| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| //#define LOG_NDEBUG 0 |
| #undef LOG_TAG |
| #define LOG_TAG "BufferLayer" |
| #define ATRACE_TAG ATRACE_TAG_GRAPHICS |
| |
| #include <cmath> |
| #include <cstdlib> |
| #include <mutex> |
| |
| #include <compositionengine/CompositionEngine.h> |
| #include <compositionengine/Display.h> |
| #include <compositionengine/Layer.h> |
| #include <compositionengine/LayerCreationArgs.h> |
| #include <compositionengine/OutputLayer.h> |
| #include <compositionengine/impl/LayerCompositionState.h> |
| #include <compositionengine/impl/OutputLayerCompositionState.h> |
| #include <cutils/compiler.h> |
| #include <cutils/native_handle.h> |
| #include <cutils/properties.h> |
| #include <gui/BufferItem.h> |
| #include <gui/BufferQueue.h> |
| #include <gui/LayerDebugInfo.h> |
| #include <gui/Surface.h> |
| #include <renderengine/RenderEngine.h> |
| #include <ui/DebugUtils.h> |
| #include <utils/Errors.h> |
| #include <utils/Log.h> |
| #include <utils/NativeHandle.h> |
| #include <utils/StopWatch.h> |
| #include <utils/Trace.h> |
| |
| #include "BufferLayer.h" |
| #include "Colorizer.h" |
| #include "DisplayDevice.h" |
| #include "LayerRejecter.h" |
| |
| #include "TimeStats/TimeStats.h" |
| |
| namespace android { |
| |
| BufferLayer::BufferLayer(const LayerCreationArgs& args) |
| : Layer(args), |
| mTextureName(args.flinger->getNewTexture()), |
| mCompositionLayer{mFlinger->getCompositionEngine().createLayer( |
| compositionengine::LayerCreationArgs{this})} { |
| ALOGV("Creating Layer %s", args.name.string()); |
| |
| mPremultipliedAlpha = !(args.flags & ISurfaceComposerClient::eNonPremultiplied); |
| |
| mPotentialCursor = args.flags & ISurfaceComposerClient::eCursorWindow; |
| mProtectedByApp = args.flags & ISurfaceComposerClient::eProtectedByApp; |
| } |
| |
| BufferLayer::~BufferLayer() { |
| mFlinger->deleteTextureAsync(mTextureName); |
| mFlinger->mTimeStats->onDestroy(getSequence()); |
| } |
| |
| void BufferLayer::useSurfaceDamage() { |
| if (mFlinger->mForceFullDamage) { |
| surfaceDamageRegion = Region::INVALID_REGION; |
| } else { |
| surfaceDamageRegion = getDrawingSurfaceDamage(); |
| } |
| } |
| |
| void BufferLayer::useEmptyDamage() { |
| surfaceDamageRegion.clear(); |
| } |
| |
| bool BufferLayer::isOpaque(const Layer::State& s) const { |
| // if we don't have a buffer or sidebandStream yet, we're translucent regardless of the |
| // layer's opaque flag. |
| if ((mSidebandStream == nullptr) && (mActiveBuffer == nullptr)) { |
| return false; |
| } |
| |
| // if the layer has the opaque flag, then we're always opaque, |
| // otherwise we use the current buffer's format. |
| return ((s.flags & layer_state_t::eLayerOpaque) != 0) || getOpacityForFormat(getPixelFormat()); |
| } |
| |
| bool BufferLayer::isVisible() const { |
| bool visible = !(isHiddenByPolicy()) && getAlpha() > 0.0f && |
| (mActiveBuffer != nullptr || mSidebandStream != nullptr); |
| mFlinger->mScheduler->setLayerVisibility(mSchedulerLayerHandle, visible); |
| |
| return visible; |
| } |
| |
| bool BufferLayer::isFixedSize() const { |
| return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE; |
| } |
| |
| bool BufferLayer::usesSourceCrop() const { |
| return true; |
| } |
| |
| static constexpr mat4 inverseOrientation(uint32_t transform) { |
| const mat4 flipH(-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1); |
| const mat4 flipV(1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1); |
| const mat4 rot90(0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1); |
| mat4 tr; |
| |
| if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) { |
