NO_ERROR, "Unable to query height (%d)", status); |
| int intFormat = 0; |
| status = state.surface->query(NATIVE_WINDOW_FORMAT, &intFormat); |
| ALOGE_IF(status != NO_ERROR, "Unable to query format (%d)", status); |
| auto format = static_cast<ui::PixelFormat>(intFormat); |
| |
| displayId = |
| getHwComposer().allocateVirtualDisplay(width, height, &format); |
| } |
| |
| // TODO: Plumb requested format back up to consumer |
| |
| sp<VirtualDisplaySurface> vds = |
| new VirtualDisplaySurface(getHwComposer(), displayId, state.surface, |
| bqProducer, bqConsumer, |
| state.displayName); |
| |
| dispSurface = vds; |
| producer = vds; |
| } |
| } else { |
| ALOGE_IF(state.surface != nullptr, |
| "adding a supported display, but rendering " |
| "surface is provided (%p), ignoring it", |
| state.surface.get()); |
| |
| displayId = state.displayId; |
| LOG_ALWAYS_FATAL_IF(!displayId); |
| dispSurface = new FramebufferSurface(getHwComposer(), *displayId, bqConsumer); |
| producer = bqProducer; |
| } |
| |
| const wp<IBinder>& displayToken = curr.keyAt(i); |
| if (dispSurface != nullptr) { |
| mDisplays.emplace(displayToken, |
| setupNewDisplayDeviceInternal(displayToken, displayId, state, |
| dispSurface, producer)); |
| if (!state.isVirtual()) { |
| LOG_ALWAYS_FATAL_IF(!displayId); |
| dispatchDisplayHotplugEvent(displayId->value, true); |
| } |
| } |
| } |
| } |
| } |
| |
| mDrawingState.displays = mCurrentState.displays; |
| } |
| |
| void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags) |
| { |
| // Notify all layers of available frames |
| mCurrentState.traverseInZOrder([](Layer* layer) { |
| layer->notifyAvailableFrames(); |
| }); |
| |
| /* |
| * Traversal of the children |
| * (perform the transaction for each of them if needed) |
| */ |
| |
| if ((transactionFlags & eTraversalNeeded) || mTraversalNeededMainThread) { |
| mCurrentState.traverseInZOrder([&](Layer* layer) { |
| uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded); |
| if (!trFlags) return; |
| |
| const uint32_t flags = layer->doTransaction(0); |
| if (flags & Layer::eVisibleRegion) |
| mVisibleRegionsDirty = true; |
| |
| if (flags & Layer::eInputInfoChanged) { |
| mInputInfoChanged = true; |
| } |
| }); |
| mTraversalNeededMainThread = false; |
| } |
| |
| /* |
| * Perform display own transactions if needed |
| */ |
| |
| if (transactionFlags & eDisplayTransactionNeeded) { |
| processDisplayChangesLocked(); |
| processDisplayHotplugEventsLocked(); |
| } |
| |
| if (transactionFlags & (eDisplayLayerStackChanged|eDisplayTransactionNeeded)) { |
| // The transform hint might have changed for some layers |
| // (either because a display has changed, or because a layer |
| // as changed). |
| // |
| // Walk through all the layers in currentLayers, |
| // and update their transform hint. |
| // |
| // If a layer is visible only on a single display, then that |
| // display is used to calculate the hint, otherwise we use the |
| // default display. |
| // |
| // NOTE: we do this here, rather than in rebuildLayerStacks() so that |
| // the hint is set before we acquire a buffer from the surface texture. |
| // |
| // NOTE: layer transactions have taken place already, so we use their |
| // drawing state. However, SurfaceFlinger's own transaction has not |
| // happened yet, so we must use the current state layer list |
| // (soon to become the drawing state list). |
| // |
| sp<const DisplayDevice> hintDisplay; |
| uint32_t currentlayerStack = 0; |
| bool first = true; |
| mCurrentState.traverseInZOrder([&](Layer* layer) { |
| // NOTE: we rely on the fact that layers are sorted by |
| // layerStack first (so we don't have to traverse the list |
| // of displays for every layer). |
| uint32_t layerStack = layer->getLayerStack(); |
| if (first || currentlayerStack != layerStack) { |
| currentlayerStack = layerStack; |
| // figure out if this layerstack is mirrored |
| // (more than one display) if so, pick the default display, |
| // if not, pick the only display it's on. |
| hintDisplay = nullptr; |
| for (const auto& [token, display] : mDisplays) { |
| if (display->getCompositionDisplay() |
| ->belongsInOutput(layer->getLayerStack(), |
| layer->getPrimaryDisplayOnly())) { |
| if (hintDisplay) { |
| hintDisplay = nullptr; |
| break; |
| } else { |
| hintDisplay = display; |
| } |
| } |
| } |
| } |
| |
| if (!hintDisplay) { |
| // NOTE: TEMPORARY FIX ONLY. Real fix should cause layers to |
| // redraw after transform hint changes. See bug 8508397. |
| |
| // could be null when this layer is using a layerStack |
| // that is not visible on any display. Also can occur at |
| // screen off/on times. |
| hintDisplay = getDefaultDisplayDeviceLocked(); |
| } |
| |
| // could be null if there is no display available at all to get |
| // the transform hint from. |
| if (hintDisplay) { |
| layer->updateTransformHint(hintDisplay); |
| } |
| |
| first = false; |
| }); |
| } |
| |
| |
| /* |
| * Perform our own transaction if needed |
| */ |
| |
| if (mLayersAdded) { |
| mLayersAdded = false; |
| // Layers have been added. |
| mVisibleRegionsDirty = true; |
| } |
| |
| // some layers might have been removed, so |
| // we need to update the regions they're exposing. |
| if (mLayersRemoved) { |
| mLayersRemoved = false; |
| mVisibleRegionsDirty = true; |
| mDrawingState.traverseInZOrder([&](Layer* layer) { |
| if (mLayersPendingRemoval.indexOf(layer) >= 0) { |
| // this layer is not visible anymore |
| Region visibleReg; |
| visibleReg.set(layer->getScreenBounds()); |
| invalidateLayerStack(layer, visibleReg); |
| } |
| }); |
| } |
| |
| commitInputWindowCommands(); |
| commitTransaction(); |
| } |
| |
| void SurfaceFlinger::updateInputFlinger() { |
| ATRACE_CALL(); |
| if (!mInputFlinger) { |
| return; |
| } |
| |
| if (mVisibleRegionsDirty || mInputInfoChanged) { |
| mInputInfoChanged = false; |
| updateInputWindowInfo(); |
| } else if (mInputWindowCommands.syncInputWindows) { |
| // If the caller requested to sync input windows, but there are no |
| // changes to input windows, notify immediately. |
| setInputWindowsFinished(); |
| } |
| |
| executeInputWindowCommands(); |
| } |
| |
| void SurfaceFlinger::updateInputWindowInfo() { |
| std::vector<InputWindowInfo> inputHandles; |
| |
| mDrawingState.traverseInReverseZOrder([&](Layer* layer) { |
| if (layer->hasInput()) { |
| // When calculating the screen bounds we ignore the transparent region since it may |
| // result in an unwanted offset. |
| inputHandles.push_back(layer->fillInputInfo()); |
| } |
| }); |
| |
| mInputFlinger->setInputWindows(inputHandles, |
| mInputWindowCommands.syncInputWindows ? mSetInputWindowsListener |
| : nullptr); |
| } |
| |
| void SurfaceFlinger::commitInputWindowCommands() { |
| mInputWindowCommands = mPendingInputWindowCommands; |
| mPendingInputWindowCommands.clear(); |
| } |
| |
| void SurfaceFlinger::executeInputWindowCommands() { |
| for (const auto& transferTouchFocusCommand : mInputWindowCommands.transferTouchFocusCommands) { |
| if (transferTouchFocusCommand.fromToken != nullptr && |
| transferTouchFocusCommand.toToken != nullptr && |
| transferTouchFocusCommand.fromToken != transferTouchFocusCommand.toToken) { |
| mInputFlinger->transferTouchFocus(transferTouchFocusCommand.fromToken, |
| transferTouchFocusCommand.toToken); |
| } |
| } |
| |
| mInputWindowCommands.clear(); |
| } |
| |
| void SurfaceFlinger::updateCursorAsync() |
| { |
| for (const auto& [token, display] : mDisplays) { |
| if (!display->getId()) { |
| continue; |
| } |
| |
| for (auto& layer : display->getVisibleLayersSortedByZ()) { |
| layer->updateCursorPosition(display); |
| } |
| } |
| } |
| |
| void SurfaceFlinger::latchAndReleaseBuffer(const sp<Layer>& layer) { |
| if (layer->hasReadyFrame()) { |
| bool ignored = false; |
| layer->latchBuffer(ignored, systemTime()); |
| } |
| layer->releasePendingBuffer(systemTime()); |
| } |
| |
| void SurfaceFlinger::commitTransaction() |
| { |
| if (!mLayersPendingRemoval.isEmpty()) { |
| // Notify removed layers now that they can't be drawn from |
| for (const auto& l : mLayersPendingRemoval) { |
| recordBufferingStats(l->getName().string(), |
| l->getOccupancyHistory(true)); |
| |
| // Ensure any buffers set to display on any children are released. |
| if (l->isRemovedFromCurrentState()) { |
| latchAndReleaseBuffer(l); |
| } |
| |
| // If the layer has been removed and has no parent, then it will not be reachable |
| // when traversing layers on screen. Add the layer to the offscreenLayers set to |
| // ensure we can copy its current to drawing state. |
| if (!l->getParent()) { |
| mOffscreenLayers.emplace(l.get()); |
| } |
| } |
| mLayersPendingRemoval.clear(); |
| } |
| |
| // If this transaction is part of a window animation then the next frame |
| // we composite should be considered an animation as well. |
| mAnimCompositionPending = mAnimTransactionPending; |
| |
| withTracingLock([&]() { |
| mDrawingState = mCurrentState; |
| // clear the "changed" flags in current state |
| mCurrentState.colorMatrixChanged = false; |
| |
| mDrawingState.traverseInZOrder([&](Layer* layer) { |
| layer->commitChildList(); |
| |
| // If the layer can be reached when traversing mDrawingState, then the layer is no |
| // longer offscreen. Remove the layer from the offscreenLayer set. |
| if (mOffscreenLayers.count(layer)) { |
| mOffscreenLayers.erase(layer); |
| } |
| }); |
| |
| commitOffscreenLayers(); |
| }); |
| |
| mTransactionPending = false; |
| mAnimTransactionPending = false; |
| mTransactionCV.broadcast(); |
| } |
| |
| void SurfaceFlinger::withTracingLock(std::function<void()> lockedOperation) { |
| if (mTracingEnabledChanged) { |
| mTracingEnabled = mTracing.isEnabled(); |
| mTracingEnabledChanged = false; |
| } |
| |
| // Synchronize with Tracing thread |
| std::unique_lock<std::mutex> lock; |
| if (mTracingEnabled) { |
| lock = std::unique_lock<std::mutex>(mDrawingStateLock); |
| } |
| |
| lockedOperation(); |
| |
| // Synchronize with Tracing thread |
| if (mTracingEnabled) { |
| lock.unlock(); |
| } |
| } |
| |
| void SurfaceFlinger::commitOffscreenLayers() { |
| for (Layer* offscreenLayer : mOffscreenLayers) { |
| offscreenLayer->traverseInZOrder(LayerVector::StateSet::Drawing, [](Layer* layer) { |
| uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded); |
| if (!trFlags) return; |
| |
| layer->doTransaction(0); |
| layer->commitChildList(); |
| }); |
| } |
| } |
| |
| void SurfaceFlinger::computeVisibleRegions(const sp<const DisplayDevice>& displayDevice, |
| Region& outDirtyRegion, Region& outOpaqueRegion) { |
| ATRACE_CALL(); |
| ALOGV("computeVisibleRegions"); |
| |
| auto display = displayDevice->getCompositionDisplay(); |
| |
| Region aboveOpaqueLayers; |
| Region aboveCoveredLayers; |
| Region dirty; |
| |
| outDirtyRegion.clear(); |
| |
| mDrawingState.traverseInReverseZOrder([&](Layer* layer) { |
| // start with the whole surface at its current location |
| const Layer::State& s(layer->getDrawingState()); |
| |
| // only consider the layers on the given layer stack |
| if (!display->belongsInOutput(layer->getLayerStack(), layer->getPrimaryDisplayOnly())) { |
| return; |
| } |
| |
| /* |
| * opaqueRegion: area of a surface that is fully opaque. |
| */ |
| Region opaqueRegion; |
| |
| /* |
| * visibleRegion: area of a surface that is visible on screen |
| * and not fully transparent. This is essentially the layer's |
| * footprint minus the opaque regions above it. |
| * Areas covered by a translucent surface are considered visible. |
| */ |
| Region visibleRegion; |
| |
| /* |
| * coveredRegion: area of a surface that is covered by all |
| * visible regions above it (which includes the translucent areas). |
| */ |
| Region coveredRegion; |
| |
| /* |
| * transparentRegion: area of a surface that is hinted to be completely |
| * transparent. This is only used to tell when the layer has no visible |
| * non-transparent regions and can be removed from the layer list. It |
| * does not affect the visibleRegion of this layer or any layers |
| * beneath it. The hint may not be correct if apps don't respect the |
| * SurfaceView restrictions (which, sadly, some don't). |
| */ |
| Region transparentRegion; |
| |
| |
| // handle hidden surfaces by setting the visible region to empty |
| if (CC_LIKELY(layer->isVisible())) { |
| const bool translucent = !layer->isOpaque(s); |
| Rect bounds(layer->getScreenBounds()); |
| |
| visibleRegion.set(bounds); |
| ui::Transform tr = layer->getTransform(); |
| if (!visibleRegion.isEmpty()) { |
| // Remove the transparent area from the visible region |
| if (translucent) { |
| if (tr.preserveRects()) { |
| // transform the transparent region |
| transparentRegion = tr.transform(layer->getActiveTransparentRegion(s)); |
| } else { |
| // transformation too complex, can't do the |
| // transparent region optimization. |
| transparentRegion.clear(); |
| } |
| } |
| |
| // compute the opaque region |
| const int32_t layerOrientation = tr.getOrientation(); |
| if (layer->getAlpha() == 1.0f && !translucent && |
| layer->getRoundedCornerState().radius == 0.0f && |
| ((layerOrientation & ui::Transform::ROT_INVALID) == false)) { |
| // the opaque region is the layer's footprint |
| opaqueRegion = visibleRegion; |
| } |
| } |
| } |
| |
| if (visibleRegion.isEmpty()) { |
| layer->clearVisibilityRegions(); |
| return; |
| } |
| |
| // Clip the covered region to the visible region |
| coveredRegion = aboveCoveredLayers.intersect(visibleRegion); |
| |
| // Update aboveCoveredLayers for next (lower) layer |
| aboveCoveredLayers.orSelf(visibleRegion); |
| |
| // subtract the opaque region covered by the layers above us |
| visibleRegion.subtractSelf(aboveOpaqueLayers); |
| |
| // compute this layer's dirty region |
| if (layer->contentDirty) { |
| // we need to invalidate the whole region |
| dirty = visibleRegion; |
| // as well, as the old visible region |
| dirty.orSelf(layer->visibleRegion); |
| layer->contentDirty = false; |
| } else { |
| /* compute the exposed region: |
| * the exposed region consists of two components: |
| * 1) what's VISIBLE now and was COVERED before |
| * 2) what's EXPOSED now less what was EXPOSED before |
| * |
| * note that (1) is conservative, we start with the whole |
| * visible region but only keep what used to be covered by |
| * something -- which mean it may have been exposed. |
| * |
| * (2) handles areas that were not covered by anything but got |
| * exposed because of a resize. |
| */ |
| const Region newExposed = visibleRegion - coveredRegion; |
| const Region oldVisibleRegion = layer->visibleRegion; |
| const Region oldCoveredRegion = layer->coveredRegion; |
| const Region oldExposed = oldVisibleRegion - oldCoveredRegion; |
| dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed); |
| } |
| dirty.subtractSelf(aboveOpaqueLayers); |
| |
| // accumulate to the screen dirty region |
| outDirtyRegion.orSelf(dirty); |
| |
| // Update aboveOpaqueLayers for next (lower) layer |
| aboveOpaqueLayers.orSelf(opaqueRegion); |
| |
| // Store the visible region in screen space |
