| /* |
| * Copyright 2020 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| //#define LOG_NDEBUG 0 |
| #undef LOG_TAG |
| #define LOG_TAG "RenderEngine" |
| #define ATRACE_TAG ATRACE_TAG_GRAPHICS |
| |
| #include "SkiaGLRenderEngine.h" |
| |
| #include <EGL/egl.h> |
| #include <EGL/eglext.h> |
| #include <GrContextOptions.h> |
| #include <SkCanvas.h> |
| #include <SkColorFilter.h> |
| #include <SkColorMatrix.h> |
| #include <SkColorSpace.h> |
| #include <SkGraphics.h> |
| #include <SkImage.h> |
| #include <SkImageFilters.h> |
| #include <SkRegion.h> |
| #include <SkShadowUtils.h> |
| #include <SkSurface.h> |
| #include <android-base/stringprintf.h> |
| #include <gl/GrGLInterface.h> |
| #include <gui/TraceUtils.h> |
| #include <sync/sync.h> |
| #include <ui/BlurRegion.h> |
| #include <ui/DataspaceUtils.h> |
| #include <ui/DebugUtils.h> |
| #include <ui/GraphicBuffer.h> |
| #include <utils/Trace.h> |
| |
| #include <cmath> |
| #include <cstdint> |
| #include <memory> |
| #include <numeric> |
| |
| #include "../gl/GLExtensions.h" |
| #include "Cache.h" |
| #include "ColorSpaces.h" |
| #include "SkBlendMode.h" |
| #include "SkImageInfo.h" |
| #include "filters/BlurFilter.h" |
| #include "filters/GaussianBlurFilter.h" |
| #include "filters/KawaseBlurFilter.h" |
| #include "filters/LinearEffect.h" |
| #include "log/log_main.h" |
| #include "skia/debug/SkiaCapture.h" |
| #include "skia/debug/SkiaMemoryReporter.h" |
| #include "skia/filters/StretchShaderFactory.h" |
| #include "system/graphics-base-v1.0.h" |
| |
| namespace { |
| // Debugging settings |
| static const bool kPrintLayerSettings = false; |
| static const bool kFlushAfterEveryLayer = kPrintLayerSettings; |
| } // namespace |
| |
| bool checkGlError(const char* op, int lineNumber); |
| |
| namespace android { |
| namespace renderengine { |
| namespace skia { |
| |
| using base::StringAppendF; |
| |
| static status_t selectConfigForAttribute(EGLDisplay dpy, EGLint const* attrs, EGLint attribute, |
| EGLint wanted, EGLConfig* outConfig) { |
| EGLint numConfigs = -1, n = 0; |
| eglGetConfigs(dpy, nullptr, 0, &numConfigs); |
| std::vector<EGLConfig> configs(numConfigs, EGL_NO_CONFIG_KHR); |
| eglChooseConfig(dpy, attrs, configs.data(), configs.size(), &n); |
| configs.resize(n); |
| |
| if (!configs.empty()) { |
| if (attribute != EGL_NONE) { |
| for (EGLConfig config : configs) { |
| EGLint value = 0; |
| eglGetConfigAttrib(dpy, config, attribute, &value); |
| if (wanted == value) { |
| *outConfig = config; |
| return NO_ERROR; |
| } |
| } |
| } else { |
| // just pick the first one |
| *outConfig = configs[0]; |
| return NO_ERROR; |
| } |
| } |
| |
| return NAME_NOT_FOUND; |
| } |
| |
| static status_t selectEGLConfig(EGLDisplay display, EGLint format, EGLint renderableType, |
| EGLConfig* config) { |
| // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if |
| // it is to be used with WIFI displays |
| status_t err; |
| EGLint wantedAttribute; |
| EGLint wantedAttributeValue; |
| |
| std::vector<EGLint> attribs; |
| if (renderableType) { |
| const ui::PixelFormat pixelFormat = static_cast<ui::PixelFormat>(format); |
| const bool is1010102 = pixelFormat == ui::PixelFormat::RGBA_1010102; |
| |
| // Default to 8 bits per channel. |
| const EGLint tmpAttribs[] = { |
| EGL_RENDERABLE_TYPE, |
| renderableType, |
| EGL_RECORDABLE_ANDROID, |
| EGL_TRUE, |
| EGL_SURFACE_TYPE, |
| EGL_WINDOW_BIT | EGL_PBUFFER_BIT, |
| EGL_FRAMEBUFFER_TARGET_ANDROID, |
| EGL_TRUE, |
| EGL_RED_SIZE, |
| is1010102 ? 10 : 8, |
| EGL_GREEN_SIZE, |
| is1010102 ? 10 : 8, |
| EGL_BLUE_SIZE, |
| is1010102 ? 10 : 8, |
| EGL_ALPHA_SIZE, |
| is1010102 ? 2 : 8, |
| EGL_NONE, |
| }; |
| std::copy(tmpAttribs, tmpAttribs + (sizeof(tmpAttribs) / sizeof(EGLint)), |
| std::back_inserter(attribs)); |
| wantedAttribute = EGL_NONE; |
| wantedAttributeValue = EGL_NONE; |
| } else { |
| // if no renderable type specified, fallback to a simplified query |
| wantedAttribute = EGL_NATIVE_VISUAL_ID; |
| wantedAttributeValue = format; |
| } |
| |
| err = selectConfigForAttribute(display, attribs.data(), wantedAttribute, wantedAttributeValue, |
| config); |
| if (err == NO_ERROR) { |
| EGLint caveat; |
| if (eglGetConfigAttrib(display, *config, EGL_CONFIG_CAVEAT, &caveat)) |
| ALOGW_IF(caveat == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!"); |
| } |
| |
| return err; |
| } |
| |
| std::unique_ptr<SkiaGLRenderEngine> SkiaGLRenderEngine::create( |
| const RenderEngineCreationArgs& args) { |
| // initialize EGL for the default display |
| EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY); |
| if (!eglInitialize(display, nullptr, nullptr)) { |
| LOG_ALWAYS_FATAL("failed to initialize EGL"); |
| } |
| |
| const auto eglVersion = eglQueryString(display, EGL_VERSION); |
| if (!eglVersion) { |
| checkGlError(__FUNCTION__, __LINE__); |
| LOG_ALWAYS_FATAL("eglQueryString(EGL_VERSION) failed"); |
| } |
| |
| const auto eglExtensions = eglQueryString(display, EGL_EXTENSIONS); |
| if (!eglExtensions) { |
| checkGlError(__FUNCTION__, __LINE__); |
| LOG_ALWAYS_FATAL("eglQueryString(EGL_EXTENSIONS) failed"); |
| } |
| |
| auto& extensions = gl::GLExtensions::getInstance(); |
| extensions.initWithEGLStrings(eglVersion, eglExtensions); |
| |
| // The code assumes that ES2 or later is available if this extension is |
| // supported. |
| EGLConfig config = EGL_NO_CONFIG_KHR; |
| if (!extensions.hasNoConfigContext()) { |
| config = chooseEglConfig(display, args.pixelFormat, /*logConfig*/ true); |
| } |
| |
| EGLContext protectedContext = EGL_NO_CONTEXT; |
| const std::optional<RenderEngine::ContextPriority> priority = createContextPriority(args); |
| if (args.enableProtectedContext && extensions.hasProtectedContent()) { |
| protectedContext = |
| createEglContext(display, config, nullptr, priority, Protection::PROTECTED); |
| ALOGE_IF(protectedContext == EGL_NO_CONTEXT, "Can't create protected context"); |
| } |
| |
| EGLContext ctxt = |
| createEglContext(display, config, protectedContext, priority, Protection::UNPROTECTED); |
| |
| // if can't create a GL context, we can only abort. |
| LOG_ALWAYS_FATAL_IF(ctxt == EGL_NO_CONTEXT, "EGLContext creation failed"); |
| |
| EGLSurface placeholder = EGL_NO_SURFACE; |
| if (!extensions.hasSurfacelessContext()) { |
| placeholder = createPlaceholderEglPbufferSurface(display, config, args.pixelFormat, |
| Protection::UNPROTECTED); |
| LOG_ALWAYS_FATAL_IF(placeholder == EGL_NO_SURFACE, "can't create placeholder pbuffer"); |
| } |
| EGLBoolean success = eglMakeCurrent(display, placeholder, placeholder, ctxt); |
| LOG_ALWAYS_FATAL_IF(!success, "can't make placeholder pbuffer current"); |
| extensions.initWithGLStrings(glGetString(GL_VENDOR), glGetString(GL_RENDERER), |
| glGetString(GL_VERSION), glGetString(GL_EXTENSIONS)); |
| |
| EGLSurface protectedPlaceholder = EGL_NO_SURFACE; |
| if (protectedContext != EGL_NO_CONTEXT && !extensions.hasSurfacelessContext()) { |
| protectedPlaceholder = createPlaceholderEglPbufferSurface(display, config, args.pixelFormat, |
| Protection::PROTECTED); |
| ALOGE_IF(protectedPlaceholder == EGL_NO_SURFACE, |
| "can't create protected placeholder pbuffer"); |
| } |
| |
| // initialize the renderer while GL is current |
| std::unique_ptr<SkiaGLRenderEngine> engine = |
| std::make_unique<SkiaGLRenderEngine>(args, display, ctxt, placeholder, protectedContext, |
| protectedPlaceholder); |
| |
| ALOGI("OpenGL ES informations:"); |
| ALOGI("vendor : %s", extensions.getVendor()); |
| ALOGI("renderer : %s", extensions.getRenderer()); |
| ALOGI("version : %s", extensions.getVersion()); |
| ALOGI("extensions: %s", extensions.getExtensions()); |
| ALOGI("GL_MAX_TEXTURE_SIZE = %zu", engine->getMaxTextureSize()); |
| ALOGI("GL_MAX_VIEWPORT_DIMS = %zu", engine->getMaxViewportDims()); |
| |
| return engine; |
| } |
| |
| std::future<void> SkiaGLRenderEngine::primeCache() { |
| Cache::primeShaderCache(this); |
| return {}; |
| } |
| |
| EGLConfig SkiaGLRenderEngine::chooseEglConfig(EGLDisplay display, int format, bool logConfig) { |
| status_t err; |
