blob: d7ec86863fdcf4b4db93145bf1e37f91bb4f744b [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wconversion"
//#define LOG_NDEBUG 0
#undef LOG_TAG
#define LOG_TAG "BufferLayer"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include "BufferLayer.h"
#include <compositionengine/CompositionEngine.h>
#include <compositionengine/LayerFECompositionState.h>
#include <compositionengine/OutputLayer.h>
#include <compositionengine/impl/OutputLayerCompositionState.h>
#include <cutils/compiler.h>
#include <cutils/native_handle.h>
#include <cutils/properties.h>
#include <gui/BufferItem.h>
#include <gui/BufferQueue.h>
#include <gui/GLConsumer.h>
#include <gui/LayerDebugInfo.h>
#include <gui/Surface.h>
#include <renderengine/RenderEngine.h>
#include <ui/DebugUtils.h>
#include <utils/Errors.h>
#include <utils/Log.h>
#include <utils/NativeHandle.h>
#include <utils/StopWatch.h>
#include <utils/Trace.h>
#include <cmath>
#include <cstdlib>
#include <mutex>
#include <sstream>
#include "Colorizer.h"
#include "DisplayDevice.h"
#include "FrameTracer/FrameTracer.h"
#include "LayerRejecter.h"
#include "TimeStats/TimeStats.h"
namespace android {
static constexpr float defaultMaxMasteringLuminance = 1000.0;
static constexpr float defaultMaxContentLuminance = 1000.0;
BufferLayer::BufferLayer(const LayerCreationArgs& args)
: Layer(args),
mTextureName(args.textureName),
mCompositionState{mFlinger->getCompositionEngine().createLayerFECompositionState()} {
ALOGV("Creating Layer %s", getDebugName());
mPremultipliedAlpha = !(args.flags & ISurfaceComposerClient::eNonPremultiplied);
mPotentialCursor = args.flags & ISurfaceComposerClient::eCursorWindow;
mProtectedByApp = args.flags & ISurfaceComposerClient::eProtectedByApp;
}
BufferLayer::~BufferLayer() {
if (!isClone()) {
// The original layer and the clone layer share the same texture. Therefore, only one of
// the layers, in this case the original layer, needs to handle the deletion. The original
// layer and the clone should be removed at the same time so there shouldn't be any issue
// with the clone layer trying to use the deleted texture.
mFlinger->deleteTextureAsync(mTextureName);
}
const int32_t layerId = getSequence();
mFlinger->mTimeStats->onDestroy(layerId);
mFlinger->mFrameTracer->onDestroy(layerId);
}
void BufferLayer::useSurfaceDamage() {
if (mFlinger->mForceFullDamage) {
surfaceDamageRegion = Region::INVALID_REGION;
} else {
surfaceDamageRegion = mBufferInfo.mSurfaceDamage;
}
}
void BufferLayer::useEmptyDamage() {
surfaceDamageRegion.clear();
}
bool BufferLayer::isOpaque(const Layer::State& s) const {
// if we don't have a buffer or sidebandStream yet, we're translucent regardless of the
// layer's opaque flag.
if ((mSidebandStream == nullptr) && (mBufferInfo.mBuffer == nullptr)) {
return false;
}
// if the layer has the opaque flag, then we're always opaque,
// otherwise we use the current buffer's format.
return ((s.flags & layer_state_t::eLayerOpaque) != 0) || getOpacityForFormat(getPixelFormat());
}
bool BufferLayer::isVisible() const {
return !isHiddenByPolicy() && getAlpha() > 0.0f &&
(mBufferInfo.mBuffer != nullptr || mSidebandStream != nullptr);
}
bool BufferLayer::isFixedSize() const {
return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE;
}
bool BufferLayer::usesSourceCrop() const {
return true;
}
static constexpr mat4 inverseOrientation(uint32_t transform) {
const mat4 flipH(-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
const mat4 flipV(1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1);
const mat4 rot90(0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
mat4 tr;
if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
tr = tr * rot90;
}
if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) {
tr = tr * flipH;
}
if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) {
tr = tr * flipV;
}
return inverse(tr);
}
std::optional<compositionengine::LayerFE::LayerSettings> BufferLayer::prepareClientComposition(
compositionengine::LayerFE::ClientCompositionTargetSettings& targetSettings) {
ATRACE_CALL();
std::optional<compositionengine::LayerFE::LayerSettings> result =
Layer::prepareClientComposition(targetSettings);
if (!result) {
return result;
}
if (CC_UNLIKELY(mBufferInfo.mBuffer == 0)) {
// the texture has not been created yet, this Layer has
// in fact never been drawn into. This happens frequently with
// SurfaceView because the WindowManager can't know when the client
// has drawn the first time.