| layer->setVisibleRegion(visibleRegion); |
| layer->setCoveredRegion(coveredRegion); |
| layer->setVisibleNonTransparentRegion( |
| visibleRegion.subtract(transparentRegion)); |
| }); |
| |
| outOpaqueRegion = aboveOpaqueLayers; |
| } |
| |
| void SurfaceFlinger::invalidateLayerStack(const sp<const Layer>& layer, const Region& dirty) { |
| for (const auto& [token, displayDevice] : mDisplays) { |
| auto display = displayDevice->getCompositionDisplay(); |
| if (display->belongsInOutput(layer->getLayerStack(), layer->getPrimaryDisplayOnly())) { |
| display->editState().dirtyRegion.orSelf(dirty); |
| } |
| } |
| } |
| |
| bool SurfaceFlinger::handlePageFlip() |
| { |
| ATRACE_CALL(); |
| ALOGV("handlePageFlip"); |
| |
| nsecs_t latchTime = systemTime(); |
| |
| bool visibleRegions = false; |
| bool frameQueued = false; |
| bool newDataLatched = false; |
| |
| // Store the set of layers that need updates. This set must not change as |
| // buffers are being latched, as this could result in a deadlock. |
| // Example: Two producers share the same command stream and: |
| // 1.) Layer 0 is latched |
| // 2.) Layer 0 gets a new frame |
| // 2.) Layer 1 gets a new frame |
| // 3.) Layer 1 is latched. |
| // Display is now waiting on Layer 1's frame, which is behind layer 0's |
| // second frame. But layer 0's second frame could be waiting on display. |
| mDrawingState.traverseInZOrder([&](Layer* layer) { |
| if (layer->hasReadyFrame()) { |
| frameQueued = true; |
| const nsecs_t expectedPresentTime = getExpectedPresentTime(); |
| if (layer->shouldPresentNow(expectedPresentTime)) { |
| mLayersWithQueuedFrames.push_back(layer); |
| } else { |
| ATRACE_NAME("!layer->shouldPresentNow()"); |
| layer->useEmptyDamage(); |
| } |
| } else { |
| layer->useEmptyDamage(); |
| } |
| }); |
| |
| if (!mLayersWithQueuedFrames.empty()) { |
| // mStateLock is needed for latchBuffer as LayerRejecter::reject() |
| // writes to Layer current state. See also b/119481871 |
| Mutex::Autolock lock(mStateLock); |
| |
| for (auto& layer : mLayersWithQueuedFrames) { |
| if (layer->latchBuffer(visibleRegions, latchTime)) { |
| mLayersPendingRefresh.push_back(layer); |
| } |
| layer->useSurfaceDamage(); |
| if (layer->isBufferLatched()) { |
| newDataLatched = true; |
| } |
| } |
| } |
| |
| mVisibleRegionsDirty |= visibleRegions; |
| |
| // If we will need to wake up at some time in the future to deal with a |
| // queued frame that shouldn't be displayed during this vsync period, wake |
| // up during the next vsync period to check again. |
| if (frameQueued && (mLayersWithQueuedFrames.empty() || !newDataLatched)) { |
| signalLayerUpdate(); |
| } |
| |
| // enter boot animation on first buffer latch |
| if (CC_UNLIKELY(mBootStage == BootStage::BOOTLOADER && newDataLatched)) { |
| ALOGI("Enter boot animation"); |
| mBootStage = BootStage::BOOTANIMATION; |
| } |
| |
| // Only continue with the refresh if there is actually new work to do |
| return !mLayersWithQueuedFrames.empty() && newDataLatched; |
| } |
| |
| void SurfaceFlinger::invalidateHwcGeometry() |
| { |
| mGeometryInvalid = true; |
| } |
| |
| void SurfaceFlinger::doDisplayComposition(const sp<DisplayDevice>& displayDevice, |
| const Region& inDirtyRegion) { |
| auto display = displayDevice->getCompositionDisplay(); |
| // We only need to actually compose the display if: |
| // 1) It is being handled by hardware composer, which may need this to |
| // keep its virtual display state machine in sync, or |
| // 2) There is work to be done (the dirty region isn't empty) |
| if (!displayDevice->getId() && inDirtyRegion.isEmpty()) { |
| ALOGV("Skipping display composition"); |
| return; |
| } |
| |
| ALOGV("doDisplayComposition"); |
| base::unique_fd readyFence; |
| if (!doComposeSurfaces(displayDevice, Region::INVALID_REGION, &readyFence)) return; |
| |
| // swap buffers (presentation) |
| display->getRenderSurface()->queueBuffer(std::move(readyFence)); |
| } |
| |
| bool SurfaceFlinger::doComposeSurfaces(const sp<DisplayDevice>& displayDevice, |
| const Region& debugRegion, base::unique_fd* readyFence) { |
| ATRACE_CALL(); |
| ALOGV("doComposeSurfaces"); |
| |
| auto display = displayDevice->getCompositionDisplay(); |
| const auto& displayState = display->getState(); |
| const auto displayId = display->getId(); |
| auto& renderEngine = getRenderEngine(); |
| const bool supportProtectedContent = renderEngine.supportsProtectedContent(); |
| |
| const Region bounds(displayState.bounds); |
| const DisplayRenderArea renderArea(displayDevice); |
| const bool hasClientComposition = getHwComposer().hasClientComposition(displayId); |
| ATRACE_INT("hasClientComposition", hasClientComposition); |
| |
| bool applyColorMatrix = false; |
| |
| renderengine::DisplaySettings clientCompositionDisplay; |
| std::vector<renderengine::LayerSettings> clientCompositionLayers; |
| sp<GraphicBuffer> buf; |
| base::unique_fd fd; |
| |
| if (hasClientComposition) { |
| ALOGV("hasClientComposition"); |
| |
| if (displayDevice->isPrimary() && supportProtectedContent) { |
| bool needsProtected = false; |
| for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) { |
| // If the layer is a protected layer, mark protected context is needed. |
| if (layer->isProtected()) { |
| needsProtected = true; |
| break; |
| } |
| } |
| if (needsProtected != renderEngine.isProtected()) { |
| renderEngine.useProtectedContext(needsProtected); |
| } |
| if (needsProtected != display->getRenderSurface()->isProtected() && |
| needsProtected == renderEngine.isProtected()) { |
| display->getRenderSurface()->setProtected(needsProtected); |
| } |
| } |
| |
| buf = display->getRenderSurface()->dequeueBuffer(&fd); |
| |
| if (buf == nullptr) { |
| ALOGW("Dequeuing buffer for display [%s] failed, bailing out of " |
| "client composition for this frame", |
| displayDevice->getDisplayName().c_str()); |
| return false; |
| } |
| |
| clientCompositionDisplay.physicalDisplay = displayState.scissor; |
| clientCompositionDisplay.clip = displayState.scissor; |
| const ui::Transform& displayTransform = displayState.transform; |
| clientCompositionDisplay.globalTransform = displayTransform.asMatrix4(); |
| clientCompositionDisplay.orientation = displayState.orientation; |
| |
| const auto* profile = display->getDisplayColorProfile(); |
| Dataspace outputDataspace = Dataspace::UNKNOWN; |
| if (profile->hasWideColorGamut()) { |
| outputDataspace = displayState.dataspace; |
| } |
| clientCompositionDisplay.outputDataspace = outputDataspace; |
| clientCompositionDisplay.maxLuminance = |
| profile->getHdrCapabilities().getDesiredMaxLuminance(); |
| |
| const bool hasDeviceComposition = getHwComposer().hasDeviceComposition(displayId); |
| const bool skipClientColorTransform = |
| getHwComposer() |
| .hasDisplayCapability(displayId, |
| HWC2::DisplayCapability::SkipClientColorTransform); |
| |
| // Compute the global color transform matrix. |
| applyColorMatrix = !hasDeviceComposition && !skipClientColorTransform; |
| if (applyColorMatrix) { |
| clientCompositionDisplay.colorTransform = displayState.colorTransformMat; |
| } |
| } |
| |
| /* |
| * and then, render the layers targeted at the framebuffer |
| */ |
| |
| ALOGV("Rendering client layers"); |
| bool firstLayer = true; |
| Region clearRegion = Region::INVALID_REGION; |
| for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) { |
| const Region viewportRegion(displayState.viewport); |
| const Region clip(viewportRegion.intersect(layer->visibleRegion)); |
| ALOGV("Layer: %s", layer->getName().string()); |
| ALOGV(" Composition type: %s", toString(layer->getCompositionType(displayDevice)).c_str()); |
| if (!clip.isEmpty()) { |
| switch (layer->getCompositionType(displayDevice)) { |
| case Hwc2::IComposerClient::Composition::CURSOR: |
| case Hwc2::IComposerClient::Composition::DEVICE: |
| case Hwc2::IComposerClient::Composition::SIDEBAND: |
| case Hwc2::IComposerClient::Composition::SOLID_COLOR: { |
| LOG_ALWAYS_FATAL_IF(!displayId); |
| const Layer::State& state(layer->getDrawingState()); |
| if (layer->getClearClientTarget(displayDevice) && !firstLayer && |
| layer->isOpaque(state) && (layer->getAlpha() == 1.0f) && |
| layer->getRoundedCornerState().radius == 0.0f && hasClientComposition) { |
| // never clear the very first layer since we're |
| // guaranteed the FB is already cleared |
| renderengine::LayerSettings layerSettings; |
| Region dummyRegion; |
| bool prepared = |
| layer->prepareClientLayer(renderArea, clip, dummyRegion, |
| supportProtectedContent, layerSettings); |
| |
| if (prepared) { |
| layerSettings.source.buffer.buffer = nullptr; |
| layerSettings.source.solidColor = half3(0.0, 0.0, 0.0); |
| layerSettings.alpha = half(0.0); |
| layerSettings.disableBlending = true; |
| clientCompositionLayers.push_back(layerSettings); |
| } |
| } |
| break; |
| } |
| case Hwc2::IComposerClient::Composition::CLIENT: { |
| renderengine::LayerSettings layerSettings; |
| bool prepared = |
| layer->prepareClientLayer(renderArea, clip, clearRegion, |
| supportProtectedContent, layerSettings); |
| if (prepared) { |
| clientCompositionLayers.push_back(layerSettings); |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| } else { |
| ALOGV(" Skipping for empty clip"); |
| } |
| firstLayer = false; |
| } |
| |
| // Perform some cleanup steps if we used client composition. |
| if (hasClientComposition) { |
| clientCompositionDisplay.clearRegion = clearRegion; |
| |
| // We boost GPU frequency here because there will be color spaces conversion |
| // and it's expensive. We boost the GPU frequency so that GPU composition can |
| // finish in time. We must reset GPU frequency afterwards, because high frequency |
| // consumes extra battery. |
| const bool expensiveRenderingExpected = |
| clientCompositionDisplay.outputDataspace == Dataspace::DISPLAY_P3; |
| if (expensiveRenderingExpected && displayId) { |
| mPowerAdvisor.setExpensiveRenderingExpected(*displayId, true); |
| } |
| if (!debugRegion.isEmpty()) { |
| Region::const_iterator it = debugRegion.begin(); |
| Region::const_iterator end = debugRegion.end(); |
| while (it != end) { |
| const Rect& rect = *it++; |
| renderengine::LayerSettings layerSettings; |
| layerSettings.source.buffer.buffer = nullptr; |
| layerSettings.source.solidColor = half3(1.0, 0.0, 1.0); |
| layerSettings.geometry.boundaries = rect.toFloatRect(); |
| layerSettings.alpha = half(1.0); |
| clientCompositionLayers.push_back(layerSettings); |
| } |
| } |
| renderEngine.drawLayers(clientCompositionDisplay, clientCompositionLayers, |
| buf->getNativeBuffer(), /*useFramebufferCache=*/true, std::move(fd), |
| readyFence); |
| } else if (displayId) { |
| mPowerAdvisor.setExpensiveRenderingExpected(*displayId, false); |
| } |
| return true; |
| } |
| |
| void SurfaceFlinger::drawWormhole(const Region& region) const { |
| auto& engine(getRenderEngine()); |
| engine.fillRegionWithColor(region, 0, 0, 0, 0); |
| } |
| |
| status_t SurfaceFlinger::addClientLayer(const sp<Client>& client, const sp<IBinder>& handle, |
| const sp<IGraphicBufferProducer>& gbc, const sp<Layer>& lbc, |
| const sp<IBinder>& parentHandle, |
| const sp<Layer>& parentLayer, bool addToCurrentState) { |
| // add this layer to the current state list |
| { |
| Mutex::Autolock _l(mStateLock); |
| sp<Layer> parent; |
| if (parentHandle != nullptr) { |
| parent = fromHandle(parentHandle); |
| if (parent == nullptr) { |
| return NAME_NOT_FOUND; |
| } |
| } else { |
| parent = parentLayer; |
| } |
| |
| if (mNumLayers >= MAX_LAYERS) { |
| ALOGE("AddClientLayer failed, mNumLayers (%zu) >= MAX_LAYERS (%zu)", mNumLayers, |
| MAX_LAYERS); |
| return NO_MEMORY; |
| } |
| |
| mLayersByLocalBinderToken.emplace(handle->localBinder(), lbc); |
| |
| if (parent == nullptr && addToCurrentState) { |
| mCurrentState.layersSortedByZ.add(lbc); |
| } else if (parent == nullptr) { |
| lbc->onRemovedFromCurrentState(); |
| } else if (parent->isRemovedFromCurrentState()) { |
| parent->addChild(lbc); |
| lbc->onRemovedFromCurrentState(); |
| } else { |
| parent->addChild(lbc); |
| } |
| |
| if (gbc != nullptr) { |
| mGraphicBufferProducerList.insert(IInterface::asBinder(gbc).get()); |
| LOG_ALWAYS_FATAL_IF(mGraphicBufferProducerList.size() > |
| mMaxGraphicBufferProducerListSize, |
| "Suspected IGBP leak: %zu IGBPs (%zu max), %zu Layers", |
| mGraphicBufferProducerList.size(), |
| mMaxGraphicBufferProducerListSize, mNumLayers); |
| } |
| mLayersAdded = true; |
| } |
| |
| // attach this layer to the client |
| client->attachLayer(handle, lbc); |
| |
| return NO_ERROR; |
| } |
| |
| uint32_t SurfaceFlinger::peekTransactionFlags() { |
| return mTransactionFlags; |
| } |
| |
| uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags) { |
| return mTransactionFlags.fetch_and(~flags) & flags; |
| } |
| |
| uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags) { |
| return setTransactionFlags(flags, Scheduler::TransactionStart::NORMAL); |
| } |
| |
| uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags, |
| Scheduler::TransactionStart transactionStart) { |
| uint32_t old = mTransactionFlags.fetch_or(flags); |
| mVsyncModulator.setTransactionStart(transactionStart); |
| if ((old & flags)==0) { // wake the server up |
| signalTransaction(); |
| } |
| return old; |
| } |
| |
| bool SurfaceFlinger::flushTransactionQueues() { |
| // to prevent onHandleDestroyed from being called while the lock is held, |
| // we must keep a copy of the transactions (specifically the composer |
| // states) around outside the scope of the lock |
| std::vector<const TransactionState> transactions; |
| bool flushedATransaction = false; |
| { |
| Mutex::Autolock _l(mStateLock); |
| |
| auto it = mTransactionQueues.begin(); |
| while (it != mTransactionQueues.end()) { |
| auto& [applyToken, transactionQueue] = *it; |
| |
| while (!transactionQueue.empty()) { |
| const auto& transaction = transactionQueue.front(); |
| if (!transactionIsReadyToBeApplied(transaction.desiredPresentTime, |
| transaction.states)) { |
| setTransactionFlags(eTransactionFlushNeeded); |
| break; |
| } |
| transactions.push_back(transaction); |
| applyTransactionState(transaction.states, transaction.displays, transaction.flags, |
| mPendingInputWindowCommands, transaction.desiredPresentTime, |
| transaction.buffer, transaction.callback, |
| transaction.postTime, transaction.privileged, |
| /*isMainThread*/ true); |
| transactionQueue.pop(); |
| flushedATransaction = true; |
| } |
| |
| if (transactionQueue.empty()) { |
| it = mTransactionQueues.erase(it); |
| mTransactionCV.broadcast(); |
| } else { |
| it = std::next(it, 1); |
| } |
| } |
| } |
| return flushedATransaction; |
| } |
| |
| bool SurfaceFlinger::transactionFlushNeeded() { |
| return !mTransactionQueues.empty(); |
| } |
| |
| bool SurfaceFlinger::containsAnyInvalidClientState(const Vector<ComposerState>& states) { |
| for (const ComposerState& state : states) { |
| // Here we need to check that the interface we're given is indeed |
| // one of our own. A malicious client could give us a nullptr |