| tr = tr * rot90; |
| } |
| if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) { |
| tr = tr * flipH; |
| } |
| if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) { |
| tr = tr * flipV; |
| } |
| return inverse(tr); |
| } |
| |
| bool BufferLayer::prepareClientLayer(const RenderArea& renderArea, const Region& clip, |
| bool useIdentityTransform, Region& clearRegion, |
| const bool supportProtectedContent, |
| renderengine::LayerSettings& layer) { |
| ATRACE_CALL(); |
| Layer::prepareClientLayer(renderArea, clip, useIdentityTransform, clearRegion, |
| supportProtectedContent, layer); |
| if (CC_UNLIKELY(mActiveBuffer == 0)) { |
| // the texture has not been created yet, this Layer has |
| // in fact never been drawn into. This happens frequently with |
| // SurfaceView because the WindowManager can't know when the client |
| // has drawn the first time. |
| |
| // If there is nothing under us, we paint the screen in black, otherwise |
| // we just skip this update. |
| |
| // figure out if there is something below us |
| Region under; |
| bool finished = false; |
| mFlinger->mDrawingState.traverseInZOrder([&](Layer* layer) { |
| if (finished || layer == static_cast<BufferLayer const*>(this)) { |
| finished = true; |
| return; |
| } |
| under.orSelf(layer->visibleRegion); |
| }); |
| // if not everything below us is covered, we plug the holes! |
| Region holes(clip.subtract(under)); |
| if (!holes.isEmpty()) { |
| clearRegion.orSelf(holes); |
| } |
| return false; |
| } |
| bool blackOutLayer = |
| (isProtected() && !supportProtectedContent) || (isSecure() && !renderArea.isSecure()); |
| const State& s(getDrawingState()); |
| if (!blackOutLayer) { |
| layer.source.buffer.buffer = mActiveBuffer; |
| layer.source.buffer.isOpaque = isOpaque(s); |
| layer.source.buffer.fence = mActiveBufferFence; |
| layer.source.buffer.textureName = mTextureName; |
| layer.source.buffer.usePremultipliedAlpha = getPremultipledAlpha(); |
| layer.source.buffer.isY410BT2020 = isHdrY410(); |
| // TODO: we could be more subtle with isFixedSize() |
| const bool useFiltering = needsFiltering(renderArea.getDisplayDevice()) || |
| renderArea.needsFiltering() || isFixedSize(); |
| |
| // Query the texture matrix given our current filtering mode. |
| float textureMatrix[16]; |
| setFilteringEnabled(useFiltering); |
| getDrawingTransformMatrix(textureMatrix); |
| |
| if (getTransformToDisplayInverse()) { |
| /* |
| * the code below applies the primary display's inverse transform to |
| * the texture transform |
| */ |
| uint32_t transform = DisplayDevice::getPrimaryDisplayOrientationTransform(); |
| mat4 tr = inverseOrientation(transform); |
| |
| /** |
| * TODO(b/36727915): This is basically a hack. |
| * |
| * Ensure that regardless of the parent transformation, |
| * this buffer is always transformed from native display |
| * orientation to display orientation. For example, in the case |
| * of a camera where the buffer remains in native orientation, |
| * we want the pixels to always be upright. |
| */ |
| sp<Layer> p = mDrawingParent.promote(); |
| if (p != nullptr) { |
| const auto parentTransform = p->getTransform(); |
| tr = tr * inverseOrientation(parentTransform.getOrientation()); |
| } |
| |
| // and finally apply it to the original texture matrix |
| const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr); |
| memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix)); |
| } |
| |
| const Rect win{getBounds()}; |
| float bufferWidth = getBufferSize(s).getWidth(); |
| float bufferHeight = getBufferSize(s).getHeight(); |
| |
