| /* |
| * Copyright 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define ATRACE_TAG ATRACE_TAG_GRAPHICS |
| |
| #include <android/hardware/graphics/common/1.0/types.h> |
| #include <grallocusage/GrallocUsageConversion.h> |
| #include <graphicsenv/GraphicsEnv.h> |
| #include <log/log.h> |
| #include <sync/sync.h> |
| #include <system/window.h> |
| #include <ui/BufferQueueDefs.h> |
| #include <ui/DebugUtils.h> |
| #include <ui/PixelFormat.h> |
| #include <utils/StrongPointer.h> |
| #include <utils/Timers.h> |
| #include <utils/Trace.h> |
| |
| #include <algorithm> |
| #include <unordered_set> |
| #include <vector> |
| |
| #include "driver.h" |
| |
| using android::hardware::graphics::common::V1_0::BufferUsage; |
| |
| namespace vulkan { |
| namespace driver { |
| |
| namespace { |
| |
| const VkSurfaceTransformFlagsKHR kSupportedTransforms = |
| VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR | |
| VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR | |
| VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR | |
| VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR | |
| VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR | |
| VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR | |
| VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR | |
| VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR | |
| VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR; |
| |
| VkSurfaceTransformFlagBitsKHR TranslateNativeToVulkanTransform(int native) { |
| // Native and Vulkan transforms are isomorphic, but are represented |
| // differently. Vulkan transforms are built up of an optional horizontal |
| // mirror, followed by a clockwise 0/90/180/270-degree rotation. Native |
| // transforms are built up from a horizontal flip, vertical flip, and |
| // 90-degree rotation, all optional but always in that order. |
| |
| switch (native) { |
| case 0: |
| return VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR; |
| case NATIVE_WINDOW_TRANSFORM_FLIP_H: |
| return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR; |
| case NATIVE_WINDOW_TRANSFORM_FLIP_V: |
| return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR; |
| case NATIVE_WINDOW_TRANSFORM_ROT_180: |
| return VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR; |
| case NATIVE_WINDOW_TRANSFORM_ROT_90: |
| return VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR; |
| case NATIVE_WINDOW_TRANSFORM_FLIP_H | NATIVE_WINDOW_TRANSFORM_ROT_90: |
| return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR; |
| case NATIVE_WINDOW_TRANSFORM_FLIP_V | NATIVE_WINDOW_TRANSFORM_ROT_90: |
| return VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR; |
| case NATIVE_WINDOW_TRANSFORM_ROT_270: |
| return VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR; |
| case NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY: |
| default: |
| return VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR; |
| } |
| } |
| |
| int TranslateVulkanToNativeTransform(VkSurfaceTransformFlagBitsKHR transform) { |
| switch (transform) { |
| case VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR: |
| return NATIVE_WINDOW_TRANSFORM_ROT_90; |
| case VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR: |
| return NATIVE_WINDOW_TRANSFORM_ROT_180; |
| case VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR: |
| return NATIVE_WINDOW_TRANSFORM_ROT_270; |
| case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR: |
| return NATIVE_WINDOW_TRANSFORM_FLIP_H; |
| case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR: |
| return NATIVE_WINDOW_TRANSFORM_FLIP_H | |
| NATIVE_WINDOW_TRANSFORM_ROT_90; |
| case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR: |
| return NATIVE_WINDOW_TRANSFORM_FLIP_V; |
| case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR: |
| return NATIVE_WINDOW_TRANSFORM_FLIP_V | |
| NATIVE_WINDOW_TRANSFORM_ROT_90; |
| case VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR: |
| case VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR: |
| default: |
| return 0; |
| } |
| } |
| |
| int InvertTransformToNative(VkSurfaceTransformFlagBitsKHR transform) { |
| switch (transform) { |
| case VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR: |
| return NATIVE_WINDOW_TRANSFORM_ROT_270; |
| case VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR: |
| return NATIVE_WINDOW_TRANSFORM_ROT_180; |
| case VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR: |
| return NATIVE_WINDOW_TRANSFORM_ROT_90; |
| case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR: |
| return NATIVE_WINDOW_TRANSFORM_FLIP_H; |
| case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR: |
| return NATIVE_WINDOW_TRANSFORM_FLIP_H | |
| NATIVE_WINDOW_TRANSFORM_ROT_90; |
| case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR: |
| return NATIVE_WINDOW_TRANSFORM_FLIP_V; |
| case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR: |
| return NATIVE_WINDOW_TRANSFORM_FLIP_V | |
| NATIVE_WINDOW_TRANSFORM_ROT_90; |
| case VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR: |
| case VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR: |
| default: |
| return 0; |
| } |
| } |
| |
| class TimingInfo { |
| public: |
| TimingInfo(const VkPresentTimeGOOGLE* qp, uint64_t nativeFrameId) |
| : vals_{qp->presentID, qp->desiredPresentTime, 0, 0, 0}, |
| native_frame_id_(nativeFrameId) {} |
| bool ready() const { |
| return (timestamp_desired_present_time_ != |
| NATIVE_WINDOW_TIMESTAMP_PENDING && |
| timestamp_actual_present_time_ != |
| NATIVE_WINDOW_TIMESTAMP_PENDING && |
| timestamp_render_complete_time_ != |
| NATIVE_WINDOW_TIMESTAMP_PENDING && |
| timestamp_composition_latch_time_ != |
| NATIVE_WINDOW_TIMESTAMP_PENDING); |
| } |
| void calculate(int64_t rdur) { |
| bool anyTimestampInvalid = |
| (timestamp_actual_present_time_ == |
| NATIVE_WINDOW_TIMESTAMP_INVALID) || |
| (timestamp_render_complete_time_ == |
| NATIVE_WINDOW_TIMESTAMP_INVALID) || |
| (timestamp_composition_latch_time_ == |
| NATIVE_WINDOW_TIMESTAMP_INVALID); |
| if (anyTimestampInvalid) { |
| ALOGE("Unexpectedly received invalid timestamp."); |
| vals_.actualPresentTime = 0; |
| vals_.earliestPresentTime = 0; |
| vals_.presentMargin = 0; |
| return; |
| } |
| |
| vals_.actualPresentTime = |
| static_cast<uint64_t>(timestamp_actual_present_time_); |
| int64_t margin = (timestamp_composition_latch_time_ - |
| timestamp_render_complete_time_); |
| // Calculate vals_.earliestPresentTime, and potentially adjust |
| // vals_.presentMargin. The initial value of vals_.earliestPresentTime |
| // is vals_.actualPresentTime. If we can subtract rdur (the duration |
| // of a refresh cycle) from vals_.earliestPresentTime (and also from |
| // vals_.presentMargin) and still leave a positive margin, then we can |
| // report to the application that it could have presented earlier than |
| // it did (per the extension specification). If for some reason, we |
| // can do this subtraction repeatedly, we do, since |
| // vals_.earliestPresentTime really is supposed to be the "earliest". |
| int64_t early_time = timestamp_actual_present_time_; |
| while ((margin > rdur) && |
| ((early_time - rdur) > timestamp_composition_latch_time_)) { |
| early_time -= rdur; |
| margin -= rdur; |
| } |
| vals_.earliestPresentTime = static_cast<uint64_t>(early_time); |
| vals_.presentMargin = static_cast<uint64_t>(margin); |
| } |
| void get_values(VkPastPresentationTimingGOOGLE* values) const { |
| *values = vals_; |
| } |
| |
| public: |
| VkPastPresentationTimingGOOGLE vals_ { 0, 0, 0, 0, 0 }; |
| |
| uint64_t native_frame_id_ { 0 }; |
| int64_t timestamp_desired_present_time_{ NATIVE_WINDOW_TIMESTAMP_PENDING }; |
| int64_t timestamp_actual_present_time_ { NATIVE_WINDOW_TIMESTAMP_PENDING }; |
| int64_t timestamp_render_complete_time_ { NATIVE_WINDOW_TIMESTAMP_PENDING }; |
| int64_t timestamp_composition_latch_time_ |
| { NATIVE_WINDOW_TIMESTAMP_PENDING }; |
| }; |
| |
| struct Surface { |
| android::sp<ANativeWindow> window; |
| VkSwapchainKHR swapchain_handle; |
| uint64_t consumer_usage; |
| }; |
| |
| VkSurfaceKHR HandleFromSurface(Surface* surface) { |
| return VkSurfaceKHR(reinterpret_cast<uint64_t>(surface)); |
| } |
| |
| Surface* SurfaceFromHandle(VkSurfaceKHR handle) { |
| return reinterpret_cast<Surface*>(handle); |
| } |
| |
| // Maximum number of TimingInfo structs to keep per swapchain: |
| enum { MAX_TIMING_INFOS = 10 }; |
| // Minimum number of frames to look for in the past (so we don't cause |
| // syncronous requests to Surface Flinger): |
| enum { MIN_NUM_FRAMES_AGO = 5 }; |
| |
| struct Swapchain { |
| Swapchain(Surface& surface_, |
| uint32_t num_images_, |
| VkPresentModeKHR present_mode, |
| int pre_transform_) |
| : surface(surface_), |
| num_images(num_images_), |
| mailbox_mode(present_mode == VK_PRESENT_MODE_MAILBOX_KHR), |
| pre_transform(pre_transform_), |
| frame_timestamps_enabled(false), |
| acquire_next_image_timeout(-1), |
| shared(present_mode == VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR || |
| present_mode == |
| VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR) { |
| ANativeWindow* window = surface.window.get(); |
| native_window_get_refresh_cycle_duration( |
| window, |
| &refresh_duration); |
| } |
| uint64_t get_refresh_duration() |
| { |
| ANativeWindow* window = surface.window.get(); |