// If there is nothing under us, we paint the screen in black, otherwise
// we just skip this update.
// figure out if there is something below us
Region under;
bool finished = false;
mFlinger->mDrawingState.traverseInZOrder([&](Layer* layer) {
if (finished || layer == static_cast<BufferLayer const*>(this)) {
finished = true;
return;
}
under.orSelf(layer->getScreenBounds());
});
// if not everything below us is covered, we plug the holes!
Region holes(targetSettings.clip.subtract(under));
if (!holes.isEmpty()) {
targetSettings.clearRegion.orSelf(holes);
}
return std::nullopt;
}
bool blackOutLayer = (isProtected() && !targetSettings.supportsProtectedContent) ||
(isSecure() && !targetSettings.isSecure);
compositionengine::LayerFE::LayerSettings& layer = *result;
if (blackOutLayer) {
prepareClearClientComposition(layer, true /* blackout */);
return layer;
}
const State& s(getDrawingState());
layer.source.buffer.buffer = mBufferInfo.mBuffer;
layer.source.buffer.isOpaque = isOpaque(s);
layer.source.buffer.fence = mBufferInfo.mFence;
layer.source.buffer.textureName = mTextureName;
layer.source.buffer.usePremultipliedAlpha = getPremultipledAlpha();
layer.source.buffer.isY410BT2020 = isHdrY410();
bool hasSmpte2086 = mBufferInfo.mHdrMetadata.validTypes & HdrMetadata::SMPTE2086;
bool hasCta861_3 = mBufferInfo.mHdrMetadata.validTypes & HdrMetadata::CTA861_3;
layer.source.buffer.maxMasteringLuminance = hasSmpte2086
? mBufferInfo.mHdrMetadata.smpte2086.maxLuminance
: defaultMaxMasteringLuminance;
layer.source.buffer.maxContentLuminance = hasCta861_3
? mBufferInfo.mHdrMetadata.cta8613.maxContentLightLevel
: defaultMaxContentLuminance;
layer.frameNumber = mCurrentFrameNumber;
layer.bufferId = mBufferInfo.mBuffer ? mBufferInfo.mBuffer->getId() : 0;
// TODO: we could be more subtle with isFixedSize()
const bool useFiltering = targetSettings.needsFiltering || mNeedsFiltering || isFixedSize();
// Query the texture matrix given our current filtering mode.
float textureMatrix[16];
getDrawingTransformMatrix(useFiltering, textureMatrix);
if (getTransformToDisplayInverse()) {
/*
* the code below applies the primary display's inverse transform to
* the texture transform
*/
uint32_t transform = DisplayDevice::getPrimaryDisplayRotationFlags();
mat4 tr = inverseOrientation(transform);
/**
* TODO(b/36727915): This is basically a hack.
*
* Ensure that regardless of the parent transformation,
* this buffer is always transformed from native display
* orientation to display orientation. For example, in the case
* of a camera where the buffer remains in native orientation,
* we want the pixels to always be upright.
*/
sp<Layer> p = mDrawingParent.promote();
if (p != nullptr) {
const auto parentTransform = p->getTransform();
tr = tr * inverseOrientation(parentTransform.getOrientation());
}
// and finally apply it to the original texture matrix
const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr);
memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix));
}
const Rect win{getBounds()};
float bufferWidth = getBufferSize(s).getWidth();
float bufferHeight = getBufferSize(s).getHeight();
// BufferStateLayers can have a "buffer size" of [0, 0, -1, -1] when no display frame has
// been set and there is no parent layer bounds. In that case, the scale is meaningless so
// ignore them.