| EGLConfig config; |
| |
| // First try to get an ES3 config |
| err = selectEGLConfig(display, format, EGL_OPENGL_ES3_BIT, &config); |
| if (err != NO_ERROR) { |
| // If ES3 fails, try to get an ES2 config |
| err = selectEGLConfig(display, format, EGL_OPENGL_ES2_BIT, &config); |
| if (err != NO_ERROR) { |
| // If ES2 still doesn't work, probably because we're on the emulator. |
| // try a simplified query |
| ALOGW("no suitable EGLConfig found, trying a simpler query"); |
| err = selectEGLConfig(display, format, 0, &config); |
| if (err != NO_ERROR) { |
| // this EGL is too lame for android |
| LOG_ALWAYS_FATAL("no suitable EGLConfig found, giving up"); |
| } |
| } |
| } |
| |
| if (logConfig) { |
| // print some debugging info |
| EGLint r, g, b, a; |
| eglGetConfigAttrib(display, config, EGL_RED_SIZE, &r); |
| eglGetConfigAttrib(display, config, EGL_GREEN_SIZE, &g); |
| eglGetConfigAttrib(display, config, EGL_BLUE_SIZE, &b); |
| eglGetConfigAttrib(display, config, EGL_ALPHA_SIZE, &a); |
| ALOGI("EGL information:"); |
| ALOGI("vendor : %s", eglQueryString(display, EGL_VENDOR)); |
| ALOGI("version : %s", eglQueryString(display, EGL_VERSION)); |
| ALOGI("extensions: %s", eglQueryString(display, EGL_EXTENSIONS)); |
| ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS) ?: "Not Supported"); |
| ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, config); |
| } |
| |
| return config; |
| } |
| |
| sk_sp<SkData> SkiaGLRenderEngine::SkSLCacheMonitor::load(const SkData& key) { |
| // This "cache" does not actually cache anything. It just allows us to |
| // monitor Skia's internal cache. So this method always returns null. |
| return nullptr; |
| } |
| |
| void SkiaGLRenderEngine::SkSLCacheMonitor::store(const SkData& key, const SkData& data, |
| const SkString& description) { |
| mShadersCachedSinceLastCall++; |
| mTotalShadersCompiled++; |
| ATRACE_FORMAT("SF cache: %i shaders", mTotalShadersCompiled); |
| } |
| |
| int SkiaGLRenderEngine::reportShadersCompiled() { |
| return mSkSLCacheMonitor.totalShadersCompiled(); |
| } |
| |
| SkiaGLRenderEngine::SkiaGLRenderEngine(const RenderEngineCreationArgs& args, EGLDisplay display, |
| EGLContext ctxt, EGLSurface placeholder, |
| EGLContext protectedContext, EGLSurface protectedPlaceholder) |
| : SkiaRenderEngine(args.renderEngineType), |
| mEGLDisplay(display), |
| mEGLContext(ctxt), |
| mPlaceholderSurface(placeholder), |
| mProtectedEGLContext(protectedContext), |
| mProtectedPlaceholderSurface(protectedPlaceholder), |
| mDefaultPixelFormat(static_cast<PixelFormat>(args.pixelFormat)), |
| mUseColorManagement(args.useColorManagement) { |
| sk_sp<const GrGLInterface> glInterface(GrGLCreateNativeInterface()); |
| LOG_ALWAYS_FATAL_IF(!glInterface.get()); |
| |
| GrContextOptions options; |
| options.fDisableDriverCorrectnessWorkarounds = true; |
| options.fDisableDistanceFieldPaths = true; |
| options.fReducedShaderVariations = true; |
| options.fPersistentCache = &mSkSLCacheMonitor; |
| mGrContext = GrDirectContext::MakeGL(glInterface, options); |
| if (supportsProtectedContent()) { |
| useProtectedContext(true); |
| mProtectedGrContext = GrDirectContext::MakeGL(glInterface, options); |
| useProtectedContext(false); |
| } |
| |
| if (args.supportsBackgroundBlur) { |
| ALOGD("Background Blurs Enabled"); |
| mBlurFilter = new KawaseBlurFilter(); |
| } |
| mCapture = std::make_unique<SkiaCapture>(); |
| } |
| |
| SkiaGLRenderEngine::~SkiaGLRenderEngine() { |
| std::lock_guard<std::mutex> lock(mRenderingMutex); |
| if (mBlurFilter) { |
| delete mBlurFilter; |
| } |
| |
| mCapture = nullptr; |
| |
| mGrContext->flushAndSubmit(true); |
| mGrContext->abandonContext(); |
| |
| if (mProtectedGrContext) { |
| mProtectedGrContext->flushAndSubmit(true); |
| mProtectedGrContext->abandonContext(); |
| } |
| |
| if (mPlaceholderSurface != EGL_NO_SURFACE) { |
| eglDestroySurface(mEGLDisplay, mPlaceholderSurface); |
| } |
| if (mProtectedPlaceholderSurface != EGL_NO_SURFACE) { |
| eglDestroySurface(mEGLDisplay, mProtectedPlaceholderSurface); |
| } |
| if (mEGLContext != EGL_NO_CONTEXT) { |
| eglDestroyContext(mEGLDisplay, mEGLContext); |
| } |
| if (mProtectedEGLContext != EGL_NO_CONTEXT) { |
| eglDestroyContext(mEGLDisplay, mProtectedEGLContext); |
| } |
| eglMakeCurrent(mEGLDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT); |
| eglTerminate(mEGLDisplay); |
| eglReleaseThread(); |
| } |
| |
| bool SkiaGLRenderEngine::supportsProtectedContent() const { |
| return mProtectedEGLContext != EGL_NO_CONTEXT; |
| } |
| |
| GrDirectContext* SkiaGLRenderEngine::getActiveGrContext() const { |
| return mInProtectedContext ? mProtectedGrContext.get() : mGrContext.get(); |
| } |
| |
| void SkiaGLRenderEngine::useProtectedContext(bool useProtectedContext) { |
| if (useProtectedContext == mInProtectedContext || |
| (useProtectedContext && !supportsProtectedContent())) { |
| return; |
| } |
| |
| // release any scratch resources before switching into a new mode |
| if (getActiveGrContext()) { |
| getActiveGrContext()->purgeUnlockedResources(true); |
| } |
| |
| const EGLSurface surface = |
| useProtectedContext ? mProtectedPlaceholderSurface : mPlaceholderSurface; |
| const EGLContext context = useProtectedContext ? mProtectedEGLContext : mEGLContext; |
| |
| if (eglMakeCurrent(mEGLDisplay, surface, surface, context) == EGL_TRUE) { |
| mInProtectedContext = useProtectedContext; |
| // given that we are sharing the same thread between two GrContexts we need to |
| // make sure that the thread state is reset when switching between the two. |
| if (getActiveGrContext()) { |
| getActiveGrContext()->resetContext(); |
| } |
| } |
| } |
| |
| base::unique_fd SkiaGLRenderEngine::flush() { |
| ATRACE_CALL(); |
| if (!gl::GLExtensions::getInstance().hasNativeFenceSync()) { |
| return base::unique_fd(); |
| } |
| |
| EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_NATIVE_FENCE_ANDROID, nullptr); |
| if (sync == EGL_NO_SYNC_KHR) { |
| ALOGW("failed to create EGL native fence sync: %#x", eglGetError()); |
| return base::unique_fd(); |
| } |
| |
| // native fence fd will not be populated until flush() is done. |
| glFlush(); |
| |
| // get the fence fd |
| base::unique_fd fenceFd(eglDupNativeFenceFDANDROID(mEGLDisplay, sync)); |
| eglDestroySyncKHR(mEGLDisplay, sync); |
| if (fenceFd == EGL_NO_NATIVE_FENCE_FD_ANDROID) { |
| ALOGW("failed to dup EGL native fence sync: %#x", eglGetError()); |
| } |
| |
| return fenceFd; |
| } |
| |
| void SkiaGLRenderEngine::waitFence(base::borrowed_fd fenceFd) { |
| if (fenceFd.get() >= 0 && !waitGpuFence(fenceFd)) { |
| ATRACE_NAME("SkiaGLRenderEngine::waitFence"); |
| sync_wait(fenceFd.get(), -1); |
| } |
| } |
| |
| bool SkiaGLRenderEngine::waitGpuFence(base::borrowed_fd fenceFd) { |
| if (!gl::GLExtensions::getInstance().hasNativeFenceSync() || |
| !gl::GLExtensions::getInstance().hasWaitSync()) { |
| return false; |
| } |
| |
| // Duplicate the fence for passing to eglCreateSyncKHR. |
| base::unique_fd fenceDup(dup(fenceFd.get())); |
| if (fenceDup.get() < 0) { |
| ALOGE("failed to create duplicate fence fd: %d", fenceDup.get()); |
| return false; |
| } |
| |
| // release the fd and transfer the ownership to EGLSync |
| EGLint attribs[] = {EGL_SYNC_NATIVE_FENCE_FD_ANDROID, fenceDup.release(), EGL_NONE}; |
| EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_NATIVE_FENCE_ANDROID, attribs); |
| if (sync == EGL_NO_SYNC_KHR) { |
| ALOGE("failed to create EGL native fence sync: %#x", eglGetError()); |
| return false; |
| } |
| |
| // XXX: The spec draft is inconsistent as to whether this should return an |
| // EGLint or void. Ignore the return value for now, as it's not strictly |
| // needed. |
| eglWaitSyncKHR(mEGLDisplay, sync, 0); |
| EGLint error = eglGetError(); |
| eglDestroySyncKHR(mEGLDisplay, sync); |
| if (error != EGL_SUCCESS) { |
| ALOGE("failed to wait for EGL native fence sync: %#x", error); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static float toDegrees(uint32_t transform) { |
| switch (transform) { |
| case ui::Transform::ROT_90: |
