blob: 7e6b5d3d584ea2cab4ed2082c02810f787b9d361 [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#undef LOG_TAG
#define LOG_TAG "Layer"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include <math.h>
#include <stdint.h>
#include <stdlib.h>
#include <sys/types.h>
#include <algorithm>
#include <cutils/compiler.h>
#include <cutils/native_handle.h>
#include <cutils/properties.h>
#include <utils/Errors.h>
#include <utils/Log.h>
#include <utils/NativeHandle.h>
#include <utils/StopWatch.h>
#include <utils/Trace.h>
#include <ui/DebugUtils.h>
#include <ui/GraphicBuffer.h>
#include <ui/PixelFormat.h>
#include <gui/BufferItem.h>
#include <gui/LayerDebugInfo.h>
#include <gui/Surface.h>
#include "BufferLayer.h"
#include "Colorizer.h"
#include "DisplayDevice.h"
#include "Layer.h"
#include "LayerRejecter.h"
#include "MonitoredProducer.h"
#include "SurfaceFlinger.h"
#include "DisplayHardware/HWComposer.h"
#include <renderengine/RenderEngine.h>
#include <mutex>
#include "LayerProtoHelper.h"
#define DEBUG_RESIZE 0
namespace android {
std::atomic<int32_t> Layer::sSequence{1};
Layer::Layer(const LayerCreationArgs& args)
: mFlinger(args.flinger),
mName(args.name),
mClientRef(args.client),
mBE{this, args.name.string()} {
mCurrentCrop.makeInvalid();
uint32_t layerFlags = 0;
if (args.flags & ISurfaceComposerClient::eHidden) layerFlags |= layer_state_t::eLayerHidden;
if (args.flags & ISurfaceComposerClient::eOpaque) layerFlags |= layer_state_t::eLayerOpaque;
if (args.flags & ISurfaceComposerClient::eSecure) layerFlags |= layer_state_t::eLayerSecure;
mTransactionName = String8("TX - ") + mName;
mCurrentState.active_legacy.w = args.w;
mCurrentState.active_legacy.h = args.h;
mCurrentState.flags = layerFlags;
mCurrentState.active_legacy.transform.set(0, 0);
mCurrentState.crop_legacy.makeInvalid();
mCurrentState.requestedCrop_legacy = mCurrentState.crop_legacy;
mCurrentState.z = 0;
mCurrentState.color.a = 1.0f;
mCurrentState.layerStack = 0;
mCurrentState.sequence = 0;
mCurrentState.requested_legacy = mCurrentState.active_legacy;
mCurrentState.appId = 0;
mCurrentState.type = 0;
mCurrentState.active.w = 0;
mCurrentState.active.h = 0;
mCurrentState.active.transform.set(0, 0);
mCurrentState.transform = 0;
mCurrentState.transformToDisplayInverse = false;
mCurrentState.crop.makeInvalid();
mCurrentState.acquireFence = new Fence(-1);
mCurrentState.dataspace = ui::Dataspace::UNKNOWN;
mCurrentState.hdrMetadata.validTypes = 0;
mCurrentState.surfaceDamageRegion.clear();
mCurrentState.api = -1;
mCurrentState.hasColorTransform = false;
// drawing state & current state are identical
mDrawingState = mCurrentState;
CompositorTiming compositorTiming;
args.flinger->getCompositorTiming(&compositorTiming);
mFrameEventHistory.initializeCompositorTiming(compositorTiming);
mFrameTracker.setDisplayRefreshPeriod(compositorTiming.interval);
}
Layer::~Layer() {
sp<Client> c(mClientRef.promote());
if (c != 0) {
c->detachLayer(this);
}
for (auto& point : mRemoteSyncPoints) {
point->setTransactionApplied();
}
for (auto& point : mLocalSyncPoints) {
point->setFrameAvailable();
}
mFrameTracker.logAndResetStats(mName);
}
// ---------------------------------------------------------------------------
// callbacks
// ---------------------------------------------------------------------------
/*
* onLayerDisplayed is only meaningful for BufferLayer, but, is called through
* Layer. So, the implementation is done in BufferLayer. When called on a
* ColorLayer object, it's essentially a NOP.
*/
void Layer::onLayerDisplayed(const sp<Fence>& /*releaseFence*/) {}
void Layer::onRemovedFromCurrentState() {
// the layer is removed from SF mCurrentState to mLayersPendingRemoval
mPendingRemoval = true;
if (mCurrentState.zOrderRelativeOf != nullptr) {
sp<Layer> strongRelative = mCurrentState.zOrderRelativeOf.promote();
if (strongRelative != nullptr) {
strongRelative->removeZOrderRelative(this);
mFlinger->setTransactionFlags(eTraversalNeeded);
}
mCurrentState.zOrderRelativeOf = nullptr;
}
for (const auto& child : mCurrentChildren) {
child->onRemovedFromCurrentState();
}
}
void Layer::onRemoved() {
// the layer is removed from SF mLayersPendingRemoval
abandon();
destroyAllHwcLayers();
for (const auto& child : mCurrentChildren) {
child->onRemoved();
}
}
// ---------------------------------------------------------------------------
// set-up
// ---------------------------------------------------------------------------
const String8& Layer::getName() const {
return mName;
}
bool Layer::getPremultipledAlpha() const {
return mPremultipliedAlpha;
}
sp<IBinder> Layer::getHandle() {
Mutex::Autolock _l(mLock);
return new Handle(mFlinger, this);
}
// ---------------------------------------------------------------------------
// h/w composer set-up
// ---------------------------------------------------------------------------
bool Layer::createHwcLayer(HWComposer* hwc, int32_t displayId) {
LOG_ALWAYS_FATAL_IF(getBE().mHwcLayers.count(displayId) != 0,
"Already have a layer for display %d", displayId);
auto layer = std::shared_ptr<HWC2::Layer>(
hwc->createLayer(displayId),
[hwc, displayId](HWC2::Layer* layer) {
hwc->destroyLayer(displayId, layer); });
if (!layer) {
return false;
}
LayerBE::HWCInfo& hwcInfo = getBE().mHwcLayers[displayId];
hwcInfo.hwc = hwc;
hwcInfo.layer = layer;
layer->setLayerDestroyedListener(
[this, displayId](HWC2::Layer* /*layer*/) { getBE().mHwcLayers.erase(displayId); });
return true;
}
bool Layer::destroyHwcLayer(int32_t displayId) {
if (getBE().mHwcLayers.count(displayId) == 0) {
return false;
}
auto& hwcInfo = getBE().mHwcLayers[displayId];
LOG_ALWAYS_FATAL_IF(hwcInfo.layer == nullptr, "Attempt to destroy null layer");
LOG_ALWAYS_FATAL_IF(hwcInfo.hwc == nullptr, "Missing HWComposer");
hwcInfo.layer = nullptr;
return true;
}
void Layer::destroyAllHwcLayers() {
size_t numLayers = getBE().mHwcLayers.size();
for (size_t i = 0; i < numLayers; ++i) {
LOG_ALWAYS_FATAL_IF(getBE().mHwcLayers.empty(), "destroyAllHwcLayers failed");
destroyHwcLayer(getBE().mHwcLayers.begin()->first);
}
LOG_ALWAYS_FATAL_IF(!getBE().mHwcLayers.empty(),
"All hardware composer layers should have been destroyed");
}
Rect Layer::getContentCrop() const {
// this is the crop rectangle that applies to the buffer
// itself (as opposed to the window)
Rect crop;
if (!mCurrentCrop.isEmpty()) {
// if the buffer crop is defined, we use that
crop = mCurrentCrop;
} else if (getBE().compositionInfo.mBuffer != nullptr) {
// otherwise we use the whole buffer
crop = getBE().compositionInfo.mBuffer->getBounds();
} else {
// if we don't have a buffer yet, we use an empty/invalid crop
crop.makeInvalid();
}
return crop;
}
static Rect reduce(const Rect& win, const Region& exclude) {
if (CC_LIKELY(exclude.isEmpty())) {
return win;
}
if (exclude.isRect()) {
return win.reduce(exclude.getBounds());
}
return Region(win).subtract(exclude).getBounds();
}
static FloatRect reduce(const FloatRect& win, const Region& exclude) {
if (CC_LIKELY(exclude.isEmpty())) {
return win;
}
// Convert through Rect (by rounding) for lack of FloatRegion
return Region(Rect{win}).subtract(exclude).getBounds().toFloatRect();
}
Rect Layer::computeScreenBounds(bool reduceTransparentRegion) const {
const State& s(getDrawingState());
Rect win(getActiveWidth(s), getActiveHeight(s));
Rect crop = getCrop(s);
if (!crop.isEmpty()) {
win.intersect(crop, &win);
}
ui::Transform t = getTransform();
win = t.transform(win);
const sp<Layer>& p = mDrawingParent.promote();
// Now we need to calculate the parent bounds, so we can clip ourselves to those.
