blob: 29a8292ff6257ac1db5d239b47cc6b39fd624fc2 [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// #define LOG_NDEBUG 0
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include <stdint.h>
#include <sys/types.h>
#include <errno.h>
#include <math.h>
#include <mutex>
#include <dlfcn.h>
#include <inttypes.h>
#include <stdatomic.h>
#include <EGL/egl.h>
#include <cutils/properties.h>
#include <log/log.h>
#include <binder/IPCThreadState.h>
#include <binder/IServiceManager.h>
#include <binder/PermissionCache.h>
#include <dvr/vr_flinger.h>
#include <ui/DebugUtils.h>
#include <ui/DisplayInfo.h>
#include <ui/DisplayStatInfo.h>
#include <gui/BufferQueue.h>
#include <gui/GuiConfig.h>
#include <gui/IDisplayEventConnection.h>
#include <gui/Surface.h>
#include <ui/GraphicBufferAllocator.h>
#include <ui/PixelFormat.h>
#include <ui/UiConfig.h>
#include <utils/misc.h>
#include <utils/String8.h>
#include <utils/String16.h>
#include <utils/StopWatch.h>
#include <utils/Timers.h>
#include <utils/Trace.h>
#include <private/android_filesystem_config.h>
#include <private/gui/SyncFeatures.h>
#include "Client.h"
#include "clz.h"
#include "Colorizer.h"
#include "DdmConnection.h"
#include "DisplayDevice.h"
#include "DispSync.h"
#include "EventControlThread.h"
#include "EventThread.h"
#include "Layer.h"
#include "LayerVector.h"
#include "LayerDim.h"
#include "MonitoredProducer.h"
#include "SurfaceFlinger.h"
#include "DisplayHardware/FramebufferSurface.h"
#include "DisplayHardware/HWComposer.h"
#include "DisplayHardware/VirtualDisplaySurface.h"
#include "Effects/Daltonizer.h"
#include "RenderEngine/RenderEngine.h"
#include <cutils/compiler.h>
#include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h>
#include <configstore/Utils.h>
#define DISPLAY_COUNT 1
/*
* DEBUG_SCREENSHOTS: set to true to check that screenshots are not all
* black pixels.
*/
#define DEBUG_SCREENSHOTS false
EGLAPI const char* eglQueryStringImplementationANDROID(EGLDisplay dpy, EGLint name);
namespace android {
using namespace android::hardware::configstore;
using namespace android::hardware::configstore::V1_0;
// ---------------------------------------------------------------------------
const String16 sHardwareTest("android.permission.HARDWARE_TEST");
const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
const String16 sDump("android.permission.DUMP");
// ---------------------------------------------------------------------------
int64_t SurfaceFlinger::vsyncPhaseOffsetNs;
int64_t SurfaceFlinger::sfVsyncPhaseOffsetNs;
bool SurfaceFlinger::useContextPriority;
int64_t SurfaceFlinger::dispSyncPresentTimeOffset;
bool SurfaceFlinger::useHwcForRgbToYuv;
uint64_t SurfaceFlinger::maxVirtualDisplaySize;
bool SurfaceFlinger::hasSyncFramework;
bool SurfaceFlinger::useVrFlinger;
int64_t SurfaceFlinger::maxFrameBufferAcquiredBuffers;
bool SurfaceFlinger::hasWideColorDisplay;
SurfaceFlinger::SurfaceFlinger()
: BnSurfaceComposer(),
mTransactionFlags(0),
mTransactionPending(false),
mAnimTransactionPending(false),
mLayersRemoved(false),
mLayersAdded(false),
mRepaintEverything(0),
mHwc(nullptr),
mRealHwc(nullptr),
mVrHwc(nullptr),
mRenderEngine(nullptr),
mBootTime(systemTime()),
mBuiltinDisplays(),
mVisibleRegionsDirty(false),
mGeometryInvalid(false),
mAnimCompositionPending(false),
mDebugRegion(0),
mDebugDDMS(0),
mDebugDisableHWC(0),
mDebugDisableTransformHint(0),
mDebugInSwapBuffers(0),
mLastSwapBufferTime(0),
mDebugInTransaction(0),
mLastTransactionTime(0),
mBootFinished(false),
mForceFullDamage(false),
mInterceptor(this),
mPrimaryDispSync("PrimaryDispSync"),
mPrimaryHWVsyncEnabled(false),
mHWVsyncAvailable(false),
mHasColorMatrix(false),
mHasPoweredOff(false),
mFrameBuckets(),
mTotalTime(0),
mLastSwapTime(0),
mNumLayers(0),
mVrFlingerRequestsDisplay(false)
{
ALOGI("SurfaceFlinger is starting");
vsyncPhaseOffsetNs = getInt64< ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::vsyncEventPhaseOffsetNs>(1000000);
sfVsyncPhaseOffsetNs = getInt64< ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::vsyncSfEventPhaseOffsetNs>(1000000);
hasSyncFramework = getBool< ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::hasSyncFramework>(true);
useContextPriority = getBool< ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::useContextPriority>(false);
dispSyncPresentTimeOffset = getInt64< ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::presentTimeOffsetFromVSyncNs>(0);
useHwcForRgbToYuv = getBool< ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::useHwcForRGBtoYUV>(false);
maxVirtualDisplaySize = getUInt64<ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::maxVirtualDisplaySize>(0);
// Vr flinger is only enabled on Daydream ready devices.
useVrFlinger = getBool< ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::useVrFlinger>(false);
maxFrameBufferAcquiredBuffers = getInt64< ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::maxFrameBufferAcquiredBuffers>(2);
hasWideColorDisplay =
getBool<ISurfaceFlingerConfigs, &ISurfaceFlingerConfigs::hasWideColorDisplay>(false);
// debugging stuff...
char value[PROPERTY_VALUE_MAX];
property_get("ro.bq.gpu_to_cpu_unsupported", value, "0");
mGpuToCpuSupported = !atoi(value);
property_get("debug.sf.showupdates", value, "0");
mDebugRegion = atoi(value);
property_get("debug.sf.ddms", value, "0");
mDebugDDMS = atoi(value);
if (mDebugDDMS) {
if (!startDdmConnection()) {
// start failed, and DDMS debugging not enabled
mDebugDDMS = 0;
}
}
ALOGI_IF(mDebugRegion, "showupdates enabled");
ALOGI_IF(mDebugDDMS, "DDMS debugging enabled");
property_get("debug.sf.disable_backpressure", value, "0");
mPropagateBackpressure = !atoi(value);
ALOGI_IF(!mPropagateBackpressure, "Disabling backpressure propagation");
property_get("debug.sf.enable_hwc_vds", value, "0");
mUseHwcVirtualDisplays = atoi(value);
ALOGI_IF(!mUseHwcVirtualDisplays, "Enabling HWC virtual displays");
property_get("ro.sf.disable_triple_buffer", value, "1");
mLayerTripleBufferingDisabled = atoi(value);
ALOGI_IF(mLayerTripleBufferingDisabled, "Disabling Triple Buffering");
}
void SurfaceFlinger::onFirstRef()
{
mEventQueue.init(this);
}
SurfaceFlinger::~SurfaceFlinger()
{
EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
eglTerminate(display);
}
void SurfaceFlinger::binderDied(const wp<IBinder>& /* who */)
{
// the window manager died on us. prepare its eulogy.
// restore initial conditions (default device unblank, etc)
initializeDisplays();
// restart the boot-animation
startBootAnim();
}
static sp<ISurfaceComposerClient> initClient(const sp<Client>& client) {
status_t err = client->initCheck();
if (err == NO_ERROR) {
return client;
}
return nullptr;
}
sp<ISurfaceComposerClient> SurfaceFlinger::createConnection() {
return initClient(new Client(this));
}
sp<ISurfaceComposerClient> SurfaceFlinger::createScopedConnection(
const sp<IGraphicBufferProducer>& gbp) {
if (authenticateSurfaceTexture(gbp) == false) {
return nullptr;
}
const auto& layer = (static_cast<MonitoredProducer*>(gbp.get()))->getLayer();
if (layer == nullptr) {
return nullptr;
}
return initClient(new Client(this, layer));
}
sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName,
bool secure)
{
class DisplayToken : public BBinder {
sp<SurfaceFlinger> flinger;
virtual ~DisplayToken() {
// no more references, this display must be terminated
Mutex::Autolock _l(flinger->mStateLock);
flinger->mCurrentState.displays.removeItem(this);
flinger->setTransactionFlags(eDisplayTransactionNeeded);
}
public:
explicit DisplayToken(const sp<SurfaceFlinger>& flinger)
: flinger(flinger) {
}
};
sp<BBinder> token = new DisplayToken(this);
Mutex::Autolock _l(mStateLock);
DisplayDeviceState info(DisplayDevice::DISPLAY_VIRTUAL, secure);
info.displayName = displayName;
mCurrentState.displays.add(token, info);
mInterceptor.saveDisplayCreation(info);
return token;
}
void SurfaceFlinger::destroyDisplay(const sp<IBinder>& display) {
Mutex::Autolock _l(mStateLock);
ssize_t idx = mCurrentState.displays.indexOfKey(display);
if (idx < 0) {
ALOGW("destroyDisplay: invalid display token");
return;
}
const DisplayDeviceState& info(mCurrentState.displays.valueAt(idx));
if (!info.isVirtualDisplay()) {
ALOGE("destroyDisplay called for non-virtual display");
return;
}
mInterceptor.saveDisplayDeletion(info.displayId);
mCurrentState.displays.removeItemsAt(idx);
setTransactionFlags(eDisplayTransactionNeeded);
}
void SurfaceFlinger::createBuiltinDisplayLocked(DisplayDevice::DisplayType type) {
ALOGV("createBuiltinDisplayLocked(%d)", type);
ALOGW_IF(mBuiltinDisplays[type],
"Overwriting display token for display type %d", type);
mBuiltinDisplays[type] = new BBinder();
// All non-virtual displays are currently considered secure.
DisplayDeviceState info(type, true);
mCurrentState.displays.add(mBuiltinDisplays[type], info);
mInterceptor.saveDisplayCreation(info);
}
sp<IBinder> SurfaceFlinger::getBuiltInDisplay(int32_t id) {
if (uint32_t(id) >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) {
ALOGE("getDefaultDisplay: id=%d is not a valid default display id", id);
return NULL;
}
return mBuiltinDisplays[id];
}
void SurfaceFlinger::bootFinished()
{
if (mStartBootAnimThread->join() != NO_ERROR) {
ALOGE("Join StartBootAnimThread failed!");
}
const nsecs_t now = systemTime();
const nsecs_t duration = now - mBootTime;
ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
mBootFinished = true;
// wait patiently for the window manager death
const String16 name("window");
sp<IBinder> window(defaultServiceManager()->getService(name));
if (window != 0) {
window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
}
if (mVrFlinger) {
mVrFlinger->OnBootFinished();
}
// stop boot animation
// formerly we would just kill the process, but we now ask it to exit so it
// can choose where to stop the animation.
property_set("service.bootanim.exit", "1");
const int LOGTAG_SF_STOP_BOOTANIM = 60110;
LOG_EVENT_LONG(LOGTAG_SF_STOP_BOOTANIM,
ns2ms(systemTime(SYSTEM_TIME_MONOTONIC)));
}
void SurfaceFlinger::deleteTextureAsync(uint32_t texture) {
class MessageDestroyGLTexture : public MessageBase {
RenderEngine& engine;
uint32_t texture;
public:
MessageDestroyGLTexture(RenderEngine& engine, uint32_t texture)
: engine(engine), texture(texture) {
}
virtual bool handler() {
engine.deleteTextures(1, &texture);
return true;
}
};
postMessageAsync(new MessageDestroyGLTexture(getRenderEngine(), texture));
}
class DispSyncSource : public VSyncSource, private DispSync::Callback {
public:
DispSyncSource(DispSync* dispSync, nsecs_t phaseOffset, bool traceVsync,
const char* name) :
mName(name),
mValue(0),
mTraceVsync(traceVsync),
mVsyncOnLabel(String8::format("VsyncOn-%s", name)),
mVsyncEventLabel(String8::format("VSYNC-%s", name)),
mDispSync(dispSync),
mCallbackMutex(),
mCallback(),
mVsyncMutex(),
mPhaseOffset(phaseOffset),
mEnabled(false) {}
virtual ~DispSyncSource() {}
virtual void setVSyncEnabled(bool enable) {
Mutex::Autolock lock(mVsyncMutex);
if (enable) {
status_t err = mDispSync->addEventListener(mName, mPhaseOffset,
static_cast<DispSync::Callback*>(this));
if (err != NO_ERROR) {
ALOGE("error registering vsync callback: %s (%d)",
strerror(-err), err);
}
//ATRACE_INT(mVsyncOnLabel.string(), 1);
} else {
status_t err = mDispSync->removeEventListener(
static_cast<DispSync::Callback*>(this));
if (err != NO_ERROR) {
ALOGE("error unregistering vsync callback: %s (%d)",
strerror(-err), err);
}
//ATRACE_INT(mVsyncOnLabel.string(), 0);
}
mEnabled = enable;
}
virtual void setCallback(const sp<VSyncSource::Callback>& callback) {
Mutex::Autolock lock(mCallbackMutex);
mCallback = callback;
}
virtual void setPhaseOffset(nsecs_t phaseOffset) {
Mutex::Autolock lock(mVsyncMutex);
// Normalize phaseOffset to [0, period)
auto period = mDispSync->getPeriod();
phaseOffset %= period;
if (phaseOffset < 0) {
// If we're here, then phaseOffset is in (-period, 0). After this
// operation, it will be in (0, period)
phaseOffset += period;
}
mPhaseOffset = phaseOffset;
// If we're not enabled, we don't need to mess with the listeners
if (!mEnabled) {
return;
}
// Remove the listener with the old offset
status_t err = mDispSync->removeEventListener(
static_cast<DispSync::Callback*>(this));
if (err != NO_ERROR) {
ALOGE("error unregistering vsync callback: %s (%d)",
strerror(-err), err);
}
// Add a listener with the new offset
err = mDispSync->addEventListener(mName, mPhaseOffset,
static_cast<DispSync::Callback*>(this));
if (err != NO_ERROR) {
ALOGE("error registering vsync callback: %s (%d)",
strerror(-err), err);
}
}
private:
virtual void onDispSyncEvent(nsecs_t when) {
sp<VSyncSource::Callback> callback;
{
Mutex::Autolock lock(mCallbackMutex);
callback = mCallback;
if (mTraceVsync) {
mValue = (mValue + 1) % 2;
ATRACE_INT(mVsyncEventLabel.string(), mValue);
}
}
if (callback != NULL) {
callback->onVSyncEvent(when);
}
}
const char* const mName;
int mValue;
const bool mTraceVsync;
const String8 mVsyncOnLabel;
const String8 mVsyncEventLabel;
DispSync* mDispSync;
Mutex mCallbackMutex; // Protects the following
sp<VSyncSource::Callback> mCallback;
Mutex mVsyncMutex; // Protects the following
nsecs_t mPhaseOffset;
bool mEnabled;
};
class InjectVSyncSource : public VSyncSource {
public:
InjectVSyncSource() {}
virtual ~InjectVSyncSource() {}
virtual void setCallback(const sp<VSyncSource::Callback>& callback) {
std::lock_guard<std::mutex> lock(mCallbackMutex);
mCallback = callback;
}
virtual void onInjectSyncEvent(nsecs_t when) {
std::lock_guard<std::mutex> lock(mCallbackMutex);
mCallback->onVSyncEvent(when);
}
virtual void setVSyncEnabled(bool) {}
virtual void setPhaseOffset(nsecs_t) {}
private:
std::mutex mCallbackMutex; // Protects the following
sp<VSyncSource::Callback> mCallback;
};
void SurfaceFlinger::init() {
ALOGI( "SurfaceFlinger's main thread ready to run. "
"Initializing graphics H/W...");
ALOGI("Phase offest NS: %" PRId64 "", vsyncPhaseOffsetNs);
{ // Autolock scope
Mutex::Autolock _l(mStateLock);
// initialize EGL for the default display
mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
eglInitialize(mEGLDisplay, NULL, NULL);
// start the EventThread
sp<VSyncSource> vsyncSrc = new DispSyncSource(&mPrimaryDispSync,
vsyncPhaseOffsetNs, true, "app");
mEventThread = new EventThread(vsyncSrc, *this, false);
sp<VSyncSource> sfVsyncSrc = new DispSyncSource(&mPrimaryDispSync,
sfVsyncPhaseOffsetNs, true, "sf");
mSFEventThread = new EventThread(sfVsyncSrc, *this, true);
mEventQueue.setEventThread(mSFEventThread);
// set EventThread and SFEventThread to SCHED_FIFO to minimize jitter
struct sched_param param = {0};
param.sched_priority = 2;
if (sched_setscheduler(mSFEventThread->getTid(), SCHED_FIFO, &param) != 0) {
ALOGE("Couldn't set SCHED_FIFO for SFEventThread");
}
if (sched_setscheduler(mEventThread->getTid(), SCHED_FIFO, &param) != 0) {
ALOGE("Couldn't set SCHED_FIFO for EventThread");
}
// Get a RenderEngine for the given display / config (can't fail)
mRenderEngine = RenderEngine::create(mEGLDisplay,
HAL_PIXEL_FORMAT_RGBA_8888);
}
// Drop the state lock while we initialize the hardware composer. We drop
// the lock because on creation, it will call back into SurfaceFlinger to
// initialize the primary display.