| return 90.0; |
| case ui::Transform::ROT_180: |
| return 180.0; |
| case ui::Transform::ROT_270: |
| return 270.0; |
| default: |
| return 0.0; |
| } |
| } |
| |
| static SkColorMatrix toSkColorMatrix(const mat4& matrix) { |
| return SkColorMatrix(matrix[0][0], matrix[1][0], matrix[2][0], matrix[3][0], 0, matrix[0][1], |
| matrix[1][1], matrix[2][1], matrix[3][1], 0, matrix[0][2], matrix[1][2], |
| matrix[2][2], matrix[3][2], 0, matrix[0][3], matrix[1][3], matrix[2][3], |
| matrix[3][3], 0); |
| } |
| |
| static bool needsToneMapping(ui::Dataspace sourceDataspace, ui::Dataspace destinationDataspace) { |
| int64_t sourceTransfer = sourceDataspace & HAL_DATASPACE_TRANSFER_MASK; |
| int64_t destTransfer = destinationDataspace & HAL_DATASPACE_TRANSFER_MASK; |
| |
| // Treat unsupported dataspaces as srgb |
| if (destTransfer != HAL_DATASPACE_TRANSFER_LINEAR && |
| destTransfer != HAL_DATASPACE_TRANSFER_HLG && |
| destTransfer != HAL_DATASPACE_TRANSFER_ST2084) { |
| destTransfer = HAL_DATASPACE_TRANSFER_SRGB; |
| } |
| |
| if (sourceTransfer != HAL_DATASPACE_TRANSFER_LINEAR && |
| sourceTransfer != HAL_DATASPACE_TRANSFER_HLG && |
| sourceTransfer != HAL_DATASPACE_TRANSFER_ST2084) { |
| sourceTransfer = HAL_DATASPACE_TRANSFER_SRGB; |
| } |
| |
| const bool isSourceLinear = sourceTransfer == HAL_DATASPACE_TRANSFER_LINEAR; |
| const bool isSourceSRGB = sourceTransfer == HAL_DATASPACE_TRANSFER_SRGB; |
| const bool isDestLinear = destTransfer == HAL_DATASPACE_TRANSFER_LINEAR; |
| const bool isDestSRGB = destTransfer == HAL_DATASPACE_TRANSFER_SRGB; |
| |
| return !(isSourceLinear && isDestSRGB) && !(isSourceSRGB && isDestLinear) && |
| sourceTransfer != destTransfer; |
| } |
| |
| void SkiaGLRenderEngine::mapExternalTextureBuffer(const sp<GraphicBuffer>& buffer, |
| bool isRenderable) { |
| // Only run this if RE is running on its own thread. This way the access to GL |
| // operations is guaranteed to be happening on the same thread. |
| if (mRenderEngineType != RenderEngineType::SKIA_GL_THREADED) { |
| return; |
| } |
| // We currently don't attempt to map a buffer if the buffer contains protected content |
| // because GPU resources for protected buffers is much more limited. |
| const bool isProtectedBuffer = buffer->getUsage() & GRALLOC_USAGE_PROTECTED; |
| if (isProtectedBuffer) { |
| return; |
| } |
| ATRACE_CALL(); |
| |
| // If we were to support caching protected buffers then we will need to switch the |
| // currently bound context if we are not already using the protected context (and subsequently |
| // switch back after the buffer is cached). However, for non-protected content we can bind |
| // the texture in either GL context because they are initialized with the same share_context |
| // which allows the texture state to be shared between them. |
| auto grContext = getActiveGrContext(); |
| auto& cache = mTextureCache; |
| |
| std::lock_guard<std::mutex> lock(mRenderingMutex); |
| mGraphicBufferExternalRefs[buffer->getId()]++; |
| |
| if (const auto& iter = cache.find(buffer->getId()); iter == cache.end()) { |
| std::shared_ptr<AutoBackendTexture::LocalRef> imageTextureRef = |
| std::make_shared<AutoBackendTexture::LocalRef>(grContext, |
| buffer->toAHardwareBuffer(), |
| isRenderable, mTextureCleanupMgr); |
| cache.insert({buffer->getId(), imageTextureRef}); |
| } |
| } |
| |
| void SkiaGLRenderEngine::unmapExternalTextureBuffer(const sp<GraphicBuffer>& buffer) { |
| ATRACE_CALL(); |
| std::lock_guard<std::mutex> lock(mRenderingMutex); |
| if (const auto& iter = mGraphicBufferExternalRefs.find(buffer->getId()); |
| iter != mGraphicBufferExternalRefs.end()) { |
| if (iter->second == 0) { |
| ALOGW("Attempted to unmap GraphicBuffer <id: %" PRId64 |
| "> from RenderEngine texture, but the " |
| "ref count was already zero!", |
| buffer->getId()); |
| mGraphicBufferExternalRefs.erase(buffer->getId()); |
| return; |
| } |
| |
| iter->second--; |
| |
| // Swap contexts if needed prior to deleting this buffer |
| // See Issue 1 of |
| // https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_protected_content.txt: even |
| // when a protected context and an unprotected context are part of the same share group, |
| // protected surfaces may not be accessed by an unprotected context, implying that protected |
| // surfaces may only be freed when a protected context is active. |
| const bool inProtected = mInProtectedContext; |
| useProtectedContext(buffer->getUsage() & GRALLOC_USAGE_PROTECTED); |
| |
| if (iter->second == 0) { |
| mTextureCache.erase(buffer->getId()); |
| mGraphicBufferExternalRefs.erase(buffer->getId()); |
| } |
| |
| // Swap back to the previous context so that cached values of isProtected in SurfaceFlinger |
| // are up-to-date. |
| if (inProtected != mInProtectedContext) { |
| useProtectedContext(inProtected); |
| } |
| } |
| } |
| |
| bool SkiaGLRenderEngine::canSkipPostRenderCleanup() const { |
| std::lock_guard<std::mutex> lock(mRenderingMutex); |
| return mTextureCleanupMgr.isEmpty(); |
| } |
| |
| void SkiaGLRenderEngine::cleanupPostRender() { |
| ATRACE_CALL(); |
| std::lock_guard<std::mutex> lock(mRenderingMutex); |
| mTextureCleanupMgr.cleanup(); |
| } |
| |
| // Helper class intended to be used on the stack to ensure that texture cleanup |
| // is deferred until after this class goes out of scope. |
| class DeferTextureCleanup final { |
| public: |
| DeferTextureCleanup(AutoBackendTexture::CleanupManager& mgr) : mMgr(mgr) { |
| mMgr.setDeferredStatus(true); |
| } |
| ~DeferTextureCleanup() { mMgr.setDeferredStatus(false); } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(DeferTextureCleanup); |
| AutoBackendTexture::CleanupManager& mMgr; |
| }; |
| |
| sk_sp<SkShader> SkiaGLRenderEngine::createRuntimeEffectShader( |
| const RuntimeEffectShaderParameters& parameters) { |
| // The given surface will be stretched by HWUI via matrix transformation |
| // which gets similar results for most surfaces |
| // Determine later on if we need to leverage the stertch shader within |
| // surface flinger |
| const auto& stretchEffect = parameters.layer.stretchEffect; |
| auto shader = parameters.shader; |
| if (stretchEffect.hasEffect()) { |
| const auto targetBuffer = parameters.layer.source.buffer.buffer; |
| const auto graphicBuffer = targetBuffer ? targetBuffer->getBuffer() : nullptr; |
| if (graphicBuffer && parameters.shader) { |
| shader = mStretchShaderFactory.createSkShader(shader, stretchEffect); |
| } |
| } |
| |
| if (parameters.requiresLinearEffect) { |
| const ui::Dataspace inputDataspace = mUseColorManagement ? parameters.layer.sourceDataspace |
| : ui::Dataspace::V0_SRGB_LINEAR; |
| const ui::Dataspace outputDataspace = mUseColorManagement |
| ? parameters.display.outputDataspace |
| : ui::Dataspace::V0_SRGB_LINEAR; |
| |
| auto effect = |
| shaders::LinearEffect{.inputDataspace = inputDataspace, |
| .outputDataspace = outputDataspace, |
| .undoPremultipliedAlpha = parameters.undoPremultipliedAlpha}; |
| |
| auto effectIter = mRuntimeEffects.find(effect); |
| sk_sp<SkRuntimeEffect> runtimeEffect = nullptr; |
| if (effectIter == mRuntimeEffects.end()) { |
| runtimeEffect = buildRuntimeEffect(effect); |
| mRuntimeEffects.insert({effect, runtimeEffect}); |
| } else { |
| runtimeEffect = effectIter->second; |
| } |
| mat4 colorTransform = parameters.layer.colorTransform; |
| |
| colorTransform *= |
| mat4::scale(vec4(parameters.layerDimmingRatio, parameters.layerDimmingRatio, |
| parameters.layerDimmingRatio, 1.f)); |
| const auto targetBuffer = parameters.layer.source.buffer.buffer; |
| const auto graphicBuffer = targetBuffer ? targetBuffer->getBuffer() : nullptr; |
| const auto hardwareBuffer = graphicBuffer ? graphicBuffer->toAHardwareBuffer() : nullptr; |
| return createLinearEffectShader(parameters.shader, effect, runtimeEffect, colorTransform, |
| parameters.display.maxLuminance, |
| parameters.display.currentLuminanceNits, |
| parameters.layer.source.buffer.maxLuminanceNits, |
| hardwareBuffer, parameters.display.renderIntent); |
| } |
| return parameters.shader; |