// When calculating the parent bounds for purposes of clipping,
// we don't need to constrain the parent to its transparent region.
// The transparent region is an optimization based on the
// buffer contents of the layer, but does not affect the space allocated to
// it by policy, and thus children should be allowed to extend into the
// parent's transparent region. In fact one of the main uses, is to reduce
// buffer allocation size in cases where a child window sits behind a main window
// (by marking the hole in the parent window as a transparent region)
if (p != nullptr) {
Rect bounds = p->computeScreenBounds(false);
bounds.intersect(win, &win);
}
if (reduceTransparentRegion) {
auto const screenTransparentRegion = t.transform(getActiveTransparentRegion(s));
win = reduce(win, screenTransparentRegion);
}
return win;
}
FloatRect Layer::computeBounds() const {
const State& s(getDrawingState());
return computeBounds(getActiveTransparentRegion(s));
}
FloatRect Layer::computeBounds(const Region& activeTransparentRegion) const {
const State& s(getDrawingState());
Rect win(getActiveWidth(s), getActiveHeight(s));
Rect crop = getCrop(s);
if (!crop.isEmpty()) {
win.intersect(crop, &win);
}
const auto& p = mDrawingParent.promote();
FloatRect floatWin = win.toFloatRect();
FloatRect parentBounds = floatWin;
if (p != nullptr) {
// We pass an empty Region here for reasons mirroring that of the case described in
// the computeScreenBounds reduceTransparentRegion=false case.
parentBounds = p->computeBounds(Region());
}
ui::Transform t = s.active_legacy.transform;
if (p != nullptr) {
floatWin = t.transform(floatWin);
floatWin = floatWin.intersect(parentBounds);
floatWin = t.inverse().transform(floatWin);
}
// subtract the transparent region and snap to the bounds
return reduce(floatWin, activeTransparentRegion);
}
Rect Layer::computeInitialCrop(const sp<const DisplayDevice>& display) const {
// the crop is the area of the window that gets cropped, but not
// scaled in any ways.
const State& s(getDrawingState());
// apply the projection's clipping to the window crop in
// layerstack space, and convert-back to layer space.
// if there are no window scaling involved, this operation will map to full
// pixels in the buffer.
// FIXME: the 3 lines below can produce slightly incorrect clipping when we have
// a viewport clipping and a window transform. we should use floating point to fix this.
Rect activeCrop(getActiveWidth(s), getActiveHeight(s));
Rect crop = getCrop(s);
if (!crop.isEmpty()) {
activeCrop.intersect(crop, &activeCrop);
}
ui::Transform t = getTransform();
activeCrop = t.transform(activeCrop);
if (!activeCrop.intersect(display->getViewport(), &activeCrop)) {
activeCrop.clear();
}
const auto& p = mDrawingParent.promote();
if (p != nullptr) {
auto parentCrop = p->computeInitialCrop(display);
activeCrop.intersect(parentCrop, &activeCrop);
}
return activeCrop;
}
FloatRect Layer::computeCrop(const sp<const DisplayDevice>& display) const {
// the content crop is the area of the content that gets scaled to the
// layer's size. This is in buffer space.
FloatRect crop = getContentCrop().toFloatRect();
// In addition there is a WM-specified crop we pull from our drawing state.
const State& s(getDrawingState());
// Screen space to make reduction to parent crop clearer.
Rect activeCrop = computeInitialCrop(display);
ui::Transform t = getTransform();
// Back to layer space to work with the content crop.
activeCrop = t.inverse().transform(activeCrop);
// This needs to be here as transform.transform(Rect) computes the
// transformed rect and then takes the bounding box of the result before
// returning. This means
// transform.inverse().transform(transform.transform(Rect)) != Rect
// in which case we need to make sure the final rect is clipped to the
// display bounds.
if (!activeCrop.intersect(Rect(getActiveWidth(s), getActiveHeight(s)), &activeCrop)) {
activeCrop.clear();
}
// subtract the transparent region and snap to the bounds
activeCrop = reduce(activeCrop, getActiveTransparentRegion(s));
// Transform the window crop to match the buffer coordinate system,
// which means using the inverse of the current transform set on the
// SurfaceFlingerConsumer.
uint32_t invTransform = mCurrentTransform;
if (getTransformToDisplayInverse()) {
/*
* the code below applies the primary display's inverse transform to the
* buffer
*/
uint32_t invTransformOrient = DisplayDevice::getPrimaryDisplayOrientationTransform();
// calculate the inverse transform
if (invTransformOrient & NATIVE_WINDOW_TRANSFORM_ROT_90) {
invTransformOrient ^= NATIVE_WINDOW_TRANSFORM_FLIP_V | NATIVE_WINDOW_TRANSFORM_FLIP_H;
}
// and apply to the current transform
invTransform = (ui::Transform(invTransformOrient) *
ui::Transform(invTransform)).getOrientation();
}
int winWidth = getActiveWidth(s);
int winHeight = getActiveHeight(s);
if (invTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
// If the activeCrop has been rotate the ends are rotated but not
// the space itself so when transforming ends back we can't rely on
// a modification of the axes of rotation. To account for this we
// need to reorient the inverse rotation in terms of the current
// axes of rotation.
bool is_h_flipped = (invTransform & NATIVE_WINDOW_TRANSFORM_FLIP_H) != 0;
bool is_v_flipped = (invTransform & NATIVE_WINDOW_TRANSFORM_FLIP_V) != 0;
if (is_h_flipped == is_v_flipped) {
invTransform ^= NATIVE_WINDOW_TRANSFORM_FLIP_V | NATIVE_WINDOW_TRANSFORM_FLIP_H;
}
winWidth = getActiveHeight(s);
winHeight = getActiveWidth(s);
}
const Rect winCrop = activeCrop.transform(invTransform, getActiveWidth(s), getActiveHeight(s));
// below, crop is intersected with winCrop expressed in crop's coordinate space
float xScale = crop.getWidth() / float(winWidth);
float yScale = crop.getHeight() / float(winHeight);
float insetL = winCrop.left * xScale;
float insetT = winCrop.top * yScale;
float insetR = (winWidth - winCrop.right) * xScale;
float insetB = (winHeight - winCrop.bottom) * yScale;
crop.left += insetL;
crop.top += insetT;
crop.right -= insetR;
crop.bottom -= insetB;
return crop;
}
void Layer::setGeometry(const sp<const DisplayDevice>& display, uint32_t z) {
const auto displayId = display->getId();
if (!hasHwcLayer(displayId)) {
ALOGE("[%s] failed to setGeometry: no HWC layer found (%d)",
mName.string(), displayId);
return;
}
auto& hwcInfo = getBE().mHwcLayers[displayId];
// Device or Cursor layers
if (mPotentialCursor) {
ALOGV("[%s] Requesting Cursor composition", mName.string());
setCompositionType(displayId, HWC2::Composition::Cursor);
} else {
ALOGV("[%s] Requesting Device composition", mName.string());
setCompositionType(displayId, HWC2::Composition::Device);
}
// Need to program geometry parts
getBE().compositionInfo.hwc.skipGeometry = false;
// enable this layer
hwcInfo.forceClientComposition = false;
if (isSecure() && !display->isSecure()) {
hwcInfo.forceClientComposition = true;
}
// this gives us only the "orientation" component of the transform
const State& s(getDrawingState());
auto blendMode = HWC2::BlendMode::None;
if (!isOpaque(s) || getAlpha() != 1.0f) {
blendMode =
mPremultipliedAlpha ? HWC2::BlendMode::Premultiplied : HWC2::BlendMode::Coverage;
}
getBE().compositionInfo.hwc.blendMode = blendMode;
// apply the layer's transform, followed by the display's global transform
// here we're guaranteed that the layer's transform preserves rects
Region activeTransparentRegion(getActiveTransparentRegion(s));
ui::Transform t = getTransform();
Rect activeCrop = getCrop(s);
if (!activeCrop.isEmpty()) {
activeCrop = t.transform(activeCrop);
if (!activeCrop.intersect(display->getViewport(), &activeCrop)) {
activeCrop.clear();
}
activeCrop = t.inverse().transform(activeCrop, true);
// This needs to be here as transform.transform(Rect) computes the
// transformed rect and then takes the bounding box of the result before
// returning. This means
// transform.inverse().transform(transform.transform(Rect)) != Rect
// in which case we need to make sure the final rect is clipped to the
// display bounds.
