blob: 2e7084e12ec12603f1aaf7f2508b3a506d3d642d [file] [log] [blame]
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "RpcState"
#include "RpcState.h"
#include <android-base/hex.h>
#include <android-base/macros.h>
#include <android-base/scopeguard.h>
#include <binder/BpBinder.h>
#include <binder/IPCThreadState.h>
#include <binder/RpcServer.h>
#include "Debug.h"
#include "RpcWireFormat.h"
#include <random>
#include <inttypes.h>
namespace android {
using base::ScopeGuard;
#if RPC_FLAKE_PRONE
void rpcMaybeWaitToFlake() {
[[clang::no_destroy]] static std::random_device r;
[[clang::no_destroy]] static std::mutex m;
unsigned num;
{
std::lock_guard<std::mutex> lock(m);
num = r();
}
if (num % 10 == 0) usleep(num % 1000);
}
#endif
RpcState::RpcState() {}
RpcState::~RpcState() {}
status_t RpcState::onBinderLeaving(const sp<RpcSession>& session, const sp<IBinder>& binder,
uint64_t* outAddress) {
bool isRemote = binder->remoteBinder();
bool isRpc = isRemote && binder->remoteBinder()->isRpcBinder();
if (isRpc && binder->remoteBinder()->getPrivateAccessor().rpcSession() != session) {
// We need to be able to send instructions over the socket for how to
// connect to a different server, and we also need to let the host
// process know that this is happening.
ALOGE("Cannot send binder from unrelated binder RPC session.");
return INVALID_OPERATION;
}
if (isRemote && !isRpc) {
// Without additional work, this would have the effect of using this
// process to proxy calls from the socket over to the other process, and
// it would make those calls look like they come from us (not over the
// sockets). In order to make this work transparently like binder, we
// would instead need to send instructions over the socket for how to
// connect to the host process, and we also need to let the host process
// know this was happening.
ALOGE("Cannot send binder proxy %p over sockets", binder.get());
return INVALID_OPERATION;
}
std::lock_guard<std::mutex> _l(mNodeMutex);
if (mTerminated) return DEAD_OBJECT;
// TODO(b/182939933): maybe move address out of BpBinder, and keep binder->address map
// in RpcState
for (auto& [addr, node] : mNodeForAddress) {
if (binder == node.binder) {
if (isRpc) {
// check integrity of data structure
uint64_t actualAddr = binder->remoteBinder()->getPrivateAccessor().rpcAddress();
LOG_ALWAYS_FATAL_IF(addr != actualAddr, "Address mismatch %" PRIu64 " vs %" PRIu64,
addr, actualAddr);
}
node.timesSent++;
node.sentRef = binder; // might already be set
*outAddress = addr;
return OK;
}
}
LOG_ALWAYS_FATAL_IF(isRpc, "RPC binder must have known address at this point");
bool forServer = session->server() != nullptr;
// arbitrary limit for maximum number of nodes in a process (otherwise we
// might run out of addresses)
if (mNodeForAddress.size() > 100000) {
return NO_MEMORY;
}
while (true) {
RpcWireAddress address{
.options = RPC_WIRE_ADDRESS_OPTION_CREATED,
.address = mNextId,
};
if (forServer) {
address.options |= RPC_WIRE_ADDRESS_OPTION_FOR_SERVER;
}
// avoid ubsan abort
if (mNextId >= std::numeric_limits<uint32_t>::max()) {
mNextId = 0;
} else {
mNextId++;
}
auto&& [it, inserted] = mNodeForAddress.insert({RpcWireAddress::toRaw(address),
BinderNode{
.binder = binder,
.sentRef = binder,
.timesSent = 1,
}});
if (inserted) {
*outAddress = it->first;
return OK;
}
}
}
status_t RpcState::onBinderEntering(const sp<RpcSession>& session, uint64_t address,
sp<IBinder>* out) {
// ensure that: if we want to use addresses for something else in the future (for
// instance, allowing transitive binder sends), that we don't accidentally
// send those addresses to old server. Accidentally ignoring this in that
// case and considering the binder to be recognized could cause this
// process to accidentally proxy transactions for that binder. Of course,
// if we communicate with a binder, it could always be proxying
// information. However, we want to make sure that isn't done on accident
// by a client.