| // IInterface, or one of its own or even one of our own but a |
| // different type. All these situations would cause us to crash. |
| if (state.client == nullptr) { |
| return true; |
| } |
| |
| sp<IBinder> binder = IInterface::asBinder(state.client); |
| if (binder == nullptr) { |
| return true; |
| } |
| |
| if (binder->queryLocalInterface(ISurfaceComposerClient::descriptor) == nullptr) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool SurfaceFlinger::transactionIsReadyToBeApplied(int64_t desiredPresentTime, |
| const Vector<ComposerState>& states) { |
| nsecs_t expectedPresentTime = getExpectedPresentTime(); |
| // Do not present if the desiredPresentTime has not passed unless it is more than one second |
| // in the future. We ignore timestamps more than 1 second in the future for stability reasons. |
| if (desiredPresentTime >= 0 && desiredPresentTime >= expectedPresentTime && |
| desiredPresentTime < expectedPresentTime + s2ns(1)) { |
| return false; |
| } |
| |
| for (const ComposerState& state : states) { |
| const layer_state_t& s = state.state; |
| if (!(s.what & layer_state_t::eAcquireFenceChanged)) { |
| continue; |
| } |
| if (s.acquireFence && s.acquireFence->getStatus() == Fence::Status::Unsignaled) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| void SurfaceFlinger::setTransactionState(const Vector<ComposerState>& states, |
| const Vector<DisplayState>& displays, uint32_t flags, |
| const sp<IBinder>& applyToken, |
| const InputWindowCommands& inputWindowCommands, |
| int64_t desiredPresentTime, |
| const client_cache_t& uncacheBuffer, |
| const std::vector<ListenerCallbacks>& listenerCallbacks) { |
| ATRACE_CALL(); |
| |
| const int64_t postTime = systemTime(); |
| |
| bool privileged = callingThreadHasUnscopedSurfaceFlingerAccess(); |
| |
| Mutex::Autolock _l(mStateLock); |
| |
| if (containsAnyInvalidClientState(states)) { |
| return; |
| } |
| |
| // If its TransactionQueue already has a pending TransactionState or if it is pending |
| auto itr = mTransactionQueues.find(applyToken); |
| // if this is an animation frame, wait until prior animation frame has |
| // been applied by SF |
| if (flags & eAnimation) { |
| while (itr != mTransactionQueues.end()) { |
| status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5)); |
| if (CC_UNLIKELY(err != NO_ERROR)) { |
| ALOGW_IF(err == TIMED_OUT, |
| "setTransactionState timed out " |
| "waiting for animation frame to apply"); |
| break; |
| } |
| itr = mTransactionQueues.find(applyToken); |
| } |
| } |
| if (itr != mTransactionQueues.end() || |
| !transactionIsReadyToBeApplied(desiredPresentTime, states)) { |
| mTransactionQueues[applyToken].emplace(states, displays, flags, desiredPresentTime, |
| uncacheBuffer, listenerCallbacks, postTime, |
| privileged); |
| setTransactionFlags(eTransactionFlushNeeded); |
| return; |
| } |
| |
| applyTransactionState(states, displays, flags, inputWindowCommands, desiredPresentTime, |
| uncacheBuffer, listenerCallbacks, postTime, privileged); |
| } |
| |
| void SurfaceFlinger::applyTransactionState(const Vector<ComposerState>& states, |
| const Vector<DisplayState>& displays, uint32_t flags, |
| const InputWindowCommands& inputWindowCommands, |
| const int64_t desiredPresentTime, |
| const client_cache_t& uncacheBuffer, |
| const std::vector<ListenerCallbacks>& listenerCallbacks, |
| const int64_t postTime, bool privileged, |
| bool isMainThread) { |
| uint32_t transactionFlags = 0; |
| |
| if (flags & eAnimation) { |
| // For window updates that are part of an animation we must wait for |
| // previous animation "frames" to be handled. |
| while (!isMainThread && mAnimTransactionPending) { |
| status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5)); |
| if (CC_UNLIKELY(err != NO_ERROR)) { |
| // just in case something goes wrong in SF, return to the |
| // caller after a few seconds. |
| ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out " |
| "waiting for previous animation frame"); |
| mAnimTransactionPending = false; |
| break; |
| } |
| } |
| } |
| |
| for (const DisplayState& display : displays) { |
| transactionFlags |= setDisplayStateLocked(display); |
| } |
| |
| // In case the client has sent a Transaction that should receive callbacks but without any |
| // SurfaceControls that should be included in the callback, send the listener and callbackIds |
| // to the callback thread so it can send an empty callback |
| if (!listenerCallbacks.empty()) { |
| mTransactionCompletedThread.run(); |
| } |
| for (const auto& [listener, callbackIds] : listenerCallbacks) { |
| mTransactionCompletedThread.addCallback(listener, callbackIds); |
| } |
| |
| uint32_t clientStateFlags = 0; |
| for (const ComposerState& state : states) { |
| clientStateFlags |= setClientStateLocked(state, desiredPresentTime, listenerCallbacks, |
| postTime, privileged); |
| } |
| |
| // If the state doesn't require a traversal and there are callbacks, send them now |
| if (!(clientStateFlags & eTraversalNeeded) && !listenerCallbacks.empty()) { |
| mTransactionCompletedThread.sendCallbacks(); |
| } |
| transactionFlags |= clientStateFlags; |
| |
| transactionFlags |= addInputWindowCommands(inputWindowCommands); |
| |
| if (uncacheBuffer.isValid()) { |
| ClientCache::getInstance().erase(uncacheBuffer); |
| getRenderEngine().unbindExternalTextureBuffer(uncacheBuffer.id); |
| } |
| |
| // If a synchronous transaction is explicitly requested without any changes, force a transaction |
| // anyway. This can be used as a flush mechanism for previous async transactions. |
| // Empty animation transaction can be used to simulate back-pressure, so also force a |
| // transaction for empty animation transactions. |
| if (transactionFlags == 0 && |
| ((flags & eSynchronous) || (flags & eAnimation))) { |
| transactionFlags = eTransactionNeeded; |
| } |
| |
| // If we are on the main thread, we are about to preform a traversal. Clear the traversal bit |
| // so we don't have to wake up again next frame to preform an uneeded traversal. |
| if (isMainThread && (transactionFlags & eTraversalNeeded)) { |
| transactionFlags = transactionFlags & (~eTraversalNeeded); |
| mTraversalNeededMainThread = true; |
| } |
| |
| if (transactionFlags) { |
| if (mInterceptor->isEnabled()) { |
| mInterceptor->saveTransaction(states, mCurrentState.displays, displays, flags); |
| } |
| |
| // this triggers the transaction |
| const auto start = (flags & eEarlyWakeup) ? Scheduler::TransactionStart::EARLY |
| : Scheduler::TransactionStart::NORMAL; |
| setTransactionFlags(transactionFlags, start); |
| |
| // if this is a synchronous transaction, wait for it to take effect |
| // before returning. |
| if (flags & eSynchronous) { |
| mTransactionPending = true; |
| } |
| if (flags & eAnimation) { |
| mAnimTransactionPending = true; |
| } |
| if (mPendingInputWindowCommands.syncInputWindows) { |
| mPendingSyncInputWindows = true; |
| } |
| |
| // applyTransactionState can be called by either the main SF thread or by |
| // another process through setTransactionState. While a given process may wish |
| // to wait on synchronous transactions, the main SF thread should never |
| // be blocked. Therefore, we only wait if isMainThread is false. |
| while (!isMainThread && (mTransactionPending || mPendingSyncInputWindows)) { |
| status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5)); |
| if (CC_UNLIKELY(err != NO_ERROR)) { |
| // just in case something goes wrong in SF, return to the |
| // called after a few seconds. |
| ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out!"); |
| mTransactionPending = false; |
| mPendingSyncInputWindows = false; |
| break; |
| } |
| } |
| } |
| } |
| |
| uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s) { |
| const ssize_t index = mCurrentState.displays.indexOfKey(s.token); |
| if (index < 0) return 0; |
| |
| uint32_t flags = 0; |
| DisplayDeviceState& state = mCurrentState.displays.editValueAt(index); |
| |
| const uint32_t what = s.what; |
| if (what & DisplayState::eSurfaceChanged) { |
| if (IInterface::asBinder(state.surface) != IInterface::asBinder(s.surface)) { |
| state.surface = s.surface; |
| flags |= eDisplayTransactionNeeded; |
| } |
| } |
| if (what & DisplayState::eLayerStackChanged) { |
| if (state.layerStack != s.layerStack) { |
| state.layerStack = s.layerStack; |
| flags |= eDisplayTransactionNeeded; |
| } |
| } |
| if (what & DisplayState::eDisplayProjectionChanged) { |
| if (state.orientation != s.orientation) { |
| state.orientation = s.orientation; |
| flags |= eDisplayTransactionNeeded; |
| } |
| if (state.frame != s.frame) { |
| state.frame = s.frame; |
| flags |= eDisplayTransactionNeeded; |
| } |
| if (state.viewport != s.viewport) { |
| state.viewport = s.viewport; |
| flags |= eDisplayTransactionNeeded; |
| } |
| } |
| if (what & DisplayState::eDisplaySizeChanged) { |
| if (state.width != s.width) { |
| state.width = s.width; |
| flags |= eDisplayTransactionNeeded; |
| } |
| if (state.height != s.height) { |
| state.height = s.height; |
| flags |= eDisplayTransactionNeeded; |
| } |
| } |
| |
| return flags; |
| } |
| |
| bool SurfaceFlinger::callingThreadHasUnscopedSurfaceFlingerAccess() { |
| IPCThreadState* ipc = IPCThreadState::self(); |
| const int pid = ipc->getCallingPid(); |
| const int uid = ipc->getCallingUid(); |
| if ((uid != AID_GRAPHICS && uid != AID_SYSTEM) && |
| !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) { |
| return false; |
| } |
| return true; |
| } |
| |
| uint32_t SurfaceFlinger::setClientStateLocked( |
| const ComposerState& composerState, int64_t desiredPresentTime, |
| const std::vector<ListenerCallbacks>& listenerCallbacks, int64_t postTime, |
| bool privileged) { |
| const layer_state_t& s = composerState.state; |
| sp<Client> client(static_cast<Client*>(composerState.client.get())); |
| |
| sp<Layer> layer(client->getLayerUser(s.surface)); |
| if (layer == nullptr) { |
| return 0; |
| } |
| |
| uint32_t flags = 0; |
| |
| const uint64_t what = s.what; |
| bool geometryAppliesWithResize = |
| what & layer_state_t::eGeometryAppliesWithResize; |
| |
| // If we are deferring transaction, make sure to push the pending state, as otherwise the |
| // pending state will also be deferred. |
| if (what & layer_state_t::eDeferTransaction_legacy) { |
| layer->pushPendingState(); |
| } |
| |
| if (what & layer_state_t::ePositionChanged) { |
| if (layer->setPosition(s.x, s.y, !geometryAppliesWithResize)) { |
| flags |= eTraversalNeeded; |
| } |
| } |
| if (what & layer_state_t::eLayerChanged) { |
| // NOTE: index needs to be calculated before we update the state |
| const auto& p = layer->getParent(); |
| if (p == nullptr) { |
| ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer); |
| if (layer->setLayer(s.z) && idx >= 0) { |
| mCurrentState.layersSortedByZ.removeAt(idx); |
| mCurrentState.layersSortedByZ.add(layer); |
| // we need traversal (state changed) |
| // AND transaction (list changed) |
| flags |= eTransactionNeeded|eTraversalNeeded; |
| } |
| } else { |
| if (p->setChildLayer(layer, s.z)) { |
| flags |= eTransactionNeeded|eTraversalNeeded; |
| } |
| } |
| } |
| if (what & layer_state_t::eRelativeLayerChanged) { |
| // NOTE: index needs to be calculated before we update the state |
| const auto& p = layer->getParent(); |
| if (p == nullptr) { |
| ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer); |
| if (layer->setRelativeLayer(s.relativeLayerHandle, s.z) && idx >= 0) { |
| mCurrentState.layersSortedByZ.removeAt(idx); |
| mCurrentState.layersSortedByZ.add(layer); |
| // we need traversal (state changed) |
| // AND transaction (list changed) |
| flags |= eTransactionNeeded|eTraversalNeeded; |
| } |
| } else { |
| if (p->setChildRelativeLayer(layer, s.relativeLayerHandle, s.z)) { |
| flags |= eTransactionNeeded|eTraversalNeeded; |
| } |
| } |
| } |
| if (what & layer_state_t::eSizeChanged) { |
| if (layer->setSize(s.w, s.h)) { |
| flags |= eTraversalNeeded; |
| } |
| } |
| if (what & layer_state_t::eAlphaChanged) { |
| if (layer->setAlpha(s.alpha)) |
| flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eColorChanged) { |
| if (layer->setColor(s.color)) |
| flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eColorTransformChanged) { |
| if (layer->setColorTransform(s.colorTransform)) { |
| flags |= eTraversalNeeded; |
| } |
| } |
| if (what & layer_state_t::eBackgroundColorChanged) { |
| if (layer->setBackgroundColor(s.color, s.bgColorAlpha, s.bgColorDataspace)) { |
| flags |= eTraversalNeeded; |
| } |
| } |
| if (what & layer_state_t::eMatrixChanged) { |
| // TODO: b/109894387 |
| // |
| // SurfaceFlinger's renderer is not prepared to handle cropping in the face of arbitrary |
| // rotation. To see the problem observe that if we have a square parent, and a child |
| // of the same size, then we rotate the child 45 degrees around it's center, the child |
| // must now be cropped to a non rectangular 8 sided region. |
| // |
| // Of course we can fix this in the future. For now, we are lucky, SurfaceControl is |
| // private API, and the WindowManager only uses rotation in one case, which is on a top |
| // level layer in which cropping is not an issue. |
| // |
| // However given that abuse of rotation matrices could lead to surfaces extending outside |
| // of cropped areas, we need to prevent non-root clients without permission ACCESS_SURFACE_FLINGER |
| // (a.k.a. everyone except WindowManager and tests) from setting non rectangle preserving |
| // transformations. |
| if (layer->setMatrix(s.matrix, privileged)) |
| flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eTransparentRegionChanged) { |
| if (layer->setTransparentRegionHint(s.transparentRegion)) |
| flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eFlagsChanged) { |
| if (layer->setFlags(s.flags, s.mask)) |
| flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eCropChanged_legacy) { |
| if (layer->setCrop_legacy(s.crop_legacy, !geometryAppliesWithResize)) |
| flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eCornerRadiusChanged) { |
| if (layer->setCornerRadius(s.cornerRadius)) |
| flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eLayerStackChanged) { |
| ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer); |
| // We only allow setting layer stacks for top level layers, |
| // everything else inherits layer stack from its parent. |
| if (layer->hasParent()) { |
| ALOGE("Attempt to set layer stack on layer with parent (%s) is invalid", |
| layer->getName().string()); |
| } else if (idx < 0) { |
| ALOGE("Attempt to set layer stack on layer without parent (%s) that " |
| "that also does not appear in the top level layer list. Something" |
| " has gone wrong.", layer->getName().string()); |
| } else if (layer->setLayerStack(s.layerStack)) { |
| mCurrentState.layersSortedByZ.removeAt(idx); |
| mCurrentState.layersSortedByZ.add(layer); |
| // we need traversal (state changed) |
| // AND transaction (list changed) |
| flags |= eTransactionNeeded|eTraversalNeeded|eDisplayLayerStackChanged; |
| } |
| } |
| if (what & layer_state_t::eDeferTransaction_legacy) { |
| if (s.barrierHandle_legacy != nullptr) { |
| layer->deferTransactionUntil_legacy(s.barrierHandle_legacy, s.frameNumber_legacy); |
| } else if (s.barrierGbp_legacy != nullptr) { |
| const sp<IGraphicBufferProducer>& gbp = s.barrierGbp_legacy; |
| if (authenticateSurfaceTextureLocked(gbp)) { |
| const auto& otherLayer = |
| (static_cast<MonitoredProducer*>(gbp.get()))->getLayer(); |
| layer->deferTransactionUntil_legacy(otherLayer, s.frameNumber_legacy); |
| } else { |
| ALOGE("Attempt to defer transaction to to an" |
| " unrecognized GraphicBufferProducer"); |
| } |
| } |
| // We don't trigger a traversal here because if no other state is |
| // changed, we don't want this to cause any more work |
| } |
| if (what & layer_state_t::eReparent) { |
| bool hadParent = layer->hasParent(); |
| if (layer->reparent(s.parentHandleForChild)) { |
| if (!hadParent) { |
| mCurrentState.layersSortedByZ.remove(layer); |
| } |
| flags |= eTransactionNeeded|eTraversalNeeded; |
| } |
| } |
| if (what & layer_state_t::eReparentChildren) { |
| if (layer->reparentChildren(s.reparentHandle)) { |
| flags |= eTransactionNeeded|eTraversalNeeded; |
| } |
| } |
| if (what & layer_state_t::eDetachChildren) { |
| layer->detachChildren(); |
| } |
| if (what & layer_state_t::eOverrideScalingModeChanged) { |
| layer->setOverrideScalingMode(s.overrideScalingMode); |
| // We don't trigger a traversal here because if no other state is |
| // changed, we don't want this to cause any more work |
| } |
| if (what & layer_state_t::eTransformChanged) { |
| if (layer->setTransform(s.transform)) flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eTransformToDisplayInverseChanged) { |
| if (layer->setTransformToDisplayInverse(s.transformToDisplayInverse)) |
| flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eCropChanged) { |
| if (layer->setCrop(s.crop)) flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eFrameChanged) { |
| if (layer->setFrame(s.frame)) flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eAcquireFenceChanged) { |
| if (layer->setAcquireFence(s.acquireFence)) flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eDataspaceChanged) { |
| if (layer->setDataspace(s.dataspace)) flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eHdrMetadataChanged) { |
| if (layer->setHdrMetadata(s.hdrMetadata)) flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eSurfaceDamageRegionChanged) { |
| if (layer->setSurfaceDamageRegion(s.surfaceDamageRegion)) flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eApiChanged) { |
| if (layer->setApi(s.api)) flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eSidebandStreamChanged) { |
| if (layer->setSidebandStream(s.sidebandStream)) flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eInputInfoChanged) { |
| if (privileged) { |
| layer->setInputInfo(s.inputInfo); |
| flags |= eTraversalNeeded; |
| } else { |
| ALOGE("Attempt to update InputWindowInfo without permission ACCESS_SURFACE_FLINGER"); |
| } |
| } |
| if (what & layer_state_t::eMetadataChanged) { |
| if (layer->setMetadata(s.metadata)) flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eColorSpaceAgnosticChanged) { |
| if (layer->setColorSpaceAgnostic(s.colorSpaceAgnostic)) { |
| flags |= eTraversalNeeded; |
| } |
| } |
| std::vector<sp<CallbackHandle>> callbackHandles; |
| if ((what & layer_state_t::eHasListenerCallbacksChanged) && (!listenerCallbacks.empty())) { |
| for (const auto& [listener, callbackIds] : listenerCallbacks) { |
| callbackHandles.emplace_back(new CallbackHandle(listener, callbackIds, s.surface)); |
| } |
| } |
| bool bufferChanged = what & layer_state_t::eBufferChanged; |
| bool cacheIdChanged = what & layer_state_t::eCachedBufferChanged; |
| sp<GraphicBuffer> buffer; |
| if (bufferChanged && cacheIdChanged && s.buffer != nullptr) { |
| buffer = s.buffer; |
| bool success = ClientCache::getInstance().add(s.cachedBuffer, s.buffer); |
| if (success) { |
| getRenderEngine().cacheExternalTextureBuffer(s.buffer); |
| success = ClientCache::getInstance() |
| .registerErasedRecipient(s.cachedBuffer, |
| wp<ClientCache::ErasedRecipient>(this)); |
| if (!success) { |
| getRenderEngine().unbindExternalTextureBuffer(s.buffer->getId()); |
| } |
| } |
| } else if (cacheIdChanged) { |
| buffer = ClientCache::getInstance().get(s.cachedBuffer); |
| } else if (bufferChanged) { |
| buffer = s.buffer; |
| } |
| if (buffer) { |
| if (layer->setBuffer(buffer, postTime, desiredPresentTime, s.cachedBuffer)) { |
| flags |= eTraversalNeeded; |
| } |
| } |
| if (layer->setTransactionCompletedListeners(callbackHandles)) flags |= eTraversalNeeded; |
| // Do not put anything that updates layer state or modifies flags after |
| // setTransactionCompletedListener |
| return flags; |
| } |
| |
| uint32_t SurfaceFlinger::addInputWindowCommands(const InputWindowCommands& inputWindowCommands) { |
| uint32_t flags = 0; |
| if (!inputWindowCommands.transferTouchFocusCommands.empty()) { |
| flags |= eTraversalNeeded; |
| } |
| |
| if (inputWindowCommands.syncInputWindows) { |
| flags |= eTraversalNeeded; |
| } |
| |
| mPendingInputWindowCommands.merge(inputWindowCommands); |
| return flags; |
| } |
| |
| status_t SurfaceFlinger::createLayer(const String8& name, const sp<Client>& client, uint32_t w, |
| uint32_t h, PixelFormat format, uint32_t flags, |
| LayerMetadata metadata, sp<IBinder>* handle, |
| sp<IGraphicBufferProducer>* gbp, |
| const sp<IBinder>& parentHandle, |
| const sp<Layer>& parentLayer) { |
| if (int32_t(w|h) < 0) { |
| ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)", |
| int(w), int(h)); |
| return BAD_VALUE; |
| } |
| |
| ALOG_ASSERT(parentLayer == nullptr || parentHandle == nullptr, |
| "Expected only one of parentLayer or parentHandle to be non-null. " |
| "Programmer error?"); |
| |
| status_t result = NO_ERROR; |
| |
| sp<Layer> layer; |
| |
| String8 uniqueName = getUniqueLayerName(name); |
| |
| bool primaryDisplayOnly = false; |
| |
| // window type is WINDOW_TYPE_DONT_SCREENSHOT from SurfaceControl.java |
| // TODO b/64227542 |
| if (metadata.has(METADATA_WINDOW_TYPE)) { |
| int32_t windowType = metadata.getInt32(METADATA_WINDOW_TYPE, 0); |
| if (windowType == 441731) { |
| metadata.setInt32(METADATA_WINDOW_TYPE, InputWindowInfo::TYPE_NAVIGATION_BAR_PANEL); |
| primaryDisplayOnly = true; |
| } |
| } |
| |
| switch (flags & ISurfaceComposerClient::eFXSurfaceMask) { |
| case ISurfaceComposerClient::eFXSurfaceBufferQueue: |
| result = createBufferQueueLayer(client, uniqueName, w, h, flags, std::move(metadata), |
| format, handle, gbp, &layer); |
| |
| break; |
| case ISurfaceComposerClient::eFXSurfaceBufferState: |
| result = createBufferStateLayer(client, uniqueName, w, h, flags, std::move(metadata), |
| handle, &layer); |
| break; |
| case ISurfaceComposerClient::eFXSurfaceColor: |
| // check if buffer size is set for color layer. |
| if (w > 0 || h > 0) { |
| ALOGE("createLayer() failed, w or h cannot be set for color layer (w=%d, h=%d)", |
| int(w), int(h)); |
| return BAD_VALUE; |
| } |
| |
| result = createColorLayer(client, uniqueName, w, h, flags, std::move(metadata), handle, |
| &layer); |
| break; |
| case ISurfaceComposerClient::eFXSurfaceContainer: |
| // check if buffer size is set for container layer. |
| if (w > 0 || h > 0) { |
| ALOGE("createLayer() failed, w or h cannot be set for container layer (w=%d, h=%d)", |
| int(w), int(h)); |
| return BAD_VALUE; |
| } |
| result = createContainerLayer(client, uniqueName, w, h, flags, std::move(metadata), |
| handle, &layer); |
| break; |
| default: |
| result = BAD_VALUE; |
| break; |
| } |
| |
| if (result != NO_ERROR) { |
| return result; |
| } |
| |
| if (primaryDisplayOnly) { |
| layer->setPrimaryDisplayOnly(); |
| } |
| |
| bool addToCurrentState = callingThreadHasUnscopedSurfaceFlingerAccess(); |
| result = addClientLayer(client, *handle, *gbp, layer, parentHandle, parentLayer, |
| addToCurrentState); |
| if (result != NO_ERROR) { |
| return result; |
| } |
| mInterceptor->saveSurfaceCreation(layer); |
| |
| setTransactionFlags(eTransactionNeeded); |
| return result; |
| } |
| |
| String8 SurfaceFlinger::getUniqueLayerName(const String8& name) |
| { |
| bool matchFound = true; |
| uint32_t dupeCounter = 0; |
| |
| // Tack on our counter whether there is a hit or not, so everyone gets a tag |
| String8 uniqueName = name + "#" + String8(std::to_string(dupeCounter).c_str()); |
| |
| // Grab the state lock since we're accessing mCurrentState |
| Mutex::Autolock lock(mStateLock); |
| |
| // Loop over layers until we're sure there is no matching name |
| while (matchFound) { |
| matchFound = false; |
| mCurrentState.traverseInZOrder([&](Layer* layer) { |
| if (layer->getName() == uniqueName) { |
| matchFound = true; |
| uniqueName = name + "#" + String8(std::to_string(++dupeCounter).c_str()); |
| } |
| }); |
| } |
| |
| ALOGV_IF(dupeCounter > 0, "duplicate layer name: changing %s to %s", name.c_str(), |
| uniqueName.c_str()); |
| |
| return uniqueName; |
| } |
| |
| status_t SurfaceFlinger::createBufferQueueLayer(const sp<Client>& client, const String8& name, |
| uint32_t w, uint32_t h, uint32_t flags, |
| LayerMetadata metadata, PixelFormat& format, |
| sp<IBinder>* handle, |
| sp<IGraphicBufferProducer>* gbp, |
| sp<Layer>* outLayer) { |
| // initialize the surfaces |
| switch (format) { |
| case PIXEL_FORMAT_TRANSPARENT: |
| case PIXEL_FORMAT_TRANSLUCENT: |
| format = PIXEL_FORMAT_RGBA_8888; |
| break; |
| case PIXEL_FORMAT_OPAQUE: |
| format = PIXEL_FORMAT_RGBX_8888; |
| break; |
| } |
| |
| sp<BufferQueueLayer> layer = getFactory().createBufferQueueLayer( |
| LayerCreationArgs(this, client, name, w, h, flags, std::move(metadata))); |
| status_t err = layer->setDefaultBufferProperties(w, h, format); |
| if (err == NO_ERROR) { |
| *handle = layer->getHandle(); |
| *gbp = layer->getProducer(); |
| *outLayer = layer; |
| } |
| |
| ALOGE_IF(err, "createBufferQueueLayer() failed (%s)", strerror(-err)); |
| return err; |
| } |
| |
| status_t SurfaceFlinger::createBufferStateLayer(const sp<Client>& client, const String8& name, |
| uint32_t w, uint32_t h, uint32_t flags, |
| LayerMetadata metadata, sp<IBinder>* handle, |
| sp<Layer>* outLayer) { |
| sp<BufferStateLayer> layer = getFactory().createBufferStateLayer( |
| LayerCreationArgs(this, client, name, w, h, flags, std::move(metadata))); |
| *handle = layer->getHandle(); |
| *outLayer = layer; |
| |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::createColorLayer(const sp<Client>& client, const String8& name, uint32_t w, |
| uint32_t h, uint32_t flags, LayerMetadata metadata, |
| sp<IBinder>* handle, sp<Layer>* outLayer) { |
| *outLayer = getFactory().createColorLayer( |
| LayerCreationArgs(this, client, name, w, h, flags, std::move(metadata))); |
| *handle = (*outLayer)->getHandle(); |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::createContainerLayer(const sp<Client>& client, const String8& name, |
| uint32_t w, uint32_t h, uint32_t flags, |
| LayerMetadata metadata, sp<IBinder>* handle, |
| sp<Layer>* outLayer) { |
| *outLayer = getFactory().createContainerLayer( |
| LayerCreationArgs(this, client, name, w, h, flags, std::move(metadata))); |
| *handle = (*outLayer)->getHandle(); |
| return NO_ERROR; |
| } |
| |
| |
| void SurfaceFlinger::markLayerPendingRemovalLocked(const sp<Layer>& layer) { |
| mLayersPendingRemoval.add(layer); |
| mLayersRemoved = true; |
| setTransactionFlags(eTransactionNeeded); |
| } |
| |
| void SurfaceFlinger::onHandleDestroyed(sp<Layer>& layer) |
| { |
| Mutex::Autolock lock(mStateLock); |
| // If a layer has a parent, we allow it to out-live it's handle |
| // with the idea that the parent holds a reference and will eventually |
| // be cleaned up. However no one cleans up the top-level so we do so |
| // here. |
| if (layer->getParent() == nullptr) { |
| mCurrentState.layersSortedByZ.remove(layer); |
| } |
| markLayerPendingRemovalLocked(layer); |
| |
| auto it = mLayersByLocalBinderToken.begin(); |
| while (it != mLayersByLocalBinderToken.end()) { |
| if (it->second == layer) { |
| it = mLayersByLocalBinderToken.erase(it); |
| } else { |
| it++; |
| } |
| } |
| |
| layer.clear(); |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| void SurfaceFlinger::onInitializeDisplays() { |
| const auto display = getDefaultDisplayDeviceLocked(); |
| if (!display) return; |
| |
| const sp<IBinder> token = display->getDisplayToken().promote(); |
| LOG_ALWAYS_FATAL_IF(token == nullptr); |
| |
| // reset screen orientation and use primary layer stack |
| Vector<ComposerState> state; |
| Vector<DisplayState> displays; |
| DisplayState d; |
| d.what = DisplayState::eDisplayProjectionChanged | |
| DisplayState::eLayerStackChanged; |
| d.token = token; |
| d.layerStack = 0; |
| d.orientation = DisplayState::eOrientationDefault; |
| d.frame.makeInvalid(); |
| d.viewport.makeInvalid(); |
| d.width = 0; |
| d.height = 0; |
| displays.add(d); |
| setTransactionState(state, displays, 0, nullptr, mPendingInputWindowCommands, -1, {}, {}); |
| |
| setPowerModeInternal(display, HWC_POWER_MODE_NORMAL); |
| |
| const nsecs_t vsyncPeriod = getVsyncPeriod(); |
| mAnimFrameTracker.setDisplayRefreshPeriod(vsyncPeriod); |
| |
| // Use phase of 0 since phase is not known. |
| // Use latency of 0, which will snap to the ideal latency. |
| DisplayStatInfo stats{0 /* vsyncTime */, vsyncPeriod}; |
| setCompositorTimingSnapped(stats, 0); |
| } |
| |
| void SurfaceFlinger::initializeDisplays() { |
| // Async since we may be called from the main thread. |
| postMessageAsync( |
| new LambdaMessage([this]() NO_THREAD_SAFETY_ANALYSIS { onInitializeDisplays(); })); |
| } |
| |
| void SurfaceFlinger::setVsyncEnabledInHWC(DisplayId displayId, HWC2::Vsync enabled) { |
| if (mHWCVsyncState != enabled) { |
| getHwComposer().setVsyncEnabled(displayId, enabled); |
| mHWCVsyncState = enabled; |
| } |
| } |
| |
| void SurfaceFlinger::setPowerModeInternal(const sp<DisplayDevice>& display, int mode) { |
| if (display->isVirtual()) { |
| ALOGE("%s: Invalid operation on virtual display", __FUNCTION__); |
| return; |
| } |
| |
| const auto displayId = display->getId(); |
| LOG_ALWAYS_FATAL_IF(!displayId); |
| |
| ALOGD("Setting power mode %d on display %s", mode, to_string(*displayId).c_str()); |
| |
| int currentMode = display->getPowerMode(); |
| if (mode == currentMode) { |
| return; |
| } |
| |
| display->setPowerMode(mode); |
| |
| if (mInterceptor->isEnabled()) { |
| mInterceptor->savePowerModeUpdate(display->getSequenceId(), mode); |
| } |
| |
| if (currentMode == HWC_POWER_MODE_OFF) { |
| // Turn on the display |
| getHwComposer().setPowerMode(*displayId, mode); |
| if (display->isPrimary() && mode != HWC_POWER_MODE_DOZE_SUSPEND) { |
| setVsyncEnabledInHWC(*displayId, mHWCVsyncPendingState); |
| mScheduler->onScreenAcquired(mAppConnectionHandle); |
| mScheduler->resyncToHardwareVsync(true, getVsyncPeriod()); |
| } |
| |
| mVisibleRegionsDirty = true; |
| mHasPoweredOff = true; |