if (!activeCrop.intersect(Rect(getActiveWidth(s), getActiveHeight(s)), &activeCrop)) {
activeCrop.clear();
}
// mark regions outside the crop as transparent
activeTransparentRegion.orSelf(Rect(0, 0, getActiveWidth(s), activeCrop.top));
activeTransparentRegion.orSelf(
Rect(0, activeCrop.bottom, getActiveWidth(s), getActiveHeight(s)));
activeTransparentRegion.orSelf(Rect(0, activeCrop.top, activeCrop.left, activeCrop.bottom));
activeTransparentRegion.orSelf(
Rect(activeCrop.right, activeCrop.top, getActiveWidth(s), activeCrop.bottom));
}
// computeBounds returns a FloatRect to provide more accuracy during the
// transformation. We then round upon constructing 'frame'.
Rect frame{t.transform(computeBounds(activeTransparentRegion))};
if (!frame.intersect(display->getViewport(), &frame)) {
frame.clear();
}
const ui::Transform& tr = display->getTransform();
Rect transformedFrame = tr.transform(frame);
getBE().compositionInfo.hwc.displayFrame = transformedFrame;
FloatRect sourceCrop = computeCrop(display);
getBE().compositionInfo.hwc.sourceCrop = sourceCrop;
float alpha = static_cast<float>(getAlpha());
getBE().compositionInfo.hwc.alpha = alpha;
getBE().compositionInfo.hwc.z = z;
int type = s.type;
int appId = s.appId;
sp<Layer> parent = mDrawingParent.promote();
if (parent.get()) {
auto& parentState = parent->getDrawingState();
if (parentState.type >= 0 || parentState.appId >= 0) {
type = parentState.type;
appId = parentState.appId;
}
}
getBE().compositionInfo.hwc.type = type;
getBE().compositionInfo.hwc.appId = appId;
/*
* Transformations are applied in this order:
* 1) buffer orientation/flip/mirror
* 2) state transformation (window manager)
* 3) layer orientation (screen orientation)
* (NOTE: the matrices are multiplied in reverse order)
*/
const ui::Transform bufferOrientation(mCurrentTransform);
ui::Transform transform(tr * t * bufferOrientation);
if (getTransformToDisplayInverse()) {
/*
* the code below applies the primary display's inverse transform to the
* buffer
*/
uint32_t invTransform = DisplayDevice::getPrimaryDisplayOrientationTransform();
// calculate the inverse transform
if (invTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
invTransform ^= NATIVE_WINDOW_TRANSFORM_FLIP_V | NATIVE_WINDOW_TRANSFORM_FLIP_H;
}
/*
* Here we cancel out the orientation component of the WM transform.
* The scaling and translate components are already included in our bounds
* computation so it's enough to just omit it in the composition.
* See comment in onDraw with ref to b/36727915 for why.
*/
transform = ui::Transform(invTransform) * tr * bufferOrientation;
}
// this gives us only the "orientation" component of the transform
const uint32_t orientation = transform.getOrientation();
if (orientation & ui::Transform::ROT_INVALID) {
// we can only handle simple transformation
hwcInfo.forceClientComposition = true;
} else {
auto transform = static_cast<HWC2::Transform>(orientation);
hwcInfo.transform = transform;
getBE().compositionInfo.hwc.transform = transform;
}
}
void Layer::forceClientComposition(int32_t displayId) {
if (getBE().mHwcLayers.count(displayId) == 0) {
ALOGE("forceClientComposition: no HWC layer found (%d)", displayId);
return;
}
getBE().mHwcLayers[displayId].forceClientComposition = true;
}
bool Layer::getForceClientComposition(int32_t displayId) {
if (getBE().mHwcLayers.count(displayId) == 0) {
ALOGE("getForceClientComposition: no HWC layer found (%d)", displayId);
return false;
}
return getBE().mHwcLayers[displayId].forceClientComposition;
}
void Layer::updateCursorPosition(const sp<const DisplayDevice>& display) {
const auto displayId = display->getId();
if (getBE().mHwcLayers.count(displayId) == 0 ||
getCompositionType(displayId) != HWC2::Composition::Cursor) {
return;
}
// This gives us only the "orientation" component of the transform
const State& s(getCurrentState());
// Apply the layer's transform, followed by the display's global transform
// Here we're guaranteed that the layer's transform preserves rects
Rect win(getActiveWidth(s), getActiveHeight(s));
Rect crop = getCrop(s);
if (!crop.isEmpty()) {
win.intersect(crop, &win);
}
// Subtract the transparent region and snap to the bounds
Rect bounds = reduce(win, getActiveTransparentRegion(s));
Rect frame(getTransform().transform(bounds));
frame.intersect(display->getViewport(), &frame);
auto& displayTransform = display->getTransform();
auto position = displayTransform.transform(frame);
auto error =
(getBE().mHwcLayers[displayId].layer)->setCursorPosition(
position.left, position.top);
ALOGE_IF(error != HWC2::Error::None,
"[%s] Failed to set cursor position "
"to (%d, %d): %s (%d)",
mName.string(), position.left, position.top, to_string(error).c_str(),
static_cast<int32_t>(error));
}
// ---------------------------------------------------------------------------
// drawing...
// ---------------------------------------------------------------------------
void Layer::draw(const RenderArea& renderArea, const Region& clip) {
onDraw(renderArea, clip, false);
}
void Layer::draw(const RenderArea& renderArea, bool useIdentityTransform) {
onDraw(renderArea, Region(renderArea.getBounds()), useIdentityTransform);
}
void Layer::clearWithOpenGL(const RenderArea& renderArea, float red, float green, float blue,
float alpha) const {
auto& engine(mFlinger->getRenderEngine());
computeGeometry(renderArea, getBE().mMesh, false);
engine.setupFillWithColor(red, green, blue, alpha);
engine.drawMesh(getBE().mMesh);
}
void Layer::clearWithOpenGL(const RenderArea& renderArea) const {
clearWithOpenGL(renderArea, 0, 0, 0, 0);
}
void Layer::setCompositionType(int32_t displayId, HWC2::Composition type, bool /*callIntoHwc*/) {
if (getBE().mHwcLayers.count(displayId) == 0) {
ALOGE("setCompositionType called without a valid HWC layer");
return;
} else {
if (getBE().mHwcLayers[displayId].compositionType != type) {
ALOGV("setCompositionType: Changing compositionType from %s to %s",
to_string(getBE().mHwcLayers[displayId].compositionType).c_str(),
to_string(type).c_str());
getBE().mHwcLayers[displayId].compositionType = type;
}
}
}
HWC2::Composition Layer::getCompositionType(int32_t displayId) const {
if (getBE().mHwcLayers.count(displayId) == 0) {
// If we're querying the composition type for a display that does not
// have a HWC counterpart, then it will always be Client
return HWC2::Composition::Client;
}
return getBE().mHwcLayers[displayId].compositionType;
}
void Layer::setClearClientTarget(int32_t displayId, bool clear) {
if (getBE().mHwcLayers.count(displayId) == 0) {
ALOGE("setClearClientTarget called without a valid HWC layer");
return;
}
getBE().mHwcLayers[displayId].clearClientTarget = clear;
}
bool Layer::getClearClientTarget(int32_t displayId) const {
if (getBE().mHwcLayers.count(displayId) == 0) {
ALOGE("getClearClientTarget called without a valid HWC layer");
return false;
}
return getBE().mHwcLayers.at(displayId).clearClientTarget;
}
bool Layer::addSyncPoint(const std::shared_ptr<SyncPoint>& point) {
if (point->getFrameNumber() <= mCurrentFrameNumber) {
// Don't bother with a SyncPoint, since we've already latched the
// relevant frame
return false;
}
Mutex::Autolock lock(mLocalSyncPointMutex);
mLocalSyncPoints.push_back(point);
return true;
}
// ----------------------------------------------------------------------------
// local state
// ----------------------------------------------------------------------------
void Layer::computeGeometry(const RenderArea& renderArea,
renderengine::Mesh& mesh,
bool useIdentityTransform) const {
const ui::Transform renderAreaTransform(renderArea.getTransform());
FloatRect win = computeBounds();
vec2 lt = vec2(win.left, win.top);
vec2 lb = vec2(win.left, win.bottom);
vec2 rb = vec2(win.right, win.bottom);
vec2 rt = vec2(win.right, win.top);
ui::Transform layerTransform = getTransform();
if (!useIdentityTransform) {
lt = layerTransform.transform(lt);
lb = layerTransform.transform(lb);
rb = layerTransform.transform(rb);
rt = layerTransform.transform(rt);
}
renderengine::Mesh::VertexArray<vec2> position(mesh.getPositionArray<vec2>());
position[0] = renderAreaTransform.transform(lt);
position[1] = renderAreaTransform.transform(lb);
position[2] = renderAreaTransform.transform(rb);
position[3] = renderAreaTransform.transform(rt);
}
bool Layer::isSecure() const {
const State& s(mDrawingState);
return (s.flags & layer_state_t::eLayerSecure);
}
void Layer::setVisibleRegion(const Region& visibleRegion) {
// always called from main thread
this->visibleRegion = visibleRegion;
}
void Layer::setCoveredRegion(const Region& coveredRegion) {
// always called from main thread
this->coveredRegion = coveredRegion;
}
void Layer::setVisibleNonTransparentRegion(const Region& setVisibleNonTransparentRegion) {
// always called from main thread
this->visibleNonTransparentRegion = setVisibleNonTransparentRegion;
}
void Layer::clearVisibilityRegions() {
visibleRegion.clear();
visibleNonTransparentRegion.clear();
coveredRegion.clear();
}
// ----------------------------------------------------------------------------
// transaction
// ----------------------------------------------------------------------------
void Layer::pushPendingState() {
if (!mCurrentState.modified) {
return;
}
// If this transaction is waiting on the receipt of a frame, generate a sync
// point and send it to the remote layer.