RpcWireAddress addr = RpcWireAddress::fromRaw(address);
constexpr uint32_t kKnownOptions =
RPC_WIRE_ADDRESS_OPTION_CREATED | RPC_WIRE_ADDRESS_OPTION_FOR_SERVER;
if (addr.options & ~kKnownOptions) {
ALOGE("Address is of an unknown type, rejecting: %" PRIu64, address);
return BAD_VALUE;
}
std::lock_guard<std::mutex> _l(mNodeMutex);
if (mTerminated) return DEAD_OBJECT;
if (auto it = mNodeForAddress.find(address); it != mNodeForAddress.end()) {
*out = it->second.binder.promote();
// implicitly have strong RPC refcount, since we received this binder
it->second.timesRecd++;
return OK;
}
// we don't know about this binder, so the other side of the connection
// should have created it.
if ((addr.options & RPC_WIRE_ADDRESS_OPTION_FOR_SERVER) == !!session->server()) {
ALOGE("Server received unrecognized address which we should own the creation of %" PRIu64,
address);
return BAD_VALUE;
}
auto&& [it, inserted] = mNodeForAddress.insert({address, BinderNode{}});
LOG_ALWAYS_FATAL_IF(!inserted, "Failed to insert binder when creating proxy");
// Currently, all binders are assumed to be part of the same session (no
// device global binders in the RPC world).
it->second.binder = *out = BpBinder::PrivateAccessor::create(session, it->first);
it->second.timesRecd = 1;
return OK;
}
status_t RpcState::flushExcessBinderRefs(const sp<RpcSession>& session, uint64_t address,
const sp<IBinder>& binder) {
// We can flush all references when the binder is destroyed. No need to send
// extra reference counting packets now.
if (binder->remoteBinder()) return OK;
std::unique_lock<std::mutex> _l(mNodeMutex);
if (mTerminated) return DEAD_OBJECT;
auto it = mNodeForAddress.find(address);
LOG_ALWAYS_FATAL_IF(it == mNodeForAddress.end(), "Can't be deleted while we hold sp<>");
LOG_ALWAYS_FATAL_IF(it->second.binder != binder,
"Caller of flushExcessBinderRefs using inconsistent arguments");
LOG_ALWAYS_FATAL_IF(it->second.timesSent <= 0, "Local binder must have been sent %p",
binder.get());
// For a local binder, we only need to know that we sent it. Now that we
// have an sp<> for this call, we don't need anything more. If the other
// process is done with this binder, it needs to know we received the
// refcount associated with this call, so we can acknowledge that we
// received it. Once (or if) it has no other refcounts, it would reply with
// its own decStrong so that it could be removed from this session.
if (it->second.timesRecd != 0) {
_l.unlock();
return session->sendDecStrongToTarget(address, 0);
}
return OK;
}
size_t RpcState::countBinders() {
std::lock_guard<std::mutex> _l(mNodeMutex);
return mNodeForAddress.size();
}
void RpcState::dump() {
std::lock_guard<std::mutex> _l(mNodeMutex);
dumpLocked();
}
void RpcState::clear() {
std::unique_lock<std::mutex> _l(mNodeMutex);
if (mTerminated) {
LOG_ALWAYS_FATAL_IF(!mNodeForAddress.empty(),
"New state should be impossible after terminating!");
return;
}
if (SHOULD_LOG_RPC_DETAIL) {
ALOGE("RpcState::clear()");
dumpLocked();
}
// if the destructor of a binder object makes another RPC call, then calling
// decStrong could deadlock. So, we must hold onto these binders until
// mNodeMutex is no longer taken.
std::vector<sp<IBinder>> tempHoldBinder;
mTerminated = true;
for (auto& [address, node] : mNodeForAddress) {
sp<IBinder> binder = node.binder.promote();
LOG_ALWAYS_FATAL_IF(binder == nullptr, "Binder %p expected to be owned.", binder.get());
if (node.sentRef != nullptr) {
tempHoldBinder.push_back(node.sentRef);
}
}
mNodeForAddress.clear();
_l.unlock();
tempHoldBinder.clear(); // explicit
}
void RpcState::dumpLocked() {
ALOGE("DUMP OF RpcState %p", this);
ALOGE("DUMP OF RpcState (%zu nodes)", mNodeForAddress.size());
for (const auto& [address, node] : mNodeForAddress) {
sp<IBinder> binder = node.binder.promote();
const char* desc;
if (binder) {
if (binder->remoteBinder()) {
if (binder->remoteBinder()->isRpcBinder()) {
desc = "(rpc binder proxy)";
} else {
desc = "(binder proxy)";
}
} else {
desc = "(local binder)";
}
} else {
desc = "(null)";
}
ALOGE("- BINDER NODE: %p times sent:%zu times recd: %zu a: %" PRIu64 " type: %s",
node.binder.unsafe_get(), node.timesSent, node.timesRecd, address, desc);
}
ALOGE("END DUMP OF RpcState");
}
RpcState::CommandData::CommandData(size_t size) : mSize(size) {
// The maximum size for regular binder is 1MB for all concurrent
// transactions. A very small proportion of transactions are even
// larger than a page, but we need to avoid allocating too much
// data on behalf of an arbitrary client, or we could risk being in
// a position where a single additional allocation could run out of
// memory.