| repaintEverything(); |
| |
| struct sched_param param = {0}; |
| param.sched_priority = 1; |
| if (sched_setscheduler(0, SCHED_FIFO, ¶m) != 0) { |
| ALOGW("Couldn't set SCHED_FIFO on display on"); |
| } |
| } else if (mode == HWC_POWER_MODE_OFF) { |
| // Turn off the display |
| struct sched_param param = {0}; |
| if (sched_setscheduler(0, SCHED_OTHER, ¶m) != 0) { |
| ALOGW("Couldn't set SCHED_OTHER on display off"); |
| } |
| |
| if (display->isPrimary() && currentMode != HWC_POWER_MODE_DOZE_SUSPEND) { |
| mScheduler->disableHardwareVsync(true); |
| mScheduler->onScreenReleased(mAppConnectionHandle); |
| } |
| |
| // Make sure HWVsync is disabled before turning off the display |
| setVsyncEnabledInHWC(*displayId, HWC2::Vsync::Disable); |
| |
| getHwComposer().setPowerMode(*displayId, mode); |
| mVisibleRegionsDirty = true; |
| // from this point on, SF will stop drawing on this display |
| } else if (mode == HWC_POWER_MODE_DOZE || |
| mode == HWC_POWER_MODE_NORMAL) { |
| // Update display while dozing |
| getHwComposer().setPowerMode(*displayId, mode); |
| if (display->isPrimary() && currentMode == HWC_POWER_MODE_DOZE_SUSPEND) { |
| mScheduler->onScreenAcquired(mAppConnectionHandle); |
| mScheduler->resyncToHardwareVsync(true, getVsyncPeriod()); |
| } |
| } else if (mode == HWC_POWER_MODE_DOZE_SUSPEND) { |
| // Leave display going to doze |
| if (display->isPrimary()) { |
| mScheduler->disableHardwareVsync(true); |
| mScheduler->onScreenReleased(mAppConnectionHandle); |
| } |
| getHwComposer().setPowerMode(*displayId, mode); |
| } else { |
| ALOGE("Attempting to set unknown power mode: %d\n", mode); |
| getHwComposer().setPowerMode(*displayId, mode); |
| } |
| |
| if (display->isPrimary()) { |
| mTimeStats->setPowerMode(mode); |
| mRefreshRateStats.setPowerMode(mode); |
| mScheduler->setDisplayPowerState(mode == HWC_POWER_MODE_NORMAL); |
| } |
| |
| ALOGD("Finished setting power mode %d on display %s", mode, to_string(*displayId).c_str()); |
| } |
| |
| void SurfaceFlinger::setPowerMode(const sp<IBinder>& displayToken, int mode) { |
| postMessageSync(new LambdaMessage([&]() NO_THREAD_SAFETY_ANALYSIS { |
| const auto display = getDisplayDevice(displayToken); |
| if (!display) { |
| ALOGE("Attempt to set power mode %d for invalid display token %p", mode, |
| displayToken.get()); |
| } else if (display->isVirtual()) { |
| ALOGW("Attempt to set power mode %d for virtual display", mode); |
| } else { |
| setPowerModeInternal(display, mode); |
| } |
| })); |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| status_t SurfaceFlinger::doDump(int fd, const DumpArgs& args, |
| bool asProto) NO_THREAD_SAFETY_ANALYSIS { |
| std::string result; |
| |
| IPCThreadState* ipc = IPCThreadState::self(); |
| const int pid = ipc->getCallingPid(); |
| const int uid = ipc->getCallingUid(); |
| |
| if ((uid != AID_SHELL) && |
| !PermissionCache::checkPermission(sDump, pid, uid)) { |
| StringAppendF(&result, "Permission Denial: can't dump SurfaceFlinger from pid=%d, uid=%d\n", |
| pid, uid); |
| } else { |
| // Try to get the main lock, but give up after one second |
| // (this would indicate SF is stuck, but we want to be able to |
| // print something in dumpsys). |
| status_t err = mStateLock.timedLock(s2ns(1)); |
| bool locked = (err == NO_ERROR); |
| if (!locked) { |
| StringAppendF(&result, |
| "SurfaceFlinger appears to be unresponsive (%s [%d]), dumping anyways " |
| "(no locks held)\n", |
| strerror(-err), err); |
| } |
| |
| using namespace std::string_literals; |
| |
| static const std::unordered_map<std::string, Dumper> dumpers = { |
| {"--clear-layer-stats"s, dumper([this](std::string&) { mLayerStats.clear(); })}, |
| {"--disable-layer-stats"s, dumper([this](std::string&) { mLayerStats.disable(); })}, |
| {"--display-id"s, dumper(&SurfaceFlinger::dumpDisplayIdentificationData)}, |
| {"--dispsync"s, dumper([this](std::string& s) { |
| mScheduler->dumpPrimaryDispSync(s); |
| })}, |
| {"--dump-layer-stats"s, dumper([this](std::string& s) { mLayerStats.dump(s); })}, |
| {"--enable-layer-stats"s, dumper([this](std::string&) { mLayerStats.enable(); })}, |
| {"--frame-events"s, dumper(&SurfaceFlinger::dumpFrameEventsLocked)}, |
| {"--latency"s, argsDumper(&SurfaceFlinger::dumpStatsLocked)}, |
| {"--latency-clear"s, argsDumper(&SurfaceFlinger::clearStatsLocked)}, |
| {"--list"s, dumper(&SurfaceFlinger::listLayersLocked)}, |
| {"--static-screen"s, dumper(&SurfaceFlinger::dumpStaticScreenStats)}, |
| {"--timestats"s, protoDumper(&SurfaceFlinger::dumpTimeStats)}, |
| {"--vsync"s, dumper(&SurfaceFlinger::dumpVSync)}, |
| {"--wide-color"s, dumper(&SurfaceFlinger::dumpWideColorInfo)}, |
| }; |
| |
| const auto flag = args.empty() ? ""s : std::string(String8(args[0])); |
| |
| if (const auto it = dumpers.find(flag); it != dumpers.end()) { |
| (it->second)(args, asProto, result); |
| } else if (!asProto) { |
| dumpAllLocked(args, result); |
| } |
| |
| if (locked) { |
| mStateLock.unlock(); |
| } |
| |
| LayersProto layersProto = dumpProtoFromMainThread(); |
| if (asProto) { |
| result.append(layersProto.SerializeAsString().c_str(), layersProto.ByteSize()); |
| } else { |
| auto layerTree = LayerProtoParser::generateLayerTree(layersProto); |
| result.append(LayerProtoParser::layerTreeToString(layerTree)); |
| result.append("\n"); |
| } |
| } |
| write(fd, result.c_str(), result.size()); |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::dumpCritical(int fd, const DumpArgs&, bool asProto) { |
| if (asProto && mTracing.isEnabled()) { |
| mTracing.writeToFileAsync(); |
| } |
| |
| return doDump(fd, DumpArgs(), asProto); |
| } |
| |
| void SurfaceFlinger::listLayersLocked(std::string& result) const { |
| mCurrentState.traverseInZOrder( |
| [&](Layer* layer) { StringAppendF(&result, "%s\n", layer->getName().string()); }); |
| } |
| |
| void SurfaceFlinger::dumpStatsLocked(const DumpArgs& args, std::string& result) const { |
| StringAppendF(&result, "%" PRId64 "\n", getVsyncPeriod()); |
| |
| if (args.size() > 1) { |
| const auto name = String8(args[1]); |
| mCurrentState.traverseInZOrder([&](Layer* layer) { |
| if (name == layer->getName()) { |
| layer->dumpFrameStats(result); |
| } |
| }); |
| } else { |
| mAnimFrameTracker.dumpStats(result); |
| } |
| } |
| |
| void SurfaceFlinger::clearStatsLocked(const DumpArgs& args, std::string&) { |
| mCurrentState.traverseInZOrder([&](Layer* layer) { |
| if (args.size() < 2 || String8(args[1]) == layer->getName()) { |
| layer->clearFrameStats(); |
| } |
| }); |
| |
| mAnimFrameTracker.clearStats(); |
| } |
| |
| void SurfaceFlinger::dumpTimeStats(const DumpArgs& args, bool asProto, std::string& result) const { |
| mTimeStats->parseArgs(asProto, args, result); |
| } |
| |
| // This should only be called from the main thread. Otherwise it would need |
| // the lock and should use mCurrentState rather than mDrawingState. |
| void SurfaceFlinger::logFrameStats() { |
| mDrawingState.traverseInZOrder([&](Layer* layer) { |
| layer->logFrameStats(); |
| }); |
| |
| mAnimFrameTracker.logAndResetStats(String8("<win-anim>")); |
| } |
| |
| void SurfaceFlinger::appendSfConfigString(std::string& result) const { |
| result.append(" [sf"); |
| |
| if (isLayerTripleBufferingDisabled()) |
| result.append(" DISABLE_TRIPLE_BUFFERING"); |
| |
| StringAppendF(&result, " PRESENT_TIME_OFFSET=%" PRId64, dispSyncPresentTimeOffset); |
| StringAppendF(&result, " FORCE_HWC_FOR_RBG_TO_YUV=%d", useHwcForRgbToYuv); |
| StringAppendF(&result, " MAX_VIRT_DISPLAY_DIM=%" PRIu64, maxVirtualDisplaySize); |
| StringAppendF(&result, " RUNNING_WITHOUT_SYNC_FRAMEWORK=%d", !hasSyncFramework); |
| StringAppendF(&result, " NUM_FRAMEBUFFER_SURFACE_BUFFERS=%" PRId64, |
| maxFrameBufferAcquiredBuffers); |
| result.append("]"); |
| } |
| |
| void SurfaceFlinger::dumpVSync(std::string& result) const { |
| mPhaseOffsets->dump(result); |
| StringAppendF(&result, |
| " present offset: %9" PRId64 " ns\t VSYNC period: %9" PRId64 " ns\n\n", |
| dispSyncPresentTimeOffset, getVsyncPeriod()); |
| |
| StringAppendF(&result, "Scheduler enabled."); |
| StringAppendF(&result, "+ Smart 90 for video detection: %s\n\n", |
| mUseSmart90ForVideo ? "on" : "off"); |
| StringAppendF(&result, "Allowed Display Configs: "); |
| for (int32_t configId : mAllowedDisplayConfigs) { |
| for (auto refresh : mRefreshRateConfigs.getRefreshRates()) { |
| if (refresh.second && refresh.second->configId == configId) { |
| StringAppendF(&result, "%dHz, ", refresh.second->fps); |
| } |
| } |
| } |
| StringAppendF(&result, "(config override by backdoor: %s)\n\n", |
| mDebugDisplayConfigSetByBackdoor ? "yes" : "no"); |
| mScheduler->dump(mAppConnectionHandle, result); |
| } |
| |
| void SurfaceFlinger::dumpStaticScreenStats(std::string& result) const { |
| result.append("Static screen stats:\n"); |
| for (size_t b = 0; b < SurfaceFlingerBE::NUM_BUCKETS - 1; ++b) { |
| float bucketTimeSec = getBE().mFrameBuckets[b] / 1e9; |
| float percent = 100.0f * |
| static_cast<float>(getBE().mFrameBuckets[b]) / getBE().mTotalTime; |
| StringAppendF(&result, " < %zd frames: %.3f s (%.1f%%)\n", b + 1, bucketTimeSec, percent); |
| } |
| float bucketTimeSec = getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1] / 1e9; |
| float percent = 100.0f * |
| static_cast<float>(getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1]) / getBE().mTotalTime; |
| StringAppendF(&result, " %zd+ frames: %.3f s (%.1f%%)\n", SurfaceFlingerBE::NUM_BUCKETS - 1, |
| bucketTimeSec, percent); |
| } |
| |
| void SurfaceFlinger::recordBufferingStats(const char* layerName, |
| std::vector<OccupancyTracker::Segment>&& history) { |
| Mutex::Autolock lock(getBE().mBufferingStatsMutex); |
| auto& stats = getBE().mBufferingStats[layerName]; |
| for (const auto& segment : history) { |
| if (!segment.usedThirdBuffer) { |
| stats.twoBufferTime += segment.totalTime; |
| } |
| if (segment.occupancyAverage < 1.0f) { |
| stats.doubleBufferedTime += segment.totalTime; |
| } else if (segment.occupancyAverage < 2.0f) { |
| stats.tripleBufferedTime += segment.totalTime; |
| } |
| ++stats.numSegments; |
| stats.totalTime += segment.totalTime; |
| } |
| } |
| |
| void SurfaceFlinger::dumpFrameEventsLocked(std::string& result) { |
| result.append("Layer frame timestamps:\n"); |
| |
| const LayerVector& currentLayers = mCurrentState.layersSortedByZ; |
| const size_t count = currentLayers.size(); |
| for (size_t i=0 ; i<count ; i++) { |
| currentLayers[i]->dumpFrameEvents(result); |
| } |
| } |
| |
| void SurfaceFlinger::dumpBufferingStats(std::string& result) const { |
| result.append("Buffering stats:\n"); |
| result.append(" [Layer name] <Active time> <Two buffer> " |
| "<Double buffered> <Triple buffered>\n"); |
| Mutex::Autolock lock(getBE().mBufferingStatsMutex); |
| typedef std::tuple<std::string, float, float, float> BufferTuple; |
| std::map<float, BufferTuple, std::greater<float>> sorted; |
| for (const auto& statsPair : getBE().mBufferingStats) { |
| const char* name = statsPair.first.c_str(); |
| const SurfaceFlingerBE::BufferingStats& stats = statsPair.second; |
| if (stats.numSegments == 0) { |
| continue; |
| } |
| float activeTime = ns2ms(stats.totalTime) / 1000.0f; |
| float twoBufferRatio = static_cast<float>(stats.twoBufferTime) / |
| stats.totalTime; |
| float doubleBufferRatio = static_cast<float>( |
| stats.doubleBufferedTime) / stats.totalTime; |
| float tripleBufferRatio = static_cast<float>( |
| stats.tripleBufferedTime) / stats.totalTime; |
| sorted.insert({activeTime, {name, twoBufferRatio, |
| doubleBufferRatio, tripleBufferRatio}}); |
| } |
| for (const auto& sortedPair : sorted) { |
| float activeTime = sortedPair.first; |
| const BufferTuple& values = sortedPair.second; |
| StringAppendF(&result, " [%s] %.2f %.3f %.3f %.3f\n", std::get<0>(values).c_str(), |
| activeTime, std::get<1>(values), std::get<2>(values), std::get<3>(values)); |
| } |
| result.append("\n"); |
| } |
| |
| void SurfaceFlinger::dumpDisplayIdentificationData(std::string& result) const { |
| for (const auto& [token, display] : mDisplays) { |
| const auto displayId = display->getId(); |
| if (!displayId) { |
| continue; |
| } |
| const auto hwcDisplayId = getHwComposer().fromPhysicalDisplayId(*displayId); |
| if (!hwcDisplayId) { |
| continue; |
| } |
| |
| StringAppendF(&result, |
| "Display %s (HWC display %" PRIu64 "): ", to_string(*displayId).c_str(), |
| *hwcDisplayId); |
| uint8_t port; |
| DisplayIdentificationData data; |
| if (!getHwComposer().getDisplayIdentificationData(*hwcDisplayId, &port, &data)) { |
| result.append("no identification data\n"); |
| continue; |
| } |
| |
| if (!isEdid(data)) { |
| result.append("unknown identification data: "); |
| for (uint8_t byte : data) { |
| StringAppendF(&result, "%x ", byte); |
| } |
| result.append("\n"); |
| continue; |
| } |
| |
| const auto edid = parseEdid(data); |
| if (!edid) { |
| result.append("invalid EDID: "); |
| for (uint8_t byte : data) { |
| StringAppendF(&result, "%x ", byte); |
| } |
| result.append("\n"); |
| continue; |
| } |
| |
| StringAppendF(&result, "port=%u pnpId=%s displayName=\"", port, edid->pnpId.data()); |
| result.append(edid->displayName.data(), edid->displayName.length()); |
| result.append("\"\n"); |
| } |
| } |
| |
| void SurfaceFlinger::dumpWideColorInfo(std::string& result) const { |
| StringAppendF(&result, "Device has wide color built-in display: %d\n", hasWideColorDisplay); |
| StringAppendF(&result, "Device uses color management: %d\n", useColorManagement); |
| StringAppendF(&result, "DisplayColorSetting: %s\n", |
| decodeDisplayColorSetting(mDisplayColorSetting).c_str()); |
| |
| // TODO: print out if wide-color mode is active or not |
| |
| for (const auto& [token, display] : mDisplays) { |
| const auto displayId = display->getId(); |
| if (!displayId) { |
| continue; |
| } |
| |
| StringAppendF(&result, "Display %s color modes:\n", to_string(*displayId).c_str()); |
| std::vector<ColorMode> modes = getHwComposer().getColorModes(*displayId); |
| for (auto&& mode : modes) { |
| StringAppendF(&result, " %s (%d)\n", decodeColorMode(mode).c_str(), mode); |
| } |
| |
| ColorMode currentMode = display->getCompositionDisplay()->getState().colorMode; |
| StringAppendF(&result, " Current color mode: %s (%d)\n", |
| decodeColorMode(currentMode).c_str(), currentMode); |
| } |
| result.append("\n"); |
| } |
| |
| LayersProto SurfaceFlinger::dumpDrawingStateProto(uint32_t traceFlags) const { |
| LayersProto layersProto; |
| mDrawingState.traverseInZOrder([&](Layer* layer) { |
| LayerProto* layerProto = layersProto.add_layers(); |
| layer->writeToProtoDrawingState(layerProto, traceFlags); |
| layer->writeToProtoCommonState(layerProto, LayerVector::StateSet::Drawing, traceFlags); |
| }); |
| |
| return layersProto; |
| } |
| |
| LayersProto SurfaceFlinger::dumpProtoFromMainThread(uint32_t traceFlags) { |
| LayersProto layersProto; |
| postMessageSync(new LambdaMessage([&]() { layersProto = dumpDrawingStateProto(traceFlags); })); |
| return layersProto; |
| } |
| |
| LayersProto SurfaceFlinger::dumpVisibleLayersProtoInfo( |
