| /* |
| * Copyright (C) 2010 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "InputReader" |
| |
| //#define LOG_NDEBUG 0 |
| |
| // Log debug messages for each raw event received from the EventHub. |
| #define DEBUG_RAW_EVENTS 0 |
| |
| // Log debug messages about touch screen filtering hacks. |
| #define DEBUG_HACKS 0 |
| |
| // Log debug messages about virtual key processing. |
| #define DEBUG_VIRTUAL_KEYS 0 |
| |
| // Log debug messages about pointers. |
| #define DEBUG_POINTERS 0 |
| |
| // Log debug messages about pointer assignment calculations. |
| #define DEBUG_POINTER_ASSIGNMENT 0 |
| |
| // Log debug messages about gesture detection. |
| #define DEBUG_GESTURES 0 |
| |
| // Log debug messages about the vibrator. |
| #define DEBUG_VIBRATOR 0 |
| |
| // Log debug messages about fusing stylus data. |
| #define DEBUG_STYLUS_FUSION 0 |
| |
| #include "InputReader.h" |
| |
| #include <errno.h> |
| #include <inttypes.h> |
| #include <limits.h> |
| #include <math.h> |
| #include <stddef.h> |
| #include <stdlib.h> |
| #include <unistd.h> |
| |
| #include <log/log.h> |
| |
| #include <android-base/stringprintf.h> |
| #include <input/Keyboard.h> |
| #include <input/VirtualKeyMap.h> |
| |
| #define INDENT " " |
| #define INDENT2 " " |
| #define INDENT3 " " |
| #define INDENT4 " " |
| #define INDENT5 " " |
| |
| using android::base::StringPrintf; |
| |
| namespace android { |
| |
| // --- Constants --- |
| |
| // Maximum number of slots supported when using the slot-based Multitouch Protocol B. |
| static const size_t MAX_SLOTS = 32; |
| |
| // Maximum amount of latency to add to touch events while waiting for data from an |
| // external stylus. |
| static const nsecs_t EXTERNAL_STYLUS_DATA_TIMEOUT = ms2ns(72); |
| |
| // Maximum amount of time to wait on touch data before pushing out new pressure data. |
| static const nsecs_t TOUCH_DATA_TIMEOUT = ms2ns(20); |
| |
| // Artificial latency on synthetic events created from stylus data without corresponding touch |
| // data. |
| static const nsecs_t STYLUS_DATA_LATENCY = ms2ns(10); |
| |
| // --- Static Functions --- |
| |
| template<typename T> |
| inline static T abs(const T& value) { |
| return value < 0 ? - value : value; |
| } |
| |
| template<typename T> |
| inline static T min(const T& a, const T& b) { |
| return a < b ? a : b; |
| } |
| |
| template<typename T> |
| inline static void swap(T& a, T& b) { |
| T temp = a; |
| a = b; |
| b = temp; |
| } |
| |
| inline static float avg(float x, float y) { |
| return (x + y) / 2; |
| } |
| |
| inline static float distance(float x1, float y1, float x2, float y2) { |
| return hypotf(x1 - x2, y1 - y2); |
| } |
| |
| inline static int32_t signExtendNybble(int32_t value) { |
| return value >= 8 ? value - 16 : value; |
| } |
| |
| static inline const char* toString(bool value) { |
| return value ? "true" : "false"; |
| } |
| |
| static int32_t rotateValueUsingRotationMap(int32_t value, int32_t orientation, |
| const int32_t map[][4], size_t mapSize) { |
| if (orientation != DISPLAY_ORIENTATION_0) { |
| for (size_t i = 0; i < mapSize; i++) { |
| if (value == map[i][0]) { |
| return map[i][orientation]; |
| } |
| } |
| } |
| return value; |
| } |
| |
| static const int32_t keyCodeRotationMap[][4] = { |
| // key codes enumerated counter-clockwise with the original (unrotated) key first |
| // no rotation, 90 degree rotation, 180 degree rotation, 270 degree rotation |
| { AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT }, |
| { AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN }, |
| { AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT }, |
| { AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP }, |
| { AKEYCODE_SYSTEM_NAVIGATION_DOWN, AKEYCODE_SYSTEM_NAVIGATION_RIGHT, |
| AKEYCODE_SYSTEM_NAVIGATION_UP, AKEYCODE_SYSTEM_NAVIGATION_LEFT }, |
| { AKEYCODE_SYSTEM_NAVIGATION_RIGHT, AKEYCODE_SYSTEM_NAVIGATION_UP, |
| AKEYCODE_SYSTEM_NAVIGATION_LEFT, AKEYCODE_SYSTEM_NAVIGATION_DOWN }, |
| { AKEYCODE_SYSTEM_NAVIGATION_UP, AKEYCODE_SYSTEM_NAVIGATION_LEFT, |
| AKEYCODE_SYSTEM_NAVIGATION_DOWN, AKEYCODE_SYSTEM_NAVIGATION_RIGHT }, |
| { AKEYCODE_SYSTEM_NAVIGATION_LEFT, AKEYCODE_SYSTEM_NAVIGATION_DOWN, |
| AKEYCODE_SYSTEM_NAVIGATION_RIGHT, AKEYCODE_SYSTEM_NAVIGATION_UP }, |
| }; |
| static const size_t keyCodeRotationMapSize = |
| sizeof(keyCodeRotationMap) / sizeof(keyCodeRotationMap[0]); |
| |
| static int32_t rotateStemKey(int32_t value, int32_t orientation, |
| const int32_t map[][2], size_t mapSize) { |
| if (orientation == DISPLAY_ORIENTATION_180) { |
| for (size_t i = 0; i < mapSize; i++) { |
| if (value == map[i][0]) { |
| return map[i][1]; |
| } |
| } |
| } |
| return value; |
| } |
| |
| // The mapping can be defined using input device configuration properties keyboard.rotated.stem_X |
| static int32_t stemKeyRotationMap[][2] = { |
| // key codes enumerated with the original (unrotated) key first |
| // no rotation, 180 degree rotation |
| { AKEYCODE_STEM_PRIMARY, AKEYCODE_STEM_PRIMARY }, |
| { AKEYCODE_STEM_1, AKEYCODE_STEM_1 }, |
| { AKEYCODE_STEM_2, AKEYCODE_STEM_2 }, |
| { AKEYCODE_STEM_3, AKEYCODE_STEM_3 }, |
| }; |
| static const size_t stemKeyRotationMapSize = |
| sizeof(stemKeyRotationMap) / sizeof(stemKeyRotationMap[0]); |
| |
| static int32_t rotateKeyCode(int32_t keyCode, int32_t orientation) { |
| keyCode = rotateStemKey(keyCode, orientation, |
| stemKeyRotationMap, stemKeyRotationMapSize); |
| return rotateValueUsingRotationMap(keyCode, orientation, |
| keyCodeRotationMap, keyCodeRotationMapSize); |
| } |
| |
| static void rotateDelta(int32_t orientation, float* deltaX, float* deltaY) { |
| float temp; |
| switch (orientation) { |
| case DISPLAY_ORIENTATION_90: |
| temp = *deltaX; |
| *deltaX = *deltaY; |
| *deltaY = -temp; |
| break; |
| |
| case DISPLAY_ORIENTATION_180: |
| *deltaX = -*deltaX; |
| *deltaY = -*deltaY; |
| break; |
| |
| case DISPLAY_ORIENTATION_270: |
| temp = *deltaX; |
| *deltaX = -*deltaY; |
| *deltaY = temp; |
| break; |
| } |
| } |
| |
| static inline bool sourcesMatchMask(uint32_t sources, uint32_t sourceMask) { |
| return (sources & sourceMask & ~ AINPUT_SOURCE_CLASS_MASK) != 0; |
| } |
| |
| // Returns true if the pointer should be reported as being down given the specified |
| // button states. This determines whether the event is reported as a touch event. |
| static bool isPointerDown(int32_t buttonState) { |
| return buttonState & |
| (AMOTION_EVENT_BUTTON_PRIMARY | AMOTION_EVENT_BUTTON_SECONDARY |
| | AMOTION_EVENT_BUTTON_TERTIARY); |
| } |
| |
| static float calculateCommonVector(float a, float b) { |
| if (a > 0 && b > 0) { |
| return a < b ? a : b; |
| } else if (a < 0 && b < 0) { |
| return a > b ? a : b; |
| } else { |
| return 0; |
| } |
| } |
| |
| static void synthesizeButtonKey(InputReaderContext* context, int32_t action, |
| nsecs_t when, int32_t deviceId, uint32_t source, |
| uint32_t policyFlags, int32_t lastButtonState, int32_t currentButtonState, |
| int32_t buttonState, int32_t keyCode) { |
| if ( |
| (action == AKEY_EVENT_ACTION_DOWN |
| && !(lastButtonState & buttonState) |
| && (currentButtonState & buttonState)) |
| || (action == AKEY_EVENT_ACTION_UP |
| && (lastButtonState & buttonState) |
| && !(currentButtonState & buttonState))) { |
| NotifyKeyArgs args(when, deviceId, source, policyFlags, |
| action, 0, keyCode, 0, context->getGlobalMetaState(), when); |
| context->getListener()->notifyKey(&args); |
| } |
| } |
| |
| static void synthesizeButtonKeys(InputReaderContext* context, int32_t action, |
| nsecs_t when, int32_t deviceId, uint32_t source, |
| uint32_t policyFlags, int32_t lastButtonState, int32_t currentButtonState) { |
| synthesizeButtonKey(context, action, when, deviceId, source, policyFlags, |
| lastButtonState, currentButtonState, |
| AMOTION_EVENT_BUTTON_BACK, AKEYCODE_BACK); |
| synthesizeButtonKey(context, action, when, deviceId, source, policyFlags, |
| lastButtonState, currentButtonState, |
| AMOTION_EVENT_BUTTON_FORWARD, AKEYCODE_FORWARD); |
| } |
| |
| |
| // --- InputReaderConfiguration --- |
| |
| bool InputReaderConfiguration::getDisplayViewport(ViewportType viewportType, |
| const String8* uniqueDisplayId, DisplayViewport* outViewport) const { |
| const DisplayViewport* viewport = NULL; |
| if (viewportType == ViewportType::VIEWPORT_VIRTUAL && uniqueDisplayId != NULL) { |
| for (const DisplayViewport& currentViewport : mVirtualDisplays) { |
| if (currentViewport.uniqueId == *uniqueDisplayId) { |
| viewport = ¤tViewport; |
| break; |
| } |
| } |
| } else if (viewportType == ViewportType::VIEWPORT_EXTERNAL) { |
| viewport = &mExternalDisplay; |
| } else if (viewportType == ViewportType::VIEWPORT_INTERNAL) { |
| viewport = &mInternalDisplay; |
| } |
| |
| if (viewport != NULL && viewport->displayId >= 0) { |
| *outViewport = *viewport; |
| return true; |
| } |
| return false; |
| } |
| |
| void InputReaderConfiguration::setPhysicalDisplayViewport(ViewportType viewportType, |
| const DisplayViewport& viewport) { |
| if (viewportType == ViewportType::VIEWPORT_EXTERNAL) { |
| mExternalDisplay = viewport; |
| } else if (viewportType == ViewportType::VIEWPORT_INTERNAL) { |
| mInternalDisplay = viewport; |
| } |
| } |
| |
| void InputReaderConfiguration::setVirtualDisplayViewports( |
| const Vector<DisplayViewport>& viewports) { |
| mVirtualDisplays = viewports; |
| } |
| |
| void InputReaderConfiguration::dump(std::string& dump) const { |
| dump += INDENT4 "ViewportInternal:\n"; |
| dumpViewport(dump, mInternalDisplay); |
| dump += INDENT4 "ViewportExternal:\n"; |
| dumpViewport(dump, mExternalDisplay); |
| dump += INDENT4 "ViewportVirtual:\n"; |
| for (const DisplayViewport& viewport : mVirtualDisplays) { |
| dumpViewport(dump, viewport); |
| } |
| } |
| |
| void InputReaderConfiguration::dumpViewport(std::string& dump, const DisplayViewport& viewport) const { |
| dump += StringPrintf(INDENT5 "Viewport: displayId=%d, orientation=%d, uniqueId='%s', " |
| "logicalFrame=[%d, %d, %d, %d], " |
| "physicalFrame=[%d, %d, %d, %d], " |
| "deviceSize=[%d, %d]\n", |
| viewport.displayId, viewport.orientation, viewport.uniqueId.c_str(), |
| viewport.logicalLeft, viewport.logicalTop, |
| viewport.logicalRight, viewport.logicalBottom, |
| viewport.physicalLeft, viewport.physicalTop, |
| viewport.physicalRight, viewport.physicalBottom, |
| viewport.deviceWidth, viewport.deviceHeight); |
| } |
| |
| |
| // -- TouchAffineTransformation -- |
| void TouchAffineTransformation::applyTo(float& x, float& y) const { |
| float newX, newY; |
| newX = x * x_scale + y * x_ymix + x_offset; |
| newY = x * y_xmix + y * y_scale + y_offset; |
| |
| x = newX; |
| y = newY; |
| } |
| |
| |
| // --- InputReader --- |
| |
| InputReader::InputReader(const sp<EventHubInterface>& eventHub, |
| const sp<InputReaderPolicyInterface>& policy, |
| const sp<InputListenerInterface>& listener) : |
| mContext(this), mEventHub(eventHub), mPolicy(policy), |
| mGlobalMetaState(0), mGeneration(1), |
| mDisableVirtualKeysTimeout(LLONG_MIN), mNextTimeout(LLONG_MAX), |
| mConfigurationChangesToRefresh(0) { |
| mQueuedListener = new QueuedInputListener(listener); |
| |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| refreshConfigurationLocked(0); |
| updateGlobalMetaStateLocked(); |
| } // release lock |
| } |
| |
| InputReader::~InputReader() { |
| for (size_t i = 0; i < mDevices.size(); i++) { |
| delete mDevices.valueAt(i); |
| } |
| } |
| |
| void InputReader::loopOnce() { |
| int32_t oldGeneration; |
| int32_t timeoutMillis; |
| bool inputDevicesChanged = false; |
| Vector<InputDeviceInfo> inputDevices; |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| oldGeneration = mGeneration; |
| timeoutMillis = -1; |
| |
| uint32_t changes = mConfigurationChangesToRefresh; |
| if (changes) { |
| mConfigurationChangesToRefresh = 0; |
| timeoutMillis = 0; |
| refreshConfigurationLocked(changes); |
| } else if (mNextTimeout != LLONG_MAX) { |
| nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); |
| timeoutMillis = toMillisecondTimeoutDelay(now, mNextTimeout); |
| } |
| } // release lock |
| |
| size_t count = mEventHub->getEvents(timeoutMillis, mEventBuffer, EVENT_BUFFER_SIZE); |
| |
| { // acquire lock |
| AutoMutex _l(mLock); |
| mReaderIsAliveCondition.broadcast(); |
| |
| if (count) { |
| processEventsLocked(mEventBuffer, count); |
| } |
| |
| if (mNextTimeout != LLONG_MAX) { |
| nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); |
| if (now >= mNextTimeout) { |
| #if DEBUG_RAW_EVENTS |
| ALOGD("Timeout expired, latency=%0.3fms", (now - mNextTimeout) * 0.000001f); |
| #endif |
| mNextTimeout = LLONG_MAX; |
| timeoutExpiredLocked(now); |
| } |
| } |
| |
| if (oldGeneration != mGeneration) { |
| inputDevicesChanged = true; |
| getInputDevicesLocked(inputDevices); |
| } |
| } // release lock |
| |
| // Send out a message that the describes the changed input devices. |
| if (inputDevicesChanged) { |
| mPolicy->notifyInputDevicesChanged(inputDevices); |
| } |
| |
| // Flush queued events out to the listener. |
| // This must happen outside of the lock because the listener could potentially call |
| // back into the InputReader's methods, such as getScanCodeState, or become blocked |
| // on another thread similarly waiting to acquire the InputReader lock thereby |
| // resulting in a deadlock. This situation is actually quite plausible because the |
| // listener is actually the input dispatcher, which calls into the window manager, |
| // which occasionally calls into the input reader. |
| mQueuedListener->flush(); |
| } |
| |
| void InputReader::processEventsLocked(const RawEvent* rawEvents, size_t count) { |
| for (const RawEvent* rawEvent = rawEvents; count;) { |
| int32_t type = rawEvent->type; |
| size_t batchSize = 1; |
| if (type < EventHubInterface::FIRST_SYNTHETIC_EVENT) { |
| int32_t deviceId = rawEvent->deviceId; |
| while (batchSize < count) { |
| if (rawEvent[batchSize].type >= EventHubInterface::FIRST_SYNTHETIC_EVENT |
| || rawEvent[batchSize].deviceId != deviceId) { |
| break; |
| } |
| batchSize += 1; |
| } |
| #if DEBUG_RAW_EVENTS |
| ALOGD("BatchSize: %zu Count: %zu", batchSize, count); |
| #endif |
| processEventsForDeviceLocked(deviceId, rawEvent, batchSize); |
| } else { |
| switch (rawEvent->type) { |
| case EventHubInterface::DEVICE_ADDED: |
| addDeviceLocked(rawEvent->when, rawEvent->deviceId); |
| break; |
| case EventHubInterface::DEVICE_REMOVED: |
| removeDeviceLocked(rawