blob: ba5083bec36a91cff7ce6fba6e67393b46490a9d [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Macros.h"
#include "InputDevice.h"
#include <algorithm>
#include <ftl/flags.h>
#include "CursorInputMapper.h"
#include "ExternalStylusInputMapper.h"
#include "InputReaderContext.h"
#include "JoystickInputMapper.h"
#include "KeyboardInputMapper.h"
#include "MultiTouchInputMapper.h"
#include "PeripheralController.h"
#include "RotaryEncoderInputMapper.h"
#include "SensorInputMapper.h"
#include "SingleTouchInputMapper.h"
#include "SwitchInputMapper.h"
#include "VibratorInputMapper.h"
namespace android {
InputDevice::InputDevice(InputReaderContext* context, int32_t id, int32_t generation,
const InputDeviceIdentifier& identifier)
: mContext(context),
mId(id),
mGeneration(generation),
mControllerNumber(0),
mIdentifier(identifier),
mClasses(0),
mSources(0),
mIsExternal(false),
mHasMic(false),
mDropUntilNextSync(false) {}
InputDevice::~InputDevice() {}
bool InputDevice::isEnabled() {
if (!hasEventHubDevices()) {
return false;
}
// An input device composed of sub devices can be individually enabled or disabled.
// If any of the sub device is enabled then the input device is considered as enabled.
bool enabled = false;
for_each_subdevice([&enabled](auto& context) { enabled |= context.isDeviceEnabled(); });
return enabled;
}
void InputDevice::setEnabled(bool enabled, nsecs_t when) {
if (enabled && mAssociatedDisplayPort && !mAssociatedViewport) {
ALOGW("Cannot enable input device %s because it is associated with port %" PRIu8 ", "
"but the corresponding viewport is not found",
getName().c_str(), *mAssociatedDisplayPort);
enabled = false;
}
if (isEnabled() == enabled) {
return;
}
// When resetting some devices, the driver needs to be queried to ensure that a proper reset is
// performed. The querying must happen when the device is enabled, so we reset after enabling
// but before disabling the device. See MultiTouchMotionAccumulator::reset for more information.
if (enabled) {
for_each_subdevice([](auto& context) { context.enableDevice(); });
reset(when);
} else {
reset(when);
for_each_subdevice([](auto& context) { context.disableDevice(); });
}
// Must change generation to flag this device as changed
bumpGeneration();
}
void InputDevice::dump(std::string& dump, const std::string& eventHubDevStr) {
InputDeviceInfo deviceInfo = getDeviceInfo();
dump += StringPrintf(INDENT "Device %d: %s\n", deviceInfo.getId(),
deviceInfo.getDisplayName().c_str());
dump += StringPrintf(INDENT "%s", eventHubDevStr.c_str());
dump += StringPrintf(INDENT2 "Generation: %d\n", mGeneration);
dump += StringPrintf(INDENT2 "IsExternal: %s\n", toString(mIsExternal));
dump += StringPrintf(INDENT2 "AssociatedDisplayPort: ");
if (mAssociatedDisplayPort) {
dump += StringPrintf("%" PRIu8 "\n", *mAssociatedDisplayPort);
} else {
dump += "<none>\n";
}
dump += StringPrintf(INDENT2 "AssociatedDisplayUniqueId: ");
if (mAssociatedDisplayUniqueId) {
dump += StringPrintf("%s\n", mAssociatedDisplayUniqueId->c_str());
} else {
dump += "<none>\n";
}
dump += StringPrintf(INDENT2 "HasMic: %s\n", toString(mHasMic));
dump += StringPrintf(INDENT2 "Sources: 0x%08x\n", deviceInfo.getSources());
dump += StringPrintf(INDENT2 "KeyboardType: %d\n", deviceInfo.getKeyboardType());
dump += StringPrintf(INDENT2 "ControllerNum: %d\n", deviceInfo.getControllerNumber());