| const sp<DisplayDevice>& displayDevice) const { |
| LayersProto layersProto; |
| |
| SizeProto* resolution = layersProto.mutable_resolution(); |
| resolution->set_w(displayDevice->getWidth()); |
| resolution->set_h(displayDevice->getHeight()); |
| |
| auto display = displayDevice->getCompositionDisplay(); |
| const auto& displayState = display->getState(); |
| |
| layersProto.set_color_mode(decodeColorMode(displayState.colorMode)); |
| layersProto.set_color_transform(decodeColorTransform(displayState.colorTransform)); |
| layersProto.set_global_transform(displayState.orientation); |
| |
| const auto displayId = displayDevice->getId(); |
| LOG_ALWAYS_FATAL_IF(!displayId); |
| mDrawingState.traverseInZOrder([&](Layer* layer) { |
| if (!layer->visibleRegion.isEmpty() && !display->getOutputLayersOrderedByZ().empty()) { |
| LayerProto* layerProto = layersProto.add_layers(); |
| layer->writeToProtoCompositionState(layerProto, displayDevice); |
| } |
| }); |
| |
| return layersProto; |
| } |
| |
| void SurfaceFlinger::dumpAllLocked(const DumpArgs& args, std::string& result) const { |
| const bool colorize = !args.empty() && args[0] == String16("--color"); |
| Colorizer colorizer(colorize); |
| |
| // figure out if we're stuck somewhere |
| const nsecs_t now = systemTime(); |
| const nsecs_t inTransaction(mDebugInTransaction); |
| nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0; |
| |
| /* |
| * Dump library configuration. |
| */ |
| |
| colorizer.bold(result); |
| result.append("Build configuration:"); |
| colorizer.reset(result); |
| appendSfConfigString(result); |
| appendUiConfigString(result); |
| appendGuiConfigString(result); |
| result.append("\n"); |
| |
| result.append("\nDisplay identification data:\n"); |
| dumpDisplayIdentificationData(result); |
| |
| result.append("\nWide-Color information:\n"); |
| dumpWideColorInfo(result); |
| |
| colorizer.bold(result); |
| result.append("Sync configuration: "); |
| colorizer.reset(result); |
| result.append(SyncFeatures::getInstance().toString()); |
| result.append("\n\n"); |
| |
| colorizer.bold(result); |
| result.append("VSYNC configuration:\n"); |
| colorizer.reset(result); |
| dumpVSync(result); |
| result.append("\n"); |
| |
| dumpStaticScreenStats(result); |
| result.append("\n"); |
| |
| StringAppendF(&result, "Total missed frame count: %u\n", mFrameMissedCount.load()); |
| StringAppendF(&result, "HWC missed frame count: %u\n", mHwcFrameMissedCount.load()); |
| StringAppendF(&result, "GPU missed frame count: %u\n\n", mGpuFrameMissedCount.load()); |
| |
| dumpBufferingStats(result); |
| |
| /* |
| * Dump the visible layer list |
| */ |
| colorizer.bold(result); |
| StringAppendF(&result, "Visible layers (count = %zu)\n", mNumLayers); |
| StringAppendF(&result, "GraphicBufferProducers: %zu, max %zu\n", |
| mGraphicBufferProducerList.size(), mMaxGraphicBufferProducerListSize); |
| colorizer.reset(result); |
| |
| { |
| StringAppendF(&result, "Composition layers\n"); |
| mDrawingState.traverseInZOrder([&](Layer* layer) { |
| auto compositionLayer = layer->getCompositionLayer(); |
| if (compositionLayer) compositionLayer->dump(result); |
| }); |
| } |
| |
| /* |
| * Dump Display state |
| */ |
| |
| colorizer.bold(result); |
| StringAppendF(&result, "Displays (%zu entries)\n", mDisplays.size()); |
| colorizer.reset(result); |
| for (const auto& [token, display] : mDisplays) { |
| display->dump(result); |
| } |
| result.append("\n"); |
| |
| /* |
| * Dump SurfaceFlinger global state |
| */ |
| |
| colorizer.bold(result); |
| result.append("SurfaceFlinger global state:\n"); |
| colorizer.reset(result); |
| |
| getRenderEngine().dump(result); |
| |
| DebugEGLImageTracker::getInstance()->dump(result); |
| |
| if (const auto display = getDefaultDisplayDeviceLocked()) { |
| display->getCompositionDisplay()->getState().undefinedRegion.dump(result, |
| "undefinedRegion"); |
| StringAppendF(&result, " orientation=%d, isPoweredOn=%d\n", display->getOrientation(), |
| display->isPoweredOn()); |
| } |
| StringAppendF(&result, |
| " transaction-flags : %08x\n" |
| " gpu_to_cpu_unsupported : %d\n", |
| mTransactionFlags.load(), !mGpuToCpuSupported); |
| |
| if (const auto displayId = getInternalDisplayIdLocked(); |
| displayId && getHwComposer().isConnected(*displayId)) { |
| const auto activeConfig = getHwComposer().getActiveConfig(*displayId); |
| StringAppendF(&result, |
| " refresh-rate : %f fps\n" |
| " x-dpi : %f\n" |
| " y-dpi : %f\n", |
| 1e9 / activeConfig->getVsyncPeriod(), activeConfig->getDpiX(), |
| activeConfig->getDpiY()); |
| } |
| |
| StringAppendF(&result, " transaction time: %f us\n", inTransactionDuration / 1000.0); |
| |
| /* |
| * Tracing state |
| */ |
| mTracing.dump(result); |
| result.append("\n"); |
| |
| /* |
| * HWC layer minidump |
| */ |
| for (const auto& [token, display] : mDisplays) { |
| const auto displayId = display->getId(); |
| if (!displayId) { |
| continue; |
| } |
| |
| StringAppendF(&result, "Display %s HWC layers:\n", to_string(*displayId).c_str()); |
| Layer::miniDumpHeader(result); |
| const sp<DisplayDevice> displayDevice = display; |
| mCurrentState.traverseInZOrder( |
| [&](Layer* layer) { layer->miniDump(result, displayDevice); }); |
| result.append("\n"); |
| } |
| |
| /* |
| * Dump HWComposer state |
| */ |
| colorizer.bold(result); |
| result.append("h/w composer state:\n"); |
| colorizer.reset(result); |
| bool hwcDisabled = mDebugDisableHWC || mDebugRegion; |
| StringAppendF(&result, " h/w composer %s\n", hwcDisabled ? "disabled" : "enabled"); |
| getHwComposer().dump(result); |
| |
| /* |
| * Dump gralloc state |
| */ |
| const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get()); |
| alloc.dump(result); |
| |
| /* |
| * Dump VrFlinger state if in use. |
| */ |
| if (mVrFlingerRequestsDisplay && mVrFlinger) { |
| result.append("VrFlinger state:\n"); |
| result.append(mVrFlinger->Dump()); |
| result.append("\n"); |
| } |
| |
| /** |
| * Scheduler dump state. |
| */ |
| result.append("\nScheduler state:\n"); |
| result.append(mScheduler->doDump() + "\n"); |
| StringAppendF(&result, "+ Smart video mode: %s\n\n", mUseSmart90ForVideo ? "on" : "off"); |
| result.append(mRefreshRateStats.doDump() + "\n"); |
| |
| result.append(mTimeStats->miniDump()); |
| result.append("\n"); |
| } |
| |
| const Vector<sp<Layer>>& SurfaceFlinger::getLayerSortedByZForHwcDisplay(DisplayId displayId) { |
| // Note: mStateLock is held here |
| for (const auto& [token, display] : mDisplays) { |
| if (display->getId() == displayId) { |
| return getDisplayDeviceLocked(token)->getVisibleLayersSortedByZ(); |
| } |
| } |
| |
| ALOGE("%s: Invalid display %s", __FUNCTION__, to_string(displayId).c_str()); |
| static const Vector<sp<Layer>> empty; |
| return empty; |
| } |
| |
| void SurfaceFlinger::updateColorMatrixLocked() { |
| mat4 colorMatrix; |
| if (mGlobalSaturationFactor != 1.0f) { |
| // Rec.709 luma coefficients |
| float3 luminance{0.213f, 0.715f, 0.072f}; |
| luminance *= 1.0f - mGlobalSaturationFactor; |
| mat4 saturationMatrix = mat4( |
| vec4{luminance.r + mGlobalSaturationFactor, luminance.r, luminance.r, 0.0f}, |
| vec4{luminance.g, luminance.g + mGlobalSaturationFactor, luminance.g, 0.0f}, |
| vec4{luminance.b, luminance.b, luminance.b + mGlobalSaturationFactor, 0.0f}, |
| vec4{0.0f, 0.0f, 0.0f, 1.0f} |
| ); |
| colorMatrix = mClientColorMatrix * saturationMatrix * mDaltonizer(); |
| } else { |
| colorMatrix = mClientColorMatrix * mDaltonizer(); |
| } |
| |
| if (mCurrentState.colorMatrix != colorMatrix) { |
| mCurrentState.colorMatrix = colorMatrix; |
| mCurrentState.colorMatrixChanged = true; |
| setTransactionFlags(eTransactionNeeded); |
| } |
| } |
| |
| status_t SurfaceFlinger::CheckTransactCodeCredentials(uint32_t code) { |
| #pragma clang diagnostic push |
| #pragma clang diagnostic error "-Wswitch-enum" |
| switch (static_cast<ISurfaceComposerTag>(code)) { |
| // These methods should at minimum make sure that the client requested |
| // access to SF. |
| case BOOT_FINISHED: |
| case CLEAR_ANIMATION_FRAME_STATS: |
| case CREATE_DISPLAY: |
| case DESTROY_DISPLAY: |
| case ENABLE_VSYNC_INJECTIONS: |
| case GET_ANIMATION_FRAME_STATS: |
| case GET_HDR_CAPABILITIES: |
| case SET_ACTIVE_CONFIG: |
| case SET_ALLOWED_DISPLAY_CONFIGS: |
| case GET_ALLOWED_DISPLAY_CONFIGS: |
| case SET_ACTIVE_COLOR_MODE: |
| case INJECT_VSYNC: |
| case SET_POWER_MODE: |
| case GET_DISPLAYED_CONTENT_SAMPLING_ATTRIBUTES: |
| case SET_DISPLAY_CONTENT_SAMPLING_ENABLED: |
| case GET_DISPLAYED_CONTENT_SAMPLE: |
| case NOTIFY_POWER_HINT: { |
| if (!callingThreadHasUnscopedSurfaceFlingerAccess()) { |
| IPCThreadState* ipc = IPCThreadState::self(); |
| ALOGE("Permission Denial: can't access SurfaceFlinger pid=%d, uid=%d", |
| ipc->getCallingPid(), ipc->getCallingUid()); |
| return PERMISSION_DENIED; |
| } |
| return OK; |
| } |
| case GET_LAYER_DEBUG_INFO: { |
| IPCThreadState* ipc = IPCThreadState::self(); |
| const int pid = ipc->getCallingPid(); |
| const int uid = ipc->getCallingUid(); |
| if ((uid != AID_SHELL) && !PermissionCache::checkPermission(sDump, pid, uid)) { |
| ALOGE("Layer debug info permission denied for pid=%d, uid=%d", pid, uid); |
| return PERMISSION_DENIED; |
| } |
| return OK; |
| } |
| // Used by apps to hook Choreographer to SurfaceFlinger. |
| case CREATE_DISPLAY_EVENT_CONNECTION: |
| // The following calls are currently used by clients that do not |
| // request necessary permissions. However, they do not expose any secret |
| // information, so it is OK to pass them. |
| case AUTHENTICATE_SURFACE: |
| case GET_ACTIVE_COLOR_MODE: |
| case GET_ACTIVE_CONFIG: |
| case GET_PHYSICAL_DISPLAY_IDS: |
| case GET_PHYSICAL_DISPLAY_TOKEN: |
| case GET_DISPLAY_COLOR_MODES: |
| case GET_DISPLAY_NATIVE_PRIMARIES: |
| case GET_DISPLAY_CONFIGS: |
| case GET_DISPLAY_STATS: |
| case GET_SUPPORTED_FRAME_TIMESTAMPS: |
| // Calling setTransactionState is safe, because you need to have been |
| // granted a reference to Client* and Handle* to do anything with it. |
| case SET_TRANSACTION_STATE: |
| case CREATE_CONNECTION: |
| case GET_COLOR_MANAGEMENT: |
| case GET_COMPOSITION_PREFERENCE: |
| case GET_PROTECTED_CONTENT_SUPPORT: |
| case IS_WIDE_COLOR_DISPLAY: |
| case GET_DISPLAY_BRIGHTNESS_SUPPORT: |
| case SET_DISPLAY_BRIGHTNESS: { |
| return OK; |
| } |
| case CAPTURE_LAYERS: |
| case CAPTURE_SCREEN: |
| case ADD_REGION_SAMPLING_LISTENER: |
| case REMOVE_REGION_SAMPLING_LISTENER: { |
| // codes that require permission check |
| IPCThreadState* ipc = IPCThreadState::self(); |
| const int pid = ipc->getCallingPid(); |
| const int uid = ipc->getCallingUid(); |
| if ((uid != AID_GRAPHICS) && |
| !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) { |
| ALOGE("Permission Denial: can't read framebuffer pid=%d, uid=%d", pid, uid); |
| return PERMISSION_DENIED; |
| } |
| return OK; |
| } |
| // The following codes are deprecated and should never be allowed to access SF. |
| case CONNECT_DISPLAY_UNUSED: |
| case CREATE_GRAPHIC_BUFFER_ALLOC_UNUSED: { |
| ALOGE("Attempting to access SurfaceFlinger with unused code: %u", code); |
| return PERMISSION_DENIED; |
| } |
| case CAPTURE_SCREEN_BY_ID: { |
| IPCThreadState* ipc = IPCThreadState::self(); |
| const int uid = ipc->getCallingUid(); |
| if (uid == AID_ROOT || uid == AID_GRAPHICS || uid == AID_SYSTEM || uid == AID_SHELL) { |
| return OK; |
| } |
| return PERMISSION_DENIED; |
| } |
| } |
| |
| // These codes are used for the IBinder protocol to either interrogate the recipient |
| // side of the transaction for its canonical interface descriptor or to dump its state. |
| // We let them pass by default. |
| if (code == IBinder::INTERFACE_TRANSACTION || code == IBinder::DUMP_TRANSACTION || |
| code == IBinder::PING_TRANSACTION || code == IBinder::SHELL_COMMAND_TRANSACTION || |
| code == IBinder::SYSPROPS_TRANSACTION) { |
| return OK; |
| } |
| // Numbers from 1000 to 1034 are currently used for backdoors. The code |
| // in onTransact verifies that the user is root, and has access to use SF. |
| if (code >= 1000 && code <= 1035) { |
| ALOGV("Accessing SurfaceFlinger through backdoor code: %u", code); |
| return OK; |
| } |
| ALOGE("Permission Denial: SurfaceFlinger did not recognize request code: %u", code); |
| return PERMISSION_DENIED; |
| #pragma clang diagnostic pop |
| } |
| |
| status_t SurfaceFlinger::onTransact(uint32_t code, const Parcel& data, Parcel* reply, |
| uint32_t flags) { |
| status_t credentialCheck = CheckTransactCodeCredentials(code); |
| if (credentialCheck != OK) { |
| return credentialCheck; |
| } |
| |
| status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags); |
| if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) { |
| CHECK_INTERFACE(ISurfaceComposer, data, reply); |
| IPCThreadState* ipc = IPCThreadState::self(); |
| const int uid = ipc->getCallingUid(); |
| if (CC_UNLIKELY(uid != AID_SYSTEM |
| && !PermissionCache::checkCallingPermission(sHardwareTest))) { |
| const int pid = ipc->getCallingPid(); |
| ALOGE("Permission Denial: " |
| "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid); |
| return PERMISSION_DENIED; |
| } |
| int n; |
| switch (code) { |
| case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE |
| case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE |
| return NO_ERROR; |
| case 1002: // SHOW_UPDATES |
| n = data.readInt32(); |
| mDebugRegion = n ? n : (mDebugRegion ? 0 : 1); |
| invalidateHwcGeometry(); |
| repaintEverything(); |
| return NO_ERROR; |
| case 1004:{ // repaint everything |
| repaintEverything(); |
| return NO_ERROR; |
| } |
| case 1005:{ // force transaction |
| Mutex::Autolock _l(mStateLock); |
| setTransactionFlags( |
| eTransactionNeeded| |
| eDisplayTransactionNeeded| |
| eTraversalNeeded); |
| return NO_ERROR; |
| } |
| case 1006:{ // send empty update |
| signalRefresh(); |
| return NO_ERROR; |
| } |
| case 1008: // toggle use of hw composer |
| n = data.readInt32(); |
| mDebugDisableHWC = n != 0; |
| invalidateHwcGeometry(); |
| repaintEverything(); |
| return NO_ERROR; |
| case 1009: // toggle use of transform hint |
| n = data.readInt32(); |
| mDebugDisableTransformHint = n != 0; |
| invalidateHwcGeometry(); |
| repaintEverything(); |
| return NO_ERROR; |
| case 1010: // interrogate. |
| reply->writeInt32(0); |
| reply->writeInt32(0); |
| reply->writeInt32(mDebugRegion); |
| reply->writeInt32(0); |
| reply->writeInt32(mDebugDisableHWC); |
| return NO_ERROR; |
| case 1013: { |
| const auto display = getDefaultDisplayDevice(); |
| if (!display) { |
| return NAME_NOT_FOUND; |
| } |
| |
| reply->writeInt32(display->getPageFlipCount()); |
| return NO_ERROR; |
| } |
| case 1014: { |
| Mutex::Autolock _l(mStateLock); |
| // daltonize |
| n = data.readInt32(); |
| switch (n % 10) { |
| case 1: |
| mDaltonizer.setType(ColorBlindnessType::Protanomaly); |
| break; |
| case 2: |
| mDaltonizer.setType(ColorBlindnessType::Deuteranomaly); |
| break; |
| case 3: |
| mDaltonizer.setType(ColorBlindnessType::Tritanomaly); |
| break; |
| default: |
| mDaltonizer.setType(ColorBlindnessType::None); |