//
// Note, this limit may not reflect the total amount of data allocated for a
// transaction (in some cases, additional fixed size amounts are added),
// though for rough consistency, we should avoid cases where this data type
// is used for multiple dynamic allocations for a single transaction.
constexpr size_t kMaxTransactionAllocation = 100 * 1000;
if (size == 0) return;
if (size > kMaxTransactionAllocation) {
ALOGW("Transaction requested too much data allocation %zu", size);
return;
}
mData.reset(new (std::nothrow) uint8_t[size]);
}
status_t RpcState::rpcSend(const sp<RpcSession::RpcConnection>& connection,
const sp<RpcSession>& session, const char* what, iovec* iovs, int niovs,
const std::function<status_t()>& altPoll) {
for (int i = 0; i < niovs; i++) {
LOG_RPC_DETAIL("Sending %s on RpcTransport %p: %s", what, connection->rpcTransport.get(),
android::base::HexString(iovs[i].iov_base, iovs[i].iov_len).c_str());
}
if (status_t status =
connection->rpcTransport->interruptableWriteFully(session->mShutdownTrigger.get(),
iovs, niovs, altPoll);
status != OK) {
LOG_RPC_DETAIL("Failed to write %s (%d iovs) on RpcTransport %p, error: %s", what, niovs,
connection->rpcTransport.get(), statusToString(status).c_str());
(void)session->shutdownAndWait(false);
return status;
}
return OK;
}
status_t RpcState::rpcRec(const sp<RpcSession::RpcConnection>& connection,
const sp<RpcSession>& session, const char* what, iovec* iovs, int niovs) {
if (status_t status =
connection->rpcTransport->interruptableReadFully(session->mShutdownTrigger.get(),
iovs, niovs, {});
status != OK) {
LOG_RPC_DETAIL("Failed to read %s (%d iovs) on RpcTransport %p, error: %s", what, niovs,
connection->rpcTransport.get(), statusToString(status).c_str());
(void)session->shutdownAndWait(false);
return status;
}
for (int i = 0; i < niovs; i++) {
LOG_RPC_DETAIL("Received %s on RpcTransport %p: %s", what, connection->rpcTransport.get(),
android::base::HexString(iovs[i].iov_base, iovs[i].iov_len).c_str());
}
return OK;
}
status_t RpcState::readNewSessionResponse(const sp<RpcSession::RpcConnection>& connection,
const sp<RpcSession>& session, uint32_t* version) {
RpcNewSessionResponse response;
iovec iov{&response, sizeof(response)};
if (status_t status = rpcRec(connection, session, "new session response", &iov, 1);
status != OK) {
return status;
}
*version = response.version;
return OK;
}
status_t RpcState::sendConnectionInit(const sp<RpcSession::RpcConnection>& connection,
const sp<RpcSession>& session) {
RpcOutgoingConnectionInit init{
.msg = RPC_CONNECTION_INIT_OKAY,
};
iovec iov{&init, sizeof(init)};
return rpcSend(connection, session, "connection init", &iov, 1);
}
status_t RpcState::readConnectionInit(const sp<RpcSession::RpcConnection>& connection,
const sp<RpcSession>& session) {
RpcOutgoingConnectionInit init;
iovec iov{&init, sizeof(init)};
if (status_t status = rpcRec(connection, session, "connection init", &iov, 1); status != OK)
return status;
static_assert(sizeof(init.msg) == sizeof(RPC_CONNECTION_INIT_OKAY));
if (0 != strncmp(init.msg, RPC_CONNECTION_INIT_OKAY, sizeof(init.msg))) {
ALOGE("Connection init message unrecognized %.*s", static_cast<int>(sizeof(init.msg)),
init.msg);
return BAD_VALUE;
}
return OK;
}
sp<IBinder> RpcState::getRootObject(const sp<RpcSession::RpcConnection>& connection,
const sp<RpcSession>& session) {
Parcel data;
data.markForRpc(session);
Parcel reply;
status_t status =
transactAddress(connection, 0, RPC_SPECIAL_TRANSACT_GET_ROOT, data, session, &reply, 0);
if (status != OK) {
ALOGE("Error getting root object: %s", statusToString(status).c_str());
return nullptr;
}
return reply.readStrongBinder();
}
status_t RpcState::getMaxThreads(const sp<RpcSession::RpcConnection>& connection,
const sp<RpcSession>& session, size_t* maxThreadsOut) {
Parcel data;
data.markForRpc(session);
Parcel reply;