| // BufferStateLayers can have a "buffer size" of [0, 0, -1, -1] when no display frame has |
| // been set and there is no parent layer bounds. In that case, the scale is meaningless so |
| // ignore them. |
| if (!getBufferSize(s).isValid()) { |
| bufferWidth = float(win.right) - float(win.left); |
| bufferHeight = float(win.bottom) - float(win.top); |
| } |
| |
| const float scaleHeight = (float(win.bottom) - float(win.top)) / bufferHeight; |
| const float scaleWidth = (float(win.right) - float(win.left)) / bufferWidth; |
| const float translateY = float(win.top) / bufferHeight; |
| const float translateX = float(win.left) / bufferWidth; |
| |
| // Flip y-coordinates because GLConsumer expects OpenGL convention. |
| mat4 tr = mat4::translate(vec4(.5, .5, 0, 1)) * mat4::scale(vec4(1, -1, 1, 1)) * |
| mat4::translate(vec4(-.5, -.5, 0, 1)) * |
| mat4::translate(vec4(translateX, translateY, 0, 1)) * |
| mat4::scale(vec4(scaleWidth, scaleHeight, 1.0, 1.0)); |
| |
| layer.source.buffer.useTextureFiltering = useFiltering; |
| layer.source.buffer.textureTransform = mat4(static_cast<const float*>(textureMatrix)) * tr; |
| } else { |
| // If layer is blacked out, force alpha to 1 so that we draw a black color |
| // layer. |
| layer.source.buffer.buffer = nullptr; |
| layer.alpha = 1.0; |
| } |
| |
| return true; |
| } |
| |
| bool BufferLayer::isHdrY410() const { |
| // pixel format is HDR Y410 masquerading as RGBA_1010102 |
| return (mCurrentDataSpace == ui::Dataspace::BT2020_ITU_PQ && |
| getDrawingApi() == NATIVE_WINDOW_API_MEDIA && |
| mActiveBuffer->getPixelFormat() == HAL_PIXEL_FORMAT_RGBA_1010102); |
| } |
| |
| void BufferLayer::setPerFrameData(const sp<const DisplayDevice>& displayDevice, |
| const ui::Transform& transform, const Rect& viewport, |
| int32_t supportedPerFrameMetadata, |
| const ui::Dataspace targetDataspace) { |
| RETURN_IF_NO_HWC_LAYER(displayDevice); |
| |
| // Apply this display's projection's viewport to the visible region |
| // before giving it to the HWC HAL. |
| Region visible = transform.transform(visibleRegion.intersect(viewport)); |
| |
| const auto outputLayer = findOutputLayerForDisplay(displayDevice); |
| LOG_FATAL_IF(!outputLayer || !outputLayer->getState().hwc); |
| |
| auto& hwcLayer = (*outputLayer->getState().hwc).hwcLayer; |
| auto error = hwcLayer->setVisibleRegion(visible); |
| if (error != HWC2::Error::None) { |
| ALOGE("[%s] Failed to set visible region: %s (%d)", mName.string(), |
| to_string(error).c_str(), static_cast<int32_t>(error)); |
| visible.dump(LOG_TAG); |
| } |
| outputLayer->editState().visibleRegion = visible; |
| |
| auto& layerCompositionState = getCompositionLayer()->editState().frontEnd; |
| |
| error = hwcLayer->setSurfaceDamage(surfaceDamageRegion); |
| if (error != HWC2::Error::None) { |
| ALOGE("[%s] Failed to set surface damage: %s (%d)", mName.string(), |
| to_string(error).c_str(), static_cast<int32_t>(error)); |
| surfaceDamageRegion.dump(LOG_TAG); |
| } |
| layerCompositionState.surfaceDamage = surfaceDamageRegion; |
| |
| // Sideband layers |
| if (layerCompositionState.sidebandStream.get()) { |
| setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::SIDEBAND); |
| ALOGV("[%s] Requesting Sideband composition", mName.string()); |
| error = hwcLayer->setSidebandStream(layerCompositionState.sidebandStream->handle()); |
| if (error != HWC2::Error::None) { |
| ALOGE("[%s] Failed to set sideband stream %p: %s (%d)", mName.string(), |
| layerCompositionState.sidebandStream->handle(), to_string(error).c_str(), |
| static_cast<int32_t>(error)); |
| } |
| layerCompositionState.compositionType = Hwc2::IComposerClient::Composition::SIDEBAND; |