const std::vector<InputDeviceInfo::MotionRange>& ranges = deviceInfo.getMotionRanges();
if (!ranges.empty()) {
dump += INDENT2 "Motion Ranges:\n";
for (size_t i = 0; i < ranges.size(); i++) {
const InputDeviceInfo::MotionRange& range = ranges[i];
const char* label = InputEventLookup::getAxisLabel(range.axis);
char name[32];
if (label) {
strncpy(name, label, sizeof(name));
name[sizeof(name) - 1] = '\0';
} else {
snprintf(name, sizeof(name), "%d", range.axis);
}
dump += StringPrintf(INDENT3
"%s: source=0x%08x, "
"min=%0.3f, max=%0.3f, flat=%0.3f, fuzz=%0.3f, resolution=%0.3f\n",
name, range.source, range.min, range.max, range.flat, range.fuzz,
range.resolution);
}
}
for_each_mapper([&dump](InputMapper& mapper) { mapper.dump(dump); });
if (mController) {
mController->dump(dump);
}
}
void InputDevice::addEventHubDevice(int32_t eventHubId, bool populateMappers) {
if (mDevices.find(eventHubId) != mDevices.end()) {
return;
}
std::unique_ptr<InputDeviceContext> contextPtr(new InputDeviceContext(*this, eventHubId));
ftl::Flags<InputDeviceClass> classes = contextPtr->getDeviceClasses();
std::vector<std::unique_ptr<InputMapper>> mappers;
// Check if we should skip population
if (!populateMappers) {
mDevices.insert({eventHubId, std::make_pair(std::move(contextPtr), std::move(mappers))});
return;
}
// Switch-like devices.
if (classes.test(InputDeviceClass::SWITCH)) {
mappers.push_back(std::make_unique<SwitchInputMapper>(*contextPtr));
}
// Scroll wheel-like devices.
if (classes.test(InputDeviceClass::ROTARY_ENCODER)) {
mappers.push_back(std::make_unique<RotaryEncoderInputMapper>(*contextPtr));
}
// Vibrator-like devices.
if (classes.test(InputDeviceClass::VIBRATOR)) {
mappers.push_back(std::make_unique<VibratorInputMapper>(*contextPtr));
}
// Battery-like devices or light-containing devices.
// PeripheralController will be created with associated EventHub device.
if (classes.test(InputDeviceClass::BATTERY) || classes.test(InputDeviceClass::LIGHT)) {
mController = std::make_unique<PeripheralController>(*contextPtr);
}
// Keyboard-like devices.
uint32_t keyboardSource = 0;
int32_t keyboardType = AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC;
if (classes.test(InputDeviceClass::KEYBOARD)) {
keyboardSource |= AINPUT_SOURCE_KEYBOARD;
}
if (classes.test(InputDeviceClass::ALPHAKEY)) {
keyboardType = AINPUT_KEYBOARD_TYPE_ALPHABETIC;
}
if (classes.test(InputDeviceClass::DPAD)) {
keyboardSource |= AINPUT_SOURCE_DPAD;
}
if (classes.test(InputDeviceClass::GAMEPAD)) {
keyboardSource |= AINPUT_SOURCE_GAMEPAD;
}
if (keyboardSource != 0) {
mappers.push_back(
std::make_unique<KeyboardInputMapper>(*contextPtr, keyboardSource, keyboardType));
}
// Cursor-like devices.
if (classes.test(InputDeviceClass::CURSOR)) {
mappers.push_back(std::make_unique<CursorInputMapper>(*contextPtr));
}
// Touchscreens and touchpad devices.
if (classes.test(InputDeviceClass::TOUCH_MT)) {
mappers.push_back(std::make_unique<MultiTouchInputMapper>(*contextPtr));
} else if (classes.test(InputDeviceClass::TOUCH)) {
mappers.push_back(std::make_unique<SingleTouchInputMapper>(*contextPtr));
}
// Joystick-like devices.
if (classes.test(InputDeviceClass::JOYSTICK)) {
mappers.push_back(std::make_unique<JoystickInputMapper>(*contextPtr));
}
// Motion sensor enabled devices.