status_t status = transactAddress(connection, 0, RPC_SPECIAL_TRANSACT_GET_MAX_THREADS, data,
session, &reply, 0);
if (status != OK) {
ALOGE("Error getting max threads: %s", statusToString(status).c_str());
return status;
}
int32_t maxThreads;
status = reply.readInt32(&maxThreads);
if (status != OK) return status;
if (maxThreads <= 0) {
ALOGE("Error invalid max maxThreads: %d", maxThreads);
return BAD_VALUE;
}
*maxThreadsOut = maxThreads;
return OK;
}
status_t RpcState::getSessionId(const sp<RpcSession::RpcConnection>& connection,
const sp<RpcSession>& session, std::vector<uint8_t>* sessionIdOut) {
Parcel data;
data.markForRpc(session);
Parcel reply;
status_t status = transactAddress(connection, 0, RPC_SPECIAL_TRANSACT_GET_SESSION_ID, data,
session, &reply, 0);
if (status != OK) {
ALOGE("Error getting session ID: %s", statusToString(status).c_str());
return status;
}
return reply.readByteVector(sessionIdOut);
}
status_t RpcState::transact(const sp<RpcSession::RpcConnection>& connection,
const sp<IBinder>& binder, uint32_t code, const Parcel& data,
const sp<RpcSession>& session, Parcel* reply, uint32_t flags) {
if (!data.isForRpc()) {
ALOGE("Refusing to send RPC with parcel not crafted for RPC call on binder %p code "
"%" PRIu32,
binder.get(), code);
return BAD_TYPE;
}
if (data.objectsCount() != 0) {
ALOGE("Parcel at %p has attached objects but is being used in an RPC call on binder %p "
"code %" PRIu32,
&data, binder.get(), code);
return BAD_TYPE;
}
uint64_t address;
if (status_t status = onBinderLeaving(session, binder, &address); status != OK) return status;
return transactAddress(connection, address, code, data, session, reply, flags);
}
status_t RpcState::transactAddress(const sp<RpcSession::RpcConnection>& connection,
uint64_t address, uint32_t code, const Parcel& data,
const sp<RpcSession>& session, Parcel* reply, uint32_t flags) {
LOG_ALWAYS_FATAL_IF(!data.isForRpc());
LOG_ALWAYS_FATAL_IF(data.objectsCount() != 0);
uint64_t asyncNumber = 0;
if (address != 0) {
std::unique_lock<std::mutex> _l(mNodeMutex);
if (mTerminated) return DEAD_OBJECT; // avoid fatal only, otherwise races
auto it = mNodeForAddress.find(address);
LOG_ALWAYS_FATAL_IF(it == mNodeForAddress.end(),
"Sending transact on unknown address %" PRIu64, address);
if (flags & IBinder::FLAG_ONEWAY) {
asyncNumber = it->second.asyncNumber;
if (!nodeProgressAsyncNumber(&it->second)) {
_l.unlock();
(void)session->shutdownAndWait(false);
return DEAD_OBJECT;
}
}
}
LOG_ALWAYS_FATAL_IF(std::numeric_limits<int32_t>::max() - sizeof(RpcWireHeader) -
sizeof(RpcWireTransaction) <
data.dataSize(),
"Too much data %zu", data.dataSize());
RpcWireHeader command{
.command = RPC_COMMAND_TRANSACT,
.bodySize = static_cast<uint32_t>(sizeof(RpcWireTransaction) + data.dataSize()),
};
RpcWireTransaction transaction{
.address = RpcWireAddress::fromRaw(address),
.code = code,
.flags = flags,
.asyncNumber = asyncNumber,
};
constexpr size_t kWaitMaxUs = 1000000;
constexpr size_t kWaitLogUs = 10000;
size_t waitUs = 0;
// Oneway calls have no sync point, so if many are sent before, whether this
// is a twoway or oneway transaction, they may have filled up the socket.
// So, make sure we drain them before polling.
std::function<status_t()> drainRefs = [&] {
if (waitUs > kWaitLogUs) {
ALOGE("Cannot send command, trying to process pending refcounts. Waiting %zuus. Too "
"many oneway calls?",
waitUs);
}
if (waitUs > 0) {
usleep(waitUs);
waitUs = std::min(kWaitMaxUs, waitUs * 2);
} else {
waitUs = 1;
}
return drainCommands(connection, session, CommandType::CONTROL_ONLY);
};
iovec iovs[]{
{&command, sizeof(RpcWireHeader)},
{&transaction, sizeof(RpcWireTransaction)},
{const_cast<uint8_t*>(data.data()), data.dataSize()},
};
if (status_t status =
rpcSend(connection, session, "transaction", iovs, arraysize(iovs), drainRefs);
status != OK) {
// TODO(b/167966510): need to undo onBinderLeaving - we know the
// refcount isn't successfully transferred.