if (mCurrentState.barrierLayer_legacy != nullptr) {
sp<Layer> barrierLayer = mCurrentState.barrierLayer_legacy.promote();
if (barrierLayer == nullptr) {
ALOGE("[%s] Unable to promote barrier Layer.", mName.string());
// If we can't promote the layer we are intended to wait on,
// then it is expired or otherwise invalid. Allow this transaction
// to be applied as per normal (no synchronization).
mCurrentState.barrierLayer_legacy = nullptr;
} else {
auto syncPoint = std::make_shared<SyncPoint>(mCurrentState.frameNumber_legacy);
if (barrierLayer->addSyncPoint(syncPoint)) {
mRemoteSyncPoints.push_back(std::move(syncPoint));
} else {
// We already missed the frame we're supposed to synchronize
// on, so go ahead and apply the state update
mCurrentState.barrierLayer_legacy = nullptr;
}
}
// Wake us up to check if the frame has been received
setTransactionFlags(eTransactionNeeded);
mFlinger->setTransactionFlags(eTraversalNeeded);
}
mPendingStates.push_back(mCurrentState);
ATRACE_INT(mTransactionName.string(), mPendingStates.size());
}
void Layer::popPendingState(State* stateToCommit) {
*stateToCommit = mPendingStates[0];
mPendingStates.removeAt(0);
ATRACE_INT(mTransactionName.string(), mPendingStates.size());
}
bool Layer::applyPendingStates(State* stateToCommit) {
bool stateUpdateAvailable = false;
while (!mPendingStates.empty()) {
if (mPendingStates[0].barrierLayer_legacy != nullptr) {
if (mRemoteSyncPoints.empty()) {
// If we don't have a sync point for this, apply it anyway. It
// will be visually wrong, but it should keep us from getting
// into too much trouble.
ALOGE("[%s] No local sync point found", mName.string());
popPendingState(stateToCommit);
stateUpdateAvailable = true;
continue;
}
if (mRemoteSyncPoints.front()->getFrameNumber() !=
mPendingStates[0].frameNumber_legacy) {
ALOGE("[%s] Unexpected sync point frame number found", mName.string());
// Signal our end of the sync point and then dispose of it
mRemoteSyncPoints.front()->setTransactionApplied();
mRemoteSyncPoints.pop_front();
continue;
}
if (mRemoteSyncPoints.front()->frameIsAvailable()) {
// Apply the state update
popPendingState(stateToCommit);
stateUpdateAvailable = true;
// Signal our end of the sync point and then dispose of it
mRemoteSyncPoints.front()->setTransactionApplied();
mRemoteSyncPoints.pop_front();
} else {
break;
}
} else {
popPendingState(stateToCommit);
stateUpdateAvailable = true;
}
}
// If we still have pending updates, wake SurfaceFlinger back up and point
// it at this layer so we can process them
if (!mPendingStates.empty()) {
setTransactionFlags(eTransactionNeeded);
mFlinger->setTransactionFlags(eTraversalNeeded);
}
mCurrentState.modified = false;
return stateUpdateAvailable;
}
uint32_t Layer::doTransactionResize(uint32_t flags, State* stateToCommit) {
const State& s(getDrawingState());
const bool sizeChanged = (stateToCommit->requested_legacy.w != s.requested_legacy.w) ||
(stateToCommit->requested_legacy.h != s.requested_legacy.h);
if (sizeChanged) {
// the size changed, we need to ask our client to request a new buffer
ALOGD_IF(DEBUG_RESIZE,
"doTransaction: geometry (layer=%p '%s'), tr=%02x, scalingMode=%d\n"
" current={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
" requested={ wh={%4u,%4u} }}\n"
" drawing={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
" requested={ wh={%4u,%4u} }}\n",
this, getName().string(), mCurrentTransform, getEffectiveScalingMode(),
stateToCommit->active_legacy.w, stateToCommit->active_legacy.h,
stateToCommit->crop_legacy.left, stateToCommit->crop_legacy.top,
stateToCommit->crop_legacy.right, stateToCommit->crop_legacy.bottom,
stateToCommit->crop_legacy.getWidth(), stateToCommit->crop_legacy.getHeight(),
stateToCommit->requested_legacy.w, stateToCommit->requested_legacy.h,
s.active_legacy.w, s.active_legacy.h, s.crop_legacy.left, s.crop_legacy.top,
s.crop_legacy.right, s.crop_legacy.bottom, s.crop_legacy.getWidth(),
s.crop_legacy.getHeight(), s.requested_legacy.w, s.requested_legacy.h);
}
// Don't let Layer::doTransaction update the drawing state
// if we have a pending resize, unless we are in fixed-size mode.
// the drawing state will be updated only once we receive a buffer
// with the correct size.
//
// In particular, we want to make sure the clip (which is part
// of the geometry state) is latched together with the size but is
// latched immediately when no resizing is involved.
//
// If a sideband stream is attached, however, we want to skip this
// optimization so that transactions aren't missed when a buffer
// never arrives
//
// In the case that we don't have a buffer we ignore other factors
// and avoid entering the resizePending state. At a high level the
// resizePending state is to avoid applying the state of the new buffer
// to the old buffer. However in the state where we don't have an old buffer
// there is no such concern but we may still be being used as a parent layer.
const bool resizePending =
((stateToCommit->requested_legacy.w != stateToCommit->active_legacy.w) ||
(stateToCommit->requested_legacy.h != stateToCommit->active_legacy.h)) &&
(getBE().compositionInfo.mBuffer != nullptr);
if (!isFixedSize()) {
if (resizePending && getBE().compositionInfo.hwc.sidebandStream == nullptr) {
flags |= eDontUpdateGeometryState;
}
}
// Here we apply various requested geometry states, depending on our
// latching configuration. See Layer.h for a detailed discussion of
// how geometry latching is controlled.
if (!(flags & eDontUpdateGeometryState)) {
State& editCurrentState(getCurrentState());
// If mFreezeGeometryUpdates is true we are in the setGeometryAppliesWithResize
// mode, which causes attributes which normally latch regardless of scaling mode,
// to be delayed. We copy the requested state to the active state making sure
// to respect these rules (again see Layer.h for a detailed discussion).
//
// There is an awkward asymmetry in the handling of the crop states in the position
// states, as can be seen below. Largely this arises from position and transform
// being stored in the same data structure while having different latching rules.
// b/38182305
//
// Careful that "stateToCommit" and editCurrentState may not begin as equivalent due to
// applyPendingStates in the presence of deferred transactions.
if (mFreezeGeometryUpdates) {
float tx = stateToCommit->active_legacy.transform.tx();
float ty = stateToCommit->active_legacy.transform.ty();
stateToCommit->active_legacy = stateToCommit->requested_legacy;
stateToCommit->active_legacy.transform.set(tx, ty);
editCurrentState.active_legacy = stateToCommit->active_legacy;
} else {
editCurrentState.active_legacy = editCurrentState.requested_legacy;
stateToCommit->active_legacy = stateToCommit->requested_legacy;
}
}
return flags;
}
uint32_t Layer::doTransaction(uint32_t flags) {
ATRACE_CALL();
pushPendingState();
State c = getCurrentState();
if (!applyPendingStates(&c)) {
return 0;
}
flags = doTransactionResize(flags, &c);
const State& s(getDrawingState());
if (getActiveGeometry(c) != getActiveGeometry(s)) {
// invalidate and recompute the visible regions if needed
flags |= Layer::eVisibleRegion;
}
if (c.sequence != s.sequence) {
// invalidate and recompute the visible regions if needed
flags |= eVisibleRegion;
this->contentDirty = true;
// we may use linear filtering, if the matrix scales us
const uint8_t type = getActiveTransform(c).getType();
mNeedsFiltering = (!getActiveTransform(c).preserveRects() || type >= ui::Transform::SCALE);
}
// If the layer is hidden, signal and clear out all local sync points so
// that transactions for layers depending on this layer's frames becoming
// visible are not blocked
if (c.flags & layer_state_t::eLayerHidden) {
clearSyncPoints();
}
// Commit the transaction
commitTransaction(c);
return flags;
}
void Layer::commitTransaction(const State& stateToCommit) {
mDrawingState = stateToCommit;
}
uint32_t Layer::getTransactionFlags(uint32_t flags) {
return mTransactionFlags.fetch_and(~flags) & flags;
}
uint32_t Layer::setTransactionFlags(uint32_t flags) {
return mTransactionFlags.fetch_or(flags);
}
bool Layer::setPosition(float x, float y, bool immediate) {
if (mCurrentState.requested_legacy.transform.tx() == x &&
mCurrentState.requested_legacy.transform.ty() == y)
return false;
mCurrentState.sequence++;
// We update the requested and active position simultaneously because
// we want to apply the position portion of the transform matrix immediately,
// but still delay scaling when resizing a SCALING_MODE_FREEZE layer.
mCurrentState.requested_legacy.transform.set(x, y);
if (immediate && !mFreezeGeometryUpdates) {
// Here we directly update the active state
// unlike other setters, because we store it within
// the transform, but use different latching rules.
// b/38182305
mCurrentState.active_legacy.transform.set(x, y);
}
mFreezeGeometryUpdates = mFreezeGeometryUpdates || !immediate;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setChildLayer(const sp<Layer>& childLayer, int32_t z) {
ssize_t idx = mCurrentChildren.indexOf(childLayer);
if (idx < 0) {
return false;
}
if (childLayer->setLayer(z)) {
mCurrentChildren.removeAt(idx);
mCurrentChildren.add(childLayer);
return true;
}
return false;
}
bool Layer::setChildRelativeLayer(const sp<Layer>& childLayer,
const sp<IBinder>& relativeToHandle, int32_t relativeZ) {
ssize_t idx = mCurrentChildren.indexOf(childLayer);
if (idx < 0) {
return false;
}
if (childLayer->setRelativeLayer(relativeToHandle, relativeZ)) {
mCurrentChildren.removeAt(idx);
mCurrentChildren.add(childLayer);
return true;
}
return false;
}
bool Layer::setLayer(int32_t z) {
if (mCurrentState.z == z && !usingRelativeZ(LayerVector::StateSet::Current)) return false;
mCurrentState.sequence++;
mCurrentState.z = z;
mCurrentState.modified = true;
// Discard all relative layering.
if (mCurrentState.zOrderRelativeOf != nullptr) {
sp<Layer> strongRelative = mCurrentState.zOrderRelativeOf.promote();
if (strongRelative != nullptr) {
strongRelative->removeZOrderRelative(this);
}
mCurrentState.zOrderRelativeOf = nullptr;
}
setTransactionFlags(eTransactionNeeded);
return true;
}
void Layer::removeZOrderRelative(const wp<Layer>& relative) {
mCurrentState.zOrderRelatives.remove(relative);
mCurrentState.sequence++;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
}
void Layer::addZOrderRelative(const wp<Layer>& relative) {
mCurrentState.zOrderRelatives.add(relative);
mCurrentState.modified = true;
mCurrentState.sequence++;
setTransactionFlags(eTransactionNeeded);
}
bool Layer::setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ) {
sp<Handle> handle = static_cast<Handle*>(relativeToHandle.get());
if (handle == nullptr) {
return false;
}
sp<Layer> relative = handle->owner.promote();
if (relative == nullptr) {
return false;
}
if (mCurrentState.z == relativeZ && usingRelativeZ(LayerVector::StateSet::Current) &&
mCurrentState.zOrderRelativeOf == relative) {
return false;
}
mCurrentState.sequence++;
mCurrentState.modified = true;
mCurrentState.z = relativeZ;
auto oldZOrderRelativeOf = mCurrentState.zOrderRelativeOf.promote();
if (oldZOrderRelativeOf != nullptr) {
oldZOrderRelativeOf->removeZOrderRelative(this);
}
mCurrentState.zOrderRelativeOf = relative;
relative->addZOrderRelative(this);
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setSize(uint32_t w, uint32_t h) {
if (mCurrentState.requested_legacy.w == w && mCurrentState.requested_legacy.h == h)
return false;
mCurrentState.requested_legacy.w = w;
mCurrentState.requested_legacy.h = h;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
// record the new size, from this point on, when the client request
// a buffer, it'll get the new size.
setDefaultBufferSize(mCurrentState.requested_legacy.w, mCurrentState.requested_legacy.h);
return true;
}
bool Layer::setAlpha(float alpha) {
if (mCurrentState.color.a == alpha) return false;
mCurrentState.sequence++;
mCurrentState.color.a = alpha;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setColor(const half3& color) {
if (color.r == mCurrentState.color.r && color.g == mCurrentState.color.g &&
color.b == mCurrentState.color.b)
return false;
mCurrentState.sequence++;
mCurrentState.color.r = color.r;
mCurrentState.color.g = color.g;
mCurrentState.color.b = color.b;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setMatrix(const layer_state_t::matrix22_t& matrix,
bool allowNonRectPreservingTransforms) {
ui::Transform t;
t.set(matrix.dsdx, matrix.dtdy, matrix.dtdx, matrix.dsdy);
if (!allowNonRectPreservingTransforms && !t.preserveRects()) {
ALOGW("Attempt to set rotation matrix without permission ACCESS_SURFACE_FLINGER ignored");
return false;
}
mCurrentState.sequence++;
mCurrentState.requested_legacy.transform.set(matrix.dsdx, matrix.dtdy, matrix.dtdx,
matrix.dsdy);
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setTransparentRegionHint(const Region& transparent) {
mCurrentState.requestedTransparentRegion_legacy = transparent;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setFlags(uint8_t flags, uint8_t mask) {
const uint32_t newFlags = (mCurrentState.flags & ~mask) | (flags & mask);
if (mCurrentState.flags == newFlags) return false;
mCurrentState.sequence++;
mCurrentState.flags = newFlags;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setCrop_legacy(const Rect& crop, bool immediate) {
if (mCurrentState.requestedCrop_legacy == crop) return false;
mCurrentState.sequence++;
mCurrentState.requestedCrop_legacy = crop;
if (immediate && !mFreezeGeometryUpdates) {
mCurrentState.crop_legacy = crop;
}
mFreezeGeometryUpdates = mFreezeGeometryUpdates || !immediate;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setOverrideScalingMode(int32_t scalingMode) {
if (scalingMode == mOverrideScalingMode) return false;
mOverrideScalingMode = scalingMode;
setTransactionFlags(eTransactionNeeded);
return true;
}
void Layer::setInfo(int32_t type, int32_t appId) {
mCurrentState.appId = appId;
mCurrentState.type = type;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
}
bool Layer::setLayerStack(uint32_t layerStack) {
if (mCurrentState.layerStack == layerStack) return false;
mCurrentState.sequence++;
mCurrentState.layerStack = layerStack;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
uint32_t Layer::getLayerStack() const {
auto p = mDrawingParent.promote();
if (p == nullptr) {
return getDrawingState().layerStack;
}
return p->getLayerStack();
}
void Layer::deferTransactionUntil_legacy(const sp<Layer>& barrierLayer, uint64_t frameNumber) {
mCurrentState.barrierLayer_legacy = barrierLayer;
mCurrentState.frameNumber_legacy = frameNumber;
// We don't set eTransactionNeeded, because just receiving a deferral
// request without any other state updates shouldn't actually induce a delay
mCurrentState.modified = true;
pushPendingState();
mCurrentState.barrierLayer_legacy = nullptr;
mCurrentState.frameNumber_legacy = 0;
mCurrentState.modified = false;
}
void Layer::deferTransactionUntil_legacy(const sp<IBinder>& barrierHandle, uint64_t frameNumber) {
sp<Handle> handle = static_cast<Handle*>(barrierHandle.get());
deferTransactionUntil_legacy(handle->owner.promote(), frameNumber);
}
// ----------------------------------------------------------------------------
// pageflip handling...