| } |
| |
| void SkiaGLRenderEngine::initCanvas(SkCanvas* canvas, const DisplaySettings& display) { |
| if (CC_UNLIKELY(mCapture->isCaptureRunning())) { |
| // Record display settings when capture is running. |
| std::stringstream displaySettings; |
| PrintTo(display, &displaySettings); |
| // Store the DisplaySettings in additional information. |
| canvas->drawAnnotation(SkRect::MakeEmpty(), "DisplaySettings", |
| SkData::MakeWithCString(displaySettings.str().c_str())); |
| } |
| |
| // Before doing any drawing, let's make sure that we'll start at the origin of the display. |
| // Some displays don't start at 0,0 for example when we're mirroring the screen. Also, virtual |
| // displays might have different scaling when compared to the physical screen. |
| |
| canvas->clipRect(getSkRect(display.physicalDisplay)); |
| canvas->translate(display.physicalDisplay.left, display.physicalDisplay.top); |
| |
| const auto clipWidth = display.clip.width(); |
| const auto clipHeight = display.clip.height(); |
| auto rotatedClipWidth = clipWidth; |
| auto rotatedClipHeight = clipHeight; |
| // Scale is contingent on the rotation result. |
| if (display.orientation & ui::Transform::ROT_90) { |
| std::swap(rotatedClipWidth, rotatedClipHeight); |
| } |
| const auto scaleX = static_cast<SkScalar>(display.physicalDisplay.width()) / |
| static_cast<SkScalar>(rotatedClipWidth); |
| const auto scaleY = static_cast<SkScalar>(display.physicalDisplay.height()) / |
| static_cast<SkScalar>(rotatedClipHeight); |
| canvas->scale(scaleX, scaleY); |
| |
| // Canvas rotation is done by centering the clip window at the origin, rotating, translating |
| // back so that the top left corner of the clip is at (0, 0). |
| canvas->translate(rotatedClipWidth / 2, rotatedClipHeight / 2); |
| canvas->rotate(toDegrees(display.orientation)); |
| canvas->translate(-clipWidth / 2, -clipHeight / 2); |
| canvas->translate(-display.clip.left, -display.clip.top); |
| } |
| |
| class AutoSaveRestore { |
| public: |
| AutoSaveRestore(SkCanvas* canvas) : mCanvas(canvas) { mSaveCount = canvas->save(); } |
| ~AutoSaveRestore() { restore(); } |
| void replace(SkCanvas* canvas) { |
| mCanvas = canvas; |
| mSaveCount = canvas->save(); |
| } |
| void restore() { |
| if (mCanvas) { |
| mCanvas->restoreToCount(mSaveCount); |
| mCanvas = nullptr; |
| } |
| } |
| |
| private: |
| SkCanvas* mCanvas; |
| int mSaveCount; |
| }; |
| |
| static SkRRect getBlurRRect(const BlurRegion& region) { |
| const auto rect = SkRect::MakeLTRB(region.left, region.top, region.right, region.bottom); |
| const SkVector radii[4] = {SkVector::Make(region.cornerRadiusTL, region.cornerRadiusTL), |
| SkVector::Make(region.cornerRadiusTR, region.cornerRadiusTR), |
| SkVector::Make(region.cornerRadiusBR, region.cornerRadiusBR), |
| SkVector::Make(region.cornerRadiusBL, region.cornerRadiusBL)}; |
| SkRRect roundedRect; |
| roundedRect.setRectRadii(rect, radii); |
| return roundedRect; |
| } |
| |
| // Arbitrary default margin which should be close enough to zero. |
| constexpr float kDefaultMargin = 0.0001f; |
| static bool equalsWithinMargin(float expected, float value, float margin = kDefaultMargin) { |
| LOG_ALWAYS_FATAL_IF(margin < 0.f, "Margin is negative!"); |
| return std::abs(expected - value) < margin; |
| } |
| |
| namespace { |
| template <typename T> |
| void logSettings(const T& t) { |
| std::stringstream stream; |
| PrintTo(t, &stream); |
| auto string = stream.str(); |
| size_t pos = 0; |
| // Perfetto ignores \n, so split up manually into separate ALOGD statements. |
| const size_t size = string.size(); |
| while (pos < size) { |
| const size_t end = std::min(string.find("\n", pos), size); |
| ALOGD("%s", string.substr(pos, end - pos).c_str()); |
| pos = end + 1; |
| } |
| } |
| } // namespace |
| |
| void SkiaGLRenderEngine::drawLayersInternal( |
| const std::shared_ptr<std::promise<RenderEngineResult>>&& resultPromise, |
| const DisplaySettings& display, const std::vector<LayerSettings>& layers, |
| const std::shared_ptr<ExternalTexture>& buffer, const bool /*useFramebufferCache*/, |
| base::unique_fd&& bufferFence) { |
| ATRACE_NAME("SkiaGL::drawLayers"); |
| |
| std::lock_guard<std::mutex> lock(mRenderingMutex); |
| if (layers.empty()) { |
| ALOGV("Drawing empty layer stack"); |
| resultPromise->set_value({NO_ERROR, base::unique_fd()}); |
| return; |
| } |
| |
| if (buffer == nullptr) { |
| ALOGE("No output buffer provided. Aborting GPU composition."); |
| resultPromise->set_value({BAD_VALUE, base::unique_fd()}); |
| return; |
| } |
| |
| validateOutputBufferUsage(buffer->getBuffer()); |
| |
| auto grContext = getActiveGrContext(); |
| auto& cache = mTextureCache; |
| |
| // any AutoBackendTexture deletions will now be deferred until cleanupPostRender is called |
| DeferTextureCleanup dtc(mTextureCleanupMgr); |
| |
| std::shared_ptr<AutoBackendTexture::LocalRef> surfaceTextureRef; |
| if (const auto& it = cache.find(buffer->getBuffer()->getId()); it != cache.end()) { |
| surfaceTextureRef = it->second; |
| } else { |
| surfaceTextureRef = |
| std::make_shared<AutoBackendTexture::LocalRef>(grContext, |
| buffer->getBuffer() |
| ->toAHardwareBuffer(), |
| true, mTextureCleanupMgr); |
| } |
| |
| // wait on the buffer to be ready to use prior to using it |
| waitFence(bufferFence); |
| |
| const ui::Dataspace dstDataspace = |
| mUseColorManagement ? display.outputDataspace : ui::Dataspace::V0_SRGB_LINEAR; |
| sk_sp<SkSurface> dstSurface = surfaceTextureRef->getOrCreateSurface(dstDataspace, grContext); |
| |
| SkCanvas* dstCanvas = mCapture->tryCapture(dstSurface.get()); |
| if (dstCanvas == nullptr) { |
| ALOGE("Cannot acquire canvas from Skia."); |
| resultPromise->set_value({BAD_VALUE, base::unique_fd()}); |
| return; |
| } |
| |
| // setup color filter if necessary |
| sk_sp<SkColorFilter> displayColorTransform; |
| if (display.colorTransform != mat4() && !display.deviceHandlesColorTransform) { |
| displayColorTransform = SkColorFilters::Matrix(toSkColorMatrix(display.colorTransform)); |
| } |
| const bool ctModifiesAlpha = |
| displayColorTransform && !displayColorTransform->isAlphaUnchanged(); |
| |
| // Find the max layer white point to determine the max luminance of the scene... |
| const float maxLayerWhitePoint = std::transform_reduce( |
| layers.cbegin(), layers.cend(), 0.f, |
| [](float left, float right) { return std::max(left, right); }, |
| [&](const auto& l) { return l.whitePointNits; }); |
| |
| // ...and compute the dimming ratio if dimming is requested |
| const float displayDimmingRatio = display.targetLuminanceNits > 0.f && |
| maxLayerWhitePoint > 0.f && display.targetLuminanceNits > maxLayerWhitePoint |
| ? maxLayerWhitePoint / display.targetLuminanceNits |
| : 1.f; |
| |
| // Find if any layers have requested blur, we'll use that info to decide when to render to an |
| // offscreen buffer and when to render to the native buffer. |
| sk_sp<SkSurface> activeSurface(dstSurface); |
| SkCanvas* canvas = dstCanvas; |
| SkiaCapture::OffscreenState offscreenCaptureState; |
| const LayerSettings* blurCompositionLayer = nullptr; |
| if (mBlurFilter) { |
| bool requiresCompositionLayer = false; |
| for (const auto& layer : layers) { |
| // if the layer doesn't have blur or it is not visible then continue |
| if (!layerHasBlur(layer, ctModifiesAlpha)) { |
| continue; |
| } |
| if (layer.backgroundBlurRadius > 0 && |
| layer.backgroundBlurRadius < mBlurFilter->getMaxCrossFadeRadius()) { |
| requiresCompositionLayer = true; |
| } |
| for (auto region : layer.blurRegions) { |
| if (region.blurRadius < mBlurFilter->getMaxCrossFadeRadius()) { |
| requiresCompositionLayer = true; |
| } |
| } |
| if (requiresCompositionLayer) { |
| activeSurface = dstSurface->makeSurface(dstSurface->imageInfo()); |
| canvas = mCapture->tryOffscreenCapture(activeSurface.get(), &offscreenCaptureState); |
| blurCompositionLayer = &layer; |
| break; |
| } |
| } |
| } |
| |
| AutoSaveRestore surfaceAutoSaveRestore(canvas); |
| // Clear the entire canvas with a transparent black to prevent ghost images. |
| canvas->clear(SK_ColorTRANSPARENT); |
| initCanvas(canvas, display); |
| |
| if (kPrintLayerSettings) { |
| logSettings(display); |
| } |
| for (const auto& layer : layers) { |
| ATRACE_FORMAT("DrawLayer: %s", layer.name.c_str()); |
| |
| if (kPrintLayerSettings) { |
| logSettings(layer); |
| } |
| |
| sk_sp<SkImage> blurInput; |
| if (blurCompositionLayer == &layer) { |
| LOG_ALWAYS_FATAL_IF(activeSurface == dstSurface); |
| LOG_ALWAYS_FATAL_IF(canvas == dstCanvas); |
| |
| // save a snapshot of the activeSurface to use as input to the blur shaders |
| blurInput = activeSurface->makeImageSnapshot(); |
| |
| // blit the offscreen framebuffer into the destination AHB, but only |
| // if there are blur regions. backgroundBlurRadius blurs the entire |
| // image below, so it can skip this step. |
| if (layer.blurRegions.size()) { |
| SkPaint paint; |
| paint.setBlendMode(SkBlendMode::kSrc); |
| if (CC_UNLIKELY(mCapture->isCaptureRunning())) { |
| uint64_t id = mCapture->endOffscreenCapture(&offscreenCaptureState); |
| dstCanvas->drawAnnotation(SkRect::Make(dstCanvas->imageInfo().dimensions()), |
| String8::format("SurfaceID|%" PRId64, id).c_str(), |
| nullptr); |
| dstCanvas->drawImage(blurInput, 0, 0, SkSamplingOptions(), &paint); |
| } else { |
| activeSurface->draw(dstCanvas, 0, 0, SkSamplingOptions(), &paint); |
| } |
| } |
| |
| // assign dstCanvas to canvas and ensure that the canvas state is up to date |
| canvas = dstCanvas; |
| surfaceAutoSaveRestore.replace(canvas); |
| initCanvas(canvas, display); |
| |
| LOG_ALWAYS_FATAL_IF(activeSurface->getCanvas()->getSaveCount() != |
| dstSurface->getCanvas()->getSaveCount()); |
| LOG_ALWAYS_FATAL_IF(activeSurface->getCanvas()->getTotalMatrix() != |
| dstSurface->getCanvas()->getTotalMatrix()); |
| |
| // assign dstSurface to activeSurface |
| activeSurface = dstSurface; |
| } |
| |
| SkAutoCanvasRestore layerAutoSaveRestore(canvas, true); |
| if (CC_UNLIKELY(mCapture->isCaptureRunning())) { |
| // Record the name of the layer if the capture is running. |
| std::stringstream layerSettings; |
| PrintTo(layer, &layerSettings); |
| // Store the LayerSettings in additional information. |
| canvas->drawAnnotation(SkRect::MakeEmpty(), layer.name.c_str(), |
| SkData::MakeWithCString(layerSettings.str().c_str())); |
| } |
| // Layers have a local transform that should be applied to them |
| canvas->concat(getSkM44(layer.geometry.positionTransform).asM33()); |
| |
| const auto [bounds, roundRectClip] = |
| getBoundsAndClip(layer.geometry.boundaries, layer.geometry.roundedCornersCrop, |
| layer.geometry.roundedCornersRadius); |
| if (mBlurFilter && layerHasBlur(layer, ctModifiesAlpha)) { |
| std::unordered_map<uint32_t, sk_sp<SkImage>> cachedBlurs; |
| |
| // if multiple layers have blur, then we need to take a snapshot now because |
| // only the lowest layer will have blurImage populated earlier |
| if (!blurInput) { |
| blurInput = activeSurface->makeImageSnapshot(); |
| } |
| // rect to be blurred in the coordinate space of blurInput |
| const auto blurRect = canvas->getTotalMatrix().mapRect(bounds.rect()); |
| |
| // if the clip needs to be applied then apply it now and make sure |
| // it is restored before we attempt to draw any shadows. |
| SkAutoCanvasRestore acr(canvas, true); |
| if (!roundRectClip.isEmpty()) { |
| canvas->clipRRect(roundRectClip, true); |
| } |
| |
| // TODO(b/182216890): Filter out empty layers earlier |
| if (blurRect.width() > 0 && blurRect.height() > 0) { |
| if (layer.backgroundBlurRadius > 0) { |
| ATRACE_NAME("BackgroundBlur"); |
| auto blurredImage = mBlurFilter->generate(grContext, layer.backgroundBlurRadius, |
| blurInput, blurRect); |
| |
| cachedBlurs[layer.backgroundBlurRadius] = blurredImage; |
| |
| mBlurFilter->drawBlurRegion(canvas, bounds, layer.backgroundBlurRadius, 1.0f, |
| blurRect, blurredImage, blurInput); |
| } |
| |
| canvas->concat(getSkM44(layer.blurRegionTransform).asM33()); |
| for (auto region : layer.blurRegions) { |
| if (cachedBlurs[region.blurRadius] == nullptr) { |
| ATRACE_NAME("BlurRegion"); |
| cachedBlurs[region.blurRadius] = |
| mBlurFilter->generate(grContext, region.blurRadius, blurInput, |
| blurRect); |
| } |
| |
| mBlurFilter->drawBlurRegion(canvas, getBlurRRect(region), region.blurRadius, |
| region.alpha, blurRect, |
| cachedBlurs[region.blurRadius], blurInput); |
| } |
| } |
| } |
| |
| if (layer.shadow.length > 0) { |
| // This would require a new parameter/flag to SkShadowUtils::DrawShadow |
| LOG_ALWAYS_FATAL_IF(layer.disableBlending, "Cannot disableBlending with a shadow"); |
| |
| SkRRect shadowBounds, shadowClip; |
| if (layer.geometry.boundaries == layer.shadow.boundaries) { |
| shadowBounds = bounds; |
| shadowClip = roundRectClip; |
| } else { |
| std::tie(shadowBounds, shadowClip) = |
| getBoundsAndClip(layer.shadow.boundaries, layer.geometry.roundedCornersCrop, |
| layer.geometry.roundedCornersRadius); |
| } |
| |
| // Technically, if bounds is a rect and roundRectClip is not empty, |
| // it means that the bounds and roundedCornersCrop were different |
| // enough that we should intersect them to find the proper shadow. |
| // In practice, this often happens when the two rectangles appear to |
| // not match due to rounding errors. Draw the rounded version, which |
| // looks more like the intent. |
| const auto& rrect = |
| shadowBounds.isRect() && !shadowClip.isEmpty() ? shadowClip : shadowBounds; |
| drawShadow(canvas, rrect, layer.shadow); |
| } |
| |
| const float layerDimmingRatio = layer.whitePointNits <= 0.f |
| ? displayDimmingRatio |
| : (layer.whitePointNits / maxLayerWhitePoint) * displayDimmingRatio; |
| |
| const bool dimInLinearSpace = display.dimmingStage != |
| aidl::android::hardware::graphics::composer3::DimmingStage::GAMMA_OETF; |
| |
| const bool requiresLinearEffect = layer.colorTransform != mat4() || |
| (mUseColorManagement && |
| needsToneMapping(layer.sourceDataspace, display.outputDataspace)) || |
| (dimInLinearSpace && !equalsWithinMargin(1.f, layerDimmingRatio)); |
| |
| // quick abort from drawing the remaining portion of the layer |
| if (layer.skipContentDraw || |
| (layer.alpha == 0 && !requiresLinearEffect && !layer.disableBlending && |
| (!displayColorTransform || displayColorTransform->isAlphaUnchanged()))) { |
| continue; |
| } |
| |
| // If we need to map to linear space or color management is disabled, then mark the source |
| // image with the same colorspace as the destination surface so that Skia's color |
| // management is a no-op. |
| const ui::Dataspace layerDataspace = (!mUseColorManagement || requiresLinearEffect) |
| ? dstDataspace |
| : layer.sourceDataspace; |
| |
| SkPaint paint; |
| if (layer.source.buffer.buffer) { |
| ATRACE_NAME("DrawImage"); |
| validateInputBufferUsage(layer.source.buffer.buffer->getBuffer()); |
| const auto& item = layer.source.buffer; |
| std::shared_ptr<AutoBackendTexture::LocalRef> imageTextureRef = nullptr; |
| |
| if (const auto& iter = cache.find(item.buffer->getBuffer()->getId()); |
| iter != cache.end()) { |
| imageTextureRef = iter->second; |
| } else { |
| // If we didn't find the image in the cache, then create a local ref but don't cache |
| // it. If we're using skia, we're guaranteed to run on a dedicated GPU thread so if |
| // we didn't find anything in the cache then we intentionally did not cache this |
| // buffer's resources. |
| imageTextureRef = std::make_shared< |
| AutoBackendTexture::LocalRef>(grContext, |
| item.buffer->getBuffer()->toAHardwareBuffer(), |
| false, mTextureCleanupMgr); |
| } |
| |
| // if the layer's buffer has a fence, then we must must respect the fence prior to using |
| // the buffer. |
| if (layer.source.buffer.fence != nullptr) { |
| waitFence(layer.source.buffer.fence->get()); |
| } |
| |
| // isOpaque means we need to ignore the alpha in the image, |
| // replacing it with the alpha specified by the LayerSettings. See |
| // https://developer.android.com/reference/android/view/SurfaceControl.Builder#setOpaque(boolean) |