| break; |
| } |
| if (n >= 10) { |
| mDaltonizer.setMode(ColorBlindnessMode::Correction); |
| } else { |
| mDaltonizer.setMode(ColorBlindnessMode::Simulation); |
| } |
| |
| updateColorMatrixLocked(); |
| return NO_ERROR; |
| } |
| case 1015: { |
| Mutex::Autolock _l(mStateLock); |
| // apply a color matrix |
| n = data.readInt32(); |
| if (n) { |
| // color matrix is sent as a column-major mat4 matrix |
| for (size_t i = 0 ; i < 4; i++) { |
| for (size_t j = 0; j < 4; j++) { |
| mClientColorMatrix[i][j] = data.readFloat(); |
| } |
| } |
| } else { |
| mClientColorMatrix = mat4(); |
| } |
| |
| // Check that supplied matrix's last row is {0,0,0,1} so we can avoid |
| // the division by w in the fragment shader |
| float4 lastRow(transpose(mClientColorMatrix)[3]); |
| if (any(greaterThan(abs(lastRow - float4{0, 0, 0, 1}), float4{1e-4f}))) { |
| ALOGE("The color transform's last row must be (0, 0, 0, 1)"); |
| } |
| |
| updateColorMatrixLocked(); |
| return NO_ERROR; |
| } |
| // This is an experimental interface |
| // Needs to be shifted to proper binder interface when we productize |
| case 1016: { |
| n = data.readInt32(); |
| // TODO(b/113612090): Evaluate if this can be removed. |
| mScheduler->setRefreshSkipCount(n); |
| return NO_ERROR; |
| } |
| case 1017: { |
| n = data.readInt32(); |
| mForceFullDamage = n != 0; |
| return NO_ERROR; |
| } |
| case 1018: { // Modify Choreographer's phase offset |
| n = data.readInt32(); |
| mScheduler->setPhaseOffset(mAppConnectionHandle, static_cast<nsecs_t>(n)); |
| return NO_ERROR; |
| } |
| case 1019: { // Modify SurfaceFlinger's phase offset |
| n = data.readInt32(); |
| mScheduler->setPhaseOffset(mSfConnectionHandle, static_cast<nsecs_t>(n)); |
| return NO_ERROR; |
| } |
| case 1020: { // Layer updates interceptor |
| n = data.readInt32(); |
| if (n) { |
| ALOGV("Interceptor enabled"); |
| mInterceptor->enable(mDrawingState.layersSortedByZ, mDrawingState.displays); |
| } |
| else{ |
| ALOGV("Interceptor disabled"); |
| mInterceptor->disable(); |
| } |
| return NO_ERROR; |
| } |
| case 1021: { // Disable HWC virtual displays |
| n = data.readInt32(); |
| mUseHwcVirtualDisplays = !n; |
| return NO_ERROR; |
| } |
| case 1022: { // Set saturation boost |
| Mutex::Autolock _l(mStateLock); |
| mGlobalSaturationFactor = std::max(0.0f, std::min(data.readFloat(), 2.0f)); |
| |
| updateColorMatrixLocked(); |
| return NO_ERROR; |
| } |
| case 1023: { // Set native mode |
| int32_t colorMode; |
| |
| mDisplayColorSetting = static_cast<DisplayColorSetting>(data.readInt32()); |
| if (data.readInt32(&colorMode) == NO_ERROR) { |
| mForceColorMode = static_cast<ColorMode>(colorMode); |
| } |
| invalidateHwcGeometry(); |
| repaintEverything(); |
| return NO_ERROR; |
| } |
| // Deprecate, use 1030 to check whether the device is color managed. |
| case 1024: { |
| return NAME_NOT_FOUND; |
| } |
| case 1025: { // Set layer tracing |
| n = data.readInt32(); |
| if (n) { |
| ALOGD("LayerTracing enabled"); |
| Mutex::Autolock lock(mStateLock); |
| mTracingEnabledChanged = true; |
| mTracing.enable(); |
| reply->writeInt32(NO_ERROR); |
| } else { |
| ALOGD("LayerTracing disabled"); |
| bool writeFile = false; |
| { |
| Mutex::Autolock lock(mStateLock); |
| mTracingEnabledChanged = true; |
| writeFile = mTracing.disable(); |
| } |
| |
| if (writeFile) { |
| reply->writeInt32(mTracing.writeToFile()); |
| } else { |
| reply->writeInt32(NO_ERROR); |
| } |
| } |
| return NO_ERROR; |
| } |
| case 1026: { // Get layer tracing status |
| reply->writeBool(mTracing.isEnabled()); |
| return NO_ERROR; |
| } |
| // Is a DisplayColorSetting supported? |
| case 1027: { |
| const auto display = getDefaultDisplayDevice(); |
| if (!display) { |
| return NAME_NOT_FOUND; |
| } |
| |
| DisplayColorSetting setting = static_cast<DisplayColorSetting>(data.readInt32()); |
| switch (setting) { |
| case DisplayColorSetting::MANAGED: |
| reply->writeBool(useColorManagement); |
| break; |
| case DisplayColorSetting::UNMANAGED: |
| reply->writeBool(true); |
| break; |
| case DisplayColorSetting::ENHANCED: |
| reply->writeBool(display->hasRenderIntent(RenderIntent::ENHANCE)); |
| break; |
| default: // vendor display color setting |
| reply->writeBool( |
| display->hasRenderIntent(static_cast<RenderIntent>(setting))); |
| break; |
| } |
| return NO_ERROR; |
| } |
| // Is VrFlinger active? |
| case 1028: { |
| Mutex::Autolock _l(mStateLock); |
| reply->writeBool(getHwComposer().isUsingVrComposer()); |
| return NO_ERROR; |
| } |
| // Set buffer size for SF tracing (value in KB) |
| case 1029: { |
| n = data.readInt32(); |
| if (n <= 0 || n > MAX_TRACING_MEMORY) { |
| ALOGW("Invalid buffer size: %d KB", n); |
| reply->writeInt32(BAD_VALUE); |
| return BAD_VALUE; |
| } |
| |
| ALOGD("Updating trace buffer to %d KB", n); |
| mTracing.setBufferSize(n * 1024); |
| reply->writeInt32(NO_ERROR); |
| return NO_ERROR; |
| } |
| // Is device color managed? |
| case 1030: { |
| reply->writeBool(useColorManagement); |
| return NO_ERROR; |
| } |
| // Override default composition data space |
| // adb shell service call SurfaceFlinger 1031 i32 1 DATASPACE_NUMBER DATASPACE_NUMBER \ |
| // && adb shell stop zygote && adb shell start zygote |
| // to restore: adb shell service call SurfaceFlinger 1031 i32 0 && \ |
| // adb shell stop zygote && adb shell start zygote |
| case 1031: { |
| Mutex::Autolock _l(mStateLock); |
| n = data.readInt32(); |
| if (n) { |
| n = data.readInt32(); |
| if (n) { |
| Dataspace dataspace = static_cast<Dataspace>(n); |
| if (!validateCompositionDataspace(dataspace)) { |
| return BAD_VALUE; |
| } |
| mDefaultCompositionDataspace = dataspace; |
| } |
| n = data.readInt32(); |
| if (n) { |
| Dataspace dataspace = static_cast<Dataspace>(n); |
| if (!validateCompositionDataspace(dataspace)) { |
| return BAD_VALUE; |
| } |
| mWideColorGamutCompositionDataspace = dataspace; |
| } |
| } else { |
| // restore composition data space. |
| mDefaultCompositionDataspace = defaultCompositionDataspace; |
| mWideColorGamutCompositionDataspace = wideColorGamutCompositionDataspace; |
| } |
| return NO_ERROR; |
| } |
| // Set trace flags |
| case 1033: { |
| n = data.readUint32(); |
| ALOGD("Updating trace flags to 0x%x", n); |
| mTracing.setTraceFlags(n); |
| reply->writeInt32(NO_ERROR); |
| return NO_ERROR; |
| } |
| case 1034: { |
| // TODO(b/129297325): expose this via developer menu option |
| n = data.readInt32(); |
| if (n && !mRefreshRateOverlay) { |
| RefreshRateType type; |
| { |
| std::lock_guard<std::mutex> lock(mActiveConfigLock); |
| type = mDesiredActiveConfig.type; |
| } |
| mRefreshRateOverlay = std::make_unique<RefreshRateOverlay>(*this); |
| mRefreshRateOverlay->changeRefreshRate(type); |
| } else if (!n) { |
| mRefreshRateOverlay.reset(); |
| } |
| return NO_ERROR; |
| } |
| case 1035: { |
| n = data.readInt32(); |
| mDebugDisplayConfigSetByBackdoor = false; |
| if (n >= 0) { |
| const auto displayToken = getInternalDisplayToken(); |
| status_t result = setAllowedDisplayConfigs(displayToken, {n}); |
| if (result != NO_ERROR) { |
| return result; |
| } |
| mDebugDisplayConfigSetByBackdoor = true; |
| } |
| return NO_ERROR; |
| } |
| } |
| } |
| return err; |
| } |
| |
| void SurfaceFlinger::repaintEverything() { |
| mRepaintEverything = true; |
| signalTransaction(); |
| } |
| |
| void SurfaceFlinger::repaintEverythingForHWC() { |
| mRepaintEverything = true; |
| mEventQueue->invalidate(); |
| } |
| |
| // A simple RAII class to disconnect from an ANativeWindow* when it goes out of scope |
| class WindowDisconnector { |
| public: |
| WindowDisconnector(ANativeWindow* window, int api) : mWindow(window), mApi(api) {} |
| ~WindowDisconnector() { |
| native_window_api_disconnect(mWindow, mApi); |
| } |
| |
| private: |
| ANativeWindow* mWindow; |
| const int mApi; |
| }; |
| |
| status_t SurfaceFlinger::captureScreen(const sp<IBinder>& displayToken, |
| sp<GraphicBuffer>* outBuffer, bool& outCapturedSecureLayers, |
| const Dataspace reqDataspace, |
| const ui::PixelFormat reqPixelFormat, Rect sourceCrop, |
| uint32_t reqWidth, uint32_t reqHeight, |
| bool useIdentityTransform, |
| ISurfaceComposer::Rotation rotation, |
| bool captureSecureLayers) { |
| ATRACE_CALL(); |
| |
| if (!displayToken) return BAD_VALUE; |
| |
| auto renderAreaRotation = fromSurfaceComposerRotation(rotation); |
| |
| sp<DisplayDevice> display; |
| { |
| Mutex::Autolock _l(mStateLock); |
| |
| display = getDisplayDeviceLocked(displayToken); |
| if (!display) return BAD_VALUE; |
| |
| // set the requested width/height to the logical display viewport size |
| // by default |
| if (reqWidth == 0 || reqHeight == 0) { |
| reqWidth = uint32_t(display->getViewport().width()); |
| reqHeight = uint32_t(display->getViewport().height()); |
| } |
| } |
| |
| DisplayRenderArea renderArea(display, sourceCrop, reqWidth, reqHeight, reqDataspace, |
| renderAreaRotation, captureSecureLayers); |
| |
| auto traverseLayers = std::bind(&SurfaceFlinger::traverseLayersInDisplay, this, display, |
| std::placeholders::_1); |
| return captureScreenCommon(renderArea, traverseLayers, outBuffer, reqPixelFormat, |
| useIdentityTransform, outCapturedSecureLayers); |
| } |
| |
| static Dataspace pickDataspaceFromColorMode(const ColorMode colorMode) { |
| switch (colorMode) { |
| case ColorMode::DISPLAY_P3: |
| case ColorMode::BT2100_PQ: |
| case ColorMode::BT2100_HLG: |
| case ColorMode::DISPLAY_BT2020: |
| return Dataspace::DISPLAY_P3; |
| default: |
| return Dataspace::V0_SRGB; |
| } |
| } |
| |
| const sp<DisplayDevice> SurfaceFlinger::getDisplayByIdOrLayerStack(uint64_t displayOrLayerStack) { |
| const sp<IBinder> displayToken = getPhysicalDisplayTokenLocked(DisplayId{displayOrLayerStack}); |
| if (displayToken) { |
| return getDisplayDeviceLocked(displayToken); |
| } |
| // Couldn't find display by displayId. Try to get display by layerStack since virtual displays |
| // may not have a displayId. |
| for (const auto& [token, display] : mDisplays) { |
| if (display->getLayerStack() == displayOrLayerStack) { |
| return display; |
| } |
| } |
| return nullptr; |
| } |
| |
| status_t SurfaceFlinger::captureScreen(uint64_t displayOrLayerStack, Dataspace* outDataspace, |
| sp<GraphicBuffer>* outBuffer) { |
| sp<DisplayDevice> display; |
| uint32_t width; |
| uint32_t height; |
| ui::Transform::orientation_flags captureOrientation; |
| { |
| Mutex::Autolock _l(mStateLock); |
| display = getDisplayByIdOrLayerStack(displayOrLayerStack); |
| if (!display) { |
| return BAD_VALUE; |
| } |
| |
| width = uint32_t(display->getViewport().width()); |
| height = uint32_t(display->getViewport().height()); |
| |
| captureOrientation = fromSurfaceComposerRotation( |
| static_cast<ISurfaceComposer::Rotation>(display->getOrientation())); |
| if (captureOrientation == ui::Transform::orientation_flags::ROT_90) { |
| captureOrientation = ui::Transform::orientation_flags::ROT_270; |
| } else if (captureOrientation == ui::Transform::orientation_flags::ROT_270) { |
| captureOrientation = ui::Transform::orientation_flags::ROT_90; |
| } |
| *outDataspace = |
| pickDataspaceFromColorMode(display->getCompositionDisplay()->getState().colorMode); |
| } |
| |
| DisplayRenderArea renderArea(display, Rect(), width, height, *outDataspace, captureOrientation, |
| false /* captureSecureLayers */); |
| |
| auto traverseLayers = std::bind(&SurfaceFlinger::traverseLayersInDisplay, this, display, |
| std::placeholders::_1); |
| bool ignored = false; |
| return captureScreenCommon(renderArea, traverseLayers, outBuffer, ui::PixelFormat::RGBA_8888, |
| false /* useIdentityTransform */, |
| ignored /* outCapturedSecureLayers */); |
| } |
| |
| status_t SurfaceFlinger::captureLayers( |
| const sp<IBinder>& layerHandleBinder, sp<GraphicBuffer>* outBuffer, |
| const Dataspace reqDataspace, const ui::PixelFormat reqPixelFormat, const Rect& sourceCrop, |
| const std::unordered_set<sp<IBinder>, ISurfaceComposer::SpHash<IBinder>>& excludeHandles, |
| float frameScale, bool childrenOnly) { |
| ATRACE_CALL(); |
| |
| class LayerRenderArea : public RenderArea { |
| public: |
| LayerRenderArea(SurfaceFlinger* flinger, const sp<Layer>& layer, const Rect crop, |
| int32_t reqWidth, int32_t reqHeight, Dataspace reqDataSpace, |
| bool childrenOnly) |
| : RenderArea(reqWidth, reqHeight, CaptureFill::CLEAR, reqDataSpace), |
| mLayer(layer), |
| mCrop(crop), |
| mNeedsFiltering(false), |
| mFlinger(flinger), |
| mChildrenOnly(childrenOnly) {} |
| const ui::Transform& getTransform() const override { return mTransform; } |
| Rect getBounds() const override { |
| const Layer::State& layerState(mLayer->getDrawingState()); |
| return mLayer->getBufferSize(layerState); |
| } |
| int getHeight() const override { |
| return mLayer->getBufferSize(mLayer->getDrawingState()).getHeight(); |
| } |
| int getWidth() const override { |
| return mLayer->getBufferSize(mLayer->getDrawingState()).getWidth(); |
| } |
| bool isSecure() const override { return false; } |
| bool needsFiltering() const override { return mNeedsFiltering; } |
| const sp<const DisplayDevice> getDisplayDevice() const override { return nullptr; } |
| Rect getSourceCrop() const override { |
| if (mCrop.isEmpty()) { |
| return getBounds(); |
| } else { |
| return mCrop; |
| } |
| } |
| class ReparentForDrawing { |
| public: |
| const sp<Layer>& oldParent; |
| const sp<Layer>& newParent; |
| |
| ReparentForDrawing(const sp<Layer>& oldParent, const sp<Layer>& newParent, |
| const Rect& drawingBounds) |
| : oldParent(oldParent), newParent(newParent) { |
| // Compute and cache the bounds for the new parent layer. |
| newParent->computeBounds(drawingBounds.toFloatRect(), ui::Transform()); |
| oldParent->setChildrenDrawingParent(newParent); |
| } |
| ~ReparentForDrawing() { oldParent->setChildrenDrawingParent(oldParent); } |
| }; |
| |
| void render(std::function<void()> drawLayers) override { |
| const Rect sourceCrop = getSourceCrop(); |
| // no need to check rotation because there is none |
| mNeedsFiltering = sourceCrop.width() != getReqWidth() || |
| sourceCrop.height() != getReqHeight(); |
| |
| if (!mChildrenOnly) { |
| mTransform = mLayer->getTransform().inverse(); |
| drawLayers(); |
| } else { |
| Rect bounds = getBounds(); |
| screenshotParentLayer = mFlinger->getFactory().createContainerLayer( |
| LayerCreationArgs(mFlinger, nullptr, String8("Screenshot Parent"), |
| bounds.getWidth(), bounds.getHeight(), 0, |
| LayerMetadata())); |
| |
| ReparentForDrawing reparent(mLayer, screenshotParentLayer, sourceCrop); |
| drawLayers(); |
| } |
| } |
| |
| private: |
| const sp<Layer> mLayer; |
| const Rect mCrop; |
| |
| // In the "childrenOnly" case we reparent the children to a screenshot |
| // layer which has no properties set and which does not draw. |
| sp<ContainerLayer> screenshotParentLayer; |
| ui::Transform mTransform; |
| bool mNeedsFiltering; |
| |
| SurfaceFlinger* mFlinger; |
| const bool mChildrenOnly; |
| }; |
| |
| int reqWidth = 0; |
| int reqHeight = 0; |
| sp<Layer> parent; |
| Rect crop(sourceCrop); |