if (classes.test(InputDeviceClass::SENSOR)) {
mappers.push_back(std::make_unique<SensorInputMapper>(*contextPtr));
}
// External stylus-like devices.
if (classes.test(InputDeviceClass::EXTERNAL_STYLUS)) {
mappers.push_back(std::make_unique<ExternalStylusInputMapper>(*contextPtr));
}
// insert the context into the devices set
mDevices.insert({eventHubId, std::make_pair(std::move(contextPtr), std::move(mappers))});
// Must change generation to flag this device as changed
bumpGeneration();
}
void InputDevice::removeEventHubDevice(int32_t eventHubId) {
mDevices.erase(eventHubId);
}
void InputDevice::configure(nsecs_t when, const InputReaderConfiguration* config,
uint32_t changes) {
mSources = 0;
mClasses = ftl::Flags<InputDeviceClass>(0);
mControllerNumber = 0;
for_each_subdevice([this](InputDeviceContext& context) {
mClasses |= context.getDeviceClasses();
int32_t controllerNumber = context.getDeviceControllerNumber();
if (controllerNumber > 0) {
if (mControllerNumber && mControllerNumber != controllerNumber) {
ALOGW("InputDevice::configure(): composite device contains multiple unique "
"controller numbers");
}
mControllerNumber = controllerNumber;
}
});
mIsExternal = mClasses.test(InputDeviceClass::EXTERNAL);
mHasMic = mClasses.test(InputDeviceClass::MIC);
if (!isIgnored()) {
if (!changes) { // first time only
mConfiguration.clear();
for_each_subdevice([this](InputDeviceContext& context) {
PropertyMap configuration;
context.getConfiguration(&configuration);
mConfiguration.addAll(&configuration);
});
}
if (!changes || (changes & InputReaderConfiguration::CHANGE_KEYBOARD_LAYOUTS)) {
if (!mClasses.test(InputDeviceClass::VIRTUAL)) {
std::shared_ptr<KeyCharacterMap> keyboardLayout =
mContext->getPolicy()->getKeyboardLayoutOverlay(mIdentifier);
bool shouldBumpGeneration = false;
for_each_subdevice(
[&keyboardLayout, &shouldBumpGeneration](InputDeviceContext& context) {
if (context.setKeyboardLayoutOverlay(keyboardLayout)) {
shouldBumpGeneration = true;
}
});
if (shouldBumpGeneration) {
bumpGeneration();
}
}
}
if (!changes || (changes & InputReaderConfiguration::CHANGE_DEVICE_ALIAS)) {
if (!(mClasses.test(InputDeviceClass::VIRTUAL))) {
std::string alias = mContext->getPolicy()->getDeviceAlias(mIdentifier);
if (mAlias != alias) {
mAlias = alias;
bumpGeneration();
}
}
}
if (!changes || (changes & InputReaderConfiguration::CHANGE_ENABLED_STATE)) {
auto it = config->disabledDevices.find(mId);
bool enabled = it == config->disabledDevices.end();
setEnabled(enabled, when);
}
if (!changes || (changes & InputReaderConfiguration::CHANGE_DISPLAY_INFO)) {
// In most situations, no port or name will be specified.
mAssociatedDisplayPort = std::nullopt;
mAssociatedDisplayUniqueId = std::nullopt;
mAssociatedViewport = std::nullopt;
// Find the display port that corresponds to the current input port.
const std::string& inputPort = mIdentifier.location;
if (!inputPort.empty()) {
const std::unordered_map<std::string, uint8_t>& ports = config->portAssociations;
const auto& displayPort = ports.find(inputPort);
if (displayPort != ports.end()) {
mAssociatedDisplayPort = std::make_optional(displayPort->second);
} else {
const std::unordered_map<std::string, std::string>& displayUniqueIds =
config->uniqueIdAssociations;
const auto& displayUniqueId = displayUniqueIds.find(inputPort);
if (displayUniqueId != displayUniqueIds.end()) {
mAssociatedDisplayUniqueId = displayUniqueId->second;
}
}
}
// If the device was explicitly disabled by the user, it would be present in the
// "disabledDevices" list. If it is associated with a specific display, and it was not
// explicitly disabled, then enable/disable the device based on whether we can find the
// corresponding viewport.