| native_window_get_refresh_cycle_duration( |
| window, |
| &refresh_duration); |
| return static_cast<uint64_t>(refresh_duration); |
| |
| } |
| |
| Surface& surface; |
| uint32_t num_images; |
| bool mailbox_mode; |
| int pre_transform; |
| bool frame_timestamps_enabled; |
| int64_t refresh_duration; |
| nsecs_t acquire_next_image_timeout; |
| bool shared; |
| |
| struct Image { |
| Image() |
| : image(VK_NULL_HANDLE), |
| dequeue_fence(-1), |
| release_fence(-1), |
| dequeued(false) {} |
| VkImage image; |
| android::sp<ANativeWindowBuffer> buffer; |
| // The fence is only valid when the buffer is dequeued, and should be |
| // -1 any other time. When valid, we own the fd, and must ensure it is |
| // closed: either by closing it explicitly when queueing the buffer, |
| // or by passing ownership e.g. to ANativeWindow::cancelBuffer(). |
| int dequeue_fence; |
| // This fence is a dup of the sync fd returned from the driver via |
| // vkQueueSignalReleaseImageANDROID upon vkQueuePresentKHR. We must |
| // ensure it is closed upon re-presenting or releasing the image. |
| int release_fence; |
| bool dequeued; |
| } images[android::BufferQueueDefs::NUM_BUFFER_SLOTS]; |
| |
| std::vector<TimingInfo> timing; |
| }; |
| |
| VkSwapchainKHR HandleFromSwapchain(Swapchain* swapchain) { |
| return VkSwapchainKHR(reinterpret_cast<uint64_t>(swapchain)); |
| } |
| |
| Swapchain* SwapchainFromHandle(VkSwapchainKHR handle) { |
| return reinterpret_cast<Swapchain*>(handle); |
| } |
| |
| static bool IsFencePending(int fd) { |
| if (fd < 0) |
| return false; |
| |
| errno = 0; |
| return sync_wait(fd, 0 /* timeout */) == -1 && errno == ETIME; |
| } |
| |
| void ReleaseSwapchainImage(VkDevice device, |
| bool shared_present, |
| ANativeWindow* window, |
| int release_fence, |
| Swapchain::Image& image, |
| bool defer_if_pending) { |
| ATRACE_CALL(); |
| |
| ALOG_ASSERT(release_fence == -1 || image.dequeued, |
| "ReleaseSwapchainImage: can't provide a release fence for " |
| "non-dequeued images"); |
| |
| if (image.dequeued) { |
| if (release_fence >= 0) { |
| // We get here from vkQueuePresentKHR. The application is |
| // responsible for creating an execution dependency chain from |
| // vkAcquireNextImage (dequeue_fence) to vkQueuePresentKHR |
| // (release_fence), so we can drop the dequeue_fence here. |
| if (image.dequeue_fence >= 0) |
| close(image.dequeue_fence); |
| } else { |
| // We get here during swapchain destruction, or various serious |
| // error cases e.g. when we can't create the release_fence during |
| // vkQueuePresentKHR. In non-error cases, the dequeue_fence should |
| // have already signalled, since the swapchain images are supposed |
| // to be idle before the swapchain is destroyed. In error cases, |
| // there may be rendering in flight to the image, but since we |
| // weren't able to create a release_fence, waiting for the |
| // dequeue_fence is about the best we can do. |
| release_fence = image.dequeue_fence; |
| } |
| image.dequeue_fence = -1; |
| |
| // It's invalid to call cancelBuffer on a shared buffer |
| if (window && !shared_present) { |
| window->cancelBuffer(window, image.buffer.get(), release_fence); |
| } else { |
| if (release_fence >= 0) { |
| sync_wait(release_fence, -1 /* forever */); |
| close(release_fence); |
| } |
| } |
| release_fence = -1; |
| image.dequeued = false; |
| } |
| |
| if (defer_if_pending && IsFencePending(image.release_fence)) |
| return; |
| |
| if (image.release_fence >= 0) { |
| close(image.release_fence); |
| image.release_fence = -1; |
| } |
| |
| if (image.image) { |
| ATRACE_BEGIN("DestroyImage"); |
| GetData(device).driver.DestroyImage(device, image.image, nullptr); |
| ATRACE_END(); |
| image.image = VK_NULL_HANDLE; |
| } |
| |
| image.buffer.clear(); |
| } |
| |
| void OrphanSwapchain(VkDevice device, Swapchain* swapchain) { |
| if (swapchain->surface.swapchain_handle != HandleFromSwapchain(swapchain)) |
| return; |
| for (uint32_t i = 0; i < swapchain->num_images; i++) { |
| if (!swapchain->images[i].dequeued) { |
| ReleaseSwapchainImage(device, swapchain->shared, nullptr, -1, |
| swapchain->images[i], true); |
| } |
| } |
| swapchain->surface.swapchain_handle = VK_NULL_HANDLE; |
| swapchain->timing.clear(); |
| } |
| |
| uint32_t get_num_ready_timings(Swapchain& swapchain) { |
| if (swapchain.timing.size() < MIN_NUM_FRAMES_AGO) { |
| return 0; |
| } |
| |
| uint32_t num_ready = 0; |
| const size_t num_timings = swapchain.timing.size() - MIN_NUM_FRAMES_AGO + 1; |
| for (uint32_t i = 0; i < num_timings; i++) { |
| TimingInfo& ti = swapchain.timing[i]; |
| if (ti.ready()) { |
| // This TimingInfo is ready to be reported to the user. Add it |
| // to the num_ready. |
| num_ready++; |
| continue; |
| } |
| // This TimingInfo is not yet ready to be reported to the user, |
| // and so we should look for any available timestamps that |
| // might make it ready. |
| int64_t desired_present_time = 0; |
| int64_t render_complete_time = 0; |
| int64_t composition_latch_time = 0; |
| int64_t actual_present_time = 0; |
| // Obtain timestamps: |
| int err = native_window_get_frame_timestamps( |
| swapchain.surface.window.get(), ti.native_frame_id_, |
| &desired_present_time, &render_complete_time, |
| &composition_latch_time, |
| nullptr, //&first_composition_start_time, |
| nullptr, //&last_composition_start_time, |
| nullptr, //&composition_finish_time, |
| &actual_present_time, |
| nullptr, //&dequeue_ready_time, |
| nullptr /*&reads_done_time*/); |
| |
| if (err != android::OK) { |
| continue; |
| } |
| |
| // Record the timestamp(s) we received, and then see if this TimingInfo |
| // is ready to be reported to the user: |
| ti.timestamp_desired_present_time_ = desired_present_time; |
| ti.timestamp_actual_present_time_ = actual_present_time; |
| ti.timestamp_render_complete_time_ = render_complete_time; |
| ti.timestamp_composition_latch_time_ = composition_latch_time; |
| |
| if (ti.ready()) { |
| // The TimingInfo has received enough timestamps, and should now |
| // use those timestamps to calculate the info that should be |
| // reported to the user: |
| ti.calculate(swapchain.refresh_duration); |
| num_ready++; |
| } |
| } |
| return num_ready; |
| } |
| |
| void copy_ready_timings(Swapchain& swapchain, |
| uint32_t* count, |
| VkPastPresentationTimingGOOGLE* timings) { |
| if (swapchain.timing.empty()) { |
| *count = 0; |
| return; |
| } |
| |
| size_t last_ready = swapchain.timing.size() - 1; |
| while (!swapchain.timing[last_ready].ready()) { |
| if (last_ready == 0) { |
| *count = 0; |
| return; |
| } |
| last_ready--; |
| } |
| |
| uint32_t num_copied = 0; |
| int32_t num_to_remove = 0; |
| for (uint32_t i = 0; i <= last_ready && num_copied < *count; i++) { |
| const TimingInfo& ti = swapchain.timing[i]; |
| if (ti.ready()) { |
| ti.get_values(&timings[num_copied]); |
| num_copied++; |
| } |
| num_to_remove++; |
| } |
| |
| // Discard old frames that aren't ready if newer frames are ready. |
| // We don't expect to get the timing info for those old frames. |
| swapchain.timing.erase(swapchain.timing.begin(), |
| swapchain.timing.begin() + num_to_remove); |
| |
| *count = num_copied; |
| } |
| |
| android::PixelFormat GetNativePixelFormat(VkFormat format) { |
| android::PixelFormat native_format = android::PIXEL_FORMAT_RGBA_8888; |
| switch (format) { |
| case VK_FORMAT_R8G8B8A8_UNORM: |
| case VK_FORMAT_R8G8B8A8_SRGB: |
| native_format = android::PIXEL_FORMAT_RGBA_8888; |
| break; |
| case VK_FORMAT_R5G6B5_UNORM_PACK16: |
| native_format = android::PIXEL_FORMAT_RGB_565; |
| break; |
| case VK_FORMAT_R16G16B16A16_SFLOAT: |
| native_format = android::PIXEL_FORMAT_RGBA_FP16; |
| break; |
| case VK_FORMAT_A2B10G10R10_UNORM_PACK32: |
| native_format = android::PIXEL_FORMAT_RGBA_1010102; |
| break; |
| case VK_FORMAT_R8_UNORM: |
| native_format = android::PIXEL_FORMAT_R_8; |
| break; |
| default: |
| ALOGV("unsupported swapchain format %d", format); |
| break; |
| } |
| return native_format; |
| } |
| |
| android_dataspace GetNativeDataspace(VkColorSpaceKHR colorspace) { |
| switch (colorspace) { |
| case VK_COLOR_SPACE_SRGB_NONLINEAR_KHR: |
| return HAL_DATASPACE_V0_SRGB; |
| case VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT: |
| return HAL_DATASPACE_DISPLAY_P3; |
| case VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT: |
| return HAL_DATASPACE_V0_SCRGB_LINEAR; |
| case VK_COLOR_SPACE_EXTENDED_SRGB_NONLINEAR_EXT: |
| return HAL_DATASPACE_V0_SCRGB; |
| case VK_COLOR_SPACE_DCI_P3_LINEAR_EXT: |
| return HAL_DATASPACE_DCI_P3_LINEAR; |
| case VK_COLOR_SPACE_DCI_P3_NONLINEAR_EXT: |
| return HAL_DATASPACE_DCI_P3; |
| case VK_COLOR_SPACE_BT709_LINEAR_EXT: |
| return HAL_DATASPACE_V0_SRGB_LINEAR; |
| case VK_COLOR_SPACE_BT709_NONLINEAR_EXT: |
| return HAL_DATASPACE_V0_SRGB; |
| case VK_COLOR_SPACE_BT2020_LINEAR_EXT: |
| return HAL_DATASPACE_BT2020_LINEAR; |
| case VK_COLOR_SPACE_HDR10_ST2084_EXT: |
| return static_cast<android_dataspace>( |
| HAL_DATASPACE_STANDARD_BT2020 | HAL_DATASPACE_TRANSFER_ST2084 | |
| HAL_DATASPACE_RANGE_FULL); |
| case VK_COLOR_SPACE_DOLBYVISION_EXT: |
| return static_cast<android_dataspace>( |
| HAL_DATASPACE_STANDARD_BT2020 | HAL_DATASPACE_TRANSFER_ST2084 | |
| HAL_DATASPACE_RANGE_FULL); |
| case VK_COLOR_SPACE_HDR10_HLG_EXT: |
| return static_cast<android_dataspace>( |