| // The proper way to do this is to use an SkColorType that ignores |
| // alpha, like kRGB_888x_SkColorType, and that is used if the |
| // incoming image is kRGBA_8888_SkColorType. However, the incoming |
| // image may be kRGBA_F16_SkColorType, for which there is no RGBX |
| // SkColorType, or kRGBA_1010102_SkColorType, for which we have |
| // kRGB_101010x_SkColorType, but it is not yet supported as a source |
| // on the GPU. (Adding both is tracked in skbug.com/12048.) In the |
| // meantime, we'll use a workaround that works unless we need to do |
| // any color conversion. The workaround requires that we pretend the |
| // image is already premultiplied, so that we do not premultiply it |
| // before applying SkBlendMode::kPlus. |
| const bool useIsOpaqueWorkaround = item.isOpaque && |
| (imageTextureRef->colorType() == kRGBA_1010102_SkColorType || |
| imageTextureRef->colorType() == kRGBA_F16_SkColorType); |
| const auto alphaType = useIsOpaqueWorkaround ? kPremul_SkAlphaType |
| : item.isOpaque ? kOpaque_SkAlphaType |
| : item.usePremultipliedAlpha ? kPremul_SkAlphaType |
| : kUnpremul_SkAlphaType; |
| sk_sp<SkImage> image = imageTextureRef->makeImage(layerDataspace, alphaType, grContext); |
| |
| auto texMatrix = getSkM44(item.textureTransform).asM33(); |
| // textureTansform was intended to be passed directly into a shader, so when |
| // building the total matrix with the textureTransform we need to first |
| // normalize it, then apply the textureTransform, then scale back up. |
| texMatrix.preScale(1.0f / bounds.width(), 1.0f / bounds.height()); |
| texMatrix.postScale(image->width(), image->height()); |
| |
| SkMatrix matrix; |
| if (!texMatrix.invert(&matrix)) { |
| matrix = texMatrix; |
| } |
| // The shader does not respect the translation, so we add it to the texture |
| // transform for the SkImage. This will make sure that the correct layer contents |
| // are drawn in the correct part of the screen. |
| matrix.postTranslate(bounds.rect().fLeft, bounds.rect().fTop); |
| |
| sk_sp<SkShader> shader; |
| |
| if (layer.source.buffer.useTextureFiltering) { |
| shader = image->makeShader(SkTileMode::kClamp, SkTileMode::kClamp, |
| SkSamplingOptions( |
| {SkFilterMode::kLinear, SkMipmapMode::kNone}), |
| &matrix); |
| } else { |
| shader = image->makeShader(SkSamplingOptions(), matrix); |
| } |
| |
| if (useIsOpaqueWorkaround) { |
| shader = SkShaders::Blend(SkBlendMode::kPlus, shader, |
| SkShaders::Color(SkColors::kBlack, |
| toSkColorSpace(layerDataspace))); |
| } |
| |
| paint.setShader(createRuntimeEffectShader( |
| RuntimeEffectShaderParameters{.shader = shader, |
| .layer = layer, |
| .display = display, |
| .undoPremultipliedAlpha = !item.isOpaque && |
| item.usePremultipliedAlpha, |
| .requiresLinearEffect = requiresLinearEffect, |
| .layerDimmingRatio = dimInLinearSpace |
| ? layerDimmingRatio |
| : 1.f})); |
| |
| // Turn on dithering when dimming beyond this (arbitrary) threshold... |
| static constexpr float kDimmingThreshold = 0.2f; |
| // ...or we're rendering an HDR layer down to an 8-bit target |
| // Most HDR standards require at least 10-bits of color depth for source content, so we |
| // can just extract the transfer function rather than dig into precise gralloc layout. |
| // Furthermore, we can assume that the only 8-bit target we support is RGBA8888. |
| const bool requiresDownsample = isHdrDataspace(layer.sourceDataspace) && |
| buffer->getPixelFormat() == PIXEL_FORMAT_RGBA_8888; |
| if (layerDimmingRatio <= kDimmingThreshold || requiresDownsample) { |
| paint.setDither(true); |
| } |
| paint.setAlphaf(layer.alpha); |
| |
| if (imageTextureRef->colorType() == kAlpha_8_SkColorType) { |
| LOG_ALWAYS_FATAL_IF(layer.disableBlending, "Cannot disableBlending with A8"); |
| |
| // SysUI creates the alpha layer as a coverage layer, which is |
| // appropriate for the DPU. Use a color matrix to convert it to |
| // a mask. |
| // TODO (b/219525258): Handle input as a mask. |
| // |
| // The color matrix will convert A8 pixels with no alpha to |
| // black, as described by this vector. If the display handles |
| // the color transform, we need to invert it to find the color |
| // that will result in black after the DPU applies the transform. |
| SkV4 black{0.0f, 0.0f, 0.0f, 1.0f}; // r, g, b, a |
| if (display.colorTransform != mat4() && display.deviceHandlesColorTransform) { |
| SkM44 colorSpaceMatrix = getSkM44(display.colorTransform); |
| if (colorSpaceMatrix.invert(&colorSpaceMatrix)) { |
| black = colorSpaceMatrix * black; |
| } else { |
| // We'll just have to use 0,0,0 as black, which should |
| // be close to correct. |
| ALOGI("Could not invert colorTransform!"); |
| } |
| } |
| SkColorMatrix colorMatrix(0, 0, 0, 0, black[0], |
| 0, 0, 0, 0, black[1], |
| 0, 0, 0, 0, black[2], |
| 0, 0, 0, -1, 1); |
| if (display.colorTransform != mat4() && !display.deviceHandlesColorTransform) { |
| // On the other hand, if the device doesn't handle it, we |
| // have to apply it ourselves. |
| colorMatrix.postConcat(toSkColorMatrix(display.colorTransform)); |
| } |
| paint.setColorFilter(SkColorFilters::Matrix(colorMatrix)); |
| } |
| } else { |
| ATRACE_NAME("DrawColor"); |
| const auto color = layer.source.solidColor; |
| sk_sp<SkShader> shader = SkShaders::Color(SkColor4f{.fR = color.r, |
| .fG = color.g, |
| .fB = color.b, |
| .fA = layer.alpha}, |
| toSkColorSpace(layerDataspace)); |
| paint.setShader(createRuntimeEffectShader( |
| RuntimeEffectShaderParameters{.shader = shader, |
| .layer = layer, |
| .display = display, |
| .undoPremultipliedAlpha = false, |
| .requiresLinearEffect = requiresLinearEffect, |
| .layerDimmingRatio = layerDimmingRatio})); |
| } |
| |
| if (layer.disableBlending) { |
| paint.setBlendMode(SkBlendMode::kSrc); |
| } |
| |
| // An A8 buffer will already have the proper color filter attached to |
| // its paint, including the displayColorTransform as needed. |
| if (!paint.getColorFilter()) { |
| if (!dimInLinearSpace && !equalsWithinMargin(1.0, layerDimmingRatio)) { |
| // If we don't dim in linear space, then when we gamma correct the dimming ratio we |
| // can assume a gamma 2.2 transfer function. |
| static constexpr float kInverseGamma22 = 1.f / 2.2f; |
| const auto gammaCorrectedDimmingRatio = |
| std::pow(layerDimmingRatio, kInverseGamma22); |
| auto dimmingMatrix = |
| mat4::scale(vec4(gammaCorrectedDimmingRatio, gammaCorrectedDimmingRatio, |
| gammaCorrectedDimmingRatio, 1.f)); |
| |
| const auto colorFilter = |
| SkColorFilters::Matrix(toSkColorMatrix(std::move(dimmingMatrix))); |
| paint.setColorFilter(displayColorTransform |
| ? displayColorTransform->makeComposed(colorFilter) |
| : colorFilter); |
| } else { |
| paint.setColorFilter(displayColorTransform); |
| } |
| } |
| |
| if (!roundRectClip.isEmpty()) { |
| canvas->clipRRect(roundRectClip, true); |
| } |
| |
| if (!bounds.isRect()) { |
| paint.setAntiAlias(true); |
| canvas->drawRRect(bounds, paint); |
| } else { |
| canvas->drawRect(bounds.rect(), paint); |
| } |
| if (kFlushAfterEveryLayer) { |
| ATRACE_NAME("flush surface"); |
| activeSurface->flush(); |
| } |
| } |
| surfaceAutoSaveRestore.restore(); |
| mCapture->endCapture(); |
| { |
| ATRACE_NAME("flush surface"); |
| LOG_ALWAYS_FATAL_IF(activeSurface != dstSurface); |
| activeSurface->flush(); |
| } |
| |
| base::unique_fd drawFence = flush(); |
| |
| // If flush failed or we don't support native fences, we need to force the |
| // gl command stream to be executed. |
| bool requireSync = drawFence.get() < 0; |
| if (requireSync) { |
| ATRACE_BEGIN("Submit(sync=true)"); |
| } else { |
| ATRACE_BEGIN("Submit(sync=false)"); |
| } |
| bool success = grContext->submit(requireSync); |
| ATRACE_END(); |
| if (!success) { |
| ALOGE("Failed to flush RenderEngine commands"); |
| // Chances are, something illegal happened (either the caller passed |
| // us bad parameters, or we messed up our shader generation). |
| resultPromise->set_value({INVALID_OPERATION, std::move(drawFence)}); |
| return; |
| } |
| |
| // checkErrors(); |