LOG_ALWAYS_FATAL_IF(mVrFlingerRequestsDisplay,
"Starting with vr flinger active is not currently supported.");
mRealHwc = new HWComposer(false);
mHwc = mRealHwc;
mHwc->setEventHandler(static_cast<HWComposer::EventHandler*>(this));
Mutex::Autolock _l(mStateLock);
// Inform native graphics APIs whether the present timestamp is supported:
if (getHwComposer().hasCapability(
HWC2::Capability::PresentFenceIsNotReliable)) {
property_set(kTimestampProperty, "0");
} else {
property_set(kTimestampProperty, "1");
}
if (useVrFlinger) {
auto vrFlingerRequestDisplayCallback = [this] (bool requestDisplay) {
ALOGI("VR request display mode: requestDisplay=%d", requestDisplay);
mVrFlingerRequestsDisplay = requestDisplay;
signalTransaction();
};
mVrFlinger = dvr::VrFlinger::Create(mHwc->getComposer(),
vrFlingerRequestDisplayCallback);
if (!mVrFlinger) {
ALOGE("Failed to start vrflinger");
}
}
// retrieve the EGL context that was selected/created
mEGLContext = mRenderEngine->getEGLContext();
LOG_ALWAYS_FATAL_IF(mEGLContext == EGL_NO_CONTEXT,
"couldn't create EGLContext");
// make the GLContext current so that we can create textures when creating
// Layers (which may happens before we render something)
getDefaultDisplayDeviceLocked()->makeCurrent(mEGLDisplay, mEGLContext);
mEventControlThread = new EventControlThread(this);
mEventControlThread->run("EventControl", PRIORITY_URGENT_DISPLAY);
// initialize our drawing state
mDrawingState = mCurrentState;
// set initial conditions (e.g. unblank default device)
initializeDisplays();
mRenderEngine->primeCache();
mStartBootAnimThread = new StartBootAnimThread();
if (mStartBootAnimThread->Start() != NO_ERROR) {
ALOGE("Run StartBootAnimThread failed!");
}
ALOGV("Done initializing");
}
void SurfaceFlinger::startBootAnim() {
// Start boot animation service by setting a property mailbox
// if property setting thread is already running, Start() will be just a NOP
mStartBootAnimThread->Start();
// Wait until property was set
if (mStartBootAnimThread->join() != NO_ERROR) {
ALOGE("Join StartBootAnimThread failed!");
}
}
size_t SurfaceFlinger::getMaxTextureSize() const {
return mRenderEngine->getMaxTextureSize();
}
size_t SurfaceFlinger::getMaxViewportDims() const {
return mRenderEngine->getMaxViewportDims();
}
// ----------------------------------------------------------------------------
bool SurfaceFlinger::authenticateSurfaceTexture(
const sp<IGraphicBufferProducer>& bufferProducer) const {
Mutex::Autolock _l(mStateLock);
return authenticateSurfaceTextureLocked(bufferProducer);
}
bool SurfaceFlinger::authenticateSurfaceTextureLocked(
const sp<IGraphicBufferProducer>& bufferProducer) const {
sp<IBinder> surfaceTextureBinder(IInterface::asBinder(bufferProducer));
return mGraphicBufferProducerList.indexOf(surfaceTextureBinder) >= 0;
}
status_t SurfaceFlinger::getSupportedFrameTimestamps(
std::vector<FrameEvent>* outSupported) const {
*outSupported = {
FrameEvent::REQUESTED_PRESENT,
FrameEvent::ACQUIRE,
FrameEvent::LATCH,
FrameEvent::FIRST_REFRESH_START,
FrameEvent::LAST_REFRESH_START,
FrameEvent::GPU_COMPOSITION_DONE,
FrameEvent::DEQUEUE_READY,
FrameEvent::RELEASE,
};
if (!getHwComposer().hasCapability(
HWC2::Capability::PresentFenceIsNotReliable)) {
outSupported->push_back(FrameEvent::DISPLAY_PRESENT);
}
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayConfigs(const sp<IBinder>& display,
Vector<DisplayInfo>* configs) {
if ((configs == NULL) || (display.get() == NULL)) {
return BAD_VALUE;
}
if (!display.get())
return NAME_NOT_FOUND;
int32_t type = NAME_NOT_FOUND;
for (int i=0 ; i<DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES ; i++) {
if (display == mBuiltinDisplays[i]) {
type = i;
break;
}
}
if (type < 0) {
return type;
}
// TODO: Not sure if display density should handled by SF any longer
class Density {
static int getDensityFromProperty(char const* propName) {
char property[PROPERTY_VALUE_MAX];
int density = 0;
if (property_get(propName, property, NULL) > 0) {
density = atoi(property);
}
return density;
}
public:
static int getEmuDensity() {
return getDensityFromProperty("qemu.sf.lcd_density"); }
static int getBuildDensity() {
return getDensityFromProperty("ro.sf.lcd_density"); }
};
configs->clear();
for (const auto& hwConfig : getHwComposer().getConfigs(type)) {
DisplayInfo info = DisplayInfo();
float xdpi = hwConfig->getDpiX();
float ydpi = hwConfig->getDpiY();
if (type == DisplayDevice::DISPLAY_PRIMARY) {
// The density of the device is provided by a build property
float density = Density::getBuildDensity() / 160.0f;
if (density == 0) {
// the build doesn't provide a density -- this is wrong!
// use xdpi instead
ALOGE("ro.sf.lcd_density must be defined as a build property");
density = xdpi / 160.0f;
}
if (Density::getEmuDensity()) {
// if "qemu.sf.lcd_density" is specified, it overrides everything
xdpi = ydpi = density = Density::getEmuDensity();
density /= 160.0f;
}
info.density = density;
// TODO: this needs to go away (currently needed only by webkit)
sp<const DisplayDevice> hw(getDefaultDisplayDevice());
info.orientation = hw->getOrientation();
} else {
// TODO: where should this value come from?
static const int TV_DENSITY = 213;
info.density = TV_DENSITY / 160.0f;
info.orientation = 0;
}
info.w = hwConfig->getWidth();
info.h = hwConfig->getHeight();
info.xdpi = xdpi;
info.ydpi = ydpi;
info.fps = 1e9 / hwConfig->getVsyncPeriod();
info.appVsyncOffset = vsyncPhaseOffsetNs;
// This is how far in advance a buffer must be queued for
// presentation at a given time. If you want a buffer to appear
// on the screen at time N, you must submit the buffer before
// (N - presentationDeadline).
//
// Normally it's one full refresh period (to give SF a chance to
// latch the buffer), but this can be reduced by configuring a
// DispSync offset. Any additional delays introduced by the hardware
// composer or panel must be accounted for here.
//
// We add an additional 1ms to allow for processing time and
// differences between the ideal and actual refresh rate.
info.presentationDeadline = hwConfig->getVsyncPeriod() -
sfVsyncPhaseOffsetNs + 1000000;
// All non-virtual displays are currently considered secure.
info.secure = true;
configs->push_back(info);
}
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayStats(const sp<IBinder>& /* display */,
DisplayStatInfo* stats) {
if (stats == NULL) {
return BAD_VALUE;
}
// FIXME for now we always return stats for the primary display
memset(stats, 0, sizeof(*stats));
stats->vsyncTime = mPrimaryDispSync.computeNextRefresh(0);
stats->vsyncPeriod = mPrimaryDispSync.getPeriod();
return NO_ERROR;
}
int SurfaceFlinger::getActiveConfig(const sp<IBinder>& display) {
if (display == NULL) {
ALOGE("%s : display is NULL", __func__);
return BAD_VALUE;
}
sp<const DisplayDevice> device(getDisplayDevice(display));
if (device != NULL) {
return device->getActiveConfig();
}
return BAD_VALUE;
}
void SurfaceFlinger::setActiveConfigInternal(const sp<DisplayDevice>& hw, int mode) {
ALOGD("Set active config mode=%d, type=%d flinger=%p", mode, hw->getDisplayType(),
this);
int32_t type = hw->getDisplayType();
int currentMode = hw->getActiveConfig();
if (mode == currentMode) {
ALOGD("Screen type=%d is already mode=%d", hw->getDisplayType(), mode);
return;
}
if (type >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) {
ALOGW("Trying to set config for virtual display");
return;
}
hw->setActiveConfig(mode);
getHwComposer().setActiveConfig(type, mode);
}
status_t SurfaceFlinger::setActiveConfig(const sp<IBinder>& display, int mode) {
class MessageSetActiveConfig: public MessageBase {
SurfaceFlinger& mFlinger;
sp<IBinder> mDisplay;
int mMode;
public:
MessageSetActiveConfig(SurfaceFlinger& flinger, const sp<IBinder>& disp,
int mode) :
mFlinger(flinger), mDisplay(disp) { mMode = mode; }
virtual bool handler() {
Vector<DisplayInfo> configs;
mFlinger.getDisplayConfigs(mDisplay, &configs);
if (mMode < 0 || mMode >= static_cast<int>(configs.size())) {
ALOGE("Attempt to set active config = %d for display with %zu configs",
mMode, configs.size());
return true;
}
sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
if (hw == NULL) {
ALOGE("Attempt to set active config = %d for null display %p",
mMode, mDisplay.get());
} else if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL) {
ALOGW("Attempt to set active config = %d for virtual display",
mMode);
} else {
mFlinger.setActiveConfigInternal(hw, mMode);
}
return true;
}
};
sp<MessageBase> msg = new MessageSetActiveConfig(*this, display, mode);
postMessageSync(msg);
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayColorModes(const sp<IBinder>& display,
Vector<android_color_mode_t>* outColorModes) {
if ((outColorModes == nullptr) || (display.get() == nullptr)) {
return BAD_VALUE;
}
if (!display.get()) {
return NAME_NOT_FOUND;
}
int32_t type = NAME_NOT_FOUND;
for (int i=0 ; i<DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES ; i++) {
if (display == mBuiltinDisplays[i]) {
type = i;
break;
}
}
if (type < 0) {
return type;
}
std::vector<android_color_mode_t> modes = getHwComposer().getColorModes(type);
outColorModes->clear();
std::copy(modes.cbegin(), modes.cend(), std::back_inserter(*outColorModes));
return NO_ERROR;
}
android_color_mode_t SurfaceFlinger::getActiveColorMode(const sp<IBinder>& display) {
sp<const DisplayDevice> device(getDisplayDevice(display));
if (device != nullptr) {
return device->getActiveColorMode();
}
return static_cast<android_color_mode_t>(BAD_VALUE);
}
void SurfaceFlinger::setActiveColorModeInternal(const sp<DisplayDevice>& hw,
android_color_mode_t mode) {
int32_t type = hw->getDisplayType();
android_color_mode_t currentMode = hw->getActiveColorMode();
if (mode == currentMode) {
return;
}
if (type >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) {
ALOGW("Trying to set config for virtual display");
return;
}
ALOGD("Set active color mode: %s (%d), type=%d", decodeColorMode(mode).c_str(), mode,
hw->getDisplayType());
hw->setActiveColorMode(mode);
getHwComposer().setActiveColorMode(type, mode);
}
status_t SurfaceFlinger::setActiveColorMode(const sp<IBinder>& display,
android_color_mode_t colorMode) {
class MessageSetActiveColorMode: public MessageBase {
SurfaceFlinger& mFlinger;
sp<IBinder> mDisplay;
android_color_mode_t mMode;
public:
MessageSetActiveColorMode(SurfaceFlinger& flinger, const sp<IBinder>& disp,
android_color_mode_t mode) :
mFlinger(flinger), mDisplay(disp) { mMode = mode; }
virtual bool handler() {
Vector<android_color_mode_t> modes;
mFlinger.getDisplayColorModes(mDisplay, &modes);
bool exists = std::find(std::begin(modes), std::end(modes), mMode) != std::end(modes);
if (mMode < 0 || !exists) {
ALOGE("Attempt to set invalid active color mode %s (%d) for display %p",
decodeColorMode(mMode).c_str(), mMode, mDisplay.get());
return true;
}
sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
if (hw == nullptr) {
ALOGE("Attempt to set active color mode %s (%d) for null display %p",
decodeColorMode(mMode).c_str(), mMode, mDisplay.get());
} else if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL) {
ALOGW("Attempt to set active color mode %s %d for virtual display",
decodeColorMode(mMode).c_str(), mMode);
} else {
mFlinger.setActiveColorModeInternal(hw, mMode);
}
return true;
}
};
sp<MessageBase> msg = new MessageSetActiveColorMode(*this, display, colorMode);
postMessageSync(msg);
return NO_ERROR;
}
status_t SurfaceFlinger::clearAnimationFrameStats() {
Mutex::Autolock _l(mStateLock);
mAnimFrameTracker.clearStats();
return NO_ERROR;
}
status_t SurfaceFlinger::getAnimationFrameStats(FrameStats* outStats) const {
Mutex::Autolock _l(mStateLock);
mAnimFrameTracker.getStats(outStats);
return NO_ERROR;
}
status_t SurfaceFlinger::getHdrCapabilities(const sp<IBinder>& display,
HdrCapabilities* outCapabilities) const {
Mutex::Autolock _l(mStateLock);
sp<const DisplayDevice> displayDevice(getDisplayDeviceLocked(display));
if (displayDevice == nullptr) {
ALOGE("getHdrCapabilities: Invalid display %p", displayDevice.get());
return BAD_VALUE;
}
std::unique_ptr<HdrCapabilities> capabilities =
mHwc->getHdrCapabilities(displayDevice->getHwcDisplayId());
if (capabilities) {
std::swap(*outCapabilities, *capabilities);
} else {
return BAD_VALUE;
}
return NO_ERROR;
}
status_t SurfaceFlinger::enableVSyncInjections(bool enable) {
if (enable == mInjectVSyncs) {
return NO_ERROR;
}
if (enable) {
mInjectVSyncs = enable;
ALOGV("VSync Injections enabled");
if (mVSyncInjector.get() == nullptr) {
mVSyncInjector = new InjectVSyncSource();
mInjectorEventThread = new EventThread(mVSyncInjector, *this, false);
}
mEventQueue.setEventThread(mInjectorEventThread);
} else {
mInjectVSyncs = enable;
ALOGV("VSync Injections disabled");
mEventQueue.setEventThread(mSFEventThread);
mVSyncInjector.clear();
}
return NO_ERROR;
}
status_t SurfaceFlinger::injectVSync(nsecs_t when) {
if (!mInjectVSyncs) {
ALOGE("VSync Injections not enabled");
return BAD_VALUE;
}
if (mInjectVSyncs && mInjectorEventThread.get() != nullptr) {
ALOGV("Injecting VSync inside SurfaceFlinger");
mVSyncInjector->onInjectSyncEvent(when);
}
return NO_ERROR;
}
// ----------------------------------------------------------------------------
sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
return mEventThread->createEventConnection();
}
// ----------------------------------------------------------------------------
void SurfaceFlinger::waitForEvent() {
mEventQueue.waitMessage();
}
void SurfaceFlinger::signalTransaction() {
mEventQueue.invalidate();
}
void SurfaceFlinger::signalLayerUpdate() {
mEventQueue.invalidate();
}
void SurfaceFlinger::signalRefresh() {
mEventQueue.refresh();
}
status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
nsecs_t reltime, uint32_t /* flags */) {
return mEventQueue.postMessage(msg, reltime);
}
status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
nsecs_t reltime, uint32_t /* flags */) {
status_t res = mEventQueue.postMessage(msg, reltime);
if (res == NO_ERROR) {
msg->wait();
}
return res;
}
void SurfaceFlinger::run() {
do {
waitForEvent();
} while (true);
}
void SurfaceFlinger::enableHardwareVsync() {
Mutex::Autolock _l(mHWVsyncLock);
if (!mPrimaryHWVsyncEnabled && mHWVsyncAvailable) {
mPrimaryDispSync.beginResync();
//eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, true);
mEventControlThread->setVsyncEnabled(true);
mPrimaryHWVsyncEnabled = true;
}
}
void SurfaceFlinger::resyncToHardwareVsync(bool makeAvailable) {
Mutex::Autolock _l(mHWVsyncLock);
if (makeAvailable) {
mHWVsyncAvailable = true;
} else if (!mHWVsyncAvailable) {
// Hardware vsync is not currently available, so abort the resync
// attempt for now
return;
}
const auto& activeConfig = mHwc->getActiveConfig(HWC_DISPLAY_PRIMARY);
const nsecs_t period = activeConfig->getVsyncPeriod();
mPrimaryDispSync.reset();
mPrimaryDispSync.setPeriod(period);
if (!mPrimaryHWVsyncEnabled) {
mPrimaryDispSync.beginResync();
//eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, true);
mEventControlThread->setVsyncEnabled(true);
mPrimaryHWVsyncEnabled = true;
}
}
void SurfaceFlinger::disableHardwareVsync(bool makeUnavailable) {
Mutex::Autolock _l(mHWVsyncLock);
if (mPrimaryHWVsyncEnabled) {
//eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, false);
mEventControlThread->setVsyncEnabled(false);
mPrimaryDispSync.endResync();
mPrimaryHWVsyncEnabled = false;
}
if (makeUnavailable) {
mHWVsyncAvailable = false;
}
}
void SurfaceFlinger::resyncWithRateLimit() {
static constexpr nsecs_t kIgnoreDelay = ms2ns(500);
// No explicit locking is needed here since EventThread holds a lock while calling this method
static nsecs_t sLastResyncAttempted = 0;
const nsecs_t now = systemTime();
if (now - sLastResyncAttempted > kIgnoreDelay) {
resyncToHardwareVsync(false);
}
sLastResyncAttempted = now;
}
void SurfaceFlinger::onVSyncReceived(HWComposer* composer, int32_t type,
nsecs_t timestamp) {
Mutex::Autolock lock(mStateLock);
// Ignore any vsyncs from the non-active hardware composer.