| std::unordered_set<sp<Layer>, ISurfaceComposer::SpHash<Layer>> excludeLayers; |
| |
| { |
| Mutex::Autolock _l(mStateLock); |
| |
| parent = fromHandle(layerHandleBinder); |
| if (parent == nullptr || parent->isRemovedFromCurrentState()) { |
| ALOGE("captureLayers called with an invalid or removed parent"); |
| return NAME_NOT_FOUND; |
| } |
| |
| const int uid = IPCThreadState::self()->getCallingUid(); |
| const bool forSystem = uid == AID_GRAPHICS || uid == AID_SYSTEM; |
| if (!forSystem && parent->getCurrentState().flags & layer_state_t::eLayerSecure) { |
| ALOGW("Attempting to capture secure layer: PERMISSION_DENIED"); |
| return PERMISSION_DENIED; |
| } |
| |
| if (sourceCrop.width() <= 0) { |
| crop.left = 0; |
| crop.right = parent->getBufferSize(parent->getCurrentState()).getWidth(); |
| } |
| |
| if (sourceCrop.height() <= 0) { |
| crop.top = 0; |
| crop.bottom = parent->getBufferSize(parent->getCurrentState()).getHeight(); |
| } |
| reqWidth = crop.width() * frameScale; |
| reqHeight = crop.height() * frameScale; |
| |
| for (const auto& handle : excludeHandles) { |
| sp<Layer> excludeLayer = fromHandle(handle); |
| if (excludeLayer != nullptr) { |
| excludeLayers.emplace(excludeLayer); |
| } else { |
| ALOGW("Invalid layer handle passed as excludeLayer to captureLayers"); |
| return NAME_NOT_FOUND; |
| } |
| } |
| } // mStateLock |
| |
| // really small crop or frameScale |
| if (reqWidth <= 0) { |
| reqWidth = 1; |
| } |
| if (reqHeight <= 0) { |
| reqHeight = 1; |
| } |
| |
| LayerRenderArea renderArea(this, parent, crop, reqWidth, reqHeight, reqDataspace, childrenOnly); |
| auto traverseLayers = [parent, childrenOnly, |
| &excludeLayers](const LayerVector::Visitor& visitor) { |
| parent->traverseChildrenInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) { |
| if (!layer->isVisible()) { |
| return; |
| } else if (childrenOnly && layer == parent.get()) { |
| return; |
| } |
| |
| sp<Layer> p = layer; |
| while (p != nullptr) { |
| if (excludeLayers.count(p) != 0) { |
| return; |
| } |
| p = p->getParent(); |
| } |
| |
| visitor(layer); |
| }); |
| }; |
| |
| bool outCapturedSecureLayers = false; |
| return captureScreenCommon(renderArea, traverseLayers, outBuffer, reqPixelFormat, false, |
| outCapturedSecureLayers); |
| } |
| |
| status_t SurfaceFlinger::captureScreenCommon(RenderArea& renderArea, |
| TraverseLayersFunction traverseLayers, |
| sp<GraphicBuffer>* outBuffer, |
| const ui::PixelFormat reqPixelFormat, |
| bool useIdentityTransform, |
| bool& outCapturedSecureLayers) { |
| ATRACE_CALL(); |
| |
| // TODO(b/116112787) Make buffer usage a parameter. |
| const uint32_t usage = GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN | |
| GRALLOC_USAGE_HW_RENDER | GRALLOC_USAGE_HW_TEXTURE; |
| *outBuffer = |
| getFactory().createGraphicBuffer(renderArea.getReqWidth(), renderArea.getReqHeight(), |
| static_cast<android_pixel_format>(reqPixelFormat), 1, |
| usage, "screenshot"); |
| |
| return captureScreenCommon(renderArea, traverseLayers, *outBuffer, useIdentityTransform, |
| outCapturedSecureLayers); |
| } |
| |
| status_t SurfaceFlinger::captureScreenCommon(RenderArea& renderArea, |
| TraverseLayersFunction traverseLayers, |
| const sp<GraphicBuffer>& buffer, |
| bool useIdentityTransform, |
| bool& outCapturedSecureLayers) { |
| // This mutex protects syncFd and captureResult for communication of the return values from the |
| // main thread back to this Binder thread |
| std::mutex captureMutex; |
| std::condition_variable captureCondition; |
| std::unique_lock<std::mutex> captureLock(captureMutex); |
| int syncFd = -1; |
| std::optional<status_t> captureResult; |
| |
| const int uid = IPCThreadState::self()->getCallingUid(); |
| const bool forSystem = uid == AID_GRAPHICS || uid == AID_SYSTEM; |
| |
| sp<LambdaMessage> message = new LambdaMessage([&] { |
| // If there is a refresh pending, bug out early and tell the binder thread to try again |
| // after the refresh. |
| if (mRefreshPending) { |
| ATRACE_NAME("Skipping screenshot for now"); |
| std::unique_lock<std::mutex> captureLock(captureMutex); |
| captureResult = std::make_optional<status_t>(EAGAIN); |
| captureCondition.notify_one(); |
| return; |
| } |
| |
| status_t result = NO_ERROR; |
| int fd = -1; |
| { |
| Mutex::Autolock _l(mStateLock); |
| renderArea.render([&] { |
| result = captureScreenImplLocked(renderArea, traverseLayers, buffer.get(), |
| useIdentityTransform, forSystem, &fd, |
| outCapturedSecureLayers); |
| }); |
| } |
| |
| { |
| std::unique_lock<std::mutex> captureLock(captureMutex); |
| syncFd = fd; |
| captureResult = std::make_optional<status_t>(result); |
| captureCondition.notify_one(); |
| } |
| }); |
| |
| status_t result = postMessageAsync(message); |
| if (result == NO_ERROR) { |
| captureCondition.wait(captureLock, [&] { return captureResult; }); |
| while (*captureResult == EAGAIN) { |
| captureResult.reset(); |
| result = postMessageAsync(message); |
| if (result != NO_ERROR) { |
| return result; |
| } |
| captureCondition.wait(captureLock, [&] { return captureResult; }); |
| } |
| result = *captureResult; |
| } |
| |
| if (result == NO_ERROR) { |
| sync_wait(syncFd, -1); |
| close(syncFd); |
| } |
| |
| return result; |
| } |
| |
| void SurfaceFlinger::renderScreenImplLocked(const RenderArea& renderArea, |
| TraverseLayersFunction traverseLayers, |
| ANativeWindowBuffer* buffer, bool useIdentityTransform, |
| int* outSyncFd) { |
| ATRACE_CALL(); |
| |
| const auto reqWidth = renderArea.getReqWidth(); |
| const auto reqHeight = renderArea.getReqHeight(); |
| const auto rotation = renderArea.getRotationFlags(); |
| const auto transform = renderArea.getTransform(); |
| const auto sourceCrop = renderArea.getSourceCrop(); |
| |
| renderengine::DisplaySettings clientCompositionDisplay; |
| std::vector<renderengine::LayerSettings> clientCompositionLayers; |
| |
| // assume that bounds are never offset, and that they are the same as the |
| // buffer bounds. |
| clientCompositionDisplay.physicalDisplay = Rect(reqWidth, reqHeight); |
| clientCompositionDisplay.clip = sourceCrop; |
| clientCompositionDisplay.globalTransform = transform.asMatrix4(); |
| |
| // Now take into account the rotation flag. We append a transform that |
| // rotates the layer stack about the origin, then translate by buffer |
| // boundaries to be in the right quadrant. |
| mat4 rotMatrix; |
| int displacementX = 0; |
| int displacementY = 0; |
| float rot90InRadians = 2.0f * static_cast<float>(M_PI) / 4.0f; |
| switch (rotation) { |
| case ui::Transform::ROT_90: |
| rotMatrix = mat4::rotate(rot90InRadians, vec3(0, 0, 1)); |
| displacementX = renderArea.getBounds().getHeight(); |
| break; |
| case ui::Transform::ROT_180: |
| rotMatrix = mat4::rotate(rot90InRadians * 2.0f, vec3(0, 0, 1)); |
| displacementY = renderArea.getBounds().getWidth(); |
| displacementX = renderArea.getBounds().getHeight(); |
| break; |
| case ui::Transform::ROT_270: |
| rotMatrix = mat4::rotate(rot90InRadians * 3.0f, vec3(0, 0, 1)); |
| displacementY = renderArea.getBounds().getWidth(); |
| break; |
| default: |
| break; |
| } |
| |
| // We need to transform the clipping window into the right spot. |
| // First, rotate the clipping rectangle by the rotation hint to get the |
| // right orientation |
| const vec4 clipTL = vec4(sourceCrop.left, sourceCrop.top, 0, 1); |
| const vec4 clipBR = vec4(sourceCrop.right, sourceCrop.bottom, 0, 1); |
| const vec4 rotClipTL = rotMatrix * clipTL; |
| const vec4 rotClipBR = rotMatrix * clipBR; |
| const int newClipLeft = std::min(rotClipTL[0], rotClipBR[0]); |
| const int newClipTop = std::min(rotClipTL[1], rotClipBR[1]); |
| const int newClipRight = std::max(rotClipTL[0], rotClipBR[0]); |
| const int newClipBottom = std::max(rotClipTL[1], rotClipBR[1]); |
| |
| // Now reposition the clipping rectangle with the displacement vector |
| // computed above. |
| const mat4 displacementMat = mat4::translate(vec4(displacementX, displacementY, 0, 1)); |
| clientCompositionDisplay.clip = |
| Rect(newClipLeft + displacementX, newClipTop + displacementY, |
| newClipRight + displacementX, newClipBottom + displacementY); |
| |
| mat4 clipTransform = displacementMat * rotMatrix; |
| clientCompositionDisplay.globalTransform = |
| clipTransform * clientCompositionDisplay.globalTransform; |
| |
| clientCompositionDisplay.outputDataspace = renderArea.getReqDataSpace(); |
| clientCompositionDisplay.maxLuminance = DisplayDevice::sDefaultMaxLumiance; |
| |
| const float alpha = RenderArea::getCaptureFillValue(renderArea.getCaptureFill()); |
| |
| renderengine::LayerSettings fillLayer; |
| fillLayer.source.buffer.buffer = nullptr; |
| fillLayer.source.solidColor = half3(0.0, 0.0, 0.0); |
| fillLayer.geometry.boundaries = FloatRect(0.0, 0.0, 1.0, 1.0); |
| fillLayer.alpha = half(alpha); |
| clientCompositionLayers.push_back(fillLayer); |
| |
| Region clearRegion = Region::INVALID_REGION; |
| traverseLayers([&](Layer* layer) { |
| renderengine::LayerSettings layerSettings; |
| bool prepared = layer->prepareClientLayer(renderArea, useIdentityTransform, clearRegion, |
| false, layerSettings); |
| if (prepared) { |
| clientCompositionLayers.push_back(layerSettings); |
| } |
| }); |
| |
| clientCompositionDisplay.clearRegion = clearRegion; |
| // Use an empty fence for the buffer fence, since we just created the buffer so |
| // there is no need for synchronization with the GPU. |
| base::unique_fd bufferFence; |
| base::unique_fd drawFence; |
| getRenderEngine().useProtectedContext(false); |
| getRenderEngine().drawLayers(clientCompositionDisplay, clientCompositionLayers, buffer, |
| /*useFramebufferCache=*/false, std::move(bufferFence), &drawFence); |
| |
| *outSyncFd = drawFence.release(); |
| } |
| |
| status_t SurfaceFlinger::captureScreenImplLocked(const RenderArea& renderArea, |
| TraverseLayersFunction traverseLayers, |
| ANativeWindowBuffer* buffer, |
| bool useIdentityTransform, bool forSystem, |
| int* outSyncFd, bool& outCapturedSecureLayers) { |
| ATRACE_CALL(); |
| |
| traverseLayers([&](Layer* layer) { |
| outCapturedSecureLayers = |
| outCapturedSecureLayers || (layer->isVisible() && layer->isSecure()); |
| }); |
| |
| // We allow the system server to take screenshots of secure layers for |
| // use in situations like the Screen-rotation animation and place |
| // the impetus on WindowManager to not persist them. |
| if (outCapturedSecureLayers && !forSystem) { |
| ALOGW("FB is protected: PERMISSION_DENIED"); |
| return PERMISSION_DENIED; |
| } |
| renderScreenImplLocked(renderArea, traverseLayers, buffer, useIdentityTransform, outSyncFd); |
| return NO_ERROR; |
| } |
| |
| void SurfaceFlinger::setInputWindowsFinished() { |
| Mutex::Autolock _l(mStateLock); |
| |
| mPendingSyncInputWindows = false; |
| mTransactionCV.broadcast(); |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| void SurfaceFlinger::State::traverseInZOrder(const LayerVector::Visitor& visitor) const { |
| layersSortedByZ.traverseInZOrder(stateSet, visitor); |
| } |
| |
| void SurfaceFlinger::State::traverseInReverseZOrder(const LayerVector::Visitor& visitor) const { |
| layersSortedByZ.traverseInReverseZOrder(stateSet, visitor); |
| } |
| |
| void SurfaceFlinger::traverseLayersInDisplay(const sp<const DisplayDevice>& display, |
| const LayerVector::Visitor& visitor) { |
| // We loop through the first level of layers without traversing, |
| // as we need to determine which layers belong to the requested display. |
| for (const auto& layer : mDrawingState.layersSortedByZ) { |
| if (!layer->belongsToDisplay(display->getLayerStack(), false)) { |
| continue; |
| } |
| // relative layers are traversed in Layer::traverseInZOrder |
| layer->traverseInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) { |
| if (!layer->belongsToDisplay(display->getLayerStack(), false)) { |
| return; |
| } |
| if (!layer->isVisible()) { |
| return; |
| } |
| visitor(layer); |
| }); |
| } |
| } |
| |
| void SurfaceFlinger::setAllowedDisplayConfigsInternal(const sp<DisplayDevice>& display, |
| const std::vector<int32_t>& allowedConfigs) { |
| if (!display->isPrimary()) { |
| return; |
| } |
| |
| ALOGV("Updating allowed configs"); |
| mAllowedDisplayConfigs = DisplayConfigs(allowedConfigs.begin(), allowedConfigs.end()); |
| |
| // Set the highest allowed config by iterating backwards on available refresh rates |
| const auto& refreshRates = mRefreshRateConfigs.getRefreshRates(); |
| for (auto iter = refreshRates.crbegin(); iter != refreshRates.crend(); ++iter) { |
| if (iter->second && isDisplayConfigAllowed(iter->second->configId)) { |
| ALOGV("switching to config %d", iter->second->configId); |
| setDesiredActiveConfig( |
| {iter->first, iter->second->configId, Scheduler::ConfigEvent::Changed}); |
| break; |
| } |
| } |
| } |
| |
| status_t SurfaceFlinger::setAllowedDisplayConfigs(const sp<IBinder>& displayToken, |
| const std::vector<int32_t>& allowedConfigs) { |
| ATRACE_CALL(); |
| |
| if (!displayToken || allowedConfigs.empty()) { |
| return BAD_VALUE; |
| } |
| |
| if (mDebugDisplayConfigSetByBackdoor) { |
| // ignore this request as config is overridden by backdoor |
| return NO_ERROR; |
| } |
| |
| postMessageSync(new LambdaMessage([&]() NO_THREAD_SAFETY_ANALYSIS { |
| const auto display = getDisplayDeviceLocked(displayToken); |
| if (!display) { |
| ALOGE("Attempt to set allowed display configs for invalid display token %p", |
| displayToken.get()); |
| } else if (display->isVirtual()) { |
| ALOGW("Attempt to set allowed display configs for virtual display"); |
| } else { |
| setAllowedDisplayConfigsInternal(display, allowedConfigs); |
| } |
| })); |
| |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::getAllowedDisplayConfigs(const sp<IBinder>& displayToken, |
| std::vector<int32_t>* outAllowedConfigs) { |
| ATRACE_CALL(); |
| |
| if (!displayToken || !outAllowedConfigs) { |
| return BAD_VALUE; |
| } |
| |
| Mutex::Autolock lock(mStateLock); |
| |
| const auto display = getDisplayDeviceLocked(displayToken); |
| if (!display) { |
| return NAME_NOT_FOUND; |
| } |
| |
| if (display->isPrimary()) { |
| outAllowedConfigs->assign(mAllowedDisplayConfigs.begin(), mAllowedDisplayConfigs.end()); |
| } |
| |
| return NO_ERROR; |
| } |
| |
| void SurfaceFlinger::SetInputWindowsListener::onSetInputWindowsFinished() { |
| mFlinger->setInputWindowsFinished(); |
| } |
| |
| sp<Layer> SurfaceFlinger::fromHandle(const sp<IBinder>& handle) { |
| BBinder *b = handle->localBinder(); |
| if (b == nullptr) { |
| return nullptr; |
| } |
| auto it = mLayersByLocalBinderToken.find(b); |
| if (it != mLayersByLocalBinderToken.end()) { |
| return it->second.promote(); |
| } |
| return nullptr; |
| } |
| |
| void SurfaceFlinger::bufferErased(const client_cache_t& clientCacheId) { |
| getRenderEngine().unbindExternalTextureBuffer(clientCacheId.id); |
| } |
| |
| } // namespace android |
| |
| #if defined(__gl_h_) |
| #error "don't include gl/gl.h in this file" |
| #endif |
| |
| #if defined(__gl2_h_) |
| #error "don't include gl2/gl2.h in this file" |
| #endif |