return status;
}
if (flags & IBinder::FLAG_ONEWAY) {
LOG_RPC_DETAIL("Oneway command, so no longer waiting on RpcTransport %p",
connection->rpcTransport.get());
// Do not wait on result.
return OK;
}
LOG_ALWAYS_FATAL_IF(reply == nullptr, "Reply parcel must be used for synchronous transaction.");
return waitForReply(connection, session, reply);
}
static void cleanup_reply_data(Parcel* p, const uint8_t* data, size_t dataSize,
const binder_size_t* objects, size_t objectsCount) {
(void)p;
delete[] const_cast<uint8_t*>(data - offsetof(RpcWireReply, data));
(void)dataSize;
LOG_ALWAYS_FATAL_IF(objects != nullptr);
LOG_ALWAYS_FATAL_IF(objectsCount != 0, "%zu objects remaining", objectsCount);
}
status_t RpcState::waitForReply(const sp<RpcSession::RpcConnection>& connection,
const sp<RpcSession>& session, Parcel* reply) {
RpcWireHeader command;
while (true) {
iovec iov{&command, sizeof(command)};
if (status_t status = rpcRec(connection, session, "command header (for reply)", &iov, 1);
status != OK)
return status;
if (command.command == RPC_COMMAND_REPLY) break;
if (status_t status = processCommand(connection, session, command, CommandType::ANY);
status != OK)
return status;
}
CommandData data(command.bodySize);
if (!data.valid()) return NO_MEMORY;
iovec iov{data.data(), command.bodySize};
if (status_t status = rpcRec(connection, session, "reply body", &iov, 1); status != OK)
return status;
if (command.bodySize < sizeof(RpcWireReply)) {
ALOGE("Expecting %zu but got %" PRId32 " bytes for RpcWireReply. Terminating!",
sizeof(RpcWireReply), command.bodySize);
(void)session->shutdownAndWait(false);
return BAD_VALUE;
}
RpcWireReply* rpcReply = reinterpret_cast<RpcWireReply*>(data.data());
if (rpcReply->status != OK) return rpcReply->status;
data.release();
reply->ipcSetDataReference(rpcReply->data, command.bodySize - offsetof(RpcWireReply, data),
nullptr, 0, cleanup_reply_data);
reply->markForRpc(session);
return OK;
}
status_t RpcState::sendDecStrongToTarget(const sp<RpcSession::RpcConnection>& connection,
const sp<RpcSession>& session, uint64_t addr,
size_t target) {
RpcDecStrong body = {
.address = RpcWireAddress::fromRaw(addr),
};
{
std::lock_guard<std::mutex> _l(mNodeMutex);
if (mTerminated) return DEAD_OBJECT; // avoid fatal only, otherwise races
auto it = mNodeForAddress.find(addr);
LOG_ALWAYS_FATAL_IF(it == mNodeForAddress.end(),
"Sending dec strong on unknown address %" PRIu64, addr);
LOG_ALWAYS_FATAL_IF(it->second.timesRecd < target, "Can't dec count of %zu to %zu.",
it->second.timesRecd, target);
// typically this happens when multiple threads send dec refs at the
// same time - the transactions will get combined automatically
if (it->second.timesRecd == target) return OK;
body.amount = it->second.timesRecd - target;
it->second.timesRecd = target;
LOG_ALWAYS_FATAL_IF(nullptr != tryEraseNode(it),
"Bad state. RpcState shouldn't own received binder");
}
RpcWireHeader cmd = {
.command = RPC_COMMAND_DEC_STRONG,
.bodySize = sizeof(RpcDecStrong),
};
iovec iovs[]{{&cmd, sizeof(cmd)}, {&body, sizeof(body)}};
return rpcSend(connection, session, "dec ref", iovs, arraysize(iovs));
}
status_t RpcState::getAndExecuteCommand(const sp<RpcSession::RpcConnection>& connection,
const sp<RpcSession>& session, CommandType type) {
LOG_RPC_DETAIL("getAndExecuteCommand on RpcTransport %p", connection->rpcTransport.get());
RpcWireHeader command;
iovec iov{&command, sizeof(command)};
if (status_t status = rpcRec(connection, session, "command header (for server)", &iov, 1);
status != OK)
return status;
return processCommand(connection, session, command, type);
}
status_t RpcState::drainCommands(const sp<RpcSession::RpcConnection>& connection,
const sp<RpcSession>& session, CommandType type) {