if (composer != mHwc) {
return;
}
bool needsHwVsync = false;
{ // Scope for the lock
Mutex::Autolock _l(mHWVsyncLock);
if (type == 0 && mPrimaryHWVsyncEnabled) {
needsHwVsync = mPrimaryDispSync.addResyncSample(timestamp);
}
}
if (needsHwVsync) {
enableHardwareVsync();
} else {
disableHardwareVsync(false);
}
}
void SurfaceFlinger::getCompositorTiming(CompositorTiming* compositorTiming) {
std::lock_guard<std::mutex> lock(mCompositorTimingLock);
*compositorTiming = mCompositorTiming;
}
void SurfaceFlinger::createDefaultDisplayDevice() {
const int32_t type = DisplayDevice::DISPLAY_PRIMARY;
wp<IBinder> token = mBuiltinDisplays[type];
// All non-virtual displays are currently considered secure.
const bool isSecure = true;
sp<IGraphicBufferProducer> producer;
sp<IGraphicBufferConsumer> consumer;
BufferQueue::createBufferQueue(&producer, &consumer);
sp<FramebufferSurface> fbs = new FramebufferSurface(*mHwc, type, consumer);
bool hasWideColorModes = false;
std::vector<android_color_mode_t> modes = getHwComposer().getColorModes(type);
for (android_color_mode_t colorMode : modes) {
switch (colorMode) {
case HAL_COLOR_MODE_DISPLAY_P3:
case HAL_COLOR_MODE_ADOBE_RGB:
case HAL_COLOR_MODE_DCI_P3:
hasWideColorModes = true;
break;
default:
break;
}
}
sp<DisplayDevice> hw = new DisplayDevice(this, DisplayDevice::DISPLAY_PRIMARY, type, isSecure,
token, fbs, producer, mRenderEngine->getEGLConfig(),
hasWideColorModes && hasWideColorDisplay);
mDisplays.add(token, hw);
android_color_mode defaultColorMode = HAL_COLOR_MODE_NATIVE;
if (hasWideColorModes && hasWideColorDisplay) {
defaultColorMode = HAL_COLOR_MODE_SRGB;
}
setActiveColorModeInternal(hw, defaultColorMode);
}
void SurfaceFlinger::onHotplugReceived(HWComposer* composer, int32_t disp, bool connected) {
ALOGV("onHotplugReceived(%d, %s)", disp, connected ? "true" : "false");
if (composer->isUsingVrComposer()) {
// We handle initializing the primary display device for the VR
// window manager hwc explicitly at the time of transition.
if (disp != DisplayDevice::DISPLAY_PRIMARY) {
ALOGE("External displays are not supported by the vr hardware composer.");
}
return;
}
if (disp == DisplayDevice::DISPLAY_PRIMARY) {
Mutex::Autolock lock(mStateLock);
createBuiltinDisplayLocked(DisplayDevice::DISPLAY_PRIMARY);
createDefaultDisplayDevice();
} else {
auto type = DisplayDevice::DISPLAY_EXTERNAL;
Mutex::Autolock _l(mStateLock);
if (connected) {
createBuiltinDisplayLocked(type);
} else {
mCurrentState.displays.removeItem(mBuiltinDisplays[type]);
mBuiltinDisplays[type].clear();
}
setTransactionFlags(eDisplayTransactionNeeded);
// Defer EventThread notification until SF has updated mDisplays.
}
}
void SurfaceFlinger::onInvalidateReceived(HWComposer* composer) {
Mutex::Autolock lock(mStateLock);
if (composer == mHwc) {
repaintEverything();
} else {
// This isn't from our current hardware composer. If it's a callback
// from the real composer, forward the refresh request to vr
// flinger. Otherwise ignore it.
if (!composer->isUsingVrComposer()) {
mVrFlinger->OnHardwareComposerRefresh();
}
}
}
void SurfaceFlinger::setVsyncEnabled(int disp, int enabled) {
ATRACE_CALL();
getHwComposer().setVsyncEnabled(disp,
enabled ? HWC2::Vsync::Enable : HWC2::Vsync::Disable);
}
void SurfaceFlinger::clearHwcLayers(const LayerVector& layers) {
for (size_t i = 0; i < layers.size(); ++i) {
layers[i]->clearHwcLayers();
}
}
// Note: it is assumed the caller holds |mStateLock| when this is called
void SurfaceFlinger::resetHwcLocked() {
disableHardwareVsync(true);
clearHwcLayers(mDrawingState.layersSortedByZ);
clearHwcLayers(mCurrentState.layersSortedByZ);
// Clear the drawing state so that the logic inside of
// handleTransactionLocked will fire. It will determine the delta between
// mCurrentState and mDrawingState and re-apply all changes when we make the
// transition.
mDrawingState.displays.clear();
// Release virtual display hwcId during vr mode transition.
for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {
const sp<DisplayDevice>& displayDevice = mDisplays[displayId];
if (displayDevice->getDisplayType() == DisplayDevice::DISPLAY_VIRTUAL) {
displayDevice->disconnect(getHwComposer());
}
}
mDisplays.clear();
}
void SurfaceFlinger::updateVrFlinger() {
if (!mVrFlinger)
return;
bool vrFlingerRequestsDisplay = mVrFlingerRequestsDisplay;
if (vrFlingerRequestsDisplay == mHwc->isUsingVrComposer()) {
return;
}
if (vrFlingerRequestsDisplay && !mVrHwc) {
// Construct new HWComposer without holding any locks.
mVrHwc = new HWComposer(true);
// Set up the event handlers. This step is neccessary to initialize the internal state of
// the hardware composer object properly. Our callbacks are designed such that if they are
// triggered between now and the point where the display is properly re-initialized, they
// will not have any effect, so this is safe to do here, before the lock is aquired.
mVrHwc->setEventHandler(static_cast<HWComposer::EventHandler*>(this));
ALOGV("Vr HWC created");
}
Mutex::Autolock _l(mStateLock);
if (vrFlingerRequestsDisplay) {
resetHwcLocked();
mHwc = mVrHwc;
mVrFlinger->GrantDisplayOwnership();
} else {
mVrFlinger->SeizeDisplayOwnership();
resetHwcLocked();
mHwc = mRealHwc;
enableHardwareVsync();
}
mVisibleRegionsDirty = true;
invalidateHwcGeometry();
// Explicitly re-initialize the primary display. This is because some other
// parts of this class rely on the primary display always being available.
createDefaultDisplayDevice();
// Reset the timing values to account for the period of the swapped in HWC
const auto& activeConfig = mHwc->getActiveConfig(HWC_DISPLAY_PRIMARY);
const nsecs_t period = activeConfig->getVsyncPeriod();
mAnimFrameTracker.setDisplayRefreshPeriod(period);
setCompositorTimingSnapped(0, period, 0);
android_atomic_or(1, &mRepaintEverything);
setTransactionFlags(eDisplayTransactionNeeded);
}
void SurfaceFlinger::onMessageReceived(int32_t what) {
ATRACE_CALL();
switch (what) {
case MessageQueue::INVALIDATE: {
bool frameMissed = !mHadClientComposition &&
mPreviousPresentFence != Fence::NO_FENCE &&
(mPreviousPresentFence->getSignalTime() ==
Fence::SIGNAL_TIME_PENDING);
ATRACE_INT("FrameMissed", static_cast<int>(frameMissed));
if (mPropagateBackpressure && frameMissed) {
ALOGD("Backpressure trigger, skipping transaction & refresh!");
signalLayerUpdate();
break;
}
// Now that we're going to make it to the handleMessageTransaction()
// call below it's safe to call updateVrFlinger(), which will
// potentially trigger a display handoff.
updateVrFlinger();
bool refreshNeeded = handleMessageTransaction();
refreshNeeded |= handleMessageInvalidate();
refreshNeeded |= mRepaintEverything;
if (refreshNeeded) {
// Signal a refresh if a transaction modified the window state,
// a new buffer was latched, or if HWC has requested a full
// repaint
signalRefresh();
}
break;
}
case MessageQueue::REFRESH: {
handleMessageRefresh();
break;
}
}
}
bool SurfaceFlinger::handleMessageTransaction() {
uint32_t transactionFlags = peekTransactionFlags();
if (transactionFlags) {
handleTransaction(transactionFlags);
return true;
}
return false;
}
bool SurfaceFlinger::handleMessageInvalidate() {
ATRACE_CALL();
return handlePageFlip();
}
void SurfaceFlinger::handleMessageRefresh() {
ATRACE_CALL();
nsecs_t refreshStartTime = systemTime(SYSTEM_TIME_MONOTONIC);
preComposition(refreshStartTime);
rebuildLayerStacks();
setUpHWComposer();
doDebugFlashRegions();
doComposition();
postComposition(refreshStartTime);
mPreviousPresentFence = mHwc->getPresentFence(HWC_DISPLAY_PRIMARY);
mHadClientComposition = false;
for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {
const sp<DisplayDevice>& displayDevice = mDisplays[displayId];
mHadClientComposition = mHadClientComposition ||
mHwc->hasClientComposition(displayDevice->getHwcDisplayId());
}
mLayersWithQueuedFrames.clear();
}
void SurfaceFlinger::doDebugFlashRegions()
{
// is debugging enabled
if (CC_LIKELY(!mDebugRegion))
return;
const bool repaintEverything = mRepaintEverything;
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
const sp<DisplayDevice>& hw(mDisplays[dpy]);
if (hw->isDisplayOn()) {
// transform the dirty region into this screen's coordinate space
const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
if (!dirtyRegion.isEmpty()) {
// redraw the whole screen
doComposeSurfaces(hw, Region(hw->bounds()));
// and draw the dirty region
const int32_t height = hw->getHeight();
RenderEngine& engine(getRenderEngine());
engine.fillRegionWithColor(dirtyRegion, height, 1, 0, 1, 1);
hw->swapBuffers(getHwComposer());
}
}
}
postFramebuffer();
if (mDebugRegion > 1) {
usleep(mDebugRegion * 1000);
}
for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {
auto& displayDevice = mDisplays[displayId];
if (!displayDevice->isDisplayOn()) {
continue;
}
status_t result = displayDevice->prepareFrame(*mHwc);
ALOGE_IF(result != NO_ERROR, "prepareFrame for display %zd failed:"
" %d (%s)", displayId, result, strerror(-result));
}
}
void SurfaceFlinger::preComposition(nsecs_t refreshStartTime)
{
ATRACE_CALL();
ALOGV("preComposition");
bool needExtraInvalidate = false;
mDrawingState.traverseInZOrder([&](Layer* layer) {
if (layer->onPreComposition(refreshStartTime)) {
needExtraInvalidate = true;
}
});
if (needExtraInvalidate) {
signalLayerUpdate();
}
}
void SurfaceFlinger::updateCompositorTiming(
nsecs_t vsyncPhase, nsecs_t vsyncInterval, nsecs_t compositeTime,
std::shared_ptr<FenceTime>& presentFenceTime) {
// Update queue of past composite+present times and determine the
// most recently known composite to present latency.
mCompositePresentTimes.push({compositeTime, presentFenceTime});
nsecs_t compositeToPresentLatency = -1;
while (!mCompositePresentTimes.empty()) {
CompositePresentTime& cpt = mCompositePresentTimes.front();
// Cached values should have been updated before calling this method,
// which helps avoid duplicate syscalls.
nsecs_t displayTime = cpt.display->getCachedSignalTime();
if (displayTime == Fence::SIGNAL_TIME_PENDING) {
break;
}
compositeToPresentLatency = displayTime - cpt.composite;
mCompositePresentTimes.pop();
}
// Don't let mCompositePresentTimes grow unbounded, just in case.
while (mCompositePresentTimes.size() > 16) {
mCompositePresentTimes.pop();
}
setCompositorTimingSnapped(
vsyncPhase, vsyncInterval, compositeToPresentLatency);
}
void SurfaceFlinger::setCompositorTimingSnapped(nsecs_t vsyncPhase,
nsecs_t vsyncInterval, nsecs_t compositeToPresentLatency) {
// Integer division and modulo round toward 0 not -inf, so we need to
// treat negative and positive offsets differently.
nsecs_t idealLatency = (sfVsyncPhaseOffsetNs > 0) ?
(vsyncInterval - (sfVsyncPhaseOffsetNs % vsyncInterval)) :
((-sfVsyncPhaseOffsetNs) % vsyncInterval);
// Just in case sfVsyncPhaseOffsetNs == -vsyncInterval.
if (idealLatency <= 0) {
idealLatency = vsyncInterval;
}
// Snap the latency to a value that removes scheduling jitter from the
// composition and present times, which often have >1ms of jitter.
// Reducing jitter is important if an app attempts to extrapolate
// something (such as user input) to an accurate diasplay time.
// Snapping also allows an app to precisely calculate sfVsyncPhaseOffsetNs
// with (presentLatency % interval).
nsecs_t bias = vsyncInterval / 2;
int64_t extraVsyncs =
(compositeToPresentLatency - idealLatency + bias) / vsyncInterval;
nsecs_t snappedCompositeToPresentLatency = (extraVsyncs > 0) ?
idealLatency + (extraVsyncs * vsyncInterval) : idealLatency;
std::lock_guard<std::mutex> lock(mCompositorTimingLock);
mCompositorTiming.deadline = vsyncPhase - idealLatency;
mCompositorTiming.interval = vsyncInterval;
mCompositorTiming.presentLatency = snappedCompositeToPresentLatency;
}
void SurfaceFlinger::postComposition(nsecs_t refreshStartTime)
{
ATRACE_CALL();
ALOGV("postComposition");
// Release any buffers which were replaced this frame
nsecs_t dequeueReadyTime = systemTime();
for (auto& layer : mLayersWithQueuedFrames) {
layer->releasePendingBuffer(dequeueReadyTime);
}
// |mStateLock| not needed as we are on the main thread
const sp<const DisplayDevice> hw(getDefaultDisplayDeviceLocked());
std::shared_ptr<FenceTime> glCompositionDoneFenceTime;
if (mHwc->hasClientComposition(HWC_DISPLAY_PRIMARY)) {
glCompositionDoneFenceTime =
std::make_shared<FenceTime>(hw->getClientTargetAcquireFence());
mGlCompositionDoneTimeline.push(glCompositionDoneFenceTime);
} else {
glCompositionDoneFenceTime = FenceTime::NO_FENCE;
}
mGlCompositionDoneTimeline.updateSignalTimes();
sp<Fence> presentFence = mHwc->getPresentFence(HWC_DISPLAY_PRIMARY);
auto presentFenceTime = std::make_shared<FenceTime>(presentFence);
mDisplayTimeline.push(presentFenceTime);
mDisplayTimeline.updateSignalTimes();
nsecs_t vsyncPhase = mPrimaryDispSync.computeNextRefresh(0);
nsecs_t vsyncInterval = mPrimaryDispSync.getPeriod();
// We use the refreshStartTime which might be sampled a little later than
// when we started doing work for this frame, but that should be okay
// since updateCompositorTiming has snapping logic.
updateCompositorTiming(
vsyncPhase, vsyncInterval, refreshStartTime, presentFenceTime);
CompositorTiming compositorTiming;
{
std::lock_guard<std::mutex> lock(mCompositorTimingLock);
compositorTiming = mCompositorTiming;
}
mDrawingState.traverseInZOrder([&](Layer* layer) {
bool frameLatched = layer->onPostComposition(glCompositionDoneFenceTime,
presentFenceTime, compositorTiming);
if (frameLatched) {
recordBufferingStats(layer->getName().string(),
layer->getOccupancyHistory(false));
}
});
if (presentFence->isValid()) {
if (mPrimaryDispSync.addPresentFence(presentFence)) {
enableHardwareVsync();
} else {
disableHardwareVsync(false);
}
}
if (!hasSyncFramework) {
if (hw->isDisplayOn()) {
enableHardwareVsync();
}
}
if (mAnimCompositionPending) {
mAnimCompositionPending = false;
if (presentFenceTime->isValid()) {
mAnimFrameTracker.setActualPresentFence(
std::move(presentFenceTime));
} else {
// The HWC doesn't support present fences, so use the refresh
// timestamp instead.
nsecs_t presentTime =
mHwc->getRefreshTimestamp(HWC_DISPLAY_PRIMARY);
mAnimFrameTracker.setActualPresentTime(presentTime);
}
mAnimFrameTracker.advanceFrame();
}
if (hw->getPowerMode() == HWC_POWER_MODE_OFF) {
return;
}
nsecs_t currentTime = systemTime();
if (mHasPoweredOff) {
mHasPoweredOff = false;
} else {
nsecs_t elapsedTime = currentTime - mLastSwapTime;
size_t numPeriods = static_cast<size_t>(elapsedTime / vsyncInterval);
if (numPeriods < NUM_BUCKETS - 1) {
mFrameBuckets[numPeriods] += elapsedTime;
} else {
mFrameBuckets[NUM_BUCKETS - 1] += elapsedTime;
}
mTotalTime += elapsedTime;
}
mLastSwapTime = currentTime;
}
void SurfaceFlinger::rebuildLayerStacks() {
ATRACE_CALL();
ALOGV("rebuildLayerStacks");
// rebuild the visible layer list per screen
if (CC_UNLIKELY(mVisibleRegionsDirty)) {
ATRACE_CALL();
mVisibleRegionsDirty = false;
invalidateHwcGeometry();
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
Region opaqueRegion;
Region dirtyRegion;
Vector<sp<Layer>> layersSortedByZ;
const sp<DisplayDevice>& displayDevice(mDisplays[dpy]);
const Transform& tr(displayDevice->getTransform());
const Rect bounds(displayDevice->getBounds());
if (displayDevice->isDisplayOn()) {
computeVisibleRegions(
displayDevice->getLayerStack(), dirtyRegion,
opaqueRegion);
mDrawingState.traverseInZOrder([&](Layer* layer) {
if (layer->getLayerStack() == displayDevice->getLayerStack()) {
Region drawRegion(tr.transform(
layer->visibleNonTransparentRegion));
drawRegion.andSelf(bounds);
if (!drawRegion.isEmpty()) {
layersSortedByZ.add(layer);
} else {
// Clear out the HWC layer if this layer was
// previously visible, but no longer is
layer->setHwcLayer(displayDevice->getHwcDisplayId(),
nullptr);
}
} else {
// WM changes displayDevice->layerStack upon sleep/awake.
// Here we make sure we delete the HWC layers even if
// WM changed their layer stack.
layer->setHwcLayer(displayDevice->getHwcDisplayId(),
nullptr);
}
});
}
displayDevice->setVisibleLayersSortedByZ(layersSortedByZ);
displayDevice->undefinedRegion.set(bounds);
displayDevice->undefinedRegion.subtractSelf(
tr.transform(opaqueRegion));
displayDevice->dirtyRegion.orSelf(dirtyRegion);
}
}
}
// pickColorMode translates a given dataspace into the best available color mode.
// Currently only support sRGB and Display-P3.
android_color_mode SurfaceFlinger::pickColorMode(android_dataspace dataSpace) {
switch (dataSpace) {
// treat Unknown as regular SRGB buffer, since that's what the rest of the
// system expects.
case HAL_DATASPACE_UNKNOWN:
case HAL_DATASPACE_SRGB:
case HAL_DATASPACE_V0_SRGB:
return HAL_COLOR_MODE_SRGB;
break;
case HAL_DATASPACE_DISPLAY_P3:
return HAL_COLOR_MODE_DISPLAY_P3;
break;
default:
// TODO (courtneygo): Do we want to assert an error here?
ALOGE("No color mode mapping for %s (%#x)", dataspaceDetails(dataSpace).c_str(),
dataSpace);
return HAL_COLOR_MODE_SRGB;
break;
}
}
android_dataspace SurfaceFlinger::bestTargetDataSpace(android_dataspace a, android_dataspace b) {
// Only support sRGB and Display-P3 right now.
if (a == HAL_DATASPACE_DISPLAY_P3 || b == HAL_DATASPACE_DISPLAY_P3) {
return HAL_DATASPACE_DISPLAY_P3;
}
return HAL_DATASPACE_V0_SRGB;
}
void SurfaceFlinger::setUpHWComposer() {
ATRACE_CALL();
ALOGV("setUpHWComposer");
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
bool dirty = !mDisplays[dpy]->getDirtyRegion(false).isEmpty();
bool empty = mDisplays[dpy]->getVisibleLayersSortedByZ().size() == 0;
bool wasEmpty = !mDisplays[dpy]->lastCompositionHadVisibleLayers;
// If nothing has changed (!dirty), don't recompose.
// If something changed, but we don't currently have any visible layers,
// and didn't when we last did a composition, then skip it this time.
// The second rule does two things:
// - When all layers are removed from a display, we'll emit one black
// frame, then nothing more until we get new layers.
// - When a display is created with a private layer stack, we won't
// emit any black frames until a layer is added to the layer stack.
bool mustRecompose = dirty && !(empty && wasEmpty);
ALOGV_IF(mDisplays[dpy]->getDisplayType() == DisplayDevice::DISPLAY_VIRTUAL,
"dpy[%zu]: %s composition (%sdirty %sempty %swasEmpty)", dpy,
mustRecompose ? "doing" : "skipping",
dirty ? "+" : "-",
empty ? "+" : "-",
wasEmpty ? "+" : "-");
mDisplays[dpy]->beginFrame(mustRecompose);
if (mustRecompose) {
mDisplays[dpy]->lastCompositionHadVisibleLayers = !empty;
}
}
// build the h/w work list
if (CC_UNLIKELY(mGeometryInvalid)) {
mGeometryInvalid = false;
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
sp<const DisplayDevice> displayDevice(mDisplays[dpy]);
const auto hwcId = displayDevice->getHwcDisplayId();
if (hwcId >= 0) {
const Vector<sp<Layer>>& currentLayers(
displayDevice->getVisibleLayersSortedByZ());
for (size_t i = 0; i < currentLayers.size(); i++) {
const auto& layer = currentLayers[i];
if (!layer->hasHwcLayer(hwcId)) {
auto hwcLayer = mHwc->createLayer(hwcId);
if (hwcLayer) {
layer->setHwcLayer(hwcId, std::move(hwcLayer));
} else {
layer->forceClientComposition(hwcId);
continue;
}
}
layer->setGeometry(displayDevice, i);
if (mDebugDisableHWC || mDebugRegion) {
layer->forceClientComposition(hwcId);
}
}
}
}
}
mat4 colorMatrix = mColorMatrix * mDaltonizer();
// Set the per-frame data
for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {
auto& displayDevice = mDisplays[displayId];
const auto hwcId = displayDevice->getHwcDisplayId();
if (hwcId < 0) {
continue;
}
if (colorMatrix != mPreviousColorMatrix) {
status_t result = mHwc->setColorTransform(hwcId, colorMatrix);
ALOGE_IF(result != NO_ERROR, "Failed to set color transform on "
"display %zd: %d", displayId, result);
}
for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
layer->setPerFrameData(displayDevice);
}
if (hasWideColorDisplay) {
android_color_mode newColorMode;
android_dataspace newDataSpace = HAL_DATASPACE_V0_SRGB;
for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
newDataSpace = bestTargetDataSpace(layer->getDataSpace(), newDataSpace);
ALOGV("layer: %s, dataspace: %s (%#x), newDataSpace: %s (%#x)",
layer->getName().string(), dataspaceDetails(layer->getDataSpace()).c_str(),
layer->getDataSpace(), dataspaceDetails(newDataSpace).c_str(), newDataSpace);
}
newColorMode = pickColorMode(newDataSpace);
setActiveColorModeInternal(displayDevice, newColorMode);
}
}
mPreviousColorMatrix = colorMatrix;
for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {
auto& displayDevice = mDisplays[displayId];
if (!displayDevice->isDisplayOn()) {
continue;
}
status_t result = displayDevice->prepareFrame(*mHwc);
ALOGE_IF(result != NO_ERROR, "prepareFrame for display %zd failed:"
" %d (%s)", displayId, result, strerror(-result));
}
}
void SurfaceFlinger::doComposition() {
ATRACE_CALL();
ALOGV("doComposition");
const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
const sp<DisplayDevice>& hw(mDisplays[dpy]);
if (hw->isDisplayOn()) {
// transform the dirty region into this screen's coordinate space
const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
// repaint the framebuffer (if needed)
doDisplayComposition(hw, dirtyRegion);
hw->dirtyRegion.clear();
hw->flip(hw->swapRegion);
hw->swapRegion.clear();
}
}
postFramebuffer();
}
void SurfaceFlinger::postFramebuffer()
{
ATRACE_CALL();
ALOGV("postFramebuffer");
const nsecs_t now = systemTime();
mDebugInSwapBuffers = now;
for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {
auto& displayDevice = mDisplays[displayId];
if (!displayDevice->isDisplayOn()) {
continue;
}
const auto hwcId = displayDevice->getHwcDisplayId();
if (hwcId >= 0) {
mHwc->presentAndGetReleaseFences(hwcId);
}
displayDevice->onSwapBuffersCompleted();
displayDevice->makeCurrent(mEGLDisplay, mEGLContext);
for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
sp<Fence> releaseFence = Fence::NO_FENCE;
if (layer->getCompositionType(hwcId) == HWC2::Composition::Client) {
releaseFence = displayDevice->getClientTargetAcquireFence();
} else {
auto hwcLayer = layer->getHwcLayer(hwcId);
releaseFence = mHwc->getLayerReleaseFence(hwcId, hwcLayer);
}
layer->onLayerDisplayed(releaseFence);
}
if (hwcId >= 0) {
mHwc->clearReleaseFences(hwcId);
}
}
mLastSwapBufferTime = systemTime() - now;
mDebugInSwapBuffers = 0;
// |mStateLock| not needed as we are on the main thread
uint32_t flipCount = getDefaultDisplayDeviceLocked()->getPageFlipCount();
if (flipCount % LOG_FRAME_STATS_PERIOD == 0) {
logFrameStats();
}
}
void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
{
ATRACE_CALL();
// here we keep a copy of the drawing state (that is the state that's
// going to be overwritten by handleTransactionLocked()) outside of
// mStateLock so that the side-effects of the State assignment
// don't happen with mStateLock held (which can cause deadlocks).
State drawingState(mDrawingState);
Mutex::Autolock _l(mStateLock);
const nsecs_t now = systemTime();
mDebugInTransaction = now;
// Here we're guaranteed that some transaction flags are set
// so we can call handleTransactionLocked() unconditionally.
// We call getTransactionFlags(), which will also clear the flags,
// with mStateLock held to guarantee that mCurrentState won't change
// until the transaction is committed.
transactionFlags = getTransactionFlags(eTransactionMask);
handleTransactionLocked(transactionFlags);
mLastTransactionTime = systemTime() - now;
mDebugInTransaction = 0;
invalidateHwcGeometry();
// here the transaction has been committed
}
void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
{
// Notify all layers of available frames
mCurrentState.traverseInZOrder([](Layer* layer) {
layer->notifyAvailableFrames();
});
/*
* Traversal of the children
* (perform the transaction for each of them if needed)
*/
if (transactionFlags & eTraversalNeeded) {
mCurrentState.traverseInZOrder([&](Layer* layer) {
uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
if (!trFlags) return;
const uint32_t flags = layer->doTransaction(0);
if (flags & Layer::eVisibleRegion)
mVisibleRegionsDirty = true;
});
}
/*
* Perform display own transactions if needed
*/
if (transactionFlags & eDisplayTransactionNeeded) {
// here we take advantage of Vector's copy-on-write semantics to
// improve performance by skipping the transaction entirely when
// know that the lists are identical
const KeyedVector< wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
const KeyedVector< wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
if (!curr.isIdenticalTo(draw)) {
mVisibleRegionsDirty = true;
const size_t cc = curr.size();
size_t dc = draw.size();
// find the displays that were removed
// (ie: in drawing state but not in current state)
// also handle displays that changed
// (ie: displays that are in both lists)
for (size_t i=0 ; i<dc ; i++) {
const ssize_t j = curr.indexOfKey(draw.keyAt(i));
if (j < 0) {
// in drawing state but not in current state
if (!draw[i].isMainDisplay()) {
// Call makeCurrent() on the primary display so we can
// be sure that nothing associated with this display
// is current.
const sp<const DisplayDevice> defaultDisplay(getDefaultDisplayDeviceLocked());
defaultDisplay->makeCurrent(mEGLDisplay, mEGLContext);
sp<DisplayDevice> hw(getDisplayDeviceLocked(draw.keyAt(i)));
if (hw != NULL)
hw->disconnect(getHwComposer());
if (draw[i].type < DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES)
mEventThread->onHotplugReceived(draw[i].type, false);
mDisplays.removeItem(draw.keyAt(i));
} else {
ALOGW("trying to remove the main display");
}
} else {
// this display is in both lists. see if something changed.
const DisplayDeviceState& state(curr[j]);
const wp<IBinder>& display(curr.keyAt(j));
const sp<IBinder> state_binder = IInterface::asBinder(state.surface);
const sp<IBinder> draw_binder = IInterface::asBinder(draw[i].surface);
if (state_binder != draw_binder) {
// changing the surface is like destroying and
// recreating the DisplayDevice, so we just remove it
// from the drawing state, so that it get re-added
// below.
sp<DisplayDevice> hw(getDisplayDeviceLocked(display));
if (hw != NULL)
hw->disconnect(getHwComposer());
mDisplays.removeItem(display);
mDrawingState.displays.removeItemsAt(i);
dc--; i--;
// at this point we must loop to the next item
continue;
}
const sp<DisplayDevice> disp(getDisplayDeviceLocked(display));
if (disp != NULL) {
if (state.layerStack != draw[i].layerStack) {
disp->setLayerStack(state.layerStack);
}
if ((state.orientation != draw[i].orientation)
|| (state.viewport != draw[i].viewport)
|| (state.frame != draw[i].frame))
{
disp->setProjection(state.orientation,
state.viewport, state.frame);
}
if (state.width != draw[i].width || state.height != draw[i].height) {
disp->setDisplaySize(state.width, state.height);
}
}
}
}
// find displays that were added
// (ie: in current state but not in drawing state)
for (size_t i=0 ; i<cc ; i++) {
if (draw.indexOfKey(curr.keyAt(i)) < 0) {
const DisplayDeviceState& state(curr[i]);
sp<DisplaySurface> dispSurface;
sp<IGraphicBufferProducer> producer;
sp<IGraphicBufferProducer> bqProducer;
sp<IGraphicBufferConsumer> bqConsumer;
BufferQueue::createBufferQueue(&bqProducer, &bqConsumer);
int32_t hwcId = -1;
if (state.isVirtualDisplay()) {
// Virtual displays without a surface are dormant:
// they have external state (layer stack, projection,
// etc.) but no internal state (i.e. a DisplayDevice).
if (state.surface != NULL) {
// Allow VR composer to use virtual displays.
if (mUseHwcVirtualDisplays || mHwc == mVrHwc) {
int width = 0;
int status = state.surface->query(
NATIVE_WINDOW_WIDTH, &width);
ALOGE_IF(status != NO_ERROR,
"Unable to query width (%d)", status);
int height = 0;
status = state.surface->query(
NATIVE_WINDOW_HEIGHT, &height);
ALOGE_IF(status != NO_ERROR,
"Unable to query height (%d)", status);
int intFormat = 0;
status = state.surface->query(
NATIVE_WINDOW_FORMAT, &intFormat);
ALOGE_IF(status != NO_ERROR,
"Unable to query format (%d)", status);
auto format = static_cast<android_pixel_format_t>(
intFormat);
mHwc->allocateVirtualDisplay(width, height, &format,
&hwcId);
}
// TODO: Plumb requested format back up to consumer
sp<VirtualDisplaySurface> vds =
new VirtualDisplaySurface(*mHwc,
hwcId, state.surface, bqProducer,
bqConsumer, state.displayName);
dispSurface = vds;
producer = vds;
}
} else {
ALOGE_IF(state.surface!=NULL,
"adding a supported display, but rendering "
"surface is provided (%p), ignoring it",
state.surface.get());
hwcId = state.type;
dispSurface = new FramebufferSurface(*mHwc, hwcId, bqConsumer);
producer = bqProducer;
}
const wp<IBinder>& display(curr.keyAt(i));
if (dispSurface != NULL) {
sp<DisplayDevice> hw =
new DisplayDevice(this, state.type, hwcId, state.isSecure, display,
dispSurface, producer,
mRenderEngine->getEGLConfig(),
hasWideColorDisplay);
hw->setLayerStack(state.layerStack);
hw->setProjection(state.orientation,
state.viewport, state.frame);
hw->setDisplayName(state.displayName);
mDisplays.add(display, hw);
if (!state.isVirtualDisplay()) {
mEventThread->onHotplugReceived(state.type, true);
}
}
}
}
}
}
if (transactionFlags & (eTraversalNeeded|eDisplayTransactionNeeded)) {
// The transform hint might have changed for some layers
// (either because a display has changed, or because a layer
// as changed).
//
// Walk through all the layers in currentLayers,
// and update their transform hint.
//
// If a layer is visible only on a single display, then that
// display is used to calculate the hint, otherwise we use the
// default display.
//
// NOTE: we do this here, rather than in rebuildLayerStacks() so that
// the hint is set before we acquire a buffer from the surface texture.
//
// NOTE: layer transactions have taken place already, so we use their
// drawing state. However, SurfaceFlinger's own transaction has not
// happened yet, so we must use the current state layer list
// (soon to become the drawing state list).
//
sp<const DisplayDevice> disp;
uint32_t currentlayerStack = 0;
bool first = true;
mCurrentState.traverseInZOrder([&](Layer* layer) {
// NOTE: we rely on the fact that layers are sorted by
// layerStack first (so we don't have to traverse the list
// of displays for every layer).
uint32_t layerStack = layer->getLayerStack();
if (first || currentlayerStack != layerStack) {
currentlayerStack = layerStack;
// figure out if this layerstack is mirrored
// (more than one display) if so, pick the default display,
// if not, pick the only display it's on.
disp.clear();
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
sp<const DisplayDevice> hw(mDisplays[dpy]);
if (hw->getLayerStack() == currentlayerStack) {
if (disp == NULL) {
disp = hw;
} else {
disp = NULL;
break;
}
}
}
}
if (disp == NULL) {
// NOTE: TEMPORARY FIX ONLY. Real fix should cause layers to
// redraw after transform hint changes. See bug 8508397.