| HAL_DATASPACE_STANDARD_BT2020 | HAL_DATASPACE_TRANSFER_HLG | |
| HAL_DATASPACE_RANGE_FULL); |
| case VK_COLOR_SPACE_ADOBERGB_LINEAR_EXT: |
| return static_cast<android_dataspace>( |
| HAL_DATASPACE_STANDARD_ADOBE_RGB | |
| HAL_DATASPACE_TRANSFER_LINEAR | HAL_DATASPACE_RANGE_FULL); |
| case VK_COLOR_SPACE_ADOBERGB_NONLINEAR_EXT: |
| return HAL_DATASPACE_ADOBE_RGB; |
| |
| // Pass through is intended to allow app to provide data that is passed |
| // to the display system without modification. |
| case VK_COLOR_SPACE_PASS_THROUGH_EXT: |
| return HAL_DATASPACE_ARBITRARY; |
| |
| default: |
| // This indicates that we don't know about the |
| // dataspace specified and we should indicate that |
| // it's unsupported |
| return HAL_DATASPACE_UNKNOWN; |
| } |
| } |
| |
| } // anonymous namespace |
| |
| VKAPI_ATTR |
| VkResult CreateAndroidSurfaceKHR( |
| VkInstance instance, |
| const VkAndroidSurfaceCreateInfoKHR* pCreateInfo, |
| const VkAllocationCallbacks* allocator, |
| VkSurfaceKHR* out_surface) { |
| ATRACE_CALL(); |
| |
| if (!allocator) |
| allocator = &GetData(instance).allocator; |
| void* mem = allocator->pfnAllocation(allocator->pUserData, sizeof(Surface), |
| alignof(Surface), |
| VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); |
| if (!mem) |
| return VK_ERROR_OUT_OF_HOST_MEMORY; |
| Surface* surface = new (mem) Surface; |
| |
| surface->window = pCreateInfo->window; |
| surface->swapchain_handle = VK_NULL_HANDLE; |
| int err = native_window_get_consumer_usage(surface->window.get(), |
| &surface->consumer_usage); |
| if (err != android::OK) { |
| ALOGE("native_window_get_consumer_usage() failed: %s (%d)", |
| strerror(-err), err); |
| surface->~Surface(); |
| allocator->pfnFree(allocator->pUserData, surface); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| err = |
| native_window_api_connect(surface->window.get(), NATIVE_WINDOW_API_EGL); |
| if (err != android::OK) { |
| ALOGE("native_window_api_connect() failed: %s (%d)", strerror(-err), |
| err); |
| surface->~Surface(); |
| allocator->pfnFree(allocator->pUserData, surface); |
| return VK_ERROR_NATIVE_WINDOW_IN_USE_KHR; |
| } |
| |
| *out_surface = HandleFromSurface(surface); |
| return VK_SUCCESS; |
| } |
| |
| VKAPI_ATTR |
| void DestroySurfaceKHR(VkInstance instance, |
| VkSurfaceKHR surface_handle, |
| const VkAllocationCallbacks* allocator) { |
| ATRACE_CALL(); |
| |
| Surface* surface = SurfaceFromHandle(surface_handle); |
| if (!surface) |
| return; |
| native_window_api_disconnect(surface->window.get(), NATIVE_WINDOW_API_EGL); |
| ALOGV_IF(surface->swapchain_handle != VK_NULL_HANDLE, |
| "destroyed VkSurfaceKHR 0x%" PRIx64 |
| " has active VkSwapchainKHR 0x%" PRIx64, |
| reinterpret_cast<uint64_t>(surface_handle), |
| reinterpret_cast<uint64_t>(surface->swapchain_handle)); |
| surface->~Surface(); |
| if (!allocator) |
| allocator = &GetData(instance).allocator; |
| allocator->pfnFree(allocator->pUserData, surface); |
| } |
| |
| VKAPI_ATTR |
| VkResult GetPhysicalDeviceSurfaceSupportKHR(VkPhysicalDevice /*pdev*/, |
| uint32_t /*queue_family*/, |
| VkSurfaceKHR /*surface_handle*/, |
| VkBool32* supported) { |
| *supported = VK_TRUE; |
| return VK_SUCCESS; |
| } |
| |
| VKAPI_ATTR |
| VkResult GetPhysicalDeviceSurfaceCapabilitiesKHR( |
| VkPhysicalDevice pdev, |
| VkSurfaceKHR surface, |
| VkSurfaceCapabilitiesKHR* capabilities) { |
| ATRACE_CALL(); |
| |
| int err; |
| int width, height; |
| int transform_hint; |
| int max_buffer_count; |
| if (surface == VK_NULL_HANDLE) { |
| const InstanceData& instance_data = GetData(pdev); |
| ProcHook::Extension surfaceless = ProcHook::GOOGLE_surfaceless_query; |
| bool surfaceless_enabled = |
| instance_data.hook_extensions.test(surfaceless); |
| if (!surfaceless_enabled) { |
| // It is an error to pass a surface==VK_NULL_HANDLE unless the |
| // VK_GOOGLE_surfaceless_query extension is enabled |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| // Support for VK_GOOGLE_surfaceless_query. The primary purpose of this |
| // extension for this function is for |
| // VkSurfaceProtectedCapabilitiesKHR::supportsProtected. The following |
| // four values cannot be known without a surface. Default values will |
| // be supplied anyway, but cannot be relied upon. |
| width = 1000; |
| height = 1000; |
| transform_hint = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR; |
| max_buffer_count = 10; |
| } else { |
| ANativeWindow* window = SurfaceFromHandle(surface)->window.get(); |
| |
| err = window->query(window, NATIVE_WINDOW_DEFAULT_WIDTH, &width); |
| if (err != android::OK) { |
| ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)", |
| strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| err = window->query(window, NATIVE_WINDOW_DEFAULT_HEIGHT, &height); |
| if (err != android::OK) { |
| ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)", |
| strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| err = window->query(window, NATIVE_WINDOW_TRANSFORM_HINT, |
| &transform_hint); |
| if (err != android::OK) { |
| ALOGE("NATIVE_WINDOW_TRANSFORM_HINT query failed: %s (%d)", |
| strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| err = window->query(window, NATIVE_WINDOW_MAX_BUFFER_COUNT, |
| &max_buffer_count); |
| if (err != android::OK) { |
| ALOGE("NATIVE_WINDOW_MAX_BUFFER_COUNT query failed: %s (%d)", |
| strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| } |
| capabilities->minImageCount = std::min(max_buffer_count, 3); |
| capabilities->maxImageCount = static_cast<uint32_t>(max_buffer_count); |
| |
| capabilities->currentExtent = |
| VkExtent2D{static_cast<uint32_t>(width), static_cast<uint32_t>(height)}; |
| |
| // TODO(http://b/134182502): Figure out what the max extent should be. |
| capabilities->minImageExtent = VkExtent2D{1, 1}; |
| capabilities->maxImageExtent = VkExtent2D{4096, 4096}; |
| |
| capabilities->maxImageArrayLayers = 1; |
| |
| capabilities->supportedTransforms = kSupportedTransforms; |
| capabilities->currentTransform = |
| TranslateNativeToVulkanTransform(transform_hint); |
| |
| // On Android, window composition is a WindowManager property, not something |
| // associated with the bufferqueue. It can't be changed from here. |
| capabilities->supportedCompositeAlpha = VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR; |
| |
| capabilities->supportedUsageFlags = |
| VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT | |
| VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT | |
| VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | |
| VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT; |
| |
| return VK_SUCCESS; |
| } |
| |
| VKAPI_ATTR |
| VkResult GetPhysicalDeviceSurfaceFormatsKHR(VkPhysicalDevice pdev, |
| VkSurfaceKHR surface_handle, |
| uint32_t* count, |
| VkSurfaceFormatKHR* formats) { |
| ATRACE_CALL(); |
| |
| const InstanceData& instance_data = GetData(pdev); |
| |
| bool wide_color_support = false; |
| uint64_t consumer_usage = 0; |
| bool colorspace_ext = |
| instance_data.hook_extensions.test(ProcHook::EXT_swapchain_colorspace); |
| if (surface_handle == VK_NULL_HANDLE) { |
| ProcHook::Extension surfaceless = ProcHook::GOOGLE_surfaceless_query; |
| bool surfaceless_enabled = |
| instance_data.hook_extensions.test(surfaceless); |
| if (!surfaceless_enabled) { |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| // Support for VK_GOOGLE_surfaceless_query. The EGL loader |
| // unconditionally supports wide color formats, even if they will cause |
| // a SurfaceFlinger fallback. Based on that, wide_color_support will be |
| // set to true in this case. |
| wide_color_support = true; |
| |
| // TODO(b/203826952): research proper value; temporarily use the |
| // values seen on Pixel |
| consumer_usage = AHARDWAREBUFFER_USAGE_COMPOSER_OVERLAY; |
| } else { |
| Surface& surface = *SurfaceFromHandle(surface_handle); |
| int err = native_window_get_wide_color_support(surface.window.get(), |
| &wide_color_support); |
| if (err) { |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| ALOGV("wide_color_support is: %d", wide_color_support); |
| |
| consumer_usage = surface.consumer_usage; |
| } |
| wide_color_support = wide_color_support && colorspace_ext; |
| |
| AHardwareBuffer_Desc desc = {}; |
| desc.width = 1; |
| desc.height = 1; |
| desc.layers = 1; |
| desc.usage = consumer_usage | AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE | |
| AHARDWAREBUFFER_USAGE_GPU_FRAMEBUFFER; |
| |
| // We must support R8G8B8A8 |
| std::vector<VkSurfaceFormatKHR> all_formats = { |
| {VK_FORMAT_R8G8B8A8_UNORM, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR}, |
| {VK_FORMAT_R8G8B8A8_SRGB, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR}}; |
| |
| if (colorspace_ext) { |
| all_formats.emplace_back(VkSurfaceFormatKHR{ |
| VK_FORMAT_R8G8B8A8_UNORM, VK_COLOR_SPACE_BT709_LINEAR_EXT}); |
| } |
| |
| if (wide_color_support) { |
| all_formats.emplace_back(VkSurfaceFormatKHR{ |
| VK_FORMAT_R8G8B8A8_UNORM, VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT}); |
| all_formats.emplace_back(VkSurfaceFormatKHR{ |
| VK_FORMAT_R8G8B8A8_SRGB, VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT}); |
| } |
| |
| // NOTE: Any new formats that are added must be coordinated across different |
| // Android users. This includes the ANGLE team (a layered implementation of |