if (!getBufferSize(s).isValid()) {
bufferWidth = float(win.right) - float(win.left);
bufferHeight = float(win.bottom) - float(win.top);
}
const float scaleHeight = (float(win.bottom) - float(win.top)) / bufferHeight;
const float scaleWidth = (float(win.right) - float(win.left)) / bufferWidth;
const float translateY = float(win.top) / bufferHeight;
const float translateX = float(win.left) / bufferWidth;
// Flip y-coordinates because GLConsumer expects OpenGL convention.
mat4 tr = mat4::translate(vec4(.5, .5, 0, 1)) * mat4::scale(vec4(1, -1, 1, 1)) *
mat4::translate(vec4(-.5, -.5, 0, 1)) *
mat4::translate(vec4(translateX, translateY, 0, 1)) *
mat4::scale(vec4(scaleWidth, scaleHeight, 1.0, 1.0));
layer.source.buffer.useTextureFiltering = useFiltering;
layer.source.buffer.textureTransform = mat4(static_cast<const float*>(textureMatrix)) * tr;
return layer;
}
bool BufferLayer::isHdrY410() const {
// pixel format is HDR Y410 masquerading as RGBA_1010102
return (mBufferInfo.mDataspace == ui::Dataspace::BT2020_ITU_PQ &&
mBufferInfo.mApi == NATIVE_WINDOW_API_MEDIA &&
mBufferInfo.mBuffer->getPixelFormat() == HAL_PIXEL_FORMAT_RGBA_1010102);
}
sp<compositionengine::LayerFE> BufferLayer::getCompositionEngineLayerFE() const {
return asLayerFE();
}
compositionengine::LayerFECompositionState* BufferLayer::editCompositionState() {
return mCompositionState.get();
}
const compositionengine::LayerFECompositionState* BufferLayer::getCompositionState() const {
return mCompositionState.get();
}
void BufferLayer::preparePerFrameCompositionState() {
Layer::preparePerFrameCompositionState();
// Sideband layers
auto* compositionState = editCompositionState();
if (compositionState->sidebandStream.get()) {
compositionState->compositionType = Hwc2::IComposerClient::Composition::SIDEBAND;
} else {
// Normal buffer layers
compositionState->hdrMetadata = mBufferInfo.mHdrMetadata;
compositionState->compositionType = mPotentialCursor
? Hwc2::IComposerClient::Composition::CURSOR
: Hwc2::IComposerClient::Composition::DEVICE;
}
}
bool BufferLayer::onPreComposition(nsecs_t refreshStartTime) {
if (mBufferInfo.mBuffer != nullptr) {
Mutex::Autolock lock(mFrameEventHistoryMutex);
mFrameEventHistory.addPreComposition(mCurrentFrameNumber, refreshStartTime);
}
mRefreshPending = false;
return hasReadyFrame();
}
bool BufferLayer::onPostComposition(sp<const DisplayDevice> displayDevice,
const std::shared_ptr<FenceTime>& glDoneFence,
const std::shared_ptr<FenceTime>& presentFence,
const CompositorTiming& compositorTiming) {
// mFrameLatencyNeeded is true when a new frame was latched for the
// composition.
if (!mBufferInfo.mFrameLatencyNeeded) return false;
// Update mFrameEventHistory.
{
Mutex::Autolock lock(mFrameEventHistoryMutex);
mFrameEventHistory.addPostComposition(mCurrentFrameNumber, glDoneFence, presentFence,
compositorTiming);
finalizeFrameEventHistory(glDoneFence, compositorTiming);
}
// Update mFrameTracker.
nsecs_t desiredPresentTime = mBufferInfo.mDesiredPresentTime;
mFrameTracker.setDesiredPresentTime(desiredPresentTime);
const int32_t layerId = getSequence();
mFlinger->mTimeStats->setDesiredTime(layerId, mCurrentFrameNumber, desiredPresentTime);
const auto outputLayer = findOutputLayerForDisplay(displayDevice);
if (outputLayer && outputLayer->requiresClientComposition()) {
nsecs_t clientCompositionTimestamp = outputLayer->getState().clientCompositionTimestamp;
mFlinger->mFrameTracer->traceTimestamp(layerId, getCurrentBufferId(), mCurrentFrameNumber,
clientCompositionTimestamp,
FrameTracer::FrameEvent::FALLBACK_COMPOSITION);
}
std::shared_ptr<FenceTime> frameReadyFence = mBufferInfo.mFenceTime;
if (frameReadyFence->isValid()) {
mFrameTracker.setFrameReadyFence(std::move(frameReadyFence));
} else {
// There was no fence for this frame, so assume that it was ready
// to be presented at the desired present time.
mFrameTracker.setFrameReadyTime(desiredPresentTime);
}
const auto displayId = displayDevice->getId();
if (presentFence->isValid()) {
mFlinger->mTimeStats->setPresentFence(layerId, mCurrentFrameNumber, presentFence);
mFlinger->mFrameTracer->traceFence(layerId, getCurrentBufferId(), mCurrentFrameNumber,
presentFence, FrameTracer::FrameEvent::PRESENT_FENCE);
mFrameTracker.setActualPresentFence(std::shared_ptr<FenceTime>(presentFence));
} else if (displayId && mFlinger->getHwComposer().isConnected(*displayId)) {
// The HWC doesn't support present fences, so use the refresh
// timestamp instead.
const nsecs_t actualPresentTime = mFlinger->getHwComposer().getRefreshTimestamp(*displayId);
mFlinger->mTimeStats->setPresentTime(layerId, mCurrentFrameNumber, actualPresentTime);
mFlinger->mFrameTracer->traceTimestamp(layerId, getCurrentBufferId(), mCurrentFrameNumber,
actualPresentTime,
FrameTracer::FrameEvent::PRESENT_FENCE);
mFrameTracker.setActualPresentTime(actualPresentTime);
}
mFrameTracker.advanceFrame();
mBufferInfo.mFrameLatencyNeeded = false;
return true;
}
bool BufferLayer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime,
nsecs_t expectedPresentTime) {
ATRACE_CALL();
bool refreshRequired = latchSidebandStream(recomputeVisibleRegions);
if (refreshRequired) {
return refreshRequired;
}
if (!hasReadyFrame()) {
return false;
}
// if we've already called updateTexImage() without going through
// a composition step, we have to skip this layer at this point
// because we cannot call updateTeximage() without a corresponding
// compositionComplete() call.
// we'll trigger an update in onPreComposition().
if (mRefreshPending) {
return false;
}
// If the head buffer's acquire fence hasn't signaled yet, return and
// try again later
if (!fenceHasSignaled()) {
ATRACE_NAME("!fenceHasSignaled()");
mFlinger->signalLayerUpdate();
return false;
}
// Capture the old state of the layer for comparisons later
const State& s(getDrawingState());
const bool oldOpacity = isOpaque(s);
BufferInfo oldBufferInfo = mBufferInfo;
if (!allTransactionsSignaled(expectedPresentTime)) {
mFlinger->setTransactionFlags(eTraversalNeeded);
return false;
}
status_t err = updateTexImage(recomputeVisibleRegions, latchTime, expectedPresentTime);
if (err != NO_ERROR) {
return false;
}
err = updateActiveBuffer();
if (err != NO_ERROR) {
return false;
}
err = updateFrameNumber(latchTime);
if (err != NO_ERROR) {
return false;
}
gatherBufferInfo();
mRefreshPending = true;
mBufferInfo.mFrameLatencyNeeded = true;
if (oldBufferInfo.mBuffer == nullptr) {
// the first time we receive a buffer, we need to trigger a
// geometry invalidation.
recomputeVisibleRegions = true;
}
if ((mBufferInfo.mCrop != oldBufferInfo.mCrop) ||
(mBufferInfo.mTransform != oldBufferInfo.mTransform) ||
(mBufferInfo.mScaleMode != oldBufferInfo.mScaleMode) ||
(mBufferInfo.mTransformToDisplayInverse != oldBufferInfo.mTransformToDisplayInverse)) {
recomputeVisibleRegions = true;
}
if (oldBufferInfo.mBuffer != nullptr) {
uint32_t bufWidth = mBufferInfo.mBuffer->getWidth();
uint32_t bufHeight = mBufferInfo.mBuffer->getHeight();
if (bufWidth != uint32_t(oldBufferInfo.mBuffer->width) ||
bufHeight != uint32_t(oldBufferInfo.mBuffer->height)) {
recomputeVisibleRegions = true;
}
}
if (oldOpacity != isOpaque(s)) {
recomputeVisibleRegions = true;
}
// Remove any sync points corresponding to the buffer which was just
// latched
{
Mutex::Autolock lock(mLocalSyncPointMutex);
auto point = mLocalSyncPoints.begin();
while (point != mLocalSyncPoints.end()) {
if (!(*point)->frameIsAvailable() || !(*point)->transactionIsApplied()) {
// This sync point must have been added since we started
// latching. Don't drop it yet.
++point;
continue;
}
if ((*point)->getFrameNumber() <= mCurrentFrameNumber) {
std::stringstream ss;
ss << "Dropping sync point " << (*point)->getFrameNumber();
ATRACE_NAME(ss.str().c_str());
point = mLocalSyncPoints.erase(point);
} else {
++point;
}
}
}
return true;
}
// transaction
void BufferLayer::notifyAvailableFrames(nsecs_t expectedPresentTime) {
const auto headFrameNumber = getHeadFrameNumber(expectedPresentTime);
const bool headFenceSignaled = fenceHasSignaled();
const bool presentTimeIsCurrent = framePresentTimeIsCurrent(expectedPresentTime);
Mutex::Autolock lock(mLocalSyncPointMutex);
for (auto& point : mLocalSyncPoints) {
if (headFrameNumber >= point->getFrameNumber() && headFenceSignaled &&
presentTimeIsCurrent) {
point->setFrameAvailable();
sp<Layer> requestedSyncLayer = point->getRequestedSyncLayer();
if (requestedSyncLayer) {
// Need to update the transaction flag to ensure the layer's pending transaction
// gets applied.
requestedSyncLayer->setTransactionFlags(eTransactionNeeded);
}
}
}
}
bool BufferLayer::hasReadyFrame() const {
return hasFrameUpdate() || getSidebandStreamChanged() || getAutoRefresh();
}
uint32_t BufferLayer::getEffectiveScalingMode() const {
if (mOverrideScalingMode >= 0) {
return mOverrideScalingMode;
}
return mBufferInfo.mScaleMode;
}
bool BufferLayer::isProtected() const {
const sp<GraphicBuffer>& buffer(mBufferInfo.mBuffer);
return (buffer != 0) && (buffer->getUsage() & GRALLOC_USAGE_PROTECTED);
}
bool BufferLayer::latchUnsignaledBuffers() {
static bool propertyLoaded = false;
static bool latch = false;
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
if (!propertyLoaded) {
char value[PROPERTY_VALUE_MAX] = {};
property_get("debug.sf.latch_unsignaled", value, "0");
latch = atoi(value);
propertyLoaded = true;
}
return latch;
}
// h/w composer set-up
bool BufferLayer::allTransactionsSignaled(nsecs_t expectedPresentTime) {
const auto headFrameNumber = getHeadFrameNumber(expectedPresentTime);
bool matchingFramesFound = false;
bool allTransactionsApplied = true;
Mutex::Autolock lock(mLocalSyncPointMutex);
for (auto& point : mLocalSyncPoints) {
if (point->getFrameNumber() > headFrameNumber) {
break;
}
matchingFramesFound = true;
if (!point->frameIsAvailable()) {
// We haven't notified the remote layer that the frame for
// this point is available yet. Notify it now, and then
// abort this attempt to latch.
point->setFrameAvailable();
allTransactionsApplied = false;
break;
}
allTransactionsApplied = allTransactionsApplied && point->transactionIsApplied();
}
return !matchingFramesFound || allTransactionsApplied;
}
// As documented in libhardware header, formats in the range
// 0x100 - 0x1FF are specific to the HAL implementation, and
// are known to have no alpha channel
// TODO: move definition for device-specific range into
// hardware.h, instead of using hard-coded values here.