// could be null when this layer is using a layerStack
// that is not visible on any display. Also can occur at
// screen off/on times.
disp = getDefaultDisplayDeviceLocked();
}
layer->updateTransformHint(disp);
first = false;
});
}
/*
* Perform our own transaction if needed
*/
if (mLayersAdded) {
mLayersAdded = false;
// Layers have been added.
mVisibleRegionsDirty = true;
}
// some layers might have been removed, so
// we need to update the regions they're exposing.
if (mLayersRemoved) {
mLayersRemoved = false;
mVisibleRegionsDirty = true;
mDrawingState.traverseInZOrder([&](Layer* layer) {
if (mLayersPendingRemoval.indexOf(layer) >= 0) {
// this layer is not visible anymore
// TODO: we could traverse the tree from front to back and
// compute the actual visible region
// TODO: we could cache the transformed region
Region visibleReg;
visibleReg.set(layer->computeScreenBounds());
invalidateLayerStack(layer->getLayerStack(), visibleReg);
}
});
}
commitTransaction();
updateCursorAsync();
}
void SurfaceFlinger::updateCursorAsync()
{
for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {
auto& displayDevice = mDisplays[displayId];
if (displayDevice->getHwcDisplayId() < 0) {
continue;
}
for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
layer->updateCursorPosition(displayDevice);
}
}
}
void SurfaceFlinger::commitTransaction()
{
if (!mLayersPendingRemoval.isEmpty()) {
// Notify removed layers now that they can't be drawn from
for (const auto& l : mLayersPendingRemoval) {
recordBufferingStats(l->getName().string(),
l->getOccupancyHistory(true));
l->onRemoved();
}
mLayersPendingRemoval.clear();
}
// If this transaction is part of a window animation then the next frame
// we composite should be considered an animation as well.
mAnimCompositionPending = mAnimTransactionPending;
mDrawingState = mCurrentState;
mDrawingState.traverseInZOrder([](Layer* layer) {
layer->commitChildList();
});
mTransactionPending = false;
mAnimTransactionPending = false;
mTransactionCV.broadcast();
}
void SurfaceFlinger::computeVisibleRegions(uint32_t layerStack,
Region& outDirtyRegion, Region& outOpaqueRegion)
{
ATRACE_CALL();
ALOGV("computeVisibleRegions");
Region aboveOpaqueLayers;
Region aboveCoveredLayers;
Region dirty;
outDirtyRegion.clear();
mDrawingState.traverseInReverseZOrder([&](Layer* layer) {
// start with the whole surface at its current location
const Layer::State& s(layer->getDrawingState());
// only consider the layers on the given layer stack
if (layer->getLayerStack() != layerStack)
return;
/*
* opaqueRegion: area of a surface that is fully opaque.
*/
Region opaqueRegion;
/*
* visibleRegion: area of a surface that is visible on screen
* and not fully transparent. This is essentially the layer's
* footprint minus the opaque regions above it.
* Areas covered by a translucent surface are considered visible.
*/
Region visibleRegion;
/*
* coveredRegion: area of a surface that is covered by all
* visible regions above it (which includes the translucent areas).
*/
Region coveredRegion;
/*
* transparentRegion: area of a surface that is hinted to be completely
* transparent. This is only used to tell when the layer has no visible
* non-transparent regions and can be removed from the layer list. It
* does not affect the visibleRegion of this layer or any layers
* beneath it. The hint may not be correct if apps don't respect the
* SurfaceView restrictions (which, sadly, some don't).
*/
Region transparentRegion;
// handle hidden surfaces by setting the visible region to empty
if (CC_LIKELY(layer->isVisible())) {
const bool translucent = !layer->isOpaque(s);
Rect bounds(layer->computeScreenBounds());
visibleRegion.set(bounds);
Transform tr = layer->getTransform();
if (!visibleRegion.isEmpty()) {
// Remove the transparent area from the visible region
if (translucent) {
if (tr.preserveRects()) {
// transform the transparent region
transparentRegion = tr.transform(s.activeTransparentRegion);
} else {
// transformation too complex, can't do the
// transparent region optimization.
transparentRegion.clear();
}
}
// compute the opaque region
const int32_t layerOrientation = tr.getOrientation();
if (s.alpha == 1.0f && !translucent &&
((layerOrientation & Transform::ROT_INVALID) == false)) {
// the opaque region is the layer's footprint
opaqueRegion = visibleRegion;
}
}
}
// Clip the covered region to the visible region
coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
// Update aboveCoveredLayers for next (lower) layer
aboveCoveredLayers.orSelf(visibleRegion);
// subtract the opaque region covered by the layers above us
visibleRegion.subtractSelf(aboveOpaqueLayers);
// compute this layer's dirty region
if (layer->contentDirty) {
// we need to invalidate the whole region
dirty = visibleRegion;
// as well, as the old visible region
dirty.orSelf(layer->visibleRegion);
layer->contentDirty = false;
} else {
/* compute the exposed region:
* the exposed region consists of two components:
* 1) what's VISIBLE now and was COVERED before
* 2) what's EXPOSED now less what was EXPOSED before
*
* note that (1) is conservative, we start with the whole
* visible region but only keep what used to be covered by
* something -- which mean it may have been exposed.
*
* (2) handles areas that were not covered by anything but got
* exposed because of a resize.
*/
const Region newExposed = visibleRegion - coveredRegion;
const Region oldVisibleRegion = layer->visibleRegion;
const Region oldCoveredRegion = layer->coveredRegion;
const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
}
dirty.subtractSelf(aboveOpaqueLayers);
// accumulate to the screen dirty region
outDirtyRegion.orSelf(dirty);
// Update aboveOpaqueLayers for next (lower) layer
aboveOpaqueLayers.orSelf(opaqueRegion);
// Store the visible region in screen space
layer->setVisibleRegion(visibleRegion);
layer->setCoveredRegion(coveredRegion);
layer->setVisibleNonTransparentRegion(
visibleRegion.subtract(transparentRegion));
});
outOpaqueRegion = aboveOpaqueLayers;
}
void SurfaceFlinger::invalidateLayerStack(uint32_t layerStack,
const Region& dirty) {
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
const sp<DisplayDevice>& hw(mDisplays[dpy]);
if (hw->getLayerStack() == layerStack) {
hw->dirtyRegion.orSelf(dirty);
}
}
}
bool SurfaceFlinger::handlePageFlip()
{
ALOGV("handlePageFlip");
nsecs_t latchTime = systemTime();
bool visibleRegions = false;
bool frameQueued = false;
bool newDataLatched = false;
// Store the set of layers that need updates. This set must not change as
// buffers are being latched, as this could result in a deadlock.
// Example: Two producers share the same command stream and:
// 1.) Layer 0 is latched
// 2.) Layer 0 gets a new frame
// 2.) Layer 1 gets a new frame
// 3.) Layer 1 is latched.
// Display is now waiting on Layer 1's frame, which is behind layer 0's
// second frame. But layer 0's second frame could be waiting on display.
mDrawingState.traverseInZOrder([&](Layer* layer) {
if (layer->hasQueuedFrame()) {
frameQueued = true;
if (layer->shouldPresentNow(mPrimaryDispSync)) {
mLayersWithQueuedFrames.push_back(layer);
} else {
layer->useEmptyDamage();
}
} else {
layer->useEmptyDamage();
}
});
for (auto& layer : mLayersWithQueuedFrames) {
const Region dirty(layer->latchBuffer(visibleRegions, latchTime));
layer->useSurfaceDamage();
invalidateLayerStack(layer->getLayerStack(), dirty);
if (!dirty.isEmpty()) {
newDataLatched = true;
}
}
mVisibleRegionsDirty |= visibleRegions;
// If we will need to wake up at some time in the future to deal with a
// queued frame that shouldn't be displayed during this vsync period, wake
// up during the next vsync period to check again.
if (frameQueued && mLayersWithQueuedFrames.empty()) {
signalLayerUpdate();
}
// Only continue with the refresh if there is actually new work to do
return !mLayersWithQueuedFrames.empty() && newDataLatched;
}
void SurfaceFlinger::invalidateHwcGeometry()
{
mGeometryInvalid = true;
}
void SurfaceFlinger::doDisplayComposition(
const sp<const DisplayDevice>& displayDevice,
const Region& inDirtyRegion)
{
// We only need to actually compose the display if:
// 1) It is being handled by hardware composer, which may need this to
// keep its virtual display state machine in sync, or
// 2) There is work to be done (the dirty region isn't empty)
bool isHwcDisplay = displayDevice->getHwcDisplayId() >= 0;
if (!isHwcDisplay && inDirtyRegion.isEmpty()) {
ALOGV("Skipping display composition");
return;
}
ALOGV("doDisplayComposition");
Region dirtyRegion(inDirtyRegion);
// compute the invalid region
displayDevice->swapRegion.orSelf(dirtyRegion);
uint32_t flags = displayDevice->getFlags();
if (flags & DisplayDevice::SWAP_RECTANGLE) {
// we can redraw only what's dirty, but since SWAP_RECTANGLE only
// takes a rectangle, we must make sure to update that whole
// rectangle in that case
dirtyRegion.set(displayDevice->swapRegion.bounds());
} else {
if (flags & DisplayDevice::PARTIAL_UPDATES) {
// We need to redraw the rectangle that will be updated
// (pushed to the framebuffer).
// This is needed because PARTIAL_UPDATES only takes one
// rectangle instead of a region (see DisplayDevice::flip())
dirtyRegion.set(displayDevice->swapRegion.bounds());
} else {
// we need to redraw everything (the whole screen)
dirtyRegion.set(displayDevice->bounds());
displayDevice->swapRegion = dirtyRegion;
}
}
if (!doComposeSurfaces(displayDevice, dirtyRegion)) return;
// update the swap region and clear the dirty region
displayDevice->swapRegion.orSelf(dirtyRegion);
// swap buffers (presentation)
displayDevice->swapBuffers(getHwComposer());
}
bool SurfaceFlinger::doComposeSurfaces(
const sp<const DisplayDevice>& displayDevice, const Region& dirty)
{
ALOGV("doComposeSurfaces");
const auto hwcId = displayDevice->getHwcDisplayId();
mat4 oldColorMatrix;
const bool applyColorMatrix = !mHwc->hasDeviceComposition(hwcId) &&
!mHwc->hasCapability(HWC2::Capability::SkipClientColorTransform);
if (applyColorMatrix) {
mat4 colorMatrix = mColorMatrix * mDaltonizer();
oldColorMatrix = getRenderEngine().setupColorTransform(colorMatrix);
}
bool hasClientComposition = mHwc->hasClientComposition(hwcId);
if (hasClientComposition) {
ALOGV("hasClientComposition");
#ifdef USE_HWC2
mRenderEngine->setColorMode(displayDevice->getActiveColorMode());
mRenderEngine->setWideColor(displayDevice->getWideColorSupport());
#endif
if (!displayDevice->makeCurrent(mEGLDisplay, mEGLContext)) {
ALOGW("DisplayDevice::makeCurrent failed. Aborting surface composition for display %s",
displayDevice->getDisplayName().string());
eglMakeCurrent(mEGLDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
// |mStateLock| not needed as we are on the main thread
if(!getDefaultDisplayDeviceLocked()->makeCurrent(mEGLDisplay, mEGLContext)) {
ALOGE("DisplayDevice::makeCurrent on default display failed. Aborting.");
}
return false;
}
// Never touch the framebuffer if we don't have any framebuffer layers
const bool hasDeviceComposition = mHwc->hasDeviceComposition(hwcId);
if (hasDeviceComposition) {
// when using overlays, we assume a fully transparent framebuffer
// NOTE: we could reduce how much we need to clear, for instance
// remove where there are opaque FB layers. however, on some
// GPUs doing a "clean slate" clear might be more efficient.
// We'll revisit later if needed.
mRenderEngine->clearWithColor(0, 0, 0, 0);
} else {
// we start with the whole screen area
const Region bounds(displayDevice->getBounds());
// we remove the scissor part
// we're left with the letterbox region
// (common case is that letterbox ends-up being empty)
const Region letterbox(bounds.subtract(displayDevice->getScissor()));
// compute the area to clear
Region region(displayDevice->undefinedRegion.merge(letterbox));
// but limit it to the dirty region
region.andSelf(dirty);
// screen is already cleared here
if (!region.isEmpty()) {
// can happen with SurfaceView
drawWormhole(displayDevice, region);
}
}
if (displayDevice->getDisplayType() != DisplayDevice::DISPLAY_PRIMARY) {
// just to be on the safe side, we don't set the
// scissor on the main display. It should never be needed
// anyways (though in theory it could since the API allows it).
const Rect& bounds(displayDevice->getBounds());
const Rect& scissor(displayDevice->getScissor());
if (scissor != bounds) {
// scissor doesn't match the screen's dimensions, so we
// need to clear everything outside of it and enable
// the GL scissor so we don't draw anything where we shouldn't
// enable scissor for this frame
const uint32_t height = displayDevice->getHeight();
mRenderEngine->setScissor(scissor.left, height - scissor.bottom,
scissor.getWidth(), scissor.getHeight());
}
}
}
/*
* and then, render the layers targeted at the framebuffer
*/
ALOGV("Rendering client layers");
const Transform& displayTransform = displayDevice->getTransform();
if (hwcId >= 0) {
// we're using h/w composer
bool firstLayer = true;
for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
const Region clip(dirty.intersect(
displayTransform.transform(layer->visibleRegion)));
ALOGV("Layer: %s", layer->getName().string());
ALOGV(" Composition type: %s",
to_string(layer->getCompositionType(hwcId)).c_str());
if (!clip.isEmpty()) {
switch (layer->getCompositionType(hwcId)) {
case HWC2::Composition::Cursor:
case HWC2::Composition::Device:
case HWC2::Composition::Sideband:
case HWC2::Composition::SolidColor: {
const Layer::State& state(layer->getDrawingState());
if (layer->getClearClientTarget(hwcId) && !firstLayer &&
layer->isOpaque(state) && (state.alpha == 1.0f)
&& hasClientComposition) {
// never clear the very first layer since we're
// guaranteed the FB is already cleared
layer->clearWithOpenGL(displayDevice);
}
break;
}
case HWC2::Composition::Client: {
layer->draw(displayDevice, clip);
break;
}
default:
break;
}
} else {
ALOGV(" Skipping for empty clip");
}
firstLayer = false;
}
} else {
// we're not using h/w composer
for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
const Region clip(dirty.intersect(
displayTransform.transform(layer->visibleRegion)));
if (!clip.isEmpty()) {
layer->draw(displayDevice, clip);
}
}
}
if (applyColorMatrix) {
getRenderEngine().setupColorTransform(oldColorMatrix);
}
// disable scissor at the end of the frame
mRenderEngine->disableScissor();
return true;
}
void SurfaceFlinger::drawWormhole(const sp<const DisplayDevice>& displayDevice, const Region& region) const {
const int32_t height = displayDevice->getHeight();
RenderEngine& engine(getRenderEngine());
engine.fillRegionWithColor(region, height, 0, 0, 0, 0);
}
status_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
const sp<IBinder>& handle,
const sp<IGraphicBufferProducer>& gbc,
const sp<Layer>& lbc,
const sp<Layer>& parent)
{
// add this layer to the current state list
{
Mutex::Autolock _l(mStateLock);
if (mNumLayers >= MAX_LAYERS) {
return NO_MEMORY;
}
if (parent == nullptr) {
mCurrentState.layersSortedByZ.add(lbc);
} else {
parent->addChild(lbc);
}
mGraphicBufferProducerList.add(IInterface::asBinder(gbc));
mLayersAdded = true;
mNumLayers++;
}
// attach this layer to the client
client->attachLayer(handle, lbc);
return NO_ERROR;
}
status_t SurfaceFlinger::removeLayer(const sp<Layer>& layer) {
Mutex::Autolock _l(mStateLock);
const auto& p = layer->getParent();
const ssize_t index = (p != nullptr) ? p->removeChild(layer) :
mCurrentState.layersSortedByZ.remove(layer);
// As a matter of normal operation, the LayerCleaner will produce a second
// attempt to remove the surface. The Layer will be kept alive in mDrawingState
// so we will succeed in promoting it, but it's already been removed
// from mCurrentState. As long as we can find it in mDrawingState we have no problem
// otherwise something has gone wrong and we are leaking the layer.
if (index < 0 && mDrawingState.layersSortedByZ.indexOf(layer) < 0) {
ALOGE("Failed to find layer (%s) in layer parent (%s).",
layer->getName().string(),
(p != nullptr) ? p->getName().string() : "no-parent");
return BAD_VALUE;
} else if (index < 0) {
return NO_ERROR;
}
mLayersPendingRemoval.add(layer);
mLayersRemoved = true;
mNumLayers--;
setTransactionFlags(eTransactionNeeded);
return NO_ERROR;
}
uint32_t SurfaceFlinger::peekTransactionFlags() {
return android_atomic_release_load(&mTransactionFlags);
}
uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags) {
return android_atomic_and(~flags, &mTransactionFlags) & flags;
}
uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags) {
uint32_t old = android_atomic_or(flags, &mTransactionFlags);
if ((old & flags)==0) { // wake the server up
signalTransaction();
}
return old;
}
void SurfaceFlinger::setTransactionState(
const Vector<ComposerState>& state,
const Vector<DisplayState>& displays,
uint32_t flags)
{
ATRACE_CALL();
Mutex::Autolock _l(mStateLock);
uint32_t transactionFlags = 0;
if (flags & eAnimation) {
// For window updates that are part of an animation we must wait for
// previous animation "frames" to be handled.
while (mAnimTransactionPending) {
status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
if (CC_UNLIKELY(err != NO_ERROR)) {
// just in case something goes wrong in SF, return to the
// caller after a few seconds.
ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out "
"waiting for previous animation frame");
mAnimTransactionPending = false;
break;
}
}
}
size_t count = displays.size();
for (size_t i=0 ; i<count ; i++) {
const DisplayState& s(displays[i]);
transactionFlags |= setDisplayStateLocked(s);
}
count = state.size();
for (size_t i=0 ; i<count ; i++) {
const ComposerState& s(state[i]);
// Here we need to check that the interface we're given is indeed
// one of our own. A malicious client could give us a NULL
// IInterface, or one of its own or even one of our own but a
// different type. All these situations would cause us to crash.