| // OpenGL-ES). |
| |
| desc.format = AHARDWAREBUFFER_FORMAT_R5G6B5_UNORM; |
| if (AHardwareBuffer_isSupported(&desc)) { |
| all_formats.emplace_back(VkSurfaceFormatKHR{ |
| VK_FORMAT_R5G6B5_UNORM_PACK16, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR}); |
| } |
| |
| desc.format = AHARDWAREBUFFER_FORMAT_R16G16B16A16_FLOAT; |
| if (AHardwareBuffer_isSupported(&desc)) { |
| all_formats.emplace_back(VkSurfaceFormatKHR{ |
| VK_FORMAT_R16G16B16A16_SFLOAT, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR}); |
| if (wide_color_support) { |
| all_formats.emplace_back( |
| VkSurfaceFormatKHR{VK_FORMAT_R16G16B16A16_SFLOAT, |
| VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT}); |
| all_formats.emplace_back( |
| VkSurfaceFormatKHR{VK_FORMAT_R16G16B16A16_SFLOAT, |
| VK_COLOR_SPACE_EXTENDED_SRGB_NONLINEAR_EXT}); |
| } |
| } |
| |
| desc.format = AHARDWAREBUFFER_FORMAT_R10G10B10A2_UNORM; |
| if (AHardwareBuffer_isSupported(&desc)) { |
| all_formats.emplace_back( |
| VkSurfaceFormatKHR{VK_FORMAT_A2B10G10R10_UNORM_PACK32, |
| VK_COLOR_SPACE_SRGB_NONLINEAR_KHR}); |
| if (wide_color_support) { |
| all_formats.emplace_back( |
| VkSurfaceFormatKHR{VK_FORMAT_A2B10G10R10_UNORM_PACK32, |
| VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT}); |
| } |
| } |
| |
| desc.format = AHARDWAREBUFFER_FORMAT_R8_UNORM; |
| if (AHardwareBuffer_isSupported(&desc)) { |
| all_formats.emplace_back( |
| VkSurfaceFormatKHR{VK_FORMAT_R8_UNORM, |
| VK_COLOR_SPACE_PASS_THROUGH_EXT}); |
| } |
| |
| // NOTE: Any new formats that are added must be coordinated across different |
| // Android users. This includes the ANGLE team (a layered implementation of |
| // OpenGL-ES). |
| |
| VkResult result = VK_SUCCESS; |
| if (formats) { |
| uint32_t transfer_count = all_formats.size(); |
| if (transfer_count > *count) { |
| transfer_count = *count; |
| result = VK_INCOMPLETE; |
| } |
| std::copy(all_formats.begin(), all_formats.begin() + transfer_count, |
| formats); |
| *count = transfer_count; |
| } else { |
| *count = all_formats.size(); |
| } |
| |
| return result; |
| } |
| |
| VKAPI_ATTR |
| VkResult GetPhysicalDeviceSurfaceCapabilities2KHR( |
| VkPhysicalDevice physicalDevice, |
| const VkPhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo, |
| VkSurfaceCapabilities2KHR* pSurfaceCapabilities) { |
| ATRACE_CALL(); |
| |
| VkResult result = GetPhysicalDeviceSurfaceCapabilitiesKHR( |
| physicalDevice, pSurfaceInfo->surface, |
| &pSurfaceCapabilities->surfaceCapabilities); |
| |
| VkSurfaceCapabilities2KHR* caps = pSurfaceCapabilities; |
| while (caps->pNext) { |
| caps = reinterpret_cast<VkSurfaceCapabilities2KHR*>(caps->pNext); |
| |
| switch (caps->sType) { |
| case VK_STRUCTURE_TYPE_SHARED_PRESENT_SURFACE_CAPABILITIES_KHR: { |
| VkSharedPresentSurfaceCapabilitiesKHR* shared_caps = |
| reinterpret_cast<VkSharedPresentSurfaceCapabilitiesKHR*>( |
| caps); |
| // Claim same set of usage flags are supported for |
| // shared present modes as for other modes. |
| shared_caps->sharedPresentSupportedUsageFlags = |
| pSurfaceCapabilities->surfaceCapabilities |
| .supportedUsageFlags; |
| } break; |
| |
| case VK_STRUCTURE_TYPE_SURFACE_PROTECTED_CAPABILITIES_KHR: { |
| VkSurfaceProtectedCapabilitiesKHR* protected_caps = |
| reinterpret_cast<VkSurfaceProtectedCapabilitiesKHR*>(caps); |
| protected_caps->supportsProtected = VK_TRUE; |
| } break; |
| |
| default: |
| // Ignore all other extension structs |
| break; |
| } |
| } |
| |
| return result; |
| } |
| |
| VKAPI_ATTR |
| VkResult GetPhysicalDeviceSurfaceFormats2KHR( |
| VkPhysicalDevice physicalDevice, |
| const VkPhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo, |
| uint32_t* pSurfaceFormatCount, |
| VkSurfaceFormat2KHR* pSurfaceFormats) { |
| ATRACE_CALL(); |
| |
| if (!pSurfaceFormats) { |
| return GetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, |
| pSurfaceInfo->surface, |
| pSurfaceFormatCount, nullptr); |
| } else { |
| // temp vector for forwarding; we'll marshal it into the pSurfaceFormats |
| // after the call. |
| std::vector<VkSurfaceFormatKHR> surface_formats(*pSurfaceFormatCount); |
| VkResult result = GetPhysicalDeviceSurfaceFormatsKHR( |
| physicalDevice, pSurfaceInfo->surface, pSurfaceFormatCount, |
| surface_formats.data()); |
| |
| if (result == VK_SUCCESS || result == VK_INCOMPLETE) { |
| // marshal results individually due to stride difference. |
| // completely ignore any chained extension structs. |
| uint32_t formats_to_marshal = *pSurfaceFormatCount; |
| for (uint32_t i = 0u; i < formats_to_marshal; i++) { |
| pSurfaceFormats[i].surfaceFormat = surface_formats[i]; |
| } |
| } |
| |
| return result; |
| } |
| } |
| |
| VKAPI_ATTR |
| VkResult GetPhysicalDeviceSurfacePresentModesKHR(VkPhysicalDevice pdev, |
| VkSurfaceKHR surface, |
| uint32_t* count, |
| VkPresentModeKHR* modes) { |
| ATRACE_CALL(); |
| |
| int err; |
| int query_value; |
| std::vector<VkPresentModeKHR> present_modes; |
| if (surface == VK_NULL_HANDLE) { |
| const InstanceData& instance_data = GetData(pdev); |
| ProcHook::Extension surfaceless = ProcHook::GOOGLE_surfaceless_query; |
| bool surfaceless_enabled = |
| instance_data.hook_extensions.test(surfaceless); |
| if (!surfaceless_enabled) { |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| // Support for VK_GOOGLE_surfaceless_query. The primary purpose of this |
| // extension for this function is for |
| // VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR and |
| // VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR. We technically cannot |
| // know if VK_PRESENT_MODE_SHARED_MAILBOX_KHR is supported without a |
| // surface, and that cannot be relied upon. |
| present_modes.push_back(VK_PRESENT_MODE_MAILBOX_KHR); |
| present_modes.push_back(VK_PRESENT_MODE_FIFO_KHR); |
| } else { |
| ANativeWindow* window = SurfaceFromHandle(surface)->window.get(); |
| |
| err = window->query(window, NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS, |
| &query_value); |
| if (err != android::OK || query_value < 0) { |
| ALOGE( |
| "NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS query failed: %s (%d) " |
| "value=%d", |
| strerror(-err), err, query_value); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| uint32_t min_undequeued_buffers = static_cast<uint32_t>(query_value); |
| |
| err = |
| window->query(window, NATIVE_WINDOW_MAX_BUFFER_COUNT, &query_value); |
| if (err != android::OK || query_value < 0) { |
| ALOGE( |
| "NATIVE_WINDOW_MAX_BUFFER_COUNT query failed: %s (%d) value=%d", |
| strerror(-err), err, query_value); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| uint32_t max_buffer_count = static_cast<uint32_t>(query_value); |
| |
| if (min_undequeued_buffers + 1 < max_buffer_count) |
| present_modes.push_back(VK_PRESENT_MODE_MAILBOX_KHR); |
| present_modes.push_back(VK_PRESENT_MODE_FIFO_KHR); |
| } |
| |
| VkPhysicalDevicePresentationPropertiesANDROID present_properties; |
| QueryPresentationProperties(pdev, &present_properties); |
| if (present_properties.sharedImage) { |
| present_modes.push_back(VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR); |
| present_modes.push_back(VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR); |
| } |
| |
| uint32_t num_modes = uint32_t(present_modes.size()); |
| |
| VkResult result = VK_SUCCESS; |
| if (modes) { |
| if (*count < num_modes) |
| result = VK_INCOMPLETE; |
| *count = std::min(*count, num_modes); |
| std::copy_n(present_modes.data(), *count, modes); |
| } else { |
| *count = num_modes; |
| } |
| return result; |
| } |
| |
| VKAPI_ATTR |
| VkResult GetDeviceGroupPresentCapabilitiesKHR( |
| VkDevice, |
| VkDeviceGroupPresentCapabilitiesKHR* pDeviceGroupPresentCapabilities) { |
| ATRACE_CALL(); |
| |
| ALOGV_IF(pDeviceGroupPresentCapabilities->sType != |
| VK_STRUCTURE_TYPE_DEVICE_GROUP_PRESENT_CAPABILITIES_KHR, |
| "vkGetDeviceGroupPresentCapabilitiesKHR: invalid " |
| "VkDeviceGroupPresentCapabilitiesKHR structure type %d", |
| pDeviceGroupPresentCapabilities->sType); |
| |
| memset(pDeviceGroupPresentCapabilities->presentMask, 0, |
| sizeof(pDeviceGroupPresentCapabilities->presentMask)); |
| |
| // assume device group of size 1 |
| pDeviceGroupPresentCapabilities->presentMask[0] = 1 << 0; |
| pDeviceGroupPresentCapabilities->modes = |
| VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR; |
| |
| return VK_SUCCESS; |
| } |
| |
| VKAPI_ATTR |
| VkResult GetDeviceGroupSurfacePresentModesKHR( |
| VkDevice, |
| VkSurfaceKHR, |
| VkDeviceGroupPresentModeFlagsKHR* pModes) { |
| ATRACE_CALL(); |
| |
| *pModes = VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR; |
| return VK_SUCCESS; |
| } |
| |
| VKAPI_ATTR |
| VkResult GetPhysicalDevicePresentRectanglesKHR(VkPhysicalDevice, |
| VkSurfaceKHR surface, |
| uint32_t* pRectCount, |
| VkRect2D* pRects) { |
| ATRACE_CALL(); |
| |
| if (!pRects) { |
| *pRectCount = 1; |
| } else { |
| uint32_t count = std::min(*pRectCount, 1u); |
| bool incomplete = *pRectCount < 1; |
| |
| *pRectCount = count; |
| |
| if (incomplete) { |
| return VK_INCOMPLETE; |
| } |
| |
| int err; |
| ANativeWindow* window = SurfaceFromHandle(surface)->window.get(); |
| |
| int width = 0, height = 0; |
| err = window->query(window, NATIVE_WINDOW_DEFAULT_WIDTH, &width); |
| if (err != android::OK) { |
| ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)", |