| return; |
| } |
| |
| // Device or Cursor layers |
| if (mPotentialCursor) { |
| ALOGV("[%s] Requesting Cursor composition", mName.string()); |
| setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::CURSOR); |
| } else { |
| ALOGV("[%s] Requesting Device composition", mName.string()); |
| setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::DEVICE); |
| } |
| |
| ui::Dataspace dataspace = isColorSpaceAgnostic() && targetDataspace != ui::Dataspace::UNKNOWN |
| ? targetDataspace |
| : mCurrentDataSpace; |
| error = hwcLayer->setDataspace(dataspace); |
| if (error != HWC2::Error::None) { |
| ALOGE("[%s] Failed to set dataspace %d: %s (%d)", mName.string(), dataspace, |
| to_string(error).c_str(), static_cast<int32_t>(error)); |
| } |
| |
| const HdrMetadata& metadata = getDrawingHdrMetadata(); |
| error = hwcLayer->setPerFrameMetadata(supportedPerFrameMetadata, metadata); |
| if (error != HWC2::Error::None && error != HWC2::Error::Unsupported) { |
| ALOGE("[%s] Failed to set hdrMetadata: %s (%d)", mName.string(), |
| to_string(error).c_str(), static_cast<int32_t>(error)); |
| } |
| |
| error = hwcLayer->setColorTransform(getColorTransform()); |
| if (error == HWC2::Error::Unsupported) { |
| // If per layer color transform is not supported, we use GPU composition. |
| setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::CLIENT); |
| } else if (error != HWC2::Error::None) { |
| ALOGE("[%s] Failed to setColorTransform: %s (%d)", mName.string(), |
| to_string(error).c_str(), static_cast<int32_t>(error)); |
| } |
| layerCompositionState.dataspace = mCurrentDataSpace; |
| layerCompositionState.colorTransform = getColorTransform(); |
| layerCompositionState.hdrMetadata = metadata; |
| |
| setHwcLayerBuffer(displayDevice); |
| } |
| |
| bool BufferLayer::onPreComposition(nsecs_t refreshStartTime) { |
| if (mBufferLatched) { |
| Mutex::Autolock lock(mFrameEventHistoryMutex); |
| mFrameEventHistory.addPreComposition(mCurrentFrameNumber, refreshStartTime); |
| } |
| mRefreshPending = false; |
| return hasReadyFrame(); |
| } |
| |
| bool BufferLayer::onPostComposition(const std::optional<DisplayId>& displayId, |
| const std::shared_ptr<FenceTime>& glDoneFence, |
| const std::shared_ptr<FenceTime>& presentFence, |
| const CompositorTiming& compositorTiming) { |
| // mFrameLatencyNeeded is true when a new frame was latched for the |
| // composition. |
| if (!mFrameLatencyNeeded) return false; |
| |
| // Update mFrameEventHistory. |
| { |
| Mutex::Autolock lock(mFrameEventHistoryMutex); |
| mFrameEventHistory.addPostComposition(mCurrentFrameNumber, glDoneFence, presentFence, |
| compositorTiming); |
| } |
| |
| // Update mFrameTracker. |
| nsecs_t desiredPresentTime = getDesiredPresentTime(); |
| mFrameTracker.setDesiredPresentTime(desiredPresentTime); |
| |
| const int32_t layerID = getSequence(); |
| mFlinger->mTimeStats->setDesiredTime(layerID, mCurrentFrameNumber, desiredPresentTime); |
| |
| std::shared_ptr<FenceTime> frameReadyFence = getCurrentFenceTime(); |
| if (frameReadyFence->isValid()) { |
| mFrameTracker.setFrameReadyFence(std::move(frameReadyFence)); |
| } else { |
| // There was no fence for this frame, so assume that it was ready |
| // to be presented at the desired present time. |
| mFrameTracker.setFrameReadyTime(desiredPresentTime); |
| } |
| |
| if (presentFence->isValid()) { |
| mFlinger->mTimeStats->setPresentFence(layerID, mCurrentFrameNumber, presentFence); |
| mFrameTracker.setActualPresentFence(std::shared_ptr<FenceTime>(presentFence)); |
| } else if (displayId && mFlinger->getHwComposer().isConnected(*displayId)) { |