bool enabled = (config->disabledDevices.find(mId) == config->disabledDevices.end());
if (mAssociatedDisplayPort) {
mAssociatedViewport = config->getDisplayViewportByPort(*mAssociatedDisplayPort);
if (!mAssociatedViewport) {
ALOGW("Input device %s should be associated with display on port %" PRIu8 ", "
"but the corresponding viewport is not found.",
getName().c_str(), *mAssociatedDisplayPort);
enabled = false;
}
} else if (mAssociatedDisplayUniqueId != std::nullopt) {
mAssociatedViewport =
config->getDisplayViewportByUniqueId(*mAssociatedDisplayUniqueId);
if (!mAssociatedViewport) {
ALOGW("Input device %s should be associated with display %s but the "
"corresponding viewport cannot be found",
getName().c_str(), mAssociatedDisplayUniqueId->c_str());
enabled = false;
}
}
if (changes) {
// For first-time configuration, only allow device to be disabled after mappers have
// finished configuring. This is because we need to read some of the properties from
// the device's open fd.
setEnabled(enabled, when);
}
}
for_each_mapper([this, when, config, changes](InputMapper& mapper) {
mapper.configure(when, config, changes);
mSources |= mapper.getSources();
});
// If a device is just plugged but it might be disabled, we need to update some info like
// axis range of touch from each InputMapper first, then disable it.
if (!changes) {
setEnabled(config->disabledDevices.find(mId) == config->disabledDevices.end(), when);
}
}
}
void InputDevice::reset(nsecs_t when) {
for_each_mapper([when](InputMapper& mapper) { mapper.reset(when); });
mContext->updateGlobalMetaState();
notifyReset(when);
}
void InputDevice::process(const RawEvent* rawEvents, size_t count) {
// Process all of the events in order for each mapper.
// We cannot simply ask each mapper to process them in bulk because mappers may
// have side-effects that must be interleaved. For example, joystick movement events and
// gamepad button presses are handled by different mappers but they should be dispatched
// in the order received.
for (const RawEvent* rawEvent = rawEvents; count != 0; rawEvent++) {
if (DEBUG_RAW_EVENTS) {
ALOGD("Input event: device=%d type=0x%04x code=0x%04x value=0x%08x when=%" PRId64,
rawEvent->deviceId, rawEvent->type, rawEvent->code, rawEvent->value,
rawEvent->when);
}
if (mDropUntilNextSync) {
if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) {
mDropUntilNextSync = false;
if (DEBUG_RAW_EVENTS) {
ALOGD("Recovered from input event buffer overrun.");
}
} else {
if (DEBUG_RAW_EVENTS) {
ALOGD("Dropped input event while waiting for next input sync.");
}
}
} else if (rawEvent->type == EV_SYN && rawEvent->code == SYN_DROPPED) {
ALOGI("Detected input event buffer overrun for device %s.", getName().c_str());
mDropUntilNextSync = true;
reset(rawEvent->when);
} else {
for_each_mapper_in_subdevice(rawEvent->deviceId, [rawEvent](InputMapper& mapper) {
mapper.process(rawEvent);
});
}
--count;
}
}
void InputDevice::timeoutExpired(nsecs_t when) {
for_each_mapper([when](InputMapper& mapper) { mapper.timeoutExpired(when); });
}
void InputDevice::updateExternalStylusState(const StylusState& state) {
for_each_mapper([state](InputMapper& mapper) { mapper.updateExternalStylusState(state); });
}
InputDeviceInfo InputDevice::getDeviceInfo() {
InputDeviceInfo outDeviceInfo;