| strerror(-err), err); |
| } |
| err = window->query(window, NATIVE_WINDOW_DEFAULT_HEIGHT, &height); |
| if (err != android::OK) { |
| ALOGE("NATIVE_WINDOW_DEFAULT_WIDTH query failed: %s (%d)", |
| strerror(-err), err); |
| } |
| |
| pRects[0].offset.x = 0; |
| pRects[0].offset.y = 0; |
| pRects[0].extent = VkExtent2D{static_cast<uint32_t>(width), |
| static_cast<uint32_t>(height)}; |
| } |
| return VK_SUCCESS; |
| } |
| |
| static void DestroySwapchainInternal(VkDevice device, |
| VkSwapchainKHR swapchain_handle, |
| const VkAllocationCallbacks* allocator) { |
| ATRACE_CALL(); |
| |
| const auto& dispatch = GetData(device).driver; |
| Swapchain* swapchain = SwapchainFromHandle(swapchain_handle); |
| if (!swapchain) { |
| return; |
| } |
| |
| bool active = swapchain->surface.swapchain_handle == swapchain_handle; |
| ANativeWindow* window = active ? swapchain->surface.window.get() : nullptr; |
| |
| if (window && swapchain->frame_timestamps_enabled) { |
| native_window_enable_frame_timestamps(window, false); |
| } |
| |
| for (uint32_t i = 0; i < swapchain->num_images; i++) { |
| ReleaseSwapchainImage(device, swapchain->shared, window, -1, |
| swapchain->images[i], false); |
| } |
| |
| if (active) { |
| swapchain->surface.swapchain_handle = VK_NULL_HANDLE; |
| } |
| |
| if (!allocator) { |
| allocator = &GetData(device).allocator; |
| } |
| |
| swapchain->~Swapchain(); |
| allocator->pfnFree(allocator->pUserData, swapchain); |
| } |
| |
| VKAPI_ATTR |
| VkResult CreateSwapchainKHR(VkDevice device, |
| const VkSwapchainCreateInfoKHR* create_info, |
| const VkAllocationCallbacks* allocator, |
| VkSwapchainKHR* swapchain_handle) { |
| ATRACE_CALL(); |
| |
| int err; |
| VkResult result = VK_SUCCESS; |
| |
| ALOGV("vkCreateSwapchainKHR: surface=0x%" PRIx64 |
| " minImageCount=%u imageFormat=%u imageColorSpace=%u" |
| " imageExtent=%ux%u imageUsage=%#x preTransform=%u presentMode=%u" |
| " oldSwapchain=0x%" PRIx64, |
| reinterpret_cast<uint64_t>(create_info->surface), |
| create_info->minImageCount, create_info->imageFormat, |
| create_info->imageColorSpace, create_info->imageExtent.width, |
| create_info->imageExtent.height, create_info->imageUsage, |
| create_info->preTransform, create_info->presentMode, |
| reinterpret_cast<uint64_t>(create_info->oldSwapchain)); |
| |
| if (!allocator) |
| allocator = &GetData(device).allocator; |
| |
| android::PixelFormat native_pixel_format = |
| GetNativePixelFormat(create_info->imageFormat); |
| android_dataspace native_dataspace = |
| GetNativeDataspace(create_info->imageColorSpace); |
| if (native_dataspace == HAL_DATASPACE_UNKNOWN) { |
| ALOGE( |
| "CreateSwapchainKHR(VkSwapchainCreateInfoKHR.imageColorSpace = %d) " |
| "failed: Unsupported color space", |
| create_info->imageColorSpace); |
| return VK_ERROR_INITIALIZATION_FAILED; |
| } |
| |
| ALOGV_IF(create_info->imageArrayLayers != 1, |
| "swapchain imageArrayLayers=%u not supported", |
| create_info->imageArrayLayers); |
| ALOGV_IF((create_info->preTransform & ~kSupportedTransforms) != 0, |
| "swapchain preTransform=%#x not supported", |
| create_info->preTransform); |
| ALOGV_IF(!(create_info->presentMode == VK_PRESENT_MODE_FIFO_KHR || |
| create_info->presentMode == VK_PRESENT_MODE_MAILBOX_KHR || |
| create_info->presentMode == VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR || |
| create_info->presentMode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR), |
| "swapchain presentMode=%u not supported", |
| create_info->presentMode); |
| |
| Surface& surface = *SurfaceFromHandle(create_info->surface); |
| |
| if (surface.swapchain_handle != create_info->oldSwapchain) { |
| ALOGV("Can't create a swapchain for VkSurfaceKHR 0x%" PRIx64 |
| " because it already has active swapchain 0x%" PRIx64 |
| " but VkSwapchainCreateInfo::oldSwapchain=0x%" PRIx64, |
| reinterpret_cast<uint64_t>(create_info->surface), |
| reinterpret_cast<uint64_t>(surface.swapchain_handle), |
| reinterpret_cast<uint64_t>(create_info->oldSwapchain)); |
| return VK_ERROR_NATIVE_WINDOW_IN_USE_KHR; |
| } |
| if (create_info->oldSwapchain != VK_NULL_HANDLE) |
| OrphanSwapchain(device, SwapchainFromHandle(create_info->oldSwapchain)); |
| |
| // -- Reset the native window -- |
| // The native window might have been used previously, and had its properties |
| // changed from defaults. That will affect the answer we get for queries |
| // like MIN_UNDEQUED_BUFFERS. Reset to a known/default state before we |
| // attempt such queries. |
| |
| // The native window only allows dequeueing all buffers before any have |
| // been queued, since after that point at least one is assumed to be in |
| // non-FREE state at any given time. Disconnecting and re-connecting |
| // orphans the previous buffers, getting us back to the state where we can |
| // dequeue all buffers. |
| // |
| // TODO(http://b/134186185) recycle swapchain images more efficiently |
| ANativeWindow* window = surface.window.get(); |
| err = native_window_api_disconnect(window, NATIVE_WINDOW_API_EGL); |
| ALOGW_IF(err != android::OK, "native_window_api_disconnect failed: %s (%d)", |
| strerror(-err), err); |
| err = native_window_api_connect(window, NATIVE_WINDOW_API_EGL); |
| ALOGW_IF(err != android::OK, "native_window_api_connect failed: %s (%d)", |
| strerror(-err), err); |
| |
| err = |
| window->perform(window, NATIVE_WINDOW_SET_DEQUEUE_TIMEOUT, nsecs_t{-1}); |
| if (err != android::OK) { |
| ALOGE("window->perform(SET_DEQUEUE_TIMEOUT) failed: %s (%d)", |
| strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| int swap_interval = |
| create_info->presentMode == VK_PRESENT_MODE_MAILBOX_KHR ? 0 : 1; |
| err = window->setSwapInterval(window, swap_interval); |
| if (err != android::OK) { |
| ALOGE("native_window->setSwapInterval(1) failed: %s (%d)", |
| strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| err = native_window_set_shared_buffer_mode(window, false); |
| if (err != android::OK) { |
| ALOGE("native_window_set_shared_buffer_mode(false) failed: %s (%d)", |
| strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| err = native_window_set_auto_refresh(window, false); |
| if (err != android::OK) { |
| ALOGE("native_window_set_auto_refresh(false) failed: %s (%d)", |
| strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| // -- Configure the native window -- |
| |
| const auto& dispatch = GetData(device).driver; |
| |
| err = native_window_set_buffers_format(window, native_pixel_format); |
| if (err != android::OK) { |
| ALOGE("native_window_set_buffers_format(%s) failed: %s (%d)", |
| decodePixelFormat(native_pixel_format).c_str(), strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| err = native_window_set_buffers_data_space(window, native_dataspace); |
| if (err != android::OK) { |
| ALOGE("native_window_set_buffers_data_space(%d) failed: %s (%d)", |
| native_dataspace, strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| err = native_window_set_buffers_dimensions( |
| window, static_cast<int>(create_info->imageExtent.width), |
| static_cast<int>(create_info->imageExtent.height)); |
| if (err != android::OK) { |
| ALOGE("native_window_set_buffers_dimensions(%d,%d) failed: %s (%d)", |
| create_info->imageExtent.width, create_info->imageExtent.height, |
| strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| // VkSwapchainCreateInfo::preTransform indicates the transformation the app |
| // applied during rendering. native_window_set_transform() expects the |
| // inverse: the transform the app is requesting that the compositor perform |
| // during composition. With native windows, pre-transform works by rendering |
| // with the same transform the compositor is applying (as in Vulkan), but |
| // then requesting the inverse transform, so that when the compositor does |
| // it's job the two transforms cancel each other out and the compositor ends |
| // up applying an identity transform to the app's buffer. |
| err = native_window_set_buffers_transform( |
| window, InvertTransformToNative(create_info->preTransform)); |
| if (err != android::OK) { |
| ALOGE("native_window_set_buffers_transform(%d) failed: %s (%d)", |
| InvertTransformToNative(create_info->preTransform), |
| strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| err = native_window_set_scaling_mode( |
| window, NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW); |
| if (err != android::OK) { |
| ALOGE("native_window_set_scaling_mode(SCALE_TO_WINDOW) failed: %s (%d)", |
| strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| VkSwapchainImageUsageFlagsANDROID swapchain_image_usage = 0; |
| if (create_info->presentMode == VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR || |
| create_info->presentMode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR) { |
| swapchain_image_usage |= VK_SWAPCHAIN_IMAGE_USAGE_SHARED_BIT_ANDROID; |
| err = native_window_set_shared_buffer_mode(window, true); |
| if (err != android::OK) { |
| ALOGE("native_window_set_shared_buffer_mode failed: %s (%d)", strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| } |
| |
| if (create_info->presentMode == VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR) { |
| err = native_window_set_auto_refresh(window, true); |
| if (err != android::OK) { |
| ALOGE("native_window_set_auto_refresh failed: %s (%d)", strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| } |