uint8_t buf;
while (connection->rpcTransport->peek(&buf, sizeof(buf)).value_or(0) > 0) {
status_t status = getAndExecuteCommand(connection, session, type);
if (status != OK) return status;
}
return OK;
}
status_t RpcState::processCommand(const sp<RpcSession::RpcConnection>& connection,
const sp<RpcSession>& session, const RpcWireHeader& command,
CommandType type) {
IPCThreadState* kernelBinderState = IPCThreadState::selfOrNull();
IPCThreadState::SpGuard spGuard{
.address = __builtin_frame_address(0),
.context = "processing binder RPC command",
};
const IPCThreadState::SpGuard* origGuard;
if (kernelBinderState != nullptr) {
origGuard = kernelBinderState->pushGetCallingSpGuard(&spGuard);
}
ScopeGuard guardUnguard = [&]() {
if (kernelBinderState != nullptr) {
kernelBinderState->restoreGetCallingSpGuard(origGuard);
}
};
switch (command.command) {
case RPC_COMMAND_TRANSACT:
if (type != CommandType::ANY) return BAD_TYPE;
return processTransact(connection, session, command);
case RPC_COMMAND_DEC_STRONG:
return processDecStrong(connection, session, command);
}
// We should always know the version of the opposing side, and since the
// RPC-binder-level wire protocol is not self synchronizing, we have no way
// to understand where the current command ends and the next one begins. We
// also can't consider it a fatal error because this would allow any client
// to kill us, so ending the session for misbehaving client.
ALOGE("Unknown RPC command %d - terminating session", command.command);
(void)session->shutdownAndWait(false);
return DEAD_OBJECT;
}
status_t RpcState::processTransact(const sp<RpcSession::RpcConnection>& connection,
const sp<RpcSession>& session, const RpcWireHeader& command) {
LOG_ALWAYS_FATAL_IF(command.command != RPC_COMMAND_TRANSACT, "command: %d", command.command);
CommandData transactionData(command.bodySize);
if (!transactionData.valid()) {
return NO_MEMORY;
}
iovec iov{transactionData.data(), transactionData.size()};
if (status_t status = rpcRec(connection, session, "transaction body", &iov, 1); status != OK)
return status;
return processTransactInternal(connection, session, std::move(transactionData));
}
static void do_nothing_to_transact_data(Parcel* p, const uint8_t* data, size_t dataSize,
const binder_size_t* objects, size_t objectsCount) {
(void)p;
(void)data;
(void)dataSize;
(void)objects;
(void)objectsCount;
}
status_t RpcState::processTransactInternal(const sp<RpcSession::RpcConnection>& connection,
const sp<RpcSession>& session,
CommandData transactionData) {
// for 'recursive' calls to this, we have already read and processed the
// binder from the transaction data and taken reference counts into account,
// so it is cached here.
sp<IBinder> target;
processTransactInternalTailCall:
if (transactionData.size() < sizeof(RpcWireTransaction)) {
ALOGE("Expecting %zu but got %zu bytes for RpcWireTransaction. Terminating!",
sizeof(RpcWireTransaction), transactionData.size());
(void)session->shutdownAndWait(false);
return BAD_VALUE;
}
RpcWireTransaction* transaction = reinterpret_cast<RpcWireTransaction*>(transactionData.data());
uint64_t addr = RpcWireAddress::toRaw(transaction->address);
bool oneway = transaction->flags & IBinder::FLAG_ONEWAY;
status_t replyStatus = OK;
if (addr != 0) {
if (!target) {
replyStatus = onBinderEntering(session, addr, &target);
}
if (replyStatus != OK) {
// do nothing
} else if (target == nullptr) {
// This can happen if the binder is remote in this process, and
// another thread has called the last decStrong on this binder.
// However, for local binders, it indicates a misbehaving client
// (any binder which is being transacted on should be holding a
// strong ref count), so in either case, terminating the
// session.