// ----------------------------------------------------------------------------
bool Layer::isHiddenByPolicy() const {
const State& s(mDrawingState);
const auto& parent = mDrawingParent.promote();
if (parent != nullptr && parent->isHiddenByPolicy()) {
return true;
}
return s.flags & layer_state_t::eLayerHidden;
}
uint32_t Layer::getEffectiveUsage(uint32_t usage) const {
// TODO: should we do something special if mSecure is set?
if (mProtectedByApp) {
// need a hardware-protected path to external video sink
usage |= GraphicBuffer::USAGE_PROTECTED;
}
if (mPotentialCursor) {
usage |= GraphicBuffer::USAGE_CURSOR;
}
usage |= GraphicBuffer::USAGE_HW_COMPOSER;
return usage;
}
void Layer::updateTransformHint(const sp<const DisplayDevice>& display) const {
uint32_t orientation = 0;
if (!mFlinger->mDebugDisableTransformHint) {
// The transform hint is used to improve performance, but we can
// only have a single transform hint, it cannot
// apply to all displays.
const ui::Transform& planeTransform = display->getTransform();
orientation = planeTransform.getOrientation();
if (orientation & ui::Transform::ROT_INVALID) {
orientation = 0;
}
}
setTransformHint(orientation);
}
// ----------------------------------------------------------------------------
// debugging
// ----------------------------------------------------------------------------
// TODO(marissaw): add new layer state info to layer debugging
LayerDebugInfo Layer::getLayerDebugInfo() const {
LayerDebugInfo info;
const State& ds = getDrawingState();
info.mName = getName();
sp<Layer> parent = getParent();
info.mParentName = (parent == nullptr ? std::string("none") : parent->getName().string());
info.mType = String8(getTypeId());
info.mTransparentRegion = ds.activeTransparentRegion_legacy;
info.mVisibleRegion = visibleRegion;
info.mSurfaceDamageRegion = surfaceDamageRegion;
info.mLayerStack = getLayerStack();
info.mX = ds.active_legacy.transform.tx();
info.mY = ds.active_legacy.transform.ty();
info.mZ = ds.z;
info.mWidth = ds.active_legacy.w;
info.mHeight = ds.active_legacy.h;
info.mCrop = ds.crop_legacy;
info.mColor = ds.color;
info.mFlags = ds.flags;
info.mPixelFormat = getPixelFormat();
info.mDataSpace = static_cast<android_dataspace>(mCurrentDataSpace);
info.mMatrix[0][0] = ds.active_legacy.transform[0][0];
info.mMatrix[0][1] = ds.active_legacy.transform[0][1];
info.mMatrix[1][0] = ds.active_legacy.transform[1][0];
info.mMatrix[1][1] = ds.active_legacy.transform[1][1];
{
sp<const GraphicBuffer> buffer = mActiveBuffer;
if (buffer != 0) {
info.mActiveBufferWidth = buffer->getWidth();
info.mActiveBufferHeight = buffer->getHeight();
info.mActiveBufferStride = buffer->getStride();
info.mActiveBufferFormat = buffer->format;
} else {
info.mActiveBufferWidth = 0;
info.mActiveBufferHeight = 0;
info.mActiveBufferStride = 0;
info.mActiveBufferFormat = 0;
}
}
info.mNumQueuedFrames = getQueuedFrameCount();
info.mRefreshPending = isBufferLatched();
info.mIsOpaque = isOpaque(ds);
info.mContentDirty = contentDirty;
return info;
}
void Layer::miniDumpHeader(String8& result) {
result.append("-------------------------------");
result.append("-------------------------------");
result.append("-----------------------------\n");
result.append(" Layer name\n");
result.append(" Z | ");
result.append(" Comp Type | ");
result.append(" Transform | ");
result.append(" Disp Frame (LTRB) | ");
result.append(" Source Crop (LTRB)\n");
result.append("-------------------------------");
result.append("-------------------------------");
result.append("-----------------------------\n");
}
void Layer::miniDump(String8& result, int32_t displayId) const {
if (getBE().mHwcLayers.count(displayId) == 0) {
return;
}
String8 name;
if (mName.length() > 77) {
std::string shortened;
shortened.append(mName.string(), 36);
shortened.append("[...]");
shortened.append(mName.string() + (mName.length() - 36), 36);
name = shortened.c_str();
} else {
name = mName;
}
result.appendFormat(" %s\n", name.string());
const State& layerState(getDrawingState());
const LayerBE::HWCInfo& hwcInfo = getBE().mHwcLayers.at(displayId);
if (layerState.zOrderRelativeOf != nullptr || mDrawingParent != nullptr) {
result.appendFormat(" rel %6d | ", layerState.z);
} else {
result.appendFormat(" %10d | ", layerState.z);
}
result.appendFormat("%10s | ", to_string(getCompositionType(displayId)).c_str());
result.appendFormat("%10s | ", to_string(hwcInfo.transform).c_str());
const Rect& frame = hwcInfo.displayFrame;
result.appendFormat("%4d %4d %4d %4d | ", frame.left, frame.top, frame.right, frame.bottom);
const FloatRect& crop = hwcInfo.sourceCrop;
result.appendFormat("%6.1f %6.1f %6.1f %6.1f\n", crop.left, crop.top, crop.right, crop.bottom);
result.append("- - - - - - - - - - - - - - - -\n");
std::string compositionInfoStr;
getBE().compositionInfo.dump(compositionInfoStr, "compositionInfo");
result.append(compositionInfoStr.c_str());
result.append("- - - - - - - - - - - - - - - -");
result.append("- - - - - - - - - - - - - - - -");
result.append("- - - - - - - - - - - - - - -\n");
}
void Layer::dumpFrameStats(String8& result) const {
mFrameTracker.dumpStats(result);
}
void Layer::clearFrameStats() {
mFrameTracker.clearStats();
}
void Layer::logFrameStats() {
mFrameTracker.logAndResetStats(mName);
}
void Layer::getFrameStats(FrameStats* outStats) const {
mFrameTracker.getStats(outStats);
}
void Layer::dumpFrameEvents(String8& result) {
result.appendFormat("- Layer %s (%s, %p)\n", getName().string(), getTypeId(), this);
Mutex::Autolock lock(mFrameEventHistoryMutex);
mFrameEventHistory.checkFencesForCompletion();
mFrameEventHistory.dump(result);
}
void Layer::onDisconnect() {
Mutex::Autolock lock(mFrameEventHistoryMutex);
mFrameEventHistory.onDisconnect();
mTimeStats.onDisconnect(getName().c_str());
}
void Layer::addAndGetFrameTimestamps(const NewFrameEventsEntry* newTimestamps,
FrameEventHistoryDelta* outDelta) {
if (newTimestamps) {
mTimeStats.setPostTime(getName().c_str(), newTimestamps->frameNumber,
newTimestamps->postedTime);
}
Mutex::Autolock lock(mFrameEventHistoryMutex);
if (newTimestamps) {
// If there are any unsignaled fences in the aquire timeline at this
// point, the previously queued frame hasn't been latched yet. Go ahead
// and try to get the signal time here so the syscall is taken out of
// the main thread's critical path.