| |
| int query_value; |
| err = window->query(window, NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS, |
| &query_value); |
| if (err != android::OK || query_value < 0) { |
| ALOGE("window->query failed: %s (%d) value=%d", strerror(-err), err, |
| query_value); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| uint32_t min_undequeued_buffers = static_cast<uint32_t>(query_value); |
| const auto mailbox_num_images = std::max(3u, create_info->minImageCount); |
| const auto requested_images = |
| swap_interval ? create_info->minImageCount : mailbox_num_images; |
| uint32_t num_images = requested_images - 1 + min_undequeued_buffers; |
| |
| // Lower layer insists that we have at least min_undequeued_buffers + 1 |
| // buffers. This is wasteful and we'd like to relax it in the shared case, |
| // but not all the pieces are in place for that to work yet. Note we only |
| // lie to the lower layer--we don't want to give the app back a swapchain |
| // with extra images (which they can't actually use!). |
| uint32_t min_buffer_count = min_undequeued_buffers + 1; |
| err = native_window_set_buffer_count( |
| window, std::max(min_buffer_count, num_images)); |
| if (err != android::OK) { |
| ALOGE("native_window_set_buffer_count(%d) failed: %s (%d)", num_images, |
| strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| // In shared mode the num_images must be one regardless of how many |
| // buffers were allocated for the buffer queue. |
| if (swapchain_image_usage & VK_SWAPCHAIN_IMAGE_USAGE_SHARED_BIT_ANDROID) { |
| num_images = 1; |
| } |
| |
| int32_t legacy_usage = 0; |
| if (dispatch.GetSwapchainGrallocUsage2ANDROID) { |
| uint64_t consumer_usage, producer_usage; |
| ATRACE_BEGIN("GetSwapchainGrallocUsage2ANDROID"); |
| result = dispatch.GetSwapchainGrallocUsage2ANDROID( |
| device, create_info->imageFormat, create_info->imageUsage, |
| swapchain_image_usage, &consumer_usage, &producer_usage); |
| ATRACE_END(); |
| if (result != VK_SUCCESS) { |
| ALOGE("vkGetSwapchainGrallocUsage2ANDROID failed: %d", result); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| legacy_usage = |
| android_convertGralloc1To0Usage(producer_usage, consumer_usage); |
| } else if (dispatch.GetSwapchainGrallocUsageANDROID) { |
| ATRACE_BEGIN("GetSwapchainGrallocUsageANDROID"); |
| result = dispatch.GetSwapchainGrallocUsageANDROID( |
| device, create_info->imageFormat, create_info->imageUsage, |
| &legacy_usage); |
| ATRACE_END(); |
| if (result != VK_SUCCESS) { |
| ALOGE("vkGetSwapchainGrallocUsageANDROID failed: %d", result); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| } |
| uint64_t native_usage = static_cast<uint64_t>(legacy_usage); |
| |
| bool createProtectedSwapchain = false; |
| if (create_info->flags & VK_SWAPCHAIN_CREATE_PROTECTED_BIT_KHR) { |
| createProtectedSwapchain = true; |
| native_usage |= BufferUsage::PROTECTED; |
| } |
| err = native_window_set_usage(window, native_usage); |
| if (err != android::OK) { |
| ALOGE("native_window_set_usage failed: %s (%d)", strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| int transform_hint; |
| err = window->query(window, NATIVE_WINDOW_TRANSFORM_HINT, &transform_hint); |
| if (err != android::OK) { |
| ALOGE("NATIVE_WINDOW_TRANSFORM_HINT query failed: %s (%d)", |
| strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| // -- Allocate our Swapchain object -- |
| // After this point, we must deallocate the swapchain on error. |
| |
| void* mem = allocator->pfnAllocation(allocator->pUserData, |
| sizeof(Swapchain), alignof(Swapchain), |
| VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); |
| if (!mem) |
| return VK_ERROR_OUT_OF_HOST_MEMORY; |
| Swapchain* swapchain = new (mem) |
| Swapchain(surface, num_images, create_info->presentMode, |
| TranslateVulkanToNativeTransform(create_info->preTransform)); |
| // -- Dequeue all buffers and create a VkImage for each -- |
| // Any failures during or after this must cancel the dequeued buffers. |
| |
| VkSwapchainImageCreateInfoANDROID swapchain_image_create = { |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wold-style-cast" |
| .sType = VK_STRUCTURE_TYPE_SWAPCHAIN_IMAGE_CREATE_INFO_ANDROID, |
| #pragma clang diagnostic pop |
| .pNext = nullptr, |
| .usage = swapchain_image_usage, |
| }; |
| VkNativeBufferANDROID image_native_buffer = { |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wold-style-cast" |
| .sType = VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID, |
| #pragma clang diagnostic pop |
| .pNext = &swapchain_image_create, |
| }; |
| VkImageCreateInfo image_create = { |
| .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, |
| .pNext = &image_native_buffer, |
| .flags = createProtectedSwapchain ? VK_IMAGE_CREATE_PROTECTED_BIT : 0u, |
| .imageType = VK_IMAGE_TYPE_2D, |
| .format = create_info->imageFormat, |
| .extent = {0, 0, 1}, |
| .mipLevels = 1, |
| .arrayLayers = 1, |
| .samples = VK_SAMPLE_COUNT_1_BIT, |
| .tiling = VK_IMAGE_TILING_OPTIMAL, |
| .usage = create_info->imageUsage, |
| .sharingMode = create_info->imageSharingMode, |
| .queueFamilyIndexCount = create_info->queueFamilyIndexCount, |
| .pQueueFamilyIndices = create_info->pQueueFamilyIndices, |
| }; |
| |
| for (uint32_t i = 0; i < num_images; i++) { |
| Swapchain::Image& img = swapchain->images[i]; |
| |
| ANativeWindowBuffer* buffer; |
| err = window->dequeueBuffer(window, &buffer, &img.dequeue_fence); |
| if (err != android::OK) { |
| ALOGE("dequeueBuffer[%u] failed: %s (%d)", i, strerror(-err), err); |
| switch (-err) { |
| case ENOMEM: |
| result = VK_ERROR_OUT_OF_DEVICE_MEMORY; |
| break; |
| default: |
| result = VK_ERROR_SURFACE_LOST_KHR; |
| break; |
| } |
| break; |
| } |
| img.buffer = buffer; |
| img.dequeued = true; |
| |
| image_create.extent = |
| VkExtent3D{static_cast<uint32_t>(img.buffer->width), |
| static_cast<uint32_t>(img.buffer->height), |
| 1}; |
| image_native_buffer.handle = img.buffer->handle; |
| image_native_buffer.stride = img.buffer->stride; |
| image_native_buffer.format = img.buffer->format; |
| image_native_buffer.usage = int(img.buffer->usage); |
| android_convertGralloc0To1Usage(int(img.buffer->usage), |
| &image_native_buffer.usage2.producer, |
| &image_native_buffer.usage2.consumer); |
| |
| ATRACE_BEGIN("CreateImage"); |
| result = |
| dispatch.CreateImage(device, &image_create, nullptr, &img.image); |
| ATRACE_END(); |
| if (result != VK_SUCCESS) { |
| ALOGD("vkCreateImage w/ native buffer failed: %u", result); |
| break; |
| } |
| } |
| |
| // -- Cancel all buffers, returning them to the queue -- |
| // If an error occurred before, also destroy the VkImage and release the |
| // buffer reference. Otherwise, we retain a strong reference to the buffer. |
| for (uint32_t i = 0; i < num_images; i++) { |
| Swapchain::Image& img = swapchain->images[i]; |
| if (img.dequeued) { |
| if (!swapchain->shared) { |
| window->cancelBuffer(window, img.buffer.get(), |
| img.dequeue_fence); |
| img.dequeue_fence = -1; |
| img.dequeued = false; |
| } |
| } |
| } |
| |
| if (result != VK_SUCCESS) { |
| DestroySwapchainInternal(device, HandleFromSwapchain(swapchain), |
| allocator); |
| return result; |
| } |
| |
| if (transform_hint != swapchain->pre_transform) { |
| // Log that the app is not doing pre-rotation. |
| android::GraphicsEnv::getInstance().setTargetStats( |
| android::GpuStatsInfo::Stats::FALSE_PREROTATION); |
| } |
| |
| surface.swapchain_handle = HandleFromSwapchain(swapchain); |
| *swapchain_handle = surface.swapchain_handle; |
| return VK_SUCCESS; |
| } |
| |
| VKAPI_ATTR |
| void DestroySwapchainKHR(VkDevice device, |
| VkSwapchainKHR swapchain_handle, |
| const VkAllocationCallbacks* allocator) { |
| ATRACE_CALL(); |
| |
| DestroySwapchainInternal(device, swapchain_handle, allocator); |
| } |
| |
| VKAPI_ATTR |
| VkResult GetSwapchainImagesKHR(VkDevice, |
| VkSwapchainKHR swapchain_handle, |
| uint32_t* count, |
| VkImage* images) { |
| ATRACE_CALL(); |
| |
| Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle); |
| ALOGW_IF(swapchain.surface.swapchain_handle != swapchain_handle, |
| "getting images for non-active swapchain 0x%" PRIx64 |
| "; only dequeued image handles are valid", |
| reinterpret_cast<uint64_t>(swapchain_handle)); |
| VkResult result = VK_SUCCESS; |
| if (images) { |
| uint32_t n = swapchain.num_images; |
| if (*count < swapchain.num_images) { |
| n = *count; |
| result = VK_INCOMPLETE; |
| } |
| for (uint32_t i = 0; i < n; i++) |
| images[i] = swapchain.images[i].image; |
| *count = n; |
| } else { |
| *count = swapchain.num_images; |
| } |
| return result; |
| } |
| |
| VKAPI_ATTR |
| VkResult AcquireNextImageKHR(VkDevice device, |
| VkSwapchainKHR swapchain_handle, |
| uint64_t timeout, |
| VkSemaphore semaphore, |
| VkFence vk_fence, |
| uint32_t* image_index) { |
| ATRACE_CALL(); |
| |
| Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle); |
| ANativeWindow* window = swapchain.surface.window.get(); |
| VkResult result; |
| int err; |
| |
| if (swapchain.surface.swapchain_handle != swapchain_handle) |
| return VK_ERROR_OUT_OF_DATE_KHR; |
| |
| if (swapchain.shared) { |
| // In shared mode, we keep the buffer dequeued all the time, so we don't |
| // want to dequeue a buffer here. Instead, just ask the driver to ensure |
| // the semaphore and fence passed to us will be signalled. |