ALOGE("While transacting, binder has been deleted at address %" PRIu64 ". Terminating!",
addr);
(void)session->shutdownAndWait(false);
replyStatus = BAD_VALUE;
} else if (target->localBinder() == nullptr) {
ALOGE("Unknown binder address or non-local binder, not address %" PRIu64
". Terminating!",
addr);
(void)session->shutdownAndWait(false);
replyStatus = BAD_VALUE;
} else if (oneway) {
std::unique_lock<std::mutex> _l(mNodeMutex);
auto it = mNodeForAddress.find(addr);
if (it->second.binder.promote() != target) {
ALOGE("Binder became invalid during transaction. Bad client? %" PRIu64, addr);
replyStatus = BAD_VALUE;
} else if (transaction->asyncNumber != it->second.asyncNumber) {
// we need to process some other asynchronous transaction
// first
it->second.asyncTodo.push(BinderNode::AsyncTodo{
.ref = target,
.data = std::move(transactionData),
.asyncNumber = transaction->asyncNumber,
});
size_t numPending = it->second.asyncTodo.size();
LOG_RPC_DETAIL("Enqueuing %" PRIu64 " on %" PRIu64 " (%zu pending)",
transaction->asyncNumber, addr, numPending);
constexpr size_t kArbitraryOnewayCallTerminateLevel = 10000;
constexpr size_t kArbitraryOnewayCallWarnLevel = 1000;
constexpr size_t kArbitraryOnewayCallWarnPer = 1000;
if (numPending >= kArbitraryOnewayCallWarnLevel) {
if (numPending >= kArbitraryOnewayCallTerminateLevel) {
ALOGE("WARNING: %zu pending oneway transactions. Terminating!", numPending);
_l.unlock();
(void)session->shutdownAndWait(false);
return FAILED_TRANSACTION;
}
if (numPending % kArbitraryOnewayCallWarnPer == 0) {
ALOGW("Warning: many oneway transactions built up on %p (%zu)",
target.get(), numPending);
}
}
return OK;
}
}
}
Parcel reply;
reply.markForRpc(session);
if (replyStatus == OK) {
Parcel data;
// transaction->data is owned by this function. Parcel borrows this data and
// only holds onto it for the duration of this function call. Parcel will be
// deleted before the 'transactionData' object.
data.ipcSetDataReference(transaction->data,
transactionData.size() - offsetof(RpcWireTransaction, data),
nullptr /*object*/, 0 /*objectCount*/,
do_nothing_to_transact_data);
data.markForRpc(session);
if (target) {
bool origAllowNested = connection->allowNested;
connection->allowNested = !oneway;
replyStatus = target->transact(transaction->code, data, &reply, transaction->flags);
connection->allowNested = origAllowNested;
} else {
LOG_RPC_DETAIL("Got special transaction %u", transaction->code);
switch (transaction->code) {
case RPC_SPECIAL_TRANSACT_GET_MAX_THREADS: {
replyStatus = reply.writeInt32(session->getMaxIncomingThreads());
break;
}
case RPC_SPECIAL_TRANSACT_GET_SESSION_ID: {
// for client connections, this should always report the value
// originally returned from the server, so this is asserting
// that it exists
replyStatus = reply.writeByteVector(session->mId);
break;
}
default: {
sp<RpcServer> server = session->server();
if (server) {
switch (transaction->code) {
case RPC_SPECIAL_TRANSACT_GET_ROOT: {
sp<IBinder> root = session->mSessionSpecificRootObject
?: server->getRootObject();
replyStatus = reply.writeStrongBinder(root);
break;
}
default: {
replyStatus = UNKNOWN_TRANSACTION;
}
}
} else {
ALOGE("Special command sent, but no server object attached.");
}
}
}
}
}
if (oneway) {
if (replyStatus != OK) {
ALOGW("Oneway call failed with error: %d", replyStatus);
}
LOG_RPC_DETAIL("Processed async transaction %" PRIu64 " on %" PRIu64,
transaction->asyncNumber, addr);
// Check to see if there is another asynchronous transaction to process.
// This behavior differs from binder behavior, since in the binder
// driver, asynchronous transactions will be processed after existing
// pending binder transactions on the queue. The downside of this is
// that asynchronous transactions can be drowned out by synchronous
// transactions. However, we have no easy way to queue these
// transactions after the synchronous transactions we may want to read
// from the wire. So, in socket binder here, we have the opposite
// downside: asynchronous transactions may drown out synchronous
// transactions.
{
std::unique_lock<std::mutex> _l(mNodeMutex);
auto it = mNodeForAddress.find(addr);
// last refcount dropped after this transaction happened
if (it == mNodeForAddress.end()) return OK;
if (!nodeProgressAsyncNumber(&it->second)) {
_l.unlock();
(void)session->shutdownAndWait(false);
return DEAD_OBJECT;
}
if (it->second.asyncTodo.size() == 0) return OK;
if (it->second.asyncTodo.top().asyncNumber == it->second.asyncNumber) {
LOG_RPC_DETAIL("Found next async transaction %" PRIu64 " on %" PRIu64,
it->second.asyncNumber, addr);
// justification for const_cast (consider avoiding priority_queue):
// - AsyncTodo operator< doesn't depend on 'data' or 'ref' objects
// - gotta go fast
auto& todo = const_cast<BinderNode::AsyncTodo&>(it->second.asyncTodo.top());
// reset up arguments
transactionData = std::move(todo.data);
LOG_ALWAYS_FATAL_IF(target != todo.ref,
"async list should be associated with a binder");
it->second.asyncTodo.pop();
goto processTransactInternalTailCall;
}
}
// done processing all the async commands on this binder that we can, so
// write decstrongs on the binder
if (addr != 0 && replyStatus == OK) {
return flushExcessBinderRefs(session, addr, target);
}
return OK;
}
// Binder refs are flushed for oneway calls only after all calls which are
// built up are executed. Otherwise, they fill up the binder buffer.