//
// NOTE: it would be better to use RTTI as we could directly check
// that we have a Client*. however, RTTI is disabled in Android.
if (s.client != NULL) {
sp<IBinder> binder = IInterface::asBinder(s.client);
if (binder != NULL) {
if (binder->queryLocalInterface(ISurfaceComposerClient::descriptor) != NULL) {
sp<Client> client( static_cast<Client *>(s.client.get()) );
transactionFlags |= setClientStateLocked(client, s.state);
}
}
}
}
// If a synchronous transaction is explicitly requested without any changes,
// force a transaction anyway. This can be used as a flush mechanism for
// previous async transactions.
if (transactionFlags == 0 && (flags & eSynchronous)) {
transactionFlags = eTransactionNeeded;
}
if (transactionFlags) {
if (mInterceptor.isEnabled()) {
mInterceptor.saveTransaction(state, mCurrentState.displays, displays, flags);
}
// this triggers the transaction
setTransactionFlags(transactionFlags);
// if this is a synchronous transaction, wait for it to take effect
// before returning.
if (flags & eSynchronous) {
mTransactionPending = true;
}
if (flags & eAnimation) {
mAnimTransactionPending = true;
}
while (mTransactionPending) {
status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
if (CC_UNLIKELY(err != NO_ERROR)) {
// just in case something goes wrong in SF, return to the
// called after a few seconds.
ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out!");
mTransactionPending = false;
break;
}
}
}
}
uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s)
{
ssize_t dpyIdx = mCurrentState.displays.indexOfKey(s.token);
if (dpyIdx < 0)
return 0;
uint32_t flags = 0;
DisplayDeviceState& disp(mCurrentState.displays.editValueAt(dpyIdx));
if (disp.isValid()) {
const uint32_t what = s.what;
if (what & DisplayState::eSurfaceChanged) {
if (IInterface::asBinder(disp.surface) != IInterface::asBinder(s.surface)) {
disp.surface = s.surface;
flags |= eDisplayTransactionNeeded;
}
}
if (what & DisplayState::eLayerStackChanged) {
if (disp.layerStack != s.layerStack) {
disp.layerStack = s.layerStack;
flags |= eDisplayTransactionNeeded;
}
}
if (what & DisplayState::eDisplayProjectionChanged) {
if (disp.orientation != s.orientation) {
disp.orientation = s.orientation;
flags |= eDisplayTransactionNeeded;
}
if (disp.frame != s.frame) {
disp.frame = s.frame;
flags |= eDisplayTransactionNeeded;
}
if (disp.viewport != s.viewport) {
disp.viewport = s.viewport;
flags |= eDisplayTransactionNeeded;
}
}
if (what & DisplayState::eDisplaySizeChanged) {
if (disp.width != s.width) {
disp.width = s.width;
flags |= eDisplayTransactionNeeded;
}
if (disp.height != s.height) {
disp.height = s.height;
flags |= eDisplayTransactionNeeded;
}
}
}
return flags;
}
uint32_t SurfaceFlinger::setClientStateLocked(
const sp<Client>& client,
const layer_state_t& s)
{
uint32_t flags = 0;
sp<Layer> layer(client->getLayerUser(s.surface));
if (layer != 0) {
const uint32_t what = s.what;
bool geometryAppliesWithResize =
what & layer_state_t::eGeometryAppliesWithResize;
if (what & layer_state_t::ePositionChanged) {
if (layer->setPosition(s.x, s.y, !geometryAppliesWithResize)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eLayerChanged) {
// NOTE: index needs to be calculated before we update the state
const auto& p = layer->getParent();
if (p == nullptr) {
ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
if (layer->setLayer(s.z) && idx >= 0) {
mCurrentState.layersSortedByZ.removeAt(idx);
mCurrentState.layersSortedByZ.add(layer);
// we need traversal (state changed)
// AND transaction (list changed)
flags |= eTransactionNeeded|eTraversalNeeded;
}
} else {
if (p->setChildLayer(layer, s.z)) {
flags |= eTransactionNeeded|eTraversalNeeded;
}
}
}
if (what & layer_state_t::eRelativeLayerChanged) {
if (layer->setRelativeLayer(s.relativeLayerHandle, s.z)) {
flags |= eTransactionNeeded|eTraversalNeeded;
}
}
if (what & layer_state_t::eSizeChanged) {
if (layer->setSize(s.w, s.h)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eAlphaChanged) {
if (layer->setAlpha(s.alpha))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eMatrixChanged) {
if (layer->setMatrix(s.matrix))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eTransparentRegionChanged) {
if (layer->setTransparentRegionHint(s.transparentRegion))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eFlagsChanged) {
if (layer->setFlags(s.flags, s.mask))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eCropChanged) {
if (layer->setCrop(s.crop, !geometryAppliesWithResize))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eFinalCropChanged) {
if (layer->setFinalCrop(s.finalCrop, !geometryAppliesWithResize))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eLayerStackChanged) {
ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
// We only allow setting layer stacks for top level layers,
// everything else inherits layer stack from its parent.
if (layer->hasParent()) {
ALOGE("Attempt to set layer stack on layer with parent (%s) is invalid",
layer->getName().string());
} else if (idx < 0) {
ALOGE("Attempt to set layer stack on layer without parent (%s) that "
"that also does not appear in the top level layer list. Something"
" has gone wrong.", layer->getName().string());
} else if (layer->setLayerStack(s.layerStack)) {
mCurrentState.layersSortedByZ.removeAt(idx);
mCurrentState.layersSortedByZ.add(layer);
// we need traversal (state changed)
// AND transaction (list changed)
flags |= eTransactionNeeded|eTraversalNeeded;
}
}
if (what & layer_state_t::eDeferTransaction) {
if (s.barrierHandle != nullptr) {
layer->deferTransactionUntil(s.barrierHandle, s.frameNumber);
} else if (s.barrierGbp != nullptr) {
const sp<IGraphicBufferProducer>& gbp = s.barrierGbp;
if (authenticateSurfaceTextureLocked(gbp)) {
const auto& otherLayer =
(static_cast<MonitoredProducer*>(gbp.get()))->getLayer();
layer->deferTransactionUntil(otherLayer, s.frameNumber);
} else {
ALOGE("Attempt to defer transaction to to an"
" unrecognized GraphicBufferProducer");
}
}
// We don't trigger a traversal here because if no other state is
// changed, we don't want this to cause any more work
}
if (what & layer_state_t::eReparentChildren) {
if (layer->reparentChildren(s.reparentHandle)) {
flags |= eTransactionNeeded|eTraversalNeeded;
}
}
if (what & layer_state_t::eDetachChildren) {
layer->detachChildren();
}
if (what & layer_state_t::eOverrideScalingModeChanged) {
layer->setOverrideScalingMode(s.overrideScalingMode);
// We don't trigger a traversal here because if no other state is
// changed, we don't want this to cause any more work
}
}
return flags;
}
status_t SurfaceFlinger::createLayer(
const String8& name,
const sp<Client>& client,
uint32_t w, uint32_t h, PixelFormat format, uint32_t flags,
uint32_t windowType, uint32_t ownerUid, sp<IBinder>* handle,
sp<IGraphicBufferProducer>* gbp, sp<Layer>* parent)
{
if (int32_t(w|h) < 0) {
ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
int(w), int(h));
return BAD_VALUE;
}
status_t result = NO_ERROR;
sp<Layer> layer;
String8 uniqueName = getUniqueLayerName(name);
switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
case ISurfaceComposerClient::eFXSurfaceNormal:
result = createNormalLayer(client,
uniqueName, w, h, flags, format,
handle, gbp, &layer);
break;
case ISurfaceComposerClient::eFXSurfaceDim:
result = createDimLayer(client,
uniqueName, w, h, flags,
handle, gbp, &layer);
break;
default:
result = BAD_VALUE;
break;
}
if (result != NO_ERROR) {
return result;
}
layer->setInfo(windowType, ownerUid);
result = addClientLayer(client, *handle, *gbp, layer, *parent);
if (result != NO_ERROR) {
return result;
}
mInterceptor.saveSurfaceCreation(layer);
setTransactionFlags(eTransactionNeeded);
return result;
}
String8 SurfaceFlinger::getUniqueLayerName(const String8& name)
{
bool matchFound = true;
uint32_t dupeCounter = 0;
// Tack on our counter whether there is a hit or not, so everyone gets a tag
String8 uniqueName = name + "#" + String8(std::to_string(dupeCounter).c_str());
// Loop over layers until we're sure there is no matching name
while (matchFound) {
matchFound = false;
mDrawingState.traverseInZOrder([&](Layer* layer) {
if (layer->getName() == uniqueName) {
matchFound = true;
uniqueName = name + "#" + String8(std::to_string(++dupeCounter).c_str());
}
});
}
ALOGD_IF(dupeCounter > 0, "duplicate layer name: changing %s to %s", name.c_str(), uniqueName.c_str());
return uniqueName;
}
status_t SurfaceFlinger::createNormalLayer(const sp<Client>& client,
const String8& name, uint32_t w, uint32_t h, uint32_t flags, PixelFormat& format,
sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp, sp<Layer>* outLayer)
{
// initialize the surfaces
switch (format) {
case PIXEL_FORMAT_TRANSPARENT:
case PIXEL_FORMAT_TRANSLUCENT:
format = PIXEL_FORMAT_RGBA_8888;
break;
case PIXEL_FORMAT_OPAQUE:
format = PIXEL_FORMAT_RGBX_8888;
break;
}
*outLayer = new Layer(this, client, name, w, h, flags);
status_t err = (*outLayer)->setBuffers(w, h, format, flags);
if (err == NO_ERROR) {
*handle = (*outLayer)->getHandle();
*gbp = (*outLayer)->getProducer();
}
ALOGE_IF(err, "createNormalLayer() failed (%s)", strerror(-err));
return err;
}
status_t SurfaceFlinger::createDimLayer(const sp<Client>& client,
const String8& name, uint32_t w, uint32_t h, uint32_t flags,
sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp, sp<Layer>* outLayer)
{
*outLayer = new LayerDim(this, client, name, w, h, flags);
*handle = (*outLayer)->getHandle();
*gbp = (*outLayer)->getProducer();
return NO_ERROR;
}
status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, const sp<IBinder>& handle)
{
// called by a client when it wants to remove a Layer
status_t err = NO_ERROR;
sp<Layer> l(client->getLayerUser(handle));
if (l != NULL) {
mInterceptor.saveSurfaceDeletion(l);
err = removeLayer(l);
ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
"error removing layer=%p (%s)", l.get(), strerror(-err));
}
return err;
}
status_t SurfaceFlinger::onLayerDestroyed(const wp<Layer>& layer)
{
// called by ~LayerCleaner() when all references to the IBinder (handle)
// are gone
sp<Layer> l = layer.promote();
if (l == nullptr) {
// The layer has already been removed, carry on
return NO_ERROR;
} if (l->getParent() != nullptr) {
// If we have a parent, then we can continue to live as long as it does.
return NO_ERROR;
}
return removeLayer(l);
}
// ---------------------------------------------------------------------------
void SurfaceFlinger::onInitializeDisplays() {
// reset screen orientation and use primary layer stack
Vector<ComposerState> state;
Vector<DisplayState> displays;
DisplayState d;
d.what = DisplayState::eDisplayProjectionChanged |
DisplayState::eLayerStackChanged;
d.token = mBuiltinDisplays[DisplayDevice::DISPLAY_PRIMARY];
d.layerStack = 0;
d.orientation = DisplayState::eOrientationDefault;
d.frame.makeInvalid();
d.viewport.makeInvalid();
d.width = 0;
d.height = 0;
displays.add(d);
setTransactionState(state, displays, 0);
setPowerModeInternal(getDisplayDevice(d.token), HWC_POWER_MODE_NORMAL);
const auto& activeConfig = mHwc->getActiveConfig(HWC_DISPLAY_PRIMARY);
const nsecs_t period = activeConfig->getVsyncPeriod();
mAnimFrameTracker.setDisplayRefreshPeriod(period);
// Use phase of 0 since phase is not known.
// Use latency of 0, which will snap to the ideal latency.
setCompositorTimingSnapped(0, period, 0);
}
void SurfaceFlinger::initializeDisplays() {
class MessageScreenInitialized : public MessageBase {
SurfaceFlinger* flinger;
public:
explicit MessageScreenInitialized(SurfaceFlinger* flinger) : flinger(flinger) { }
virtual bool handler() {
flinger->onInitializeDisplays();
return true;
}
};
sp<MessageBase> msg = new MessageScreenInitialized(this);
postMessageAsync(msg); // we may be called from main thread, use async message
}
void SurfaceFlinger::setPowerModeInternal(const sp<DisplayDevice>& hw,
int mode) {
ALOGD("Set power mode=%d, type=%d flinger=%p", mode, hw->getDisplayType(),
this);
int32_t type = hw->getDisplayType();
int currentMode = hw->getPowerMode();
if (mode == currentMode) {
return;
}
hw->setPowerMode(mode);
if (type >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) {
ALOGW("Trying to set power mode for virtual display");
return;
}
if (mInterceptor.isEnabled()) {
Mutex::Autolock _l(mStateLock);
ssize_t idx = mCurrentState.displays.indexOfKey(hw->getDisplayToken());
if (idx < 0) {
ALOGW("Surface Interceptor SavePowerMode: invalid display token");
return;
}
mInterceptor.savePowerModeUpdate(mCurrentState.displays.valueAt(idx).displayId, mode);
}
if (currentMode == HWC_POWER_MODE_OFF) {
// Turn on the display
getHwComposer().setPowerMode(type, mode);
if (type == DisplayDevice::DISPLAY_PRIMARY) {
// FIXME: eventthread only knows about the main display right now
mEventThread->onScreenAcquired();
resyncToHardwareVsync(true);
}
mVisibleRegionsDirty = true;
mHasPoweredOff = true;
repaintEverything();
struct sched_param param = {0};
param.sched_priority = 1;
if (sched_setscheduler(0, SCHED_FIFO, &param) != 0) {
ALOGW("Couldn't set SCHED_FIFO on display on");
}
} else if (mode == HWC_POWER_MODE_OFF) {
// Turn off the display
struct sched_param param = {0};
if (sched_setscheduler(0, SCHED_OTHER, &param) != 0) {
ALOGW("Couldn't set SCHED_OTHER on display off");
}
if (type == DisplayDevice::DISPLAY_PRIMARY) {
disableHardwareVsync(true); // also cancels any in-progress resync
// FIXME: eventthread only knows about the main display right now
mEventThread->onScreenReleased();
}
getHwComposer().setPowerMode(type, mode);
mVisibleRegionsDirty = true;
// from this point on, SF will stop drawing on this display
} else {
getHwComposer().setPowerMode(type, mode);
}
}
void SurfaceFlinger::setPowerMode(const sp<IBinder>& display, int mode) {
class MessageSetPowerMode: public MessageBase {
SurfaceFlinger& mFlinger;
sp<IBinder> mDisplay;
int mMode;
public:
MessageSetPowerMode(SurfaceFlinger& flinger,
const sp<IBinder>& disp, int mode) : mFlinger(flinger),
mDisplay(disp) { mMode = mode; }
virtual bool handler() {
sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
if (hw == NULL) {
ALOGE("Attempt to set power mode = %d for null display %p",
mMode, mDisplay.get());
} else if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL) {
ALOGW("Attempt to set power mode = %d for virtual display",
mMode);
} else {
mFlinger.setPowerModeInternal(hw, mMode);
}
return true;
}
};
sp<MessageBase> msg = new MessageSetPowerMode(*this, display, mode);
postMessageSync(msg);
}
// ---------------------------------------------------------------------------
status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
{
String8 result;
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_SHELL) &&
!PermissionCache::checkPermission(sDump, pid, uid)) {
result.appendFormat("Permission Denial: "
"can't dump SurfaceFlinger from pid=%d, uid=%d\n", pid, uid);
} else {
// Try to get the main lock, but give up after one second
// (this would indicate SF is stuck, but we want to be able to
// print something in dumpsys).
status_t err = mStateLock.timedLock(s2ns(1));
bool locked = (err == NO_ERROR);
if (!locked) {
result.appendFormat(
"SurfaceFlinger appears to be unresponsive (%s [%d]), "
"dumping anyways (no locks held)\n", strerror(-err), err);
}
bool dumpAll = true;
size_t index = 0;
size_t numArgs = args.size();
if (numArgs) {
if ((index < numArgs) &&
(args[index] == String16("--list"))) {
index++;
listLayersLocked(args, index, result);
dumpAll = false;
}
if ((index < numArgs) &&
(args[index] == String16("--latency"))) {
index++;
dumpStatsLocked(args, index, result);
dumpAll = false;
}
if ((index < numArgs) &&
(args[index] == String16("--latency-clear"))) {
index++;
clearStatsLocked(args, index, result);
dumpAll = false;
}
if ((index < numArgs) &&
(args[index] == String16("--dispsync"))) {
index++;
mPrimaryDispSync.dump(result);
dumpAll = false;
}
if ((index < numArgs) &&
(args[index] == String16("--static-screen"))) {
index++;
dumpStaticScreenStats(result);
dumpAll = false;
}
if ((index < numArgs) &&
(args[index] == String16("--frame-events"))) {
index++;
dumpFrameEventsLocked(result);
dumpAll = false;
}
if ((index < numArgs) && (args[index] == String16("--wide-color"))) {
index++;
dumpWideColorInfo(result);
dumpAll = false;
}
}
if (dumpAll) {
dumpAllLocked(args, index, result);
}
if (locked) {
mStateLock.unlock();
}
}
write(fd, result.string(), result.size());
return NO_ERROR;
}
void SurfaceFlinger::listLayersLocked(const Vector<String16>& /* args */,
size_t& /* index */, String8& result) const
{
mCurrentState.traverseInZOrder([&](Layer* layer) {
result.appendFormat("%s\n", layer->getName().string());
});
}
void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
String8& result) const
{
String8 name;
if (index < args.size()) {
name = String8(args[index]);
index++;
}
const auto& activeConfig = mHwc->getActiveConfig(HWC_DISPLAY_PRIMARY);
const nsecs_t period = activeConfig->getVsyncPeriod();
result.appendFormat("%" PRId64 "\n", period);
if (name.isEmpty()) {
mAnimFrameTracker.dumpStats(result);
} else {
mCurrentState.traverseInZOrder([&](Layer* layer) {
if (name == layer->getName()) {
layer->dumpFrameStats(result);
}
});
}
}
void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
String8& /* result */)
{
String8 name;
if (index < args.size()) {
name = String8(args[index]);
index++;
}
mCurrentState.traverseInZOrder([&](Layer* layer) {
if (name.isEmpty() || (name == layer->getName())) {
layer->clearFrameStats();
}
});
mAnimFrameTracker.clearStats();
}
// This should only be called from the main thread. Otherwise it would need
// the lock and should use mCurrentState rather than mDrawingState.
void SurfaceFlinger::logFrameStats() {
mDrawingState.traverseInZOrder([&](Layer* layer) {
layer->logFrameStats();
});
mAnimFrameTracker.logAndResetStats(String8("<win-anim>"));
}
void SurfaceFlinger::appendSfConfigString(String8& result) const
{
result.append(" [sf");
result.appendFormat(" HAS_CONTEXT_PRIORITY=%d", useContextPriority);
if (isLayerTripleBufferingDisabled())
result.append(" DISABLE_TRIPLE_BUFFERING");
result.appendFormat(" PRESENT_TIME_OFFSET=%" PRId64 , dispSyncPresentTimeOffset);
result.appendFormat(" FORCE_HWC_FOR_RBG_TO_YUV=%d", useHwcForRgbToYuv);
result.appendFormat(" MAX_VIRT_DISPLAY_DIM=%" PRIu64, maxVirtualDisplaySize);
result.appendFormat(" RUNNING_WITHOUT_SYNC_FRAMEWORK=%d", !hasSyncFramework);
result.appendFormat(" NUM_FRAMEBUFFER_SURFACE_BUFFERS=%" PRId64,
maxFrameBufferAcquiredBuffers);
result.append("]");
}
void SurfaceFlinger::dumpStaticScreenStats(String8& result) const
{
result.appendFormat("Static screen stats:\n");
for (size_t b = 0; b < NUM_BUCKETS - 1; ++b) {
float bucketTimeSec = mFrameBuckets[b] / 1e9;
float percent = 100.0f *
static_cast<float>(mFrameBuckets[b]) / mTotalTime;
result.appendFormat(" < %zd frames: %.3f s (%.1f%%)\n",
b + 1, bucketTimeSec, percent);
}
float bucketTimeSec = mFrameBuckets[NUM_BUCKETS - 1] / 1e9;
float percent = 100.0f *
static_cast<float>(mFrameBuckets[NUM_BUCKETS - 1]) / mTotalTime;
result.appendFormat(" %zd+ frames: %.3f s (%.1f%%)\n",
NUM_BUCKETS - 1, bucketTimeSec, percent);
}
void SurfaceFlinger::recordBufferingStats(const char* layerName,
std::vector<OccupancyTracker::Segment>&& history) {
Mutex::Autolock lock(mBufferingStatsMutex);
auto& stats = mBufferingStats[layerName];
for (const auto& segment : history) {
if (!segment.usedThirdBuffer) {
stats.twoBufferTime += segment.totalTime;
}
if (segment.occupancyAverage < 1.0f) {
stats.doubleBufferedTime += segment.totalTime;
} else if (segment.occupancyAverage < 2.0f) {
stats.tripleBufferedTime += segment.totalTime;
}
++stats.numSegments;
stats.totalTime += segment.totalTime;
}
}
void SurfaceFlinger::dumpFrameEventsLocked(String8& result) {
result.appendFormat("Layer frame timestamps:\n");
const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
const size_t count = currentLayers.size();
for (size_t i=0 ; i<count ; i++) {
currentLayers[i]->dumpFrameEvents(result);
}
}
void SurfaceFlinger::dumpBufferingStats(String8& result) const {
result.append("Buffering stats:\n");
result.append(" [Layer name] <Active time> <Two buffer> "
"<Double buffered> <Triple buffered>\n");
Mutex::Autolock lock(mBufferingStatsMutex);
typedef std::tuple<std::string, float, float, float> BufferTuple;
std::map<float, BufferTuple, std::greater<float>> sorted;
for (const auto& statsPair : mBufferingStats) {
const char* name = statsPair.first.c_str();
const BufferingStats& stats = statsPair.second;
if (stats.numSegments == 0) {
continue;
}
float activeTime = ns2ms(stats.totalTime) / 1000.0f;
float twoBufferRatio = static_cast<float>(stats.twoBufferTime) /
stats.totalTime;
float doubleBufferRatio = static_cast<float>(
stats.doubleBufferedTime) / stats.totalTime;
float tripleBufferRatio = static_cast<float>(
stats.tripleBufferedTime) / stats.totalTime;
sorted.insert({activeTime, {name, twoBufferRatio,
doubleBufferRatio, tripleBufferRatio}});
}
for (const auto& sortedPair : sorted) {
float activeTime = sortedPair.first;
const BufferTuple& values = sortedPair.second;
result.appendFormat(" [%s] %.2f %.3f %.3f %.3f\n",
std::get<0>(values).c_str(), activeTime,
std::get<1>(values), std::get<2>(values),
std::get<3>(values));
}
result.append("\n");
}
void SurfaceFlinger::dumpWideColorInfo(String8& result) const {
result.appendFormat("hasWideColorDisplay: %d\n", hasWideColorDisplay);
// TODO: print out if wide-color mode is active or not
for (size_t d = 0; d < mDisplays.size(); d++) {
const sp<const DisplayDevice>& displayDevice(mDisplays[d]);
int32_t hwcId = displayDevice->getHwcDisplayId();
if (hwcId == DisplayDevice::DISPLAY_ID_INVALID) {
continue;
}
result.appendFormat("Display %d color modes:\n", hwcId);
std::vector<android_color_mode_t> modes = getHwComposer().getColorModes(hwcId);
for (auto&& mode : modes) {
result.appendFormat(" %s (%d)\n", decodeColorMode(mode).c_str(), mode);
}
android_color_mode_t currentMode = displayDevice->getActiveColorMode();
result.appendFormat(" Current color mode: %s (%d)\n",
decodeColorMode(currentMode).c_str(), currentMode);
}
result.append("\n");
}
void SurfaceFlinger::dumpAllLocked(const Vector<String16>& args, size_t& index,
String8& result) const
{
bool colorize = false;
if (index < args.size()
&& (args[index] == String16("--color"))) {
colorize = true;
index++;
}
Colorizer colorizer(colorize);
// figure out if we're stuck somewhere
const nsecs_t now = systemTime();
const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
const nsecs_t inTransaction(mDebugInTransaction);
nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
/*
* Dump library configuration.
*/
colorizer.bold(result);
result.append("Build configuration:");
colorizer.reset(result);
appendSfConfigString(result);
appendUiConfigString(result);
appendGuiConfigString(result);
result.append("\n");
result.append("\nWide-Color information:\n");
dumpWideColorInfo(result);
colorizer.bold(result);
result.append("Sync configuration: ");
colorizer.reset(result);
result.append(SyncFeatures::getInstance().toString());
result.append("\n");
const auto& activeConfig = mHwc->getActiveConfig(HWC_DISPLAY_PRIMARY);
colorizer.bold(result);
result.append("DispSync configuration: ");
colorizer.reset(result);
result.appendFormat("app phase %" PRId64 " ns, sf phase %" PRId64 " ns, "
"present offset %" PRId64 " ns (refresh %" PRId64 " ns)",
vsyncPhaseOffsetNs, sfVsyncPhaseOffsetNs,
dispSyncPresentTimeOffset, activeConfig->getVsyncPeriod());
result.append("\n");
// Dump static screen stats
result.append("\n");
dumpStaticScreenStats(result);
result.append("\n");
dumpBufferingStats(result);
/*
* Dump the visible layer list
*/
colorizer.bold(result);
result.appendFormat("Visible layers (count = %zu)\n", mNumLayers);
colorizer.reset(result);
mCurrentState.traverseInZOrder([&](Layer* layer) {
layer->dump(result, colorizer);
});
/*
* Dump Display state
*/
colorizer.bold(result);
result.appendFormat("Displays (%zu entries)\n", mDisplays.size());
colorizer.reset(result);
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
const sp<const DisplayDevice>& hw(mDisplays[dpy]);
hw->dump(result);
}
/*
* Dump SurfaceFlinger global state
*/
colorizer.bold(result);
result.append("SurfaceFlinger global state:\n");
colorizer.reset(result);
HWComposer& hwc(getHwComposer());
sp<const DisplayDevice> hw(getDefaultDisplayDeviceLocked());
colorizer.bold(result);
result.appendFormat("EGL implementation : %s\n",
eglQueryStringImplementationANDROID(mEGLDisplay, EGL_VERSION));
colorizer.reset(result);
result.appendFormat("%s\n",
eglQueryStringImplementationANDROID(mEGLDisplay, EGL_EXTENSIONS));
mRenderEngine->dump(result);
hw->undefinedRegion.dump(result, "undefinedRegion");
result.appendFormat(" orientation=%d, isDisplayOn=%d\n",
hw->getOrientation(), hw->isDisplayOn());
result.appendFormat(
" last eglSwapBuffers() time: %f us\n"
" last transaction time : %f us\n"
" transaction-flags : %08x\n"
" refresh-rate : %f fps\n"
" x-dpi : %f\n"
" y-dpi : %f\n"
" gpu_to_cpu_unsupported : %d\n"
,
mLastSwapBufferTime/1000.0,
mLastTransactionTime/1000.0,
mTransactionFlags,
1e9 / activeConfig->getVsyncPeriod(),
activeConfig->getDpiX(),
activeConfig->getDpiY(),
!mGpuToCpuSupported);
result.appendFormat(" eglSwapBuffers time: %f us\n",
inSwapBuffersDuration/1000.0);
result.appendFormat(" transaction time: %f us\n",
inTransactionDuration/1000.0);
/*
* VSYNC state
*/
mEventThread->dump(result);
result.append("\n");
/*
* HWC layer minidump
*/
for (size_t d = 0; d < mDisplays.size(); d++) {
const sp<const DisplayDevice>& displayDevice(mDisplays[d]);
int32_t hwcId = displayDevice->getHwcDisplayId();
if (hwcId == DisplayDevice::DISPLAY_ID_INVALID) {
continue;
}
result.appendFormat("Display %d HWC layers:\n", hwcId);
Layer::miniDumpHeader(result);
mCurrentState.traverseInZOrder([&](Layer* layer) {
layer->miniDump(result, hwcId);
});
result.append("\n");
}
/*
* Dump HWComposer state
*/
colorizer.bold(result);
result.append("h/w composer state:\n");
colorizer.reset(result);
bool hwcDisabled = mDebugDisableHWC || mDebugRegion;
result.appendFormat(" h/w composer %s\n",
hwcDisabled ? "disabled" : "enabled");
hwc.dump(result);
/*
* Dump gralloc state
*/
const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
alloc.dump(result);
}
const Vector< sp<Layer> >&
SurfaceFlinger::getLayerSortedByZForHwcDisplay(int id) {
// Note: mStateLock is held here
wp<IBinder> dpy;
for (size_t i=0 ; i<mDisplays.size() ; i++) {
if (mDisplays.valueAt(i)->getHwcDisplayId() == id) {
dpy = mDisplays.keyAt(i);
break;
}
}
if (dpy == NULL) {
ALOGE("getLayerSortedByZForHwcDisplay: invalid hwc display id %d", id);
// Just use the primary display so we have something to return
dpy = getBuiltInDisplay(DisplayDevice::DISPLAY_PRIMARY);
}
return getDisplayDeviceLocked(dpy)->getVisibleLayersSortedByZ();
}
bool SurfaceFlinger::startDdmConnection()
{
void* libddmconnection_dso =
dlopen("libsurfaceflinger_ddmconnection.so", RTLD_NOW);
if (!libddmconnection_dso) {
return false;
}
void (*DdmConnection_start)(const char* name);
DdmConnection_start =
(decltype(DdmConnection_start))dlsym(libddmconnection_dso, "DdmConnection_start");
if (!DdmConnection_start) {
dlclose(libddmconnection_dso);
return false;
}
(*DdmConnection_start)(getServiceName());
return true;
}
status_t SurfaceFlinger::CheckTransactCodeCredentials(uint32_t code) {
switch (code) {
case CREATE_CONNECTION:
case CREATE_DISPLAY:
case BOOT_FINISHED:
case CLEAR_ANIMATION_FRAME_STATS:
case GET_ANIMATION_FRAME_STATS:
case SET_POWER_MODE:
case GET_HDR_CAPABILITIES:
{
// codes that require permission check
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_GRAPHICS && uid != AID_SYSTEM) &&
!PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
ALOGE("Permission Denial: can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
break;
}
/*
* Calling setTransactionState is safe, because you need to have been
* granted a reference to Client* and Handle* to do anything with it.
*
* Creating a scoped connection is safe, as per discussion in ISurfaceComposer.h
*/
case SET_TRANSACTION_STATE:
case CREATE_SCOPED_CONNECTION:
{
return OK;
}
case CAPTURE_SCREEN:
{
// codes that require permission check
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_GRAPHICS) &&
!PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
ALOGE("Permission Denial: can't read framebuffer pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
break;
}
}
return OK;
}
status_t SurfaceFlinger::onTransact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
status_t credentialCheck = CheckTransactCodeCredentials(code);
if (credentialCheck != OK) {
return credentialCheck;
}
status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
CHECK_INTERFACE(ISurfaceComposer, data, reply);
if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
ALOGE("Permission Denial: "
"can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
int n;
switch (code) {
case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
return NO_ERROR;
case 1002: // SHOW_UPDATES
n = data.readInt32();
mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
invalidateHwcGeometry();
repaintEverything();
return NO_ERROR;
case 1004:{ // repaint everything
repaintEverything();
return NO_ERROR;
}
case 1005:{ // force transaction
setTransactionFlags(
eTransactionNeeded|
eDisplayTransactionNeeded|
eTraversalNeeded);
return NO_ERROR;
}
case 1006:{ // send empty update
signalRefresh();
return NO_ERROR;
}
case 1008: // toggle use of hw composer
n = data.readInt32();
mDebugDisableHWC = n ? 1 : 0;
invalidateHwcGeometry();
repaintEverything();
return NO_ERROR;
case 1009: // toggle use of transform hint
n = data.readInt32();
mDebugDisableTransformHint = n ? 1 : 0;
invalidateHwcGeometry();
repaintEverything();
return NO_ERROR;
case 1010: // interrogate.
reply->writeInt32(0);
reply->writeInt32(0);
reply->writeInt32(mDebugRegion);
reply->writeInt32(0);
reply->writeInt32(mDebugDisableHWC);
return NO_ERROR;
case 1013: {
sp<const DisplayDevice> hw(getDefaultDisplayDevice());
reply->writeInt32(hw->getPageFlipCount());
return NO_ERROR;
}
case 1014: {
// daltonize
n = data.readInt32();
switch (n % 10) {
case 1:
mDaltonizer.setType(ColorBlindnessType::Protanomaly);
break;
case 2:
mDaltonizer.setType(ColorBlindnessType::Deuteranomaly);
break;
case 3:
mDaltonizer.setType(ColorBlindnessType::Tritanomaly);
break;
default:
mDaltonizer.setType(ColorBlindnessType::None);
break;
}
if (n >= 10) {
mDaltonizer.setMode(ColorBlindnessMode::Correction);
} else {
mDaltonizer.setMode(ColorBlindnessMode::Simulation);
}
invalidateHwcGeometry();
repaintEverything();
return NO_ERROR;
}
case 1015: {
// apply a color matrix
n = data.readInt32();
if (n) {
// color matrix is sent as mat3 matrix followed by vec3
// offset, then packed into a mat4 where the last row is
// the offset and extra values are 0
for (size_t i = 0 ; i < 4; i++) {
for (size_t j = 0; j < 4; j++) {
mColorMatrix[i][j] = data.readFloat();
}
}
} else {
mColorMatrix = mat4();
}
invalidateHwcGeometry();
repaintEverything();
return NO_ERROR;
}
// This is an experimental interface
// Needs to be shifted to proper binder interface when we productize
case 1016: {
n = data.readInt32();
mPrimaryDispSync.setRefreshSkipCount(n);
return NO_ERROR;
}
case 1017: {
n = data.readInt32();
mForceFullDamage = static_cast<bool>(n);
return NO_ERROR;
}
case 1018: { // Modify Choreographer's phase offset
n = data.readInt32();
mEventThread->setPhaseOffset(static_cast<nsecs_t>(n));
return NO_ERROR;
}
case 1019: { // Modify SurfaceFlinger's phase offset
n = data.readInt32();
mSFEventThread->setPhaseOffset(static_cast<nsecs_t>(n));
return NO_ERROR;
}
case 1020: { // Layer updates interceptor
n = data.readInt32();
if (n) {
ALOGV("Interceptor enabled");
mInterceptor.enable(mDrawingState.layersSortedByZ, mDrawingState.displays);
}
else{
ALOGV("Interceptor disabled");
mInterceptor.disable();
}
return NO_ERROR;
}
case 1021: { // Disable HWC virtual displays
n = data.readInt32();
mUseHwcVirtualDisplays = !n;
return NO_ERROR;
}
}
}
return err;
}
void SurfaceFlinger::repaintEverything() {
android_atomic_or(1, &mRepaintEverything);
signalTransaction();
}
// ---------------------------------------------------------------------------
// Capture screen into an IGraphiBufferProducer
// ---------------------------------------------------------------------------
/* The code below is here to handle b/8734824
*
* We create a IGraphicBufferProducer wrapper that forwards all calls
* from the surfaceflinger thread to the calling binder thread, where they
* are executed. This allows the calling thread in the calling process to be
* reused and not depend on having "enough" binder threads to handle the
* requests.