mAcquireTimeline.updateSignalTimes();
// Push the new fence after updating since it's likely still pending.
mAcquireTimeline.push(newTimestamps->acquireFence);
mFrameEventHistory.addQueue(*newTimestamps);
}
if (outDelta) {
mFrameEventHistory.getAndResetDelta(outDelta);
}
}
size_t Layer::getChildrenCount() const {
size_t count = 0;
for (const sp<Layer>& child : mCurrentChildren) {
count += 1 + child->getChildrenCount();
}
return count;
}
void Layer::addChild(const sp<Layer>& layer) {
mCurrentChildren.add(layer);
layer->setParent(this);
}
ssize_t Layer::removeChild(const sp<Layer>& layer) {
layer->setParent(nullptr);
return mCurrentChildren.remove(layer);
}
bool Layer::reparentChildren(const sp<IBinder>& newParentHandle) {
sp<Handle> handle = nullptr;
sp<Layer> newParent = nullptr;
if (newParentHandle == nullptr) {
return false;
}
handle = static_cast<Handle*>(newParentHandle.get());
newParent = handle->owner.promote();
if (newParent == nullptr) {
ALOGE("Unable to promote Layer handle");
return false;
}
for (const sp<Layer>& child : mCurrentChildren) {
newParent->addChild(child);
sp<Client> client(child->mClientRef.promote());
if (client != nullptr) {
client->updateParent(newParent);
}
}
mCurrentChildren.clear();
return true;
}
void Layer::setChildrenDrawingParent(const sp<Layer>& newParent) {
for (const sp<Layer>& child : mDrawingChildren) {
child->mDrawingParent = newParent;
}
}
bool Layer::reparent(const sp<IBinder>& newParentHandle) {
if (newParentHandle == nullptr) {
return false;
}
auto handle = static_cast<Handle*>(newParentHandle.get());
sp<Layer> newParent = handle->owner.promote();
if (newParent == nullptr) {
ALOGE("Unable to promote Layer handle");
return false;
}
sp<Layer> parent = getParent();
if (parent != nullptr) {
parent->removeChild(this);
}
newParent->addChild(this);
sp<Client> client(mClientRef.promote());
sp<Client> newParentClient(newParent->mClientRef.promote());
if (client != newParentClient) {
client->updateParent(newParent);
}
return true;
}
bool Layer::detachChildren() {
for (const sp<Layer>& child : mCurrentChildren) {
sp<Client> parentClient = mClientRef.promote();
sp<Client> client(child->mClientRef.promote());
if (client != nullptr && parentClient != client) {
client->detachLayer(child.get());
child->detachChildren();
}
}
return true;
}
bool Layer::setColorTransform(const mat4& matrix) {
static const mat4 identityMatrix = mat4();
if (mCurrentState.colorTransform == matrix) {
return false;
}
++mCurrentState.sequence;
mCurrentState.colorTransform = matrix;
mCurrentState.hasColorTransform = matrix != identityMatrix;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
const mat4& Layer::getColorTransform() const {
return getDrawingState().colorTransform;
}
bool Layer::hasColorTransform() const {
return getDrawingState().hasColorTransform;
}
bool Layer::isLegacyDataSpace() const {
// return true when no higher bits are set
return !(mCurrentDataSpace & (ui::Dataspace::STANDARD_MASK |
ui::Dataspace::TRANSFER_MASK | ui::Dataspace::RANGE_MASK));
}
void Layer::setParent(const sp<Layer>& layer) {
mCurrentParent = layer;
}
void Layer::clearSyncPoints() {
for (const auto& child : mCurrentChildren) {
child->clearSyncPoints();
}
Mutex::Autolock lock(mLocalSyncPointMutex);
for (auto& point : mLocalSyncPoints) {
point->setFrameAvailable();
}
mLocalSyncPoints.clear();
}
int32_t Layer::getZ() const {
return mDrawingState.z;
}
bool Layer::usingRelativeZ(LayerVector::StateSet stateSet) {
const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
const State& state = useDrawing ? mDrawingState : mCurrentState;
return state.zOrderRelativeOf != nullptr;
}
__attribute__((no_sanitize("unsigned-integer-overflow"))) LayerVector Layer::makeTraversalList(
LayerVector::StateSet stateSet, bool* outSkipRelativeZUsers) {
LOG_ALWAYS_FATAL_IF(stateSet == LayerVector::StateSet::Invalid,
"makeTraversalList received invalid stateSet");
const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
const State& state = useDrawing ? mDrawingState : mCurrentState;
if (state.zOrderRelatives.size() == 0) {
*outSkipRelativeZUsers = true;
return children;
}
LayerVector traverse(stateSet);
for (const wp<Layer>& weakRelative : state.zOrderRelatives) {
sp<Layer> strongRelative = weakRelative.promote();
if (strongRelative != nullptr) {
traverse.add(strongRelative);
}
}
for (const sp<Layer>& child : children) {
const State& childState = useDrawing ? child->mDrawingState : child->mCurrentState;
if (childState.zOrderRelativeOf != nullptr) {
continue;
}
traverse.add(child);
}
return traverse;
}
/**
* Negatively signed relatives are before 'this' in Z-order.
*/
void Layer::traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor) {
// In the case we have other layers who are using a relative Z to us, makeTraversalList will
// produce a new list for traversing, including our relatives, and not including our children
// who are relatives of another surface. In the case that there are no relative Z,
// makeTraversalList returns our children directly to avoid significant overhead.
// However in this case we need to take the responsibility for filtering children which
// are relatives of another surface here.
bool skipRelativeZUsers = false;
const LayerVector list = makeTraversalList(stateSet, &skipRelativeZUsers);
size_t i = 0;
for (; i < list.size(); i++) {
const auto& relative = list[i];
if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
continue;
}
if (relative->getZ() >= 0) {
break;
}
relative->traverseInZOrder(stateSet, visitor);
}
visitor(this);
for (; i < list.size(); i++) {
const auto& relative = list[i];
if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
continue;
}
relative->traverseInZOrder(stateSet, visitor);
}
}
/**
* Positively signed relatives are before 'this' in reverse Z-order.
*/
void Layer::traverseInReverseZOrder(LayerVector::StateSet stateSet,
const LayerVector::Visitor& visitor) {
// See traverseInZOrder for documentation.
bool skipRelativeZUsers = false;
LayerVector list = makeTraversalList(stateSet, &skipRelativeZUsers);
int32_t i = 0;
for (i = int32_t(list.size()) - 1; i >= 0; i--) {
const auto& relative = list[i];
if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
continue;
}
if (relative->getZ() < 0) {
break;
}
relative->traverseInReverseZOrder(stateSet, visitor);
}
visitor(this);
for (; i >= 0; i--) {
const auto& relative = list[i];
if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
continue;
}
relative->traverseInReverseZOrder(stateSet, visitor);
}
}
LayerVector Layer::makeChildrenTraversalList(LayerVector::StateSet stateSet,
const std::vector<Layer*>& layersInTree) {
LOG_ALWAYS_FATAL_IF(stateSet == LayerVector::StateSet::Invalid,
"makeTraversalList received invalid stateSet");
const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
const State& state = useDrawing ? mDrawingState : mCurrentState;
LayerVector traverse(stateSet);
for (const wp<Layer>& weakRelative : state.zOrderRelatives) {
sp<Layer> strongRelative = weakRelative.promote();
// Only add relative layers that are also descendents of the top most parent of the tree.