#define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF)
bool BufferLayer::getOpacityForFormat(uint32_t format) {
if (HARDWARE_IS_DEVICE_FORMAT(format)) {
return true;
}
switch (format) {
case HAL_PIXEL_FORMAT_RGBA_8888:
case HAL_PIXEL_FORMAT_BGRA_8888:
case HAL_PIXEL_FORMAT_RGBA_FP16:
case HAL_PIXEL_FORMAT_RGBA_1010102:
return false;
}
// in all other case, we have no blending (also for unknown formats)
return true;
}
bool BufferLayer::needsFiltering(const sp<const DisplayDevice>& displayDevice) const {
// If we are not capturing based on the state of a known display device,
// just return false.
if (displayDevice == nullptr) {
return false;
}
const auto outputLayer = findOutputLayerForDisplay(displayDevice);
if (outputLayer == nullptr) {
return false;
}
// We need filtering if the sourceCrop rectangle size does not match the
// displayframe rectangle size (not a 1:1 render)
const auto& compositionState = outputLayer->getState();
const auto displayFrame = compositionState.displayFrame;
const auto sourceCrop = compositionState.sourceCrop;
return sourceCrop.getHeight() != displayFrame.getHeight() ||
sourceCrop.getWidth() != displayFrame.getWidth();
}
uint64_t BufferLayer::getHeadFrameNumber(nsecs_t expectedPresentTime) const {
if (hasFrameUpdate()) {
return getFrameNumber(expectedPresentTime);
} else {
return mCurrentFrameNumber;
}
}
Rect BufferLayer::getBufferSize(const State& s) const {
// If we have a sideband stream, or we are scaling the buffer then return the layer size since
// we cannot determine the buffer size.
if ((s.sidebandStream != nullptr) ||
(getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) {
return Rect(getActiveWidth(s), getActiveHeight(s));
}
if (mBufferInfo.mBuffer == nullptr) {
return Rect::INVALID_RECT;
}
uint32_t bufWidth = mBufferInfo.mBuffer->getWidth();
uint32_t bufHeight = mBufferInfo.mBuffer->getHeight();
// Undo any transformations on the buffer and return the result.
if (mBufferInfo.mTransform & ui::Transform::ROT_90) {
std::swap(bufWidth, bufHeight);
}
if (getTransformToDisplayInverse()) {
uint32_t invTransform = DisplayDevice::getPrimaryDisplayRotationFlags();
if (invTransform & ui::Transform::ROT_90) {
std::swap(bufWidth, bufHeight);
}
}
return Rect(bufWidth, bufHeight);
}
FloatRect BufferLayer::computeSourceBounds(const FloatRect& parentBounds) const {
const State& s(getDrawingState());
// If we have a sideband stream, or we are scaling the buffer then return the layer size since
// we cannot determine the buffer size.
if ((s.sidebandStream != nullptr) ||
(getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) {
return FloatRect(0, 0, getActiveWidth(s), getActiveHeight(s));
}
if (mBufferInfo.mBuffer == nullptr) {
return parentBounds;
}
uint32_t bufWidth = mBufferInfo.mBuffer->getWidth();
uint32_t bufHeight = mBufferInfo.mBuffer->getHeight();
// Undo any transformations on the buffer and return the result.
if (mBufferInfo.mTransform & ui::Transform::ROT_90) {
std::swap(bufWidth, bufHeight);
}
if (getTransformToDisplayInverse()) {
uint32_t invTransform = DisplayDevice::getPrimaryDisplayRotationFlags();
if (invTransform & ui::Transform::ROT_90) {
std::swap(bufWidth, bufHeight);
}
}
return FloatRect(0, 0, bufWidth, bufHeight);
}
void BufferLayer::latchAndReleaseBuffer() {
mRefreshPending = false;
if (hasReadyFrame()) {
bool ignored = false;
latchBuffer(ignored, systemTime(), 0 /* expectedPresentTime */);
}
releasePendingBuffer(systemTime());
}
PixelFormat BufferLayer::getPixelFormat() const {
return mBufferInfo.mPixelFormat;
}
bool BufferLayer::getTransformToDisplayInverse() const {
return mBufferInfo.mTransformToDisplayInverse;
}