| resultPromise->set_value({NO_ERROR, std::move(drawFence)}); |
| return; |
| } |
| |
| inline SkRect SkiaGLRenderEngine::getSkRect(const FloatRect& rect) { |
| return SkRect::MakeLTRB(rect.left, rect.top, rect.right, rect.bottom); |
| } |
| |
| inline SkRect SkiaGLRenderEngine::getSkRect(const Rect& rect) { |
| return SkRect::MakeLTRB(rect.left, rect.top, rect.right, rect.bottom); |
| } |
| |
| /** |
| * Verifies that common, simple bounds + clip combinations can be converted into |
| * a single RRect draw call returning true if possible. If true the radii parameter |
| * will be filled with the correct radii values that combined with bounds param will |
| * produce the insected roundRect. If false, the returned state of the radii param is undefined. |
| */ |
| static bool intersectionIsRoundRect(const SkRect& bounds, const SkRect& crop, |
| const SkRect& insetCrop, float cornerRadius, |
| SkVector radii[4]) { |
| const bool leftEqual = bounds.fLeft == crop.fLeft; |
| const bool topEqual = bounds.fTop == crop.fTop; |
| const bool rightEqual = bounds.fRight == crop.fRight; |
| const bool bottomEqual = bounds.fBottom == crop.fBottom; |
| |
| // In the event that the corners of the bounds only partially align with the crop we |
| // need to ensure that the resulting shape can still be represented as a round rect. |
| // In particular the round rect implementation will scale the value of all corner radii |
| // if the sum of the radius along any edge is greater than the length of that edge. |
| // See https://www.w3.org/TR/css-backgrounds-3/#corner-overlap |
| const bool requiredWidth = bounds.width() > (cornerRadius * 2); |
| const bool requiredHeight = bounds.height() > (cornerRadius * 2); |
| if (!requiredWidth || !requiredHeight) { |
| return false; |
| } |
| |
| // Check each cropped corner to ensure that it exactly matches the crop or its corner is |
| // contained within the cropped shape and does not need rounded. |
| // compute the UpperLeft corner radius |
| if (leftEqual && topEqual) { |
| radii[0].set(cornerRadius, cornerRadius); |
| } else if ((leftEqual && bounds.fTop >= insetCrop.fTop) || |
| (topEqual && bounds.fLeft >= insetCrop.fLeft)) { |
| radii[0].set(0, 0); |
| } else { |
| return false; |
| } |
| // compute the UpperRight corner radius |
| if (rightEqual && topEqual) { |
| radii[1].set(cornerRadius, cornerRadius); |
| } else if ((rightEqual && bounds.fTop >= insetCrop.fTop) || |
| (topEqual && bounds.fRight <= insetCrop.fRight)) { |
| radii[1].set(0, 0); |
| } else { |
| return false; |
| } |
| // compute the BottomRight corner radius |
| if (rightEqual && bottomEqual) { |
| radii[2].set(cornerRadius, cornerRadius); |
| } else if ((rightEqual && bounds.fBottom <= insetCrop.fBottom) || |
| (bottomEqual && bounds.fRight <= insetCrop.fRight)) { |
| radii[2].set(0, 0); |
| } else { |
| return false; |
| } |
| // compute the BottomLeft corner radius |
| if (leftEqual && bottomEqual) { |
| radii[3].set(cornerRadius, cornerRadius); |
| } else if ((leftEqual && bounds.fBottom <= insetCrop.fBottom) || |
| (bottomEqual && bounds.fLeft >= insetCrop.fLeft)) { |
| radii[3].set(0, 0); |
| } else { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| inline std::pair<SkRRect, SkRRect> SkiaGLRenderEngine::getBoundsAndClip(const FloatRect& boundsRect, |
| const FloatRect& cropRect, |
| const float cornerRadius) { |
| const SkRect bounds = getSkRect(boundsRect); |
| const SkRect crop = getSkRect(cropRect); |
| |
| SkRRect clip; |
| if (cornerRadius > 0) { |
| // it the crop and the bounds are equivalent or there is no crop then we don't need a clip |
| if (bounds == crop || crop.isEmpty()) { |
| return {SkRRect::MakeRectXY(bounds, cornerRadius, cornerRadius), clip}; |
| } |
| |
| // This makes an effort to speed up common, simple bounds + clip combinations by |
| // converting them to a single RRect draw. It is possible there are other cases |
| // that can be converted. |
| if (crop.contains(bounds)) { |
| const auto insetCrop = crop.makeInset(cornerRadius, cornerRadius); |
| if (insetCrop.contains(bounds)) { |
| return {SkRRect::MakeRect(bounds), clip}; // clip is empty - no rounding required |
| } |
| |
| SkVector radii[4]; |
| if (intersectionIsRoundRect(bounds, crop, insetCrop, cornerRadius, radii)) { |
| SkRRect intersectionBounds; |
| intersectionBounds.setRectRadii(bounds, radii); |
| return {intersectionBounds, clip}; |
| } |
| } |
| |
| // we didn't hit any of our fast paths so set the clip to the cropRect |
| clip.setRectXY(crop, cornerRadius, cornerRadius); |
| } |
| |
| // if we hit this point then we either don't have rounded corners or we are going to rely |
| // on the clip to round the corners for us |
| return {SkRRect::MakeRect(bounds), clip}; |
| } |
| |
| inline bool SkiaGLRenderEngine::layerHasBlur(const LayerSettings& layer, |
| bool colorTransformModifiesAlpha) { |
| if (layer.backgroundBlurRadius > 0 || layer.blurRegions.size()) { |
| // return false if the content is opaque and would therefore occlude the blur |
| const bool opaqueContent = !layer.source.buffer.buffer || layer.source.buffer.isOpaque; |
| const bool opaqueAlpha = layer.alpha == 1.0f && !colorTransformModifiesAlpha; |
| return layer.skipContentDraw || !(opaqueContent && opaqueAlpha); |
| } |
| return false; |
| } |
| |
| inline SkColor SkiaGLRenderEngine::getSkColor(const vec4& color) { |
| return SkColorSetARGB(color.a * 255, color.r * 255, color.g * 255, color.b * 255); |
| } |
| |
| inline SkM44 SkiaGLRenderEngine::getSkM44(const mat4& matrix) { |
| return SkM44(matrix[0][0], matrix[1][0], matrix[2][0], matrix[3][0], |
| matrix[0][1], matrix[1][1], matrix[2][1], matrix[3][1], |
| matrix[0][2], matrix[1][2], matrix[2][2], matrix[3][2], |
| matrix[0][3], matrix[1][3], matrix[2][3], matrix[3][3]); |
| } |
| |
| inline SkPoint3 SkiaGLRenderEngine::getSkPoint3(const vec3& vector) { |
| return SkPoint3::Make(vector.x, vector.y, vector.z); |
| } |
| |
| size_t SkiaGLRenderEngine::getMaxTextureSize() const { |
| return mGrContext->maxTextureSize(); |
| } |
| |
| size_t SkiaGLRenderEngine::getMaxViewportDims() const { |
| return mGrContext->maxRenderTargetSize(); |
| } |
| |
| void SkiaGLRenderEngine::drawShadow(SkCanvas* canvas, const SkRRect& casterRRect, |
| const ShadowSettings& settings) { |
| ATRACE_CALL(); |
| const float casterZ = settings.length / 2.0f; |
| const auto flags = |
| settings.casterIsTranslucent ? kTransparentOccluder_ShadowFlag : kNone_ShadowFlag; |
| |
| SkShadowUtils::DrawShadow(canvas, SkPath::RRect(casterRRect), SkPoint3::Make(0, 0, casterZ), |
| getSkPoint3(settings.lightPos), settings.lightRadius, |
| getSkColor(settings.ambientColor), getSkColor(settings.spotColor), |
| flags); |
| } |
| |
| EGLContext SkiaGLRenderEngine::createEglContext(EGLDisplay display, EGLConfig config, |
| EGLContext shareContext, |
| std::optional<ContextPriority> contextPriority, |
| Protection protection) { |
| EGLint renderableType = 0; |
| if (config == EGL_NO_CONFIG_KHR) { |
| renderableType = EGL_OPENGL_ES3_BIT; |
| } else if (!eglGetConfigAttrib(display, config, EGL_RENDERABLE_TYPE, &renderableType)) { |
| LOG_ALWAYS_FATAL("can't query EGLConfig RENDERABLE_TYPE"); |
| } |
| EGLint contextClientVersion = 0; |
| if (renderableType & EGL_OPENGL_ES3_BIT) { |
| contextClientVersion = 3; |
| } else if (renderableType & EGL_OPENGL_ES2_BIT) { |
| contextClientVersion = 2; |
| } else if (renderableType & EGL_OPENGL_ES_BIT) { |
| contextClientVersion = 1; |
| } else { |
| LOG_ALWAYS_FATAL("no supported EGL_RENDERABLE_TYPEs"); |
| } |
| |
| std::vector<EGLint> contextAttributes; |
| contextAttributes.reserve(7); |
| contextAttributes.push_back(EGL_CONTEXT_CLIENT_VERSION); |
| contextAttributes.push_back(contextClientVersion); |
| if (contextPriority) { |
| contextAttributes.push_back(EGL_CONTEXT_PRIORITY_LEVEL_IMG); |
| switch (*contextPriority) { |
| case ContextPriority::REALTIME: |
| contextAttributes.push_back(EGL_CONTEXT_PRIORITY_REALTIME_NV); |
| break; |
| case ContextPriority::MEDIUM: |
| contextAttributes.push_back(EGL_CONTEXT_PRIORITY_MEDIUM_IMG); |