*/
class GraphicProducerWrapper : public BBinder, public MessageHandler {
/* Parts of GraphicProducerWrapper are run on two different threads,
* communicating by sending messages via Looper but also by shared member
* data. Coherence maintenance is subtle and in places implicit (ugh).
*
* Don't rely on Looper's sendMessage/handleMessage providing
* release/acquire semantics for any data not actually in the Message.
* Data going from surfaceflinger to binder threads needs to be
* synchronized explicitly.
*
* Barrier open/wait do provide release/acquire semantics. This provides
* implicit synchronization for data coming back from binder to
* surfaceflinger threads.
*/
sp<IGraphicBufferProducer> impl;
sp<Looper> looper;
status_t result;
bool exitPending;
bool exitRequested;
Barrier barrier;
uint32_t code;
Parcel const* data;
Parcel* reply;
enum {
MSG_API_CALL,
MSG_EXIT
};
/*
* Called on surfaceflinger thread. This is called by our "fake"
* BpGraphicBufferProducer. We package the data and reply Parcel and
* forward them to the binder thread.
*/
virtual status_t transact(uint32_t code,
const Parcel& data, Parcel* reply, uint32_t /* flags */) {
this->code = code;
this->data = &data;
this->reply = reply;
if (exitPending) {
// if we've exited, we run the message synchronously right here.
// note (JH): as far as I can tell from looking at the code, this
// never actually happens. if it does, i'm not sure if it happens
// on the surfaceflinger or binder thread.
handleMessage(Message(MSG_API_CALL));
} else {
barrier.close();
// Prevent stores to this->{code, data, reply} from being
// reordered later than the construction of Message.
atomic_thread_fence(memory_order_release);
looper->sendMessage(this, Message(MSG_API_CALL));
barrier.wait();
}
return result;
}
/*
* here we run on the binder thread. All we've got to do is
* call the real BpGraphicBufferProducer.
*/
virtual void handleMessage(const Message& message) {
int what = message.what;
// Prevent reads below from happening before the read from Message
atomic_thread_fence(memory_order_acquire);
if (what == MSG_API_CALL) {
result = IInterface::asBinder(impl)->transact(code, data[0], reply);
barrier.open();
} else if (what == MSG_EXIT) {
exitRequested = true;
}
}
public:
explicit GraphicProducerWrapper(const sp<IGraphicBufferProducer>& impl)
: impl(impl),
looper(new Looper(true)),
result(NO_ERROR),
exitPending(false),
exitRequested(false),
code(0),
data(NULL),
reply(NULL)
{}
// Binder thread
status_t waitForResponse() {
do {
looper->pollOnce(-1);
} while (!exitRequested);
return result;
}
// Client thread
void exit(status_t result) {
this->result = result;
exitPending = true;
// Ensure this->result is visible to the binder thread before it
// handles the message.
atomic_thread_fence(memory_order_release);
looper->sendMessage(this, Message(MSG_EXIT));
}
};
status_t SurfaceFlinger::captureScreen(const sp<IBinder>& display,
const sp<IGraphicBufferProducer>& producer,
Rect sourceCrop, uint32_t reqWidth, uint32_t reqHeight,
int32_t minLayerZ, int32_t maxLayerZ,
bool useIdentityTransform, ISurfaceComposer::Rotation rotation) {
if (CC_UNLIKELY(display == 0))
return BAD_VALUE;
if (CC_UNLIKELY(producer == 0))
return BAD_VALUE;
// if we have secure windows on this display, never allow the screen capture
// unless the producer interface is local (i.e.: we can take a screenshot for
// ourselves).
bool isLocalScreenshot = IInterface::asBinder(producer)->localBinder();
// Convert to surfaceflinger's internal rotation type.
Transform::orientation_flags rotationFlags;
switch (rotation) {
case ISurfaceComposer::eRotateNone:
rotationFlags = Transform::ROT_0;
break;
case ISurfaceComposer::eRotate90:
rotationFlags = Transform::ROT_90;
break;
case ISurfaceComposer::eRotate180:
rotationFlags = Transform::ROT_180;
break;
case ISurfaceComposer::eRotate270:
rotationFlags = Transform::ROT_270;
break;
default:
rotationFlags = Transform::ROT_0;
ALOGE("Invalid rotation passed to captureScreen(): %d\n", rotation);
break;
}
class MessageCaptureScreen : public MessageBase {
SurfaceFlinger* flinger;
sp<IBinder> display;
sp<IGraphicBufferProducer> producer;
Rect sourceCrop;
uint32_t reqWidth, reqHeight;
uint32_t minLayerZ,maxLayerZ;
bool useIdentityTransform;
Transform::orientation_flags rotation;
status_t result;
bool isLocalScreenshot;
public:
MessageCaptureScreen(SurfaceFlinger* flinger,
const sp<IBinder>& display,
const sp<IGraphicBufferProducer>& producer,
Rect sourceCrop, uint32_t reqWidth, uint32_t reqHeight,
int32_t minLayerZ, int32_t maxLayerZ,
bool useIdentityTransform,
Transform::orientation_flags rotation,
bool isLocalScreenshot)
: flinger(flinger), display(display), producer(producer),
sourceCrop(sourceCrop), reqWidth(reqWidth), reqHeight(reqHeight),
minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
useIdentityTransform(useIdentityTransform),
rotation(rotation), result(PERMISSION_DENIED),
isLocalScreenshot(isLocalScreenshot)
{
}
status_t getResult() const {
return result;
}
virtual bool handler() {
Mutex::Autolock _l(flinger->mStateLock);
sp<const DisplayDevice> hw(flinger->getDisplayDeviceLocked(display));
result = flinger->captureScreenImplLocked(hw, producer,
sourceCrop, reqWidth, reqHeight, minLayerZ, maxLayerZ,
useIdentityTransform, rotation, isLocalScreenshot);
static_cast<GraphicProducerWrapper*>(IInterface::asBinder(producer).get())->exit(result);
return true;
}
};
// this creates a "fake" BBinder which will serve as a "fake" remote
// binder to receive the marshaled calls and forward them to the
// real remote (a BpGraphicBufferProducer)
sp<GraphicProducerWrapper> wrapper = new GraphicProducerWrapper(producer);
// the asInterface() call below creates our "fake" BpGraphicBufferProducer
// which does the marshaling work forwards to our "fake remote" above.
sp<MessageBase> msg = new MessageCaptureScreen(this,
display, IGraphicBufferProducer::asInterface( wrapper ),
sourceCrop, reqWidth, reqHeight, minLayerZ, maxLayerZ,
useIdentityTransform, rotationFlags, isLocalScreenshot);
status_t res = postMessageAsync(msg);
if (res == NO_ERROR) {
res = wrapper->waitForResponse();
}
return res;
}
void SurfaceFlinger::renderScreenImplLocked(
const sp<const DisplayDevice>& hw,
Rect sourceCrop, uint32_t reqWidth, uint32_t reqHeight,
int32_t minLayerZ, int32_t maxLayerZ,
bool yswap, bool useIdentityTransform, Transform::orientation_flags rotation)
{
ATRACE_CALL();
RenderEngine& engine(getRenderEngine());
// get screen geometry
const int32_t hw_w = hw->getWidth();
const int32_t hw_h = hw->getHeight();
const bool filtering = static_cast<int32_t>(reqWidth) != hw_w ||
static_cast<int32_t>(reqHeight) != hw_h;
// if a default or invalid sourceCrop is passed in, set reasonable values
if (sourceCrop.width() == 0 || sourceCrop.height() == 0 ||
!sourceCrop.isValid()) {
sourceCrop.setLeftTop(Point(0, 0));
sourceCrop.setRightBottom(Point(hw_w, hw_h));
}
// ensure that sourceCrop is inside screen
if (sourceCrop.left < 0) {
ALOGE("Invalid crop rect: l = %d (< 0)", sourceCrop.left);
}
if (sourceCrop.right > hw_w) {
ALOGE("Invalid crop rect: r = %d (> %d)", sourceCrop.right, hw_w);
}
if (sourceCrop.top < 0) {
ALOGE("Invalid crop rect: t = %d (< 0)", sourceCrop.top);
}
if (sourceCrop.bottom > hw_h) {
ALOGE("Invalid crop rect: b = %d (> %d)", sourceCrop.bottom, hw_h);
}
// make sure to clear all GL error flags
engine.checkErrors();
// set-up our viewport
engine.setViewportAndProjection(
reqWidth, reqHeight, sourceCrop, hw_h, yswap, rotation);
engine.disableTexturing();
// redraw the screen entirely...
engine.clearWithColor(0, 0, 0, 1);
// We loop through the first level of layers without traversing,
// as we need to interpret min/max layer Z in the top level Z space.
for (const auto& layer : mDrawingState.layersSortedByZ) {
if (layer->getLayerStack() != hw->getLayerStack()) {
continue;
}
const Layer::State& state(layer->getDrawingState());
if (state.z < minLayerZ || state.z > maxLayerZ) {
continue;
}
layer->traverseInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) {
if (!layer->isVisible()) {
return;
}
if (filtering) layer->setFiltering(true);
layer->draw(hw, useIdentityTransform);
if (filtering) layer->setFiltering(false);
});
}
hw->setViewportAndProjection();
}
status_t SurfaceFlinger::captureScreenImplLocked(
const sp<const DisplayDevice>& hw,
const sp<IGraphicBufferProducer>& producer,
Rect sourceCrop, uint32_t reqWidth, uint32_t reqHeight,
int32_t minLayerZ, int32_t maxLayerZ,
bool useIdentityTransform, Transform::orientation_flags rotation,
bool isLocalScreenshot)
{
ATRACE_CALL();
// get screen geometry
uint32_t hw_w = hw->getWidth();
uint32_t hw_h = hw->getHeight();
if (rotation & Transform::ROT_90) {
std::swap(hw_w, hw_h);
}
if ((reqWidth > hw_w) || (reqHeight > hw_h)) {
ALOGE("size mismatch (%d, %d) > (%d, %d)",
reqWidth, reqHeight, hw_w, hw_h);
return BAD_VALUE;
}
reqWidth = (!reqWidth) ? hw_w : reqWidth;
reqHeight = (!reqHeight) ? hw_h : reqHeight;
bool secureLayerIsVisible = false;
for (const auto& layer : mDrawingState.layersSortedByZ) {
const Layer::State& state(layer->getDrawingState());
if ((layer->getLayerStack() != hw->getLayerStack()) ||
(state.z < minLayerZ || state.z > maxLayerZ)) {
continue;
}
layer->traverseInZOrder(LayerVector::StateSet::Drawing, [&](Layer *layer) {
secureLayerIsVisible = secureLayerIsVisible || (layer->isVisible() &&
layer->isSecure());
});
}
if (!isLocalScreenshot && secureLayerIsVisible) {
ALOGW("FB is protected: PERMISSION_DENIED");
return PERMISSION_DENIED;
}
// create a surface (because we're a producer, and we need to
// dequeue/queue a buffer)
sp<Surface> sur = new Surface(producer, false);
// Put the screenshot Surface into async mode so that
// Layer::headFenceHasSignaled will always return true and we'll latch the
// first buffer regardless of whether or not its acquire fence has
// signaled. This is needed to avoid a race condition in the rotation
// animation. See b/30209608
sur->setAsyncMode(true);
ANativeWindow* window = sur.get();
status_t result = native_window_api_connect(window, NATIVE_WINDOW_API_EGL);
if (result == NO_ERROR) {
uint32_t usage = GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN |
GRALLOC_USAGE_HW_RENDER | GRALLOC_USAGE_HW_TEXTURE;
int err = 0;
err = native_window_set_buffers_dimensions(window, reqWidth, reqHeight);
err |= native_window_set_scaling_mode(window, NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW);
err |= native_window_set_buffers_format(window, HAL_PIXEL_FORMAT_RGBA_8888);
err |= native_window_set_usage(window, usage);
if (err == NO_ERROR) {
ANativeWindowBuffer* buffer;
/* TODO: Once we have the sync framework everywhere this can use
* server-side waits on the fence that dequeueBuffer returns.
*/
result = native_window_dequeue_buffer_and_wait(window, &buffer);
if (result == NO_ERROR) {
int syncFd = -1;
// create an EGLImage from the buffer so we can later
// turn it into a texture
EGLImageKHR image = eglCreateImageKHR(mEGLDisplay, EGL_NO_CONTEXT,
EGL_NATIVE_BUFFER_ANDROID, buffer, NULL);
if (image != EGL_NO_IMAGE_KHR) {
// this binds the given EGLImage as a framebuffer for the
// duration of this scope.
RenderEngine::BindImageAsFramebuffer imageBond(getRenderEngine(), image);
if (imageBond.getStatus() == NO_ERROR) {
// this will in fact render into our dequeued buffer
// via an FBO, which means we didn't have to create
// an EGLSurface and therefore we're not
// dependent on the context's EGLConfig.
renderScreenImplLocked(
hw, sourceCrop, reqWidth, reqHeight, minLayerZ, maxLayerZ, true,
useIdentityTransform, rotation);
// Attempt to create a sync khr object that can produce a sync point. If that
// isn't available, create a non-dupable sync object in the fallback path and
// wait on it directly.
EGLSyncKHR sync;
if (!DEBUG_SCREENSHOTS) {
sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_NATIVE_FENCE_ANDROID, NULL);
// native fence fd will not be populated until flush() is done.
getRenderEngine().flush();
} else {
sync = EGL_NO_SYNC_KHR;
}
if (sync != EGL_NO_SYNC_KHR) {
// get the sync fd
syncFd = eglDupNativeFenceFDANDROID(mEGLDisplay, sync);
if (syncFd == EGL_NO_NATIVE_FENCE_FD_ANDROID) {
ALOGW("captureScreen: failed to dup sync khr object");
syncFd = -1;
}
eglDestroySyncKHR(mEGLDisplay, sync);
} else {
// fallback path
sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_FENCE_KHR, NULL);
if (sync != EGL_NO_SYNC_KHR) {
EGLint result = eglClientWaitSyncKHR(mEGLDisplay, sync,
EGL_SYNC_FLUSH_COMMANDS_BIT_KHR, 2000000000 /*2 sec*/);
EGLint eglErr = eglGetError();
if (result == EGL_TIMEOUT_EXPIRED_KHR) {
ALOGW("captureScreen: fence wait timed out");
} else {
ALOGW_IF(eglErr != EGL_SUCCESS,
"captureScreen: error waiting on EGL fence: %#x", eglErr);
}
eglDestroySyncKHR(mEGLDisplay, sync);
} else {
ALOGW("captureScreen: error creating EGL fence: %#x", eglGetError());
}
}
if (DEBUG_SCREENSHOTS) {
uint32_t* pixels = new uint32_t[reqWidth*reqHeight];
getRenderEngine().readPixels(0, 0, reqWidth, reqHeight, pixels);
checkScreenshot(reqWidth, reqHeight, reqWidth, pixels,
hw, minLayerZ, maxLayerZ);
delete [] pixels;
}
} else {
ALOGE("got GL_FRAMEBUFFER_COMPLETE_OES error while taking screenshot");
result = INVALID_OPERATION;
window->cancelBuffer(window, buffer, syncFd);
buffer = NULL;
}
// destroy our image
eglDestroyImageKHR(mEGLDisplay, image);
} else {
result = BAD_VALUE;
}
if (buffer) {
// queueBuffer takes ownership of syncFd
result = window->queueBuffer(window, buffer, syncFd);
}
}
} else {
result = BAD_VALUE;
}
native_window_api_disconnect(window, NATIVE_WINDOW_API_EGL);
}
return result;
}
void SurfaceFlinger::checkScreenshot(size_t w, size_t s, size_t h, void const* vaddr,
const sp<const DisplayDevice>& hw, int32_t minLayerZ, int32_t maxLayerZ) {
if (DEBUG_SCREENSHOTS) {
for (size_t y=0 ; y<h ; y++) {
uint32_t const * p = (uint32_t const *)vaddr + y*s;
for (size_t x=0 ; x<w ; x++) {
if (p[x] != 0xFF000000) return;
}
}
ALOGE("*** we just took a black screenshot ***\n"
"requested minz=%d, maxz=%d, layerStack=%d",
minLayerZ, maxLayerZ, hw->getLayerStack());
size_t i = 0;
for (const auto& layer : mDrawingState.layersSortedByZ) {
const Layer::State& state(layer->getDrawingState());
if (layer->getLayerStack() == hw->getLayerStack() && state.z >= minLayerZ &&
state.z <= maxLayerZ) {
layer->traverseInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) {
ALOGE("%c index=%zu, name=%s, layerStack=%d, z=%d, visible=%d, flags=%x, alpha=%.3f",
layer->isVisible() ? '+' : '-',
i, layer->getName().string(), layer->getLayerStack(), state.z,
layer->isVisible(), state.flags, state.alpha);
i++;
});
}
}
}
}
// ---------------------------------------------------------------------------
void SurfaceFlinger::State::traverseInZOrder(const LayerVector::Visitor& visitor) const {
layersSortedByZ.traverseInZOrder(stateSet, visitor);
}
void SurfaceFlinger::State::traverseInReverseZOrder(const LayerVector::Visitor& visitor) const {
layersSortedByZ.traverseInReverseZOrder(stateSet, visitor);
}
}; // namespace android
#if defined(__gl_h_)
#error "don't include gl/gl.h in this file"
#endif
#if defined(__gl2_h_)
#error "don't include gl2/gl2.h in this file"
#endif