| *image_index = 0; |
| result = GetData(device).driver.AcquireImageANDROID( |
| device, swapchain.images[*image_index].image, -1, semaphore, vk_fence); |
| return result; |
| } |
| |
| const nsecs_t acquire_next_image_timeout = |
| timeout > (uint64_t)std::numeric_limits<nsecs_t>::max() ? -1 : timeout; |
| if (acquire_next_image_timeout != swapchain.acquire_next_image_timeout) { |
| // Cache the timeout to avoid the duplicate binder cost. |
| err = window->perform(window, NATIVE_WINDOW_SET_DEQUEUE_TIMEOUT, |
| acquire_next_image_timeout); |
| if (err != android::OK) { |
| ALOGE("window->perform(SET_DEQUEUE_TIMEOUT) failed: %s (%d)", |
| strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| swapchain.acquire_next_image_timeout = acquire_next_image_timeout; |
| } |
| |
| ANativeWindowBuffer* buffer; |
| int fence_fd; |
| err = window->dequeueBuffer(window, &buffer, &fence_fd); |
| if (err == android::TIMED_OUT || err == android::INVALID_OPERATION) { |
| ALOGW("dequeueBuffer timed out: %s (%d)", strerror(-err), err); |
| return timeout ? VK_TIMEOUT : VK_NOT_READY; |
| } else if (err != android::OK) { |
| ALOGE("dequeueBuffer failed: %s (%d)", strerror(-err), err); |
| return VK_ERROR_SURFACE_LOST_KHR; |
| } |
| |
| uint32_t idx; |
| for (idx = 0; idx < swapchain.num_images; idx++) { |
| if (swapchain.images[idx].buffer.get() == buffer) { |
| swapchain.images[idx].dequeued = true; |
| swapchain.images[idx].dequeue_fence = fence_fd; |
| break; |
| } |
| } |
| if (idx == swapchain.num_images) { |
| ALOGE("dequeueBuffer returned unrecognized buffer"); |
| window->cancelBuffer(window, buffer, fence_fd); |
| return VK_ERROR_OUT_OF_DATE_KHR; |
| } |
| |
| int fence_clone = -1; |
| if (fence_fd != -1) { |
| fence_clone = dup(fence_fd); |
| if (fence_clone == -1) { |
| ALOGE("dup(fence) failed, stalling until signalled: %s (%d)", |
| strerror(errno), errno); |
| sync_wait(fence_fd, -1 /* forever */); |
| } |
| } |
| |
| result = GetData(device).driver.AcquireImageANDROID( |
| device, swapchain.images[idx].image, fence_clone, semaphore, vk_fence); |
| if (result != VK_SUCCESS) { |
| // NOTE: we're relying on AcquireImageANDROID to close fence_clone, |
| // even if the call fails. We could close it ourselves on failure, but |
| // that would create a race condition if the driver closes it on a |
| // failure path: some other thread might create an fd with the same |
| // number between the time the driver closes it and the time we close |
| // it. We must assume one of: the driver *always* closes it even on |
| // failure, or *never* closes it on failure. |
| window->cancelBuffer(window, buffer, fence_fd); |
| swapchain.images[idx].dequeued = false; |
| swapchain.images[idx].dequeue_fence = -1; |
| return result; |
| } |
| |
| *image_index = idx; |
| return VK_SUCCESS; |
| } |
| |
| VKAPI_ATTR |
| VkResult AcquireNextImage2KHR(VkDevice device, |
| const VkAcquireNextImageInfoKHR* pAcquireInfo, |
| uint32_t* pImageIndex) { |
| ATRACE_CALL(); |
| |
| return AcquireNextImageKHR(device, pAcquireInfo->swapchain, |
| pAcquireInfo->timeout, pAcquireInfo->semaphore, |
| pAcquireInfo->fence, pImageIndex); |
| } |
| |
| static VkResult WorstPresentResult(VkResult a, VkResult b) { |
| // See the error ranking for vkQueuePresentKHR at the end of section 29.6 |
| // (in spec version 1.0.14). |
| static const VkResult kWorstToBest[] = { |
| VK_ERROR_DEVICE_LOST, |
| VK_ERROR_SURFACE_LOST_KHR, |
| VK_ERROR_OUT_OF_DATE_KHR, |
| VK_ERROR_OUT_OF_DEVICE_MEMORY, |
| VK_ERROR_OUT_OF_HOST_MEMORY, |
| VK_SUBOPTIMAL_KHR, |
| }; |
| for (auto result : kWorstToBest) { |
| if (a == result || b == result) |
| return result; |
| } |
| ALOG_ASSERT(a == VK_SUCCESS, "invalid vkQueuePresentKHR result %d", a); |
| ALOG_ASSERT(b == VK_SUCCESS, "invalid vkQueuePresentKHR result %d", b); |
| return a != VK_SUCCESS ? a : b; |
| } |
| |
| VKAPI_ATTR |
| VkResult QueuePresentKHR(VkQueue queue, const VkPresentInfoKHR* present_info) { |
| ATRACE_CALL(); |
| |
| ALOGV_IF(present_info->sType != VK_STRUCTURE_TYPE_PRESENT_INFO_KHR, |
| "vkQueuePresentKHR: invalid VkPresentInfoKHR structure type %d", |
| present_info->sType); |
| |
| VkDevice device = GetData(queue).driver_device; |
| const auto& dispatch = GetData(queue).driver; |
| VkResult final_result = VK_SUCCESS; |
| |
| // Look at the pNext chain for supported extension structs: |
| const VkPresentRegionsKHR* present_regions = nullptr; |
| const VkPresentTimesInfoGOOGLE* present_times = nullptr; |
| const VkPresentRegionsKHR* next = |
| reinterpret_cast<const VkPresentRegionsKHR*>(present_info->pNext); |
| while (next) { |
| switch (next->sType) { |
| case VK_STRUCTURE_TYPE_PRESENT_REGIONS_KHR: |
| present_regions = next; |
| break; |
| case VK_STRUCTURE_TYPE_PRESENT_TIMES_INFO_GOOGLE: |
| present_times = |
| reinterpret_cast<const VkPresentTimesInfoGOOGLE*>(next); |
| break; |
| default: |
| ALOGV("QueuePresentKHR ignoring unrecognized pNext->sType = %x", |
| next->sType); |
| break; |
| } |
| next = reinterpret_cast<const VkPresentRegionsKHR*>(next->pNext); |
| } |
| ALOGV_IF( |
| present_regions && |
| present_regions->swapchainCount != present_info->swapchainCount, |
| "VkPresentRegions::swapchainCount != VkPresentInfo::swapchainCount"); |
| ALOGV_IF(present_times && |
| present_times->swapchainCount != present_info->swapchainCount, |
| "VkPresentTimesInfoGOOGLE::swapchainCount != " |
| "VkPresentInfo::swapchainCount"); |
| const VkPresentRegionKHR* regions = |
| (present_regions) ? present_regions->pRegions : nullptr; |
| const VkPresentTimeGOOGLE* times = |
| (present_times) ? present_times->pTimes : nullptr; |
| const VkAllocationCallbacks* allocator = &GetData(device).allocator; |
| android_native_rect_t* rects = nullptr; |
| uint32_t nrects = 0; |
| |
| for (uint32_t sc = 0; sc < present_info->swapchainCount; sc++) { |
| Swapchain& swapchain = |
| *SwapchainFromHandle(present_info->pSwapchains[sc]); |
| uint32_t image_idx = present_info->pImageIndices[sc]; |
| Swapchain::Image& img = swapchain.images[image_idx]; |
| const VkPresentRegionKHR* region = |
| (regions && !swapchain.mailbox_mode) ? ®ions[sc] : nullptr; |
| const VkPresentTimeGOOGLE* time = (times) ? ×[sc] : nullptr; |
| VkResult swapchain_result = VK_SUCCESS; |
| VkResult result; |
| int err; |
| |
| int fence = -1; |
| result = dispatch.QueueSignalReleaseImageANDROID( |
| queue, present_info->waitSemaphoreCount, |
| present_info->pWaitSemaphores, img.image, &fence); |
| if (result != VK_SUCCESS) { |
| ALOGE("QueueSignalReleaseImageANDROID failed: %d", result); |
| swapchain_result = result; |
| } |
| if (img.release_fence >= 0) |
| close(img.release_fence); |
| img.release_fence = fence < 0 ? -1 : dup(fence); |
| |
| if (swapchain.surface.swapchain_handle == |
| present_info->pSwapchains[sc]) { |
| ANativeWindow* window = swapchain.surface.window.get(); |
| if (swapchain_result == VK_SUCCESS) { |
| if (region) { |
| // Process the incremental-present hint for this swapchain: |
| uint32_t rcount = region->rectangleCount; |
| if (rcount > nrects) { |
| android_native_rect_t* new_rects = |
| static_cast<android_native_rect_t*>( |
| allocator->pfnReallocation( |
| allocator->pUserData, rects, |
| sizeof(android_native_rect_t) * rcount, |
| alignof(android_native_rect_t), |
| VK_SYSTEM_ALLOCATION_SCOPE_COMMAND)); |
| if (new_rects) { |
| rects = new_rects; |
| nrects = rcount; |
| } else { |
| rcount = 0; // Ignore the hint for this swapchain |
| } |
| } |
| for (uint32_t r = 0; r < rcount; ++r) { |
| if (region->pRectangles[r].layer > 0) { |
| ALOGV( |
| "vkQueuePresentKHR ignoring invalid layer " |
| "(%u); using layer 0 instead", |
| region->pRectangles[r].layer); |
| } |
| int x = region->pRectangles[r].offset.x; |
| int y = region->pRectangles[r].offset.y; |
| int width = static_cast<int>( |
| region->pRectangles[r].extent.width); |
| int height = static_cast<int>( |
| region->pRectangles[r].extent.height); |
| android_native_rect_t* cur_rect = &rects[r]; |
| cur_rect->left = x; |
| cur_rect->top = y + height; |
| cur_rect->right = x + width; |
| cur_rect->bottom = y; |
| } |
| native_window_set_surface_damage(window, rects, rcount); |
| } |
| if (time) { |
| if (!swapchain.frame_timestamps_enabled) { |
| ALOGV( |
| "Calling " |
| "native_window_enable_frame_timestamps(true)"); |
| native_window_enable_frame_timestamps(window, true); |
| swapchain.frame_timestamps_enabled = true; |
| } |
| |
| // Record the nativeFrameId so it can be later correlated to |
| // this present. |
| uint64_t nativeFrameId = 0; |
| err = native_window_get_next_frame_id( |
| window, &nativeFrameId); |
| if (err != android::OK) { |
| ALOGE("Failed to get next native frame ID."); |
| } |
| |
| // Add a new timing record with the user's presentID and |
| // the nativeFrameId. |
| swapchain.timing.emplace_back(time, nativeFrameId); |
| while (swapchain.timing.size() > MAX_TIMING_INFOS) { |
| swapchain.timing.erase(swapchain.timing.begin()); |
| } |
| if (time->desiredPresentTime) { |
| // Set the desiredPresentTime: |
| ALOGV( |
| "Calling " |
| "native_window_set_buffers_timestamp(%" PRId64 ")", |
| time->desiredPresentTime); |
| native_window_set_buffers_timestamp( |
| window, |
| static_cast<int64_t>(time->desiredPresentTime)); |
| } |
| } |
| |
| err = window->queueBuffer(window, img.buffer.get(), fence); |