outDeviceInfo.initialize(mId, mGeneration, mControllerNumber, mIdentifier, mAlias, mIsExternal,
mHasMic);
for_each_mapper(
[&outDeviceInfo](InputMapper& mapper) { mapper.populateDeviceInfo(&outDeviceInfo); });
if (mController) {
mController->populateDeviceInfo(&outDeviceInfo);
}
return outDeviceInfo;
}
int32_t InputDevice::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
return getState(sourceMask, keyCode, &InputMapper::getKeyCodeState);
}
int32_t InputDevice::getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
return getState(sourceMask, scanCode, &InputMapper::getScanCodeState);
}
int32_t InputDevice::getSwitchState(uint32_t sourceMask, int32_t switchCode) {
return getState(sourceMask, switchCode, &InputMapper::getSwitchState);
}
int32_t InputDevice::getState(uint32_t sourceMask, int32_t code, GetStateFunc getStateFunc) {
int32_t result = AKEY_STATE_UNKNOWN;
for (auto& deviceEntry : mDevices) {
auto& devicePair = deviceEntry.second;
auto& mappers = devicePair.second;
for (auto& mapperPtr : mappers) {
InputMapper& mapper = *mapperPtr;
if (sourcesMatchMask(mapper.getSources(), sourceMask)) {
// If any mapper reports AKEY_STATE_DOWN or AKEY_STATE_VIRTUAL, return that
// value. Otherwise, return AKEY_STATE_UP as long as one mapper reports it.
int32_t currentResult = (mapper.*getStateFunc)(sourceMask, code);
if (currentResult >= AKEY_STATE_DOWN) {
return currentResult;
} else if (currentResult == AKEY_STATE_UP) {
result = currentResult;
}
}
}
}
return result;
}
bool InputDevice::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
const int32_t* keyCodes, uint8_t* outFlags) {
bool result = false;
for_each_mapper([&result, sourceMask, numCodes, keyCodes, outFlags](InputMapper& mapper) {
if (sourcesMatchMask(mapper.getSources(), sourceMask)) {
result |= mapper.markSupportedKeyCodes(sourceMask, numCodes, keyCodes, outFlags);
}
});
return result;
}
int32_t InputDevice::getKeyCodeForKeyLocation(int32_t locationKeyCode) const {
std::optional<int32_t> result = first_in_mappers<int32_t>(
[locationKeyCode](const InputMapper& mapper) -> std::optional<int32_t> const {
if (sourcesMatchMask(mapper.getSources(), AINPUT_SOURCE_KEYBOARD)) {
return std::make_optional(mapper.getKeyCodeForKeyLocation(locationKeyCode));
}
return std::nullopt;
});
if (!result) {
ALOGE("Failed to get key code for key location: No matching InputMapper with source mask "
"KEYBOARD found. The provided input device with id %d has sources %s.",
getId(), inputEventSourceToString(getSources()).c_str());
return AKEYCODE_UNKNOWN;
}
return *result;
}
void InputDevice::vibrate(const VibrationSequence& sequence, ssize_t repeat, int32_t token) {
for_each_mapper([sequence, repeat, token](InputMapper& mapper) {
mapper.vibrate(sequence, repeat, token);
});
}
void InputDevice::cancelVibrate(int32_t token) {
for_each_mapper([token](InputMapper& mapper) { mapper.cancelVibrate(token); });
}
bool InputDevice::isVibrating() {
bool vibrating = false;
for_each_mapper([&vibrating](InputMapper& mapper) { vibrating |= mapper.isVibrating(); });
return vibrating;
}
/* There's no guarantee the IDs provided by the different mappers are unique, so if we have two
* different vibration mappers then we could have duplicate IDs.
* Alternatively, if we have a merged device that has multiple evdev nodes with FF_* capabilities,
* we would definitely have duplicate IDs.