if (addr != 0 && replyStatus == OK) {
replyStatus = flushExcessBinderRefs(session, addr, target);
}
LOG_ALWAYS_FATAL_IF(std::numeric_limits<int32_t>::max() - sizeof(RpcWireHeader) -
sizeof(RpcWireReply) <
reply.dataSize(),
"Too much data for reply %zu", reply.dataSize());
RpcWireHeader cmdReply{
.command = RPC_COMMAND_REPLY,
.bodySize = static_cast<uint32_t>(sizeof(RpcWireReply) + reply.dataSize()),
};
RpcWireReply rpcReply{
.status = replyStatus,
};
iovec iovs[]{
{&cmdReply, sizeof(RpcWireHeader)},
{&rpcReply, sizeof(RpcWireReply)},
{const_cast<uint8_t*>(reply.data()), reply.dataSize()},
};
return rpcSend(connection, session, "reply", iovs, arraysize(iovs));
}
status_t RpcState::processDecStrong(const sp<RpcSession::RpcConnection>& connection,
const sp<RpcSession>& session, const RpcWireHeader& command) {
LOG_ALWAYS_FATAL_IF(command.command != RPC_COMMAND_DEC_STRONG, "command: %d", command.command);
CommandData commandData(command.bodySize);
if (!commandData.valid()) {
return NO_MEMORY;
}
iovec iov{commandData.data(), commandData.size()};
if (status_t status = rpcRec(connection, session, "dec ref body", &iov, 1); status != OK)
return status;
if (command.bodySize != sizeof(RpcDecStrong)) {
ALOGE("Expecting %zu but got %" PRId32 " bytes for RpcDecStrong. Terminating!",
sizeof(RpcDecStrong), command.bodySize);
(void)session->shutdownAndWait(false);
return BAD_VALUE;
}
RpcDecStrong* body = reinterpret_cast<RpcDecStrong*>(commandData.data());
uint64_t addr = RpcWireAddress::toRaw(body->address);
std::unique_lock<std::mutex> _l(mNodeMutex);
auto it = mNodeForAddress.find(addr);
if (it == mNodeForAddress.end()) {
ALOGE("Unknown binder address %" PRIu64 " for dec strong.", addr);
return OK;
}
sp<IBinder> target = it->second.binder.promote();
if (target == nullptr) {
ALOGE("While requesting dec strong, binder has been deleted at address %" PRIu64
". Terminating!",
addr);
_l.unlock();
(void)session->shutdownAndWait(false);
return BAD_VALUE;
}
if (it->second.timesSent < body->amount) {
ALOGE("Record of sending binder %zu times, but requested decStrong for %" PRIu64 " of %u",
it->second.timesSent, addr, body->amount);
return OK;
}
LOG_ALWAYS_FATAL_IF(it->second.sentRef == nullptr, "Inconsistent state, lost ref for %" PRIu64,
addr);
LOG_RPC_DETAIL("Processing dec strong of %" PRIu64 " by %u from %zu", addr, body->amount,
it->second.timesSent);
it->second.timesSent -= body->amount;
sp<IBinder> tempHold = tryEraseNode(it);
_l.unlock();
tempHold = nullptr; // destructor may make binder calls on this session
return OK;
}
sp<IBinder> RpcState::tryEraseNode(std::map<uint64_t, BinderNode>::iterator& it) {
sp<IBinder> ref;
if (it->second.timesSent == 0) {
ref = std::move(it->second.sentRef);
if (it->second.timesRecd == 0) {
LOG_ALWAYS_FATAL_IF(!it->second.asyncTodo.empty(),
"Can't delete binder w/ pending async transactions");
mNodeForAddress.erase(it);
}
}
return ref;
}
bool RpcState::nodeProgressAsyncNumber(BinderNode* node) {
// 2**64 =~ 10**19 =~ 1000 transactions per second for 585 million years to
// a single binder
if (node->asyncNumber >= std::numeric_limits<decltype(node->asyncNumber)>::max()) {
ALOGE("Out of async transaction IDs. Terminating");
return false;
}
node->asyncNumber++;
return true;
}
} // namespace android