| // The HWC doesn't support present fences, so use the refresh |
| // timestamp instead. |
| const nsecs_t actualPresentTime = mFlinger->getHwComposer().getRefreshTimestamp(*displayId); |
| mFlinger->mTimeStats->setPresentTime(layerID, mCurrentFrameNumber, actualPresentTime); |
| mFrameTracker.setActualPresentTime(actualPresentTime); |
| } |
| |
| mFrameTracker.advanceFrame(); |
| mFrameLatencyNeeded = false; |
| return true; |
| } |
| |
| bool BufferLayer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime) { |
| ATRACE_CALL(); |
| |
| bool refreshRequired = latchSidebandStream(recomputeVisibleRegions); |
| |
| if (refreshRequired) { |
| return refreshRequired; |
| } |
| |
| if (!hasReadyFrame()) { |
| return false; |
| } |
| |
| // if we've already called updateTexImage() without going through |
| // a composition step, we have to skip this layer at this point |
| // because we cannot call updateTeximage() without a corresponding |
| // compositionComplete() call. |
| // we'll trigger an update in onPreComposition(). |
| if (mRefreshPending) { |
| return false; |
| } |
| |
| // If the head buffer's acquire fence hasn't signaled yet, return and |
| // try again later |
| if (!fenceHasSignaled()) { |
| ATRACE_NAME("!fenceHasSignaled()"); |
| mFlinger->signalLayerUpdate(); |
| return false; |
| } |
| |
| // Capture the old state of the layer for comparisons later |
| const State& s(getDrawingState()); |
| const bool oldOpacity = isOpaque(s); |
| sp<GraphicBuffer> oldBuffer = mActiveBuffer; |
| |
| if (!allTransactionsSignaled()) { |
| mFlinger->signalLayerUpdate(); |
| return false; |
| } |
| |
| status_t err = updateTexImage(recomputeVisibleRegions, latchTime); |
| if (err != NO_ERROR) { |
| return false; |
| } |
| |
| err = updateActiveBuffer(); |
| if (err != NO_ERROR) { |
| return false; |
| } |
| |
| mBufferLatched = true; |
| |
| err = updateFrameNumber(latchTime); |
| if (err != NO_ERROR) { |
| return false; |
| } |
| |
| mRefreshPending = true; |
| mFrameLatencyNeeded = true; |
| if (oldBuffer == nullptr) { |
| // the first time we receive a buffer, we need to trigger a |
| // geometry invalidation. |
| recomputeVisibleRegions = true; |
| } |
| |
| ui::Dataspace dataSpace = getDrawingDataSpace(); |
| // translate legacy dataspaces to modern dataspaces |
| switch (dataSpace) { |
| case ui::Dataspace::SRGB: |
| dataSpace = ui::Dataspace::V0_SRGB; |
| break; |
| case ui::Dataspace::SRGB_LINEAR: |
| dataSpace = ui::Dataspace::V0_SRGB_LINEAR; |
| break; |
| case ui::Dataspace::JFIF: |
| dataSpace = ui::Dataspace::V0_JFIF; |
| break; |
| case ui::Dataspace::BT601_625: |
| dataSpace = ui::Dataspace::V0_BT601_625; |
| break; |
| case ui::Dataspace::BT601_525: |
| dataSpace = ui::Dataspace::V0_BT601_525; |
| break; |
| case ui::Dataspace::BT709: |
| dataSpace = ui::Dataspace::V0_BT709; |
| break; |
| default: |
| break; |
| } |
| mCurrentDataSpace = dataSpace; |
| |
| Rect crop(getDrawingCrop()); |
| const uint32_t transform(getDrawingTransform()); |
| const uint32_t scalingMode(getDrawingScalingMode()); |
| const bool transformToDisplayInverse(getTransformToDisplayInverse()); |
| if ((crop != mCurrentCrop) || (transform != mCurrentTransform) || |
| (scalingMode != mCurrentScalingMode) || |
| (transformToDisplayInverse != mTransformToDisplayInverse)) { |
| mCurrentCrop = crop; |
| mCurrentTransform = transform; |
| mCurrentScalingMode = scalingMode; |
| mTransformToDisplayInverse = transformToDisplayInverse; |
| recomputeVisibleRegions = true; |
| } |
| |
| if (oldBuffer != nullptr) { |
| uint32_t bufWidth = mActiveBuffer->getWidth(); |
| uint32_t bufHeight = mActiveBuffer->getHeight(); |