// If a relative layer is not a descendent, then it should be ignored.
if (std::binary_search(layersInTree.begin(), layersInTree.end(), strongRelative.get())) {
traverse.add(strongRelative);
}
}
for (const sp<Layer>& child : children) {
const State& childState = useDrawing ? child->mDrawingState : child->mCurrentState;
// If a layer has a relativeOf layer, only ignore if the layer it's relative to is a
// descendent of the top most parent of the tree. If it's not a descendent, then just add
// the child here since it won't be added later as a relative.
if (std::binary_search(layersInTree.begin(), layersInTree.end(),
childState.zOrderRelativeOf.promote().get())) {
continue;
}
traverse.add(child);
}
return traverse;
}
void Layer::traverseChildrenInZOrderInner(const std::vector<Layer*>& layersInTree,
LayerVector::StateSet stateSet,
const LayerVector::Visitor& visitor) {
const LayerVector list = makeChildrenTraversalList(stateSet, layersInTree);
size_t i = 0;
for (; i < list.size(); i++) {
const auto& relative = list[i];
if (relative->getZ() >= 0) {
break;
}
relative->traverseChildrenInZOrderInner(layersInTree, stateSet, visitor);
}
visitor(this);
for (; i < list.size(); i++) {
const auto& relative = list[i];
relative->traverseChildrenInZOrderInner(layersInTree, stateSet, visitor);
}
}
std::vector<Layer*> Layer::getLayersInTree(LayerVector::StateSet stateSet) {
const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
std::vector<Layer*> layersInTree = {this};
for (size_t i = 0; i < children.size(); i++) {
const auto& child = children[i];
std::vector<Layer*> childLayers = child->getLayersInTree(stateSet);
layersInTree.insert(layersInTree.end(), childLayers.cbegin(), childLayers.cend());
}
return layersInTree;
}
void Layer::traverseChildrenInZOrder(LayerVector::StateSet stateSet,
const LayerVector::Visitor& visitor) {
std::vector<Layer*> layersInTree = getLayersInTree(stateSet);
std::sort(layersInTree.begin(), layersInTree.end());
traverseChildrenInZOrderInner(layersInTree, stateSet, visitor);
}
ui::Transform Layer::getTransform() const {
ui::Transform t;
const auto& p = mDrawingParent.promote();
if (p != nullptr) {
t = p->getTransform();
// If the parent is not using NATIVE_WINDOW_SCALING_MODE_FREEZE (e.g.
// it isFixedSize) then there may be additional scaling not accounted
// for in the transform. We need to mirror this scaling in child surfaces
// or we will break the contract where WM can treat child surfaces as
// pixels in the parent surface.
if (p->isFixedSize() && p->getBE().compositionInfo.mBuffer != nullptr) {
int bufferWidth;
int bufferHeight;
if ((p->mCurrentTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) == 0) {
bufferWidth = p->getBE().compositionInfo.mBuffer->getWidth();
bufferHeight = p->getBE().compositionInfo.mBuffer->getHeight();
} else {
bufferHeight = p->getBE().compositionInfo.mBuffer->getWidth();
bufferWidth = p->getBE().compositionInfo.mBuffer->getHeight();
}
float sx = p->getActiveWidth(p->getDrawingState()) / static_cast<float>(bufferWidth);
float sy = p->getActiveHeight(p->getDrawingState()) / static_cast<float>(bufferHeight);
ui::Transform extraParentScaling;
extraParentScaling.set(sx, 0, 0, sy);
t = t * extraParentScaling;
}
}
return t * getActiveTransform(getDrawingState());
}
half Layer::getAlpha() const {
const auto& p = mDrawingParent.promote();
half parentAlpha = (p != nullptr) ? p->getAlpha() : 1.0_hf;
return parentAlpha * getDrawingState().color.a;
}
half4 Layer::getColor() const {
const half4 color(getDrawingState().color);
return half4(color.r, color.g, color.b, getAlpha());
}
void Layer::commitChildList() {
for (size_t i = 0; i < mCurrentChildren.size(); i++) {
const auto& child = mCurrentChildren[i];
child->commitChildList();
}
mDrawingChildren = mCurrentChildren;
mDrawingParent = mCurrentParent;
}
void Layer::writeToProto(LayerProto* layerInfo, LayerVector::StateSet stateSet) {
const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
const State& state = useDrawing ? mDrawingState : mCurrentState;
ui::Transform requestedTransform = state.active_legacy.transform;
ui::Transform transform = getTransform();
layerInfo->set_id(sequence);
layerInfo->set_name(getName().c_str());
layerInfo->set_type(String8(getTypeId()));
for (const auto& child : children) {
layerInfo->add_children(child->sequence);
}
for (const wp<Layer>& weakRelative : state.zOrderRelatives) {
sp<Layer> strongRelative = weakRelative.promote();
if (strongRelative != nullptr) {
layerInfo->add_relatives(strongRelative->sequence);
}
}
LayerProtoHelper::writeToProto(state.activeTransparentRegion_legacy,
layerInfo->mutable_transparent_region());
LayerProtoHelper::writeToProto(visibleRegion, layerInfo->mutable_visible_region());
LayerProtoHelper::writeToProto(surfaceDamageRegion, layerInfo->mutable_damage_region());
layerInfo->set_layer_stack(getLayerStack());
layerInfo->set_z(state.z);
PositionProto* position = layerInfo->mutable_position();
position->set_x(transform.tx());
position->set_y(transform.ty());
PositionProto* requestedPosition = layerInfo->mutable_requested_position();
requestedPosition->set_x(requestedTransform.tx());
requestedPosition->set_y(requestedTransform.ty());
SizeProto* size = layerInfo->mutable_size();
size->set_w(state.active_legacy.w);
size->set_h(state.active_legacy.h);
LayerProtoHelper::writeToProto(state.crop_legacy, layerInfo->mutable_crop());
layerInfo->set_is_opaque(isOpaque(state));
layerInfo->set_invalidate(contentDirty);
// XXX (b/79210409) mCurrentDataSpace is not protected
layerInfo->set_dataspace(dataspaceDetails(static_cast<android_dataspace>(mCurrentDataSpace)));
layerInfo->set_pixel_format(decodePixelFormat(getPixelFormat()));
LayerProtoHelper::writeToProto(getColor(), layerInfo->mutable_color());
LayerProtoHelper::writeToProto(state.color, layerInfo->mutable_requested_color());
layerInfo->set_flags(state.flags);
LayerProtoHelper::writeToProto(transform, layerInfo->mutable_transform());
LayerProtoHelper::writeToProto(requestedTransform, layerInfo->mutable_requested_transform());
auto parent = useDrawing ? mDrawingParent.promote() : mCurrentParent.promote();
if (parent != nullptr) {
layerInfo->set_parent(parent->sequence);
}
auto zOrderRelativeOf = state.zOrderRelativeOf.promote();
if (zOrderRelativeOf != nullptr) {
layerInfo->set_z_order_relative_of(zOrderRelativeOf->sequence);
}
// XXX getBE().compositionInfo.mBuffer is not protected
auto buffer = getBE().compositionInfo.mBuffer;
if (buffer != nullptr) {
LayerProtoHelper::writeToProto(buffer, layerInfo->mutable_active_buffer());
LayerProtoHelper::writeToProto(ui::Transform(mCurrentTransform),
layerInfo->mutable_buffer_transform());
}
layerInfo->set_queued_frames(getQueuedFrameCount());
layerInfo->set_refresh_pending(isBufferLatched());
layerInfo->set_window_type(state.type);
layerInfo->set_app_id(state.appId);
layerInfo->set_curr_frame(mCurrentFrameNumber);
for (const auto& pendingState : mPendingStates) {
auto barrierLayer = pendingState.barrierLayer_legacy.promote();
if (barrierLayer != nullptr) {
BarrierLayerProto* barrierLayerProto = layerInfo->add_barrier_layer();
barrierLayerProto->set_id(barrierLayer->sequence);
barrierLayerProto->set_frame_number(pendingState.frameNumber_legacy);
}
}
}
void Layer::writeToProto(LayerProto* layerInfo, int32_t displayId) {
if (!hasHwcLayer(displayId)) {
return;
}
writeToProto(layerInfo, LayerVector::StateSet::Drawing);
const auto& hwcInfo = getBE().mHwcLayers.at(displayId);
const Rect& frame = hwcInfo.displayFrame;
LayerProtoHelper::writeToProto(frame, layerInfo->mutable_hwc_frame());
const FloatRect& crop = hwcInfo.sourceCrop;
LayerProtoHelper::writeToProto(crop, layerInfo->mutable_hwc_crop());
const int32_t transform = static_cast<int32_t>(hwcInfo.transform);
layerInfo->set_hwc_transform(transform);
const int32_t compositionType = static_cast<int32_t>(hwcInfo.compositionType);
layerInfo->set_hwc_composition_type(compositionType);
if (std::strcmp(getTypeId(), "BufferLayer") == 0 &&
static_cast<BufferLayer*>(this)->isProtected()) {
layerInfo->set_is_protected(true);
} else {
layerInfo->set_is_protected(false);
}
}
// ---------------------------------------------------------------------------
}; // namespace android
#if defined(__gl_h_)
#error "don't include gl/gl.h in this file"
#endif
#if defined(__gl2_h_)
#error "don't include gl2/gl2.h in this file"
#endif