Rect BufferLayer::getBufferCrop() const {
// this is the crop rectangle that applies to the buffer
// itself (as opposed to the window)
if (!mBufferInfo.mCrop.isEmpty()) {
// if the buffer crop is defined, we use that
return mBufferInfo.mCrop;
} else if (mBufferInfo.mBuffer != nullptr) {
// otherwise we use the whole buffer
return mBufferInfo.mBuffer->getBounds();
} else {
// if we don't have a buffer yet, we use an empty/invalid crop
return Rect();
}
}
uint32_t BufferLayer::getBufferTransform() const {
return mBufferInfo.mTransform;
}
ui::Dataspace BufferLayer::getDataSpace() const {
return mBufferInfo.mDataspace;
}
ui::Dataspace BufferLayer::translateDataspace(ui::Dataspace dataspace) {
ui::Dataspace updatedDataspace = dataspace;
// translate legacy dataspaces to modern dataspaces
switch (dataspace) {
case ui::Dataspace::SRGB:
updatedDataspace = ui::Dataspace::V0_SRGB;
break;
case ui::Dataspace::SRGB_LINEAR:
updatedDataspace = ui::Dataspace::V0_SRGB_LINEAR;
break;
case ui::Dataspace::JFIF:
updatedDataspace = ui::Dataspace::V0_JFIF;
break;
case ui::Dataspace::BT601_625:
updatedDataspace = ui::Dataspace::V0_BT601_625;
break;
case ui::Dataspace::BT601_525:
updatedDataspace = ui::Dataspace::V0_BT601_525;
break;
case ui::Dataspace::BT709:
updatedDataspace = ui::Dataspace::V0_BT709;
break;
default:
break;
}
return updatedDataspace;
}
sp<GraphicBuffer> BufferLayer::getBuffer() const {
return mBufferInfo.mBuffer;
}
void BufferLayer::getDrawingTransformMatrix(bool filteringEnabled, float outMatrix[16]) {
GLConsumer::computeTransformMatrix(outMatrix, mBufferInfo.mBuffer, mBufferInfo.mCrop,
mBufferInfo.mTransform, filteringEnabled);
}
void BufferLayer::setInitialValuesForClone(const sp<Layer>& clonedFrom) {
Layer::setInitialValuesForClone(clonedFrom);
sp<BufferLayer> bufferClonedFrom = static_cast<BufferLayer*>(clonedFrom.get());
mPremultipliedAlpha = bufferClonedFrom->mPremultipliedAlpha;
mPotentialCursor = bufferClonedFrom->mPotentialCursor;
mProtectedByApp = bufferClonedFrom->mProtectedByApp;
updateCloneBufferInfo();
}
void BufferLayer::updateCloneBufferInfo() {
if (!isClone() || !isClonedFromAlive()) {
return;
}
sp<BufferLayer> clonedFrom = static_cast<BufferLayer*>(getClonedFrom().get());
mBufferInfo = clonedFrom->mBufferInfo;
mSidebandStream = clonedFrom->mSidebandStream;
surfaceDamageRegion = clonedFrom->surfaceDamageRegion;
mCurrentFrameNumber = clonedFrom->mCurrentFrameNumber.load();
mPreviousFrameNumber = clonedFrom->mPreviousFrameNumber;
// After buffer info is updated, the drawingState from the real layer needs to be copied into
// the cloned. This is because some properties of drawingState can change when latchBuffer is
// called. However, copying the drawingState would also overwrite the cloned layer's relatives
// and touchableRegionCrop. Therefore, temporarily store the relatives so they can be set in
// the cloned drawingState again.
wp<Layer> tmpZOrderRelativeOf = mDrawingState.zOrderRelativeOf;
SortedVector<wp<Layer>> tmpZOrderRelatives = mDrawingState.zOrderRelatives;
wp<Layer> tmpTouchableRegionCrop = mDrawingState.touchableRegionCrop;
InputWindowInfo tmpInputInfo = mDrawingState.inputInfo;
mDrawingState = clonedFrom->mDrawingState;
mDrawingState.touchableRegionCrop = tmpTouchableRegionCrop;
mDrawingState.zOrderRelativeOf = tmpZOrderRelativeOf;
mDrawingState.zOrderRelatives = tmpZOrderRelatives;
mDrawingState.inputInfo = tmpInputInfo;
}
} // namespace android
#if defined(__gl_h_)
#error "don't include gl/gl.h in this file"
#endif
#if defined(__gl2_h_)
#error "don't include gl2/gl2.h in this file"
#endif
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic pop // ignored "-Wconversion"