| if (bufWidth != uint32_t(oldBuffer->width) || bufHeight != uint32_t(oldBuffer->height)) { |
| recomputeVisibleRegions = true; |
| } |
| } |
| |
| if (oldOpacity != isOpaque(s)) { |
| recomputeVisibleRegions = true; |
| } |
| |
| // Remove any sync points corresponding to the buffer which was just |
| // latched |
| { |
| Mutex::Autolock lock(mLocalSyncPointMutex); |
| auto point = mLocalSyncPoints.begin(); |
| while (point != mLocalSyncPoints.end()) { |
| if (!(*point)->frameIsAvailable() || !(*point)->transactionIsApplied()) { |
| // This sync point must have been added since we started |
| // latching. Don't drop it yet. |
| ++point; |
| continue; |
| } |
| |
| if ((*point)->getFrameNumber() <= mCurrentFrameNumber) { |
| point = mLocalSyncPoints.erase(point); |
| } else { |
| ++point; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| // transaction |
| void BufferLayer::notifyAvailableFrames() { |
| const auto headFrameNumber = getHeadFrameNumber(); |
| const bool headFenceSignaled = fenceHasSignaled(); |
| const bool presentTimeIsCurrent = framePresentTimeIsCurrent(); |
| Mutex::Autolock lock(mLocalSyncPointMutex); |
| for (auto& point : mLocalSyncPoints) { |
| if (headFrameNumber >= point->getFrameNumber() && headFenceSignaled && |
| presentTimeIsCurrent) { |
| point->setFrameAvailable(); |
| } |
| } |
| } |
| |
| bool BufferLayer::hasReadyFrame() const { |
| return hasFrameUpdate() || getSidebandStreamChanged() || getAutoRefresh(); |
| } |
| |
| uint32_t BufferLayer::getEffectiveScalingMode() const { |
| if (mOverrideScalingMode >= 0) { |
| return mOverrideScalingMode; |
| } |
| |
| return mCurrentScalingMode; |
| } |
| |
| bool BufferLayer::isProtected() const { |
| const sp<GraphicBuffer>& buffer(mActiveBuffer); |
| return (buffer != 0) && (buffer->getUsage() & GRALLOC_USAGE_PROTECTED); |
| } |
| |
| bool BufferLayer::latchUnsignaledBuffers() { |
| static bool propertyLoaded = false; |
| static bool latch = false; |
| static std::mutex mutex; |
| std::lock_guard<std::mutex> lock(mutex); |
| if (!propertyLoaded) { |
| char value[PROPERTY_VALUE_MAX] = {}; |
| property_get("debug.sf.latch_unsignaled", value, "0"); |
| latch = atoi(value); |
| propertyLoaded = true; |
| } |
| return latch; |
| } |
| |
| // h/w composer set-up |
| bool BufferLayer::allTransactionsSignaled() { |
| auto headFrameNumber = getHeadFrameNumber(); |
| bool matchingFramesFound = false; |
| bool allTransactionsApplied = true; |
| Mutex::Autolock lock(mLocalSyncPointMutex); |
| |
| for (auto& point : mLocalSyncPoints) { |
| if (point->getFrameNumber() > headFrameNumber) { |
| break; |
| } |
| matchingFramesFound = true; |
| |
| if (!point->frameIsAvailable()) { |
| // We haven't notified the remote layer that the frame for |
| // this point is available yet. Notify it now, and then |
| // abort this attempt to latch. |
| point->setFrameAvailable(); |
| allTransactionsApplied = false; |
| break; |
| } |
| |
| allTransactionsApplied = allTransactionsApplied && point->transactionIsApplied(); |
| } |
| return !matchingFramesFound || allTransactionsApplied; |
| } |
| |
| // As documented in libhardware header, formats in the range |
| // 0x100 - 0x1FF are specific to the HAL implementation, and |
| // are known to have no alpha channel |
| // TODO: move definition for device-specific range into |
| // hardware.h, instead of using hard-coded values here. |
| #define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF) |
| |
| bool BufferLayer::getOpacityForFormat(uint32_t format) { |
| if (HARDWARE_IS_DEVICE_FORMAT(format)) { |
| return true; |
| } |
| switch (format) { |
| case HAL_PIXEL_FORMAT_RGBA_8888: |
| case HAL_PIXEL_FORMAT_BGRA_8888: |
| case HAL_PIXEL_FORMAT_RGBA_FP16: |
| case HAL_PIXEL_FORMAT_RGBA_1010102: |
| return false; |
| } |
| // in all other case, we have no blending (also for unknown formats) |
| return true; |
| } |
| |
| bool BufferLayer::needsFiltering(const sp<const DisplayDevice>& displayDevice) const { |
| // If we are not capturing based on the state of a known display device, we |
| // only return mNeedsFiltering |
| if (displayDevice == nullptr) { |
| return mNeedsFiltering; |
| } |
| |
| const auto outputLayer = findOutputLayerForDisplay(displayDevice); |
| if (outputLayer == nullptr) { |
| return mNeedsFiltering; |
| } |
| |
| const auto& compositionState = outputLayer->getState(); |
| const auto displayFrame = compositionState.displayFrame; |
| const auto sourceCrop = compositionState.sourceCrop; |
| return mNeedsFiltering || sourceCrop.getHeight() != displayFrame.getHeight() || |
| sourceCrop.getWidth() != displayFrame.getWidth(); |
| } |
| |
| uint64_t BufferLayer::getHeadFrameNumber() const { |
| if (hasFrameUpdate()) { |
| return getFrameNumber(); |
| } else { |
| return mCurrentFrameNumber; |
| } |
| } |
| |
| Rect BufferLayer::getBufferSize(const State& s) const { |
| // If we have a sideband stream, or we are scaling the buffer then return the layer size since |
| // we cannot determine the buffer size. |
| if ((s.sidebandStream != nullptr) || |
| (getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) { |
| return Rect(getActiveWidth(s), getActiveHeight(s)); |
| } |
| |
| if (mActiveBuffer == nullptr) { |
| return Rect::INVALID_RECT; |
| } |
| |
| uint32_t bufWidth = mActiveBuffer->getWidth(); |
| uint32_t bufHeight = mActiveBuffer->getHeight(); |
| |
| // Undo any transformations on the buffer and return the result. |
| if (mCurrentTransform & ui::Transform::ROT_90) { |
| std::swap(bufWidth, bufHeight); |
| } |
| |
| if (getTransformToDisplayInverse()) { |
| uint32_t invTransform = DisplayDevice::getPrimaryDisplayOrientationTransform(); |
| if (invTransform & ui::Transform::ROT_90) { |
| std::swap(bufWidth, bufHeight); |
| } |
| } |
| |
| return Rect(bufWidth, bufHeight); |
| } |
| |
| std::shared_ptr<compositionengine::Layer> BufferLayer::getCompositionLayer() const { |
| return mCompositionLayer; |
| } |
| |
| FloatRect BufferLayer::computeSourceBounds(const FloatRect& parentBounds) const { |
| const State& s(getDrawingState()); |
| |
| // If we have a sideband stream, or we are scaling the buffer then return the layer size since |
| // we cannot determine the buffer size. |
| if ((s.sidebandStream != nullptr) || |
| (getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) { |
| return FloatRect(0, 0, getActiveWidth(s), getActiveHeight(s)); |
| } |
| |
| if (mActiveBuffer == nullptr) { |
| return parentBounds; |
| } |
| |
| uint32_t bufWidth = mActiveBuffer->getWidth(); |
| uint32_t bufHeight = mActiveBuffer->getHeight(); |
| |
| // Undo any transformations on the buffer and return the result. |
| if (mCurrentTransform & ui::Transform::ROT_90) { |
| std::swap(bufWidth, bufHeight); |
| } |
| |
| if (getTransformToDisplayInverse()) { |
| uint32_t invTransform = DisplayDevice::getPrimaryDisplayOrientationTransform(); |
| if (invTransform & ui::Transform::ROT_90) { |
| std::swap(bufWidth, bufHeight); |
| } |
| } |
| |
| return FloatRect(0, 0, bufWidth, bufHeight); |
| } |
| |
| } // namespace android |
| |
| #if defined(__gl_h_) |
| #error "don't include gl/gl.h in this file" |
| #endif |
| |
| #if defined(__gl2_h_) |
| #error "don't include gl2/gl2.h in this file" |
| #endif |