*/
std::vector<int32_t> InputDevice::getVibratorIds() {
std::vector<int32_t> vibrators;
for_each_mapper([&vibrators](InputMapper& mapper) {
std::vector<int32_t> devVibs = mapper.getVibratorIds();
vibrators.reserve(vibrators.size() + devVibs.size());
vibrators.insert(vibrators.end(), devVibs.begin(), devVibs.end());
});
return vibrators;
}
bool InputDevice::enableSensor(InputDeviceSensorType sensorType,
std::chrono::microseconds samplingPeriod,
std::chrono::microseconds maxBatchReportLatency) {
bool success = true;
for_each_mapper(
[&success, sensorType, samplingPeriod, maxBatchReportLatency](InputMapper& mapper) {
success &= mapper.enableSensor(sensorType, samplingPeriod, maxBatchReportLatency);
});
return success;
}
void InputDevice::disableSensor(InputDeviceSensorType sensorType) {
for_each_mapper([sensorType](InputMapper& mapper) { mapper.disableSensor(sensorType); });
}
void InputDevice::flushSensor(InputDeviceSensorType sensorType) {
for_each_mapper([sensorType](InputMapper& mapper) { mapper.flushSensor(sensorType); });
}
void InputDevice::cancelTouch(nsecs_t when, nsecs_t readTime) {
for_each_mapper([when, readTime](InputMapper& mapper) { mapper.cancelTouch(when, readTime); });
}
std::optional<int32_t> InputDevice::getBatteryCapacity() {
return mController ? mController->getBatteryCapacity(DEFAULT_BATTERY_ID) : std::nullopt;
}
std::optional<int32_t> InputDevice::getBatteryStatus() {
return mController ? mController->getBatteryStatus(DEFAULT_BATTERY_ID) : std::nullopt;
}
bool InputDevice::setLightColor(int32_t lightId, int32_t color) {
return mController ? mController->setLightColor(lightId, color) : false;
}
bool InputDevice::setLightPlayerId(int32_t lightId, int32_t playerId) {
return mController ? mController->setLightPlayerId(lightId, playerId) : false;
}
std::optional<int32_t> InputDevice::getLightColor(int32_t lightId) {
return mController ? mController->getLightColor(lightId) : std::nullopt;
}
std::optional<int32_t> InputDevice::getLightPlayerId(int32_t lightId) {
return mController ? mController->getLightPlayerId(lightId) : std::nullopt;
}
int32_t InputDevice::getMetaState() {
int32_t result = 0;
for_each_mapper([&result](InputMapper& mapper) { result |= mapper.getMetaState(); });
return result;
}
void InputDevice::updateMetaState(int32_t keyCode) {
first_in_mappers<bool>([keyCode](InputMapper& mapper) {
if (sourcesMatchMask(mapper.getSources(), AINPUT_SOURCE_KEYBOARD) &&
mapper.updateMetaState(keyCode)) {
return std::make_optional(true);
}
return std::optional<bool>();
});
}
void InputDevice::bumpGeneration() {
mGeneration = mContext->bumpGeneration();
}
void InputDevice::notifyReset(nsecs_t when) {
NotifyDeviceResetArgs args(mContext->getNextId(), when, mId);
mContext->getListener().notifyDeviceReset(&args);
}
std::optional<int32_t> InputDevice::getAssociatedDisplayId() {
// Check if we had associated to the specific display.
if (mAssociatedViewport) {
return mAssociatedViewport->displayId;
}
// No associated display port, check if some InputMapper is associated.
return first_in_mappers<int32_t>(
[](InputMapper& mapper) { return mapper.getAssociatedDisplayId(); });
}
// returns the number of mappers associated with the device
size_t InputDevice::getMapperCount() {
size_t count = 0;
for (auto& deviceEntry : mDevices) {
auto& devicePair = deviceEntry.second;
auto& mappers = devicePair.second;
count += mappers.size();
}
return count;
}
void InputDevice::updateLedState(bool reset) {
for_each_mapper([reset](InputMapper& mapper) { mapper.updateLedState(reset); });
}
InputDeviceContext::InputDeviceContext(InputDevice& device, int32_t eventHubId)
: mDevice(device),
mContext(device.getContext()),
mEventHub(device.getContext()->getEventHub()),
mId(eventHubId),
mDeviceId(device.getId()) {}
InputDeviceContext::~InputDeviceContext() {}
} // namespace android