| // queueBuffer always closes fence, even on error |
| if (err != android::OK) { |
| ALOGE("queueBuffer failed: %s (%d)", strerror(-err), err); |
| swapchain_result = WorstPresentResult( |
| swapchain_result, VK_ERROR_SURFACE_LOST_KHR); |
| } else { |
| if (img.dequeue_fence >= 0) { |
| close(img.dequeue_fence); |
| img.dequeue_fence = -1; |
| } |
| img.dequeued = false; |
| } |
| |
| // If the swapchain is in shared mode, immediately dequeue the |
| // buffer so it can be presented again without an intervening |
| // call to AcquireNextImageKHR. We expect to get the same buffer |
| // back from every call to dequeueBuffer in this mode. |
| if (swapchain.shared && swapchain_result == VK_SUCCESS) { |
| ANativeWindowBuffer* buffer; |
| int fence_fd; |
| err = window->dequeueBuffer(window, &buffer, &fence_fd); |
| if (err != android::OK) { |
| ALOGE("dequeueBuffer failed: %s (%d)", strerror(-err), err); |
| swapchain_result = WorstPresentResult(swapchain_result, |
| VK_ERROR_SURFACE_LOST_KHR); |
| } else if (img.buffer != buffer) { |
| ALOGE("got wrong image back for shared swapchain"); |
| swapchain_result = WorstPresentResult(swapchain_result, |
| VK_ERROR_SURFACE_LOST_KHR); |
| } else { |
| img.dequeue_fence = fence_fd; |
| img.dequeued = true; |
| } |
| } |
| } |
| if (swapchain_result != VK_SUCCESS) { |
| OrphanSwapchain(device, &swapchain); |
| } |
| int window_transform_hint; |
| err = window->query(window, NATIVE_WINDOW_TRANSFORM_HINT, |
| &window_transform_hint); |
| if (err != android::OK) { |
| ALOGE("NATIVE_WINDOW_TRANSFORM_HINT query failed: %s (%d)", |
| strerror(-err), err); |
| swapchain_result = WorstPresentResult( |
| swapchain_result, VK_ERROR_SURFACE_LOST_KHR); |
| } |
| if (swapchain.pre_transform != window_transform_hint) { |
| swapchain_result = |
| WorstPresentResult(swapchain_result, VK_SUBOPTIMAL_KHR); |
| } |
| } else { |
| ReleaseSwapchainImage(device, swapchain.shared, nullptr, fence, |
| img, true); |
| swapchain_result = VK_ERROR_OUT_OF_DATE_KHR; |
| } |
| |
| if (present_info->pResults) |
| present_info->pResults[sc] = swapchain_result; |
| |
| if (swapchain_result != final_result) |
| final_result = WorstPresentResult(final_result, swapchain_result); |
| } |
| if (rects) { |
| allocator->pfnFree(allocator->pUserData, rects); |
| } |
| |
| return final_result; |
| } |
| |
| VKAPI_ATTR |
| VkResult GetRefreshCycleDurationGOOGLE( |
| VkDevice, |
| VkSwapchainKHR swapchain_handle, |
| VkRefreshCycleDurationGOOGLE* pDisplayTimingProperties) { |
| ATRACE_CALL(); |
| |
| Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle); |
| VkResult result = VK_SUCCESS; |
| |
| pDisplayTimingProperties->refreshDuration = swapchain.get_refresh_duration(); |
| |
| return result; |
| } |
| |
| VKAPI_ATTR |
| VkResult GetPastPresentationTimingGOOGLE( |
| VkDevice, |
| VkSwapchainKHR swapchain_handle, |
| uint32_t* count, |
| VkPastPresentationTimingGOOGLE* timings) { |
| ATRACE_CALL(); |
| |
| Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle); |
| if (swapchain.surface.swapchain_handle != swapchain_handle) { |
| return VK_ERROR_OUT_OF_DATE_KHR; |
| } |
| |
| ANativeWindow* window = swapchain.surface.window.get(); |
| VkResult result = VK_SUCCESS; |
| |
| if (!swapchain.frame_timestamps_enabled) { |
| ALOGV("Calling native_window_enable_frame_timestamps(true)"); |
| native_window_enable_frame_timestamps(window, true); |
| swapchain.frame_timestamps_enabled = true; |
| } |
| |
| if (timings) { |
| // Get the latest ready timing count before copying, since the copied |
| // timing info will be erased in copy_ready_timings function. |
| uint32_t n = get_num_ready_timings(swapchain); |
| copy_ready_timings(swapchain, count, timings); |
| // Check the *count here against the recorded ready timing count, since |
| // *count can be overwritten per spec describes. |
| if (*count < n) { |
| result = VK_INCOMPLETE; |
| } |
| } else { |
| *count = get_num_ready_timings(swapchain); |
| } |
| |
| return result; |
| } |
| |
| VKAPI_ATTR |
| VkResult GetSwapchainStatusKHR( |
| VkDevice, |
| VkSwapchainKHR swapchain_handle) { |
| ATRACE_CALL(); |
| |
| Swapchain& swapchain = *SwapchainFromHandle(swapchain_handle); |
| VkResult result = VK_SUCCESS; |
| |
| if (swapchain.surface.swapchain_handle != swapchain_handle) { |
| return VK_ERROR_OUT_OF_DATE_KHR; |
| } |
| |
| // TODO(b/143296009): Implement this function properly |
| |
| return result; |
| } |
| |
| VKAPI_ATTR void SetHdrMetadataEXT( |
| VkDevice, |
| uint32_t swapchainCount, |
| const VkSwapchainKHR* pSwapchains, |
| const VkHdrMetadataEXT* pHdrMetadataEXTs) { |
| ATRACE_CALL(); |
| |
| for (uint32_t idx = 0; idx < swapchainCount; idx++) { |
| Swapchain* swapchain = SwapchainFromHandle(pSwapchains[idx]); |
| if (!swapchain) |
| continue; |
| |
| if (swapchain->surface.swapchain_handle != pSwapchains[idx]) continue; |
| |
| ANativeWindow* window = swapchain->surface.window.get(); |
| |
| VkHdrMetadataEXT vulkanMetadata = pHdrMetadataEXTs[idx]; |
| const android_smpte2086_metadata smpteMetdata = { |
| {vulkanMetadata.displayPrimaryRed.x, |
| vulkanMetadata.displayPrimaryRed.y}, |
| {vulkanMetadata.displayPrimaryGreen.x, |
| vulkanMetadata.displayPrimaryGreen.y}, |
| {vulkanMetadata.displayPrimaryBlue.x, |
| vulkanMetadata.displayPrimaryBlue.y}, |
| {vulkanMetadata.whitePoint.x, vulkanMetadata.whitePoint.y}, |
| vulkanMetadata.maxLuminance, |
| vulkanMetadata.minLuminance}; |
| native_window_set_buffers_smpte2086_metadata(window, &smpteMetdata); |
| |
| const android_cta861_3_metadata cta8613Metadata = { |
| vulkanMetadata.maxContentLightLevel, |
| vulkanMetadata.maxFrameAverageLightLevel}; |
| native_window_set_buffers_cta861_3_metadata(window, &cta8613Metadata); |
| } |
| |
| return; |
| } |
| |
| static void InterceptBindImageMemory2( |
| uint32_t bind_info_count, |
| const VkBindImageMemoryInfo* bind_infos, |
| std::vector<VkNativeBufferANDROID>* out_native_buffers, |
| std::vector<VkBindImageMemoryInfo>* out_bind_infos) { |
| out_native_buffers->clear(); |
| out_bind_infos->clear(); |
| |
| if (!bind_info_count) |
| return; |
| |
| std::unordered_set<uint32_t> intercepted_indexes; |
| |
| for (uint32_t idx = 0; idx < bind_info_count; idx++) { |
| auto info = reinterpret_cast<const VkBindImageMemorySwapchainInfoKHR*>( |
| bind_infos[idx].pNext); |
| while (info && |
| info->sType != |
| VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR) { |
| info = reinterpret_cast<const VkBindImageMemorySwapchainInfoKHR*>( |
| info->pNext); |
| } |
| |
| if (!info) |
| continue; |
| |
| ALOG_ASSERT(info->swapchain != VK_NULL_HANDLE, |
| "swapchain handle must not be NULL"); |
| const Swapchain* swapchain = SwapchainFromHandle(info->swapchain); |
| ALOG_ASSERT( |
| info->imageIndex < swapchain->num_images, |
| "imageIndex must be less than the number of images in swapchain"); |
| |
| ANativeWindowBuffer* buffer = |
| swapchain->images[info->imageIndex].buffer.get(); |
| VkNativeBufferANDROID native_buffer = { |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wold-style-cast" |
| .sType = VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID, |
| #pragma clang diagnostic pop |
| .pNext = bind_infos[idx].pNext, |
| .handle = buffer->handle, |
| .stride = buffer->stride, |
| .format = buffer->format, |
| .usage = int(buffer->usage), |
| }; |
| // Reserve enough space to avoid letting re-allocation invalidate the |
| // addresses of the elements inside. |
| out_native_buffers->reserve(bind_info_count); |
| out_native_buffers->emplace_back(native_buffer); |
| |
| // Reserve the space now since we know how much is needed now. |
| out_bind_infos->reserve(bind_info_count); |
| out_bind_infos->emplace_back(bind_infos[idx]); |
| out_bind_infos->back().pNext = &out_native_buffers->back(); |
| |
| intercepted_indexes.insert(idx); |
| } |
| |
| if (intercepted_indexes.empty()) |
| return; |
| |
| for (uint32_t idx = 0; idx < bind_info_count; idx++) { |
| if (intercepted_indexes.count(idx)) |
| continue; |
| out_bind_infos->emplace_back(bind_infos[idx]); |
| } |
| } |
| |
| VKAPI_ATTR |
| VkResult BindImageMemory2(VkDevice device, |
| uint32_t bindInfoCount, |
| const VkBindImageMemoryInfo* pBindInfos) { |
| ATRACE_CALL(); |
| |
| // out_native_buffers is for maintaining the lifecycle of the constructed |
| // VkNativeBufferANDROID objects inside InterceptBindImageMemory2. |
| std::vector<VkNativeBufferANDROID> out_native_buffers; |
| std::vector<VkBindImageMemoryInfo> out_bind_infos; |
| InterceptBindImageMemory2(bindInfoCount, pBindInfos, &out_native_buffers, |
| &out_bind_infos); |
| return GetData(device).driver.BindImageMemory2( |
| device, bindInfoCount, |
| out_bind_infos.empty() ? pBindInfos : out_bind_infos.data()); |
| } |
| |
| VKAPI_ATTR |
| VkResult BindImageMemory2KHR(VkDevice device, |
| uint32_t bindInfoCount, |
| const VkBindImageMemoryInfo* pBindInfos) { |
| ATRACE_CALL(); |
| |
| std::vector<VkNativeBufferANDROID> out_native_buffers; |
| std::vector<VkBindImageMemoryInfo> out_bind_infos; |
| InterceptBindImageMemory2(bindInfoCount, pBindInfos, &out_native_buffers, |
| &out_bind_infos); |
| return GetData(device).driver.BindImageMemory2KHR( |
| device, bindInfoCount, |
| out_bind_infos.empty() ? pBindInfos : out_bind_infos.data()); |
| } |
| |
| } // namespace driver |
| } // namespace vulkan |