| break; |
| case ContextPriority::LOW: |
| contextAttributes.push_back(EGL_CONTEXT_PRIORITY_LOW_IMG); |
| break; |
| case ContextPriority::HIGH: |
| default: |
| contextAttributes.push_back(EGL_CONTEXT_PRIORITY_HIGH_IMG); |
| break; |
| } |
| } |
| if (protection == Protection::PROTECTED) { |
| contextAttributes.push_back(EGL_PROTECTED_CONTENT_EXT); |
| contextAttributes.push_back(EGL_TRUE); |
| } |
| contextAttributes.push_back(EGL_NONE); |
| |
| EGLContext context = eglCreateContext(display, config, shareContext, contextAttributes.data()); |
| |
| if (contextClientVersion == 3 && context == EGL_NO_CONTEXT) { |
| // eglGetConfigAttrib indicated we can create GLES 3 context, but we failed, thus |
| // EGL_NO_CONTEXT so that we can abort. |
| if (config != EGL_NO_CONFIG_KHR) { |
| return context; |
| } |
| // If |config| is EGL_NO_CONFIG_KHR, we speculatively try to create GLES 3 context, so we |
| // should try to fall back to GLES 2. |
| contextAttributes[1] = 2; |
| context = eglCreateContext(display, config, shareContext, contextAttributes.data()); |
| } |
| |
| return context; |
| } |
| |
| std::optional<RenderEngine::ContextPriority> SkiaGLRenderEngine::createContextPriority( |
| const RenderEngineCreationArgs& args) { |
| if (!gl::GLExtensions::getInstance().hasContextPriority()) { |
| return std::nullopt; |
| } |
| |
| switch (args.contextPriority) { |
| case RenderEngine::ContextPriority::REALTIME: |
| if (gl::GLExtensions::getInstance().hasRealtimePriority()) { |
| return RenderEngine::ContextPriority::REALTIME; |
| } else { |
| ALOGI("Realtime priority unsupported, degrading gracefully to high priority"); |
| return RenderEngine::ContextPriority::HIGH; |
| } |
| case RenderEngine::ContextPriority::HIGH: |
| case RenderEngine::ContextPriority::MEDIUM: |
| case RenderEngine::ContextPriority::LOW: |
| return args.contextPriority; |
| default: |
| return std::nullopt; |
| } |
| } |
| |
| EGLSurface SkiaGLRenderEngine::createPlaceholderEglPbufferSurface(EGLDisplay display, |
| EGLConfig config, int hwcFormat, |
| Protection protection) { |
| EGLConfig placeholderConfig = config; |
| if (placeholderConfig == EGL_NO_CONFIG_KHR) { |
| placeholderConfig = chooseEglConfig(display, hwcFormat, /*logConfig*/ true); |
| } |
| std::vector<EGLint> attributes; |
| attributes.reserve(7); |
| attributes.push_back(EGL_WIDTH); |
| attributes.push_back(1); |
| attributes.push_back(EGL_HEIGHT); |
| attributes.push_back(1); |
| if (protection == Protection::PROTECTED) { |
| attributes.push_back(EGL_PROTECTED_CONTENT_EXT); |
| attributes.push_back(EGL_TRUE); |
| } |
| attributes.push_back(EGL_NONE); |
| |
| return eglCreatePbufferSurface(display, placeholderConfig, attributes.data()); |
| } |
| |
| int SkiaGLRenderEngine::getContextPriority() { |
| int value; |
| eglQueryContext(mEGLDisplay, mEGLContext, EGL_CONTEXT_PRIORITY_LEVEL_IMG, &value); |
| return value; |
| } |
| |
| void SkiaGLRenderEngine::onActiveDisplaySizeChanged(ui::Size size) { |
| // This cache multiplier was selected based on review of cache sizes relative |
| // to the screen resolution. Looking at the worst case memory needed by blur (~1.5x), |
| // shadows (~1x), and general data structures (e.g. vertex buffers) we selected this as a |
| // conservative default based on that analysis. |
| const float SURFACE_SIZE_MULTIPLIER = 3.5f * bytesPerPixel(mDefaultPixelFormat); |
| const int maxResourceBytes = size.width * size.height * SURFACE_SIZE_MULTIPLIER; |
| |
| // start by resizing the current context |
| getActiveGrContext()->setResourceCacheLimit(maxResourceBytes); |
| |
| // if it is possible to switch contexts then we will resize the other context |
| const bool originalProtectedState = mInProtectedContext; |
| useProtectedContext(!mInProtectedContext); |
| if (mInProtectedContext != originalProtectedState) { |
| getActiveGrContext()->setResourceCacheLimit(maxResourceBytes); |
| // reset back to the initial context that was active when this method was called |
| useProtectedContext(originalProtectedState); |
| } |
| } |
| |
| void SkiaGLRenderEngine::dump(std::string& result) { |
| const gl::GLExtensions& extensions = gl::GLExtensions::getInstance(); |
| |
| StringAppendF(&result, "\n ------------RE-----------------\n"); |
| StringAppendF(&result, "EGL implementation : %s\n", extensions.getEGLVersion()); |
| StringAppendF(&result, "%s\n", extensions.getEGLExtensions()); |
| StringAppendF(&result, "GLES: %s, %s, %s\n", extensions.getVendor(), extensions.getRenderer(), |
| extensions.getVersion()); |
| StringAppendF(&result, "%s\n", extensions.getExtensions()); |
| StringAppendF(&result, "RenderEngine supports protected context: %d\n", |
| supportsProtectedContent()); |
| StringAppendF(&result, "RenderEngine is in protected context: %d\n", mInProtectedContext); |
| StringAppendF(&result, "RenderEngine shaders cached since last dump/primeCache: %d\n", |
| mSkSLCacheMonitor.shadersCachedSinceLastCall()); |
| |
| std::vector<ResourcePair> cpuResourceMap = { |
| {"skia/sk_resource_cache/bitmap_", "Bitmaps"}, |
| {"skia/sk_resource_cache/rrect-blur_", "Masks"}, |
| {"skia/sk_resource_cache/rects-blur_", "Masks"}, |
| {"skia/sk_resource_cache/tessellated", "Shadows"}, |
| {"skia", "Other"}, |
| }; |
| SkiaMemoryReporter cpuReporter(cpuResourceMap, false); |
| SkGraphics::DumpMemoryStatistics(&cpuReporter); |
| StringAppendF(&result, "Skia CPU Caches: "); |
| cpuReporter.logTotals(result); |
| cpuReporter.logOutput(result); |
| |
| { |
| std::lock_guard<std::mutex> lock(mRenderingMutex); |
| |
| std::vector<ResourcePair> gpuResourceMap = { |
| {"texture_renderbuffer", "Texture/RenderBuffer"}, |
| {"texture", "Texture"}, |
| {"gr_text_blob_cache", "Text"}, |
| {"skia", "Other"}, |
| }; |
| SkiaMemoryReporter gpuReporter(gpuResourceMap, true); |
| mGrContext->dumpMemoryStatistics(&gpuReporter); |
| StringAppendF(&result, "Skia's GPU Caches: "); |
| gpuReporter.logTotals(result); |
| gpuReporter.logOutput(result); |
| StringAppendF(&result, "Skia's Wrapped Objects:\n"); |
| gpuReporter.logOutput(result, true); |
| |
| StringAppendF(&result, "RenderEngine tracked buffers: %zu\n", |
| mGraphicBufferExternalRefs.size()); |
| StringAppendF(&result, "Dumping buffer ids...\n"); |
| for (const auto& [id, refCounts] : mGraphicBufferExternalRefs) { |
| StringAppendF(&result, "- 0x%" PRIx64 " - %d refs \n", id, refCounts); |
| } |
| StringAppendF(&result, "RenderEngine AHB/BackendTexture cache size: %zu\n", |
| mTextureCache.size()); |
| StringAppendF(&result, "Dumping buffer ids...\n"); |
| // TODO(178539829): It would be nice to know which layer these are coming from and what |
| // the texture sizes are. |
| for (const auto& [id, unused] : mTextureCache) { |
| StringAppendF(&result, "- 0x%" PRIx64 "\n", id); |
| } |
| StringAppendF(&result, "\n"); |
| |
| SkiaMemoryReporter gpuProtectedReporter(gpuResourceMap, true); |
| if (mProtectedGrContext) { |
| mProtectedGrContext->dumpMemoryStatistics(&gpuProtectedReporter); |
| } |
| StringAppendF(&result, "Skia's GPU Protected Caches: "); |
| gpuProtectedReporter.logTotals(result); |
| gpuProtectedReporter.logOutput(result); |
| StringAppendF(&result, "Skia's Protected Wrapped Objects:\n"); |
| gpuProtectedReporter.logOutput(result, true); |
| |
| StringAppendF(&result, "\n"); |
| StringAppendF(&result, "RenderEngine runtime effects: %zu\n", mRuntimeEffects.size()); |
| for (const auto& [linearEffect, unused] : mRuntimeEffects) { |
| StringAppendF(&result, "- inputDataspace: %s\n", |
| dataspaceDetails( |
| static_cast<android_dataspace>(linearEffect.inputDataspace)) |
| .c_str()); |
| StringAppendF(&result, "- outputDataspace: %s\n", |
| dataspaceDetails( |
| static_cast<android_dataspace>(linearEffect.outputDataspace)) |
| .c_str()); |
| StringAppendF(&result, "undoPremultipliedAlpha: %s\n", |
| linearEffect.undoPremultipliedAlpha ? "true" : "false"); |
| } |
| } |
| StringAppendF(&result, "\n"); |
| } |
| |
| } // namespace skia |
| } // namespace renderengine |
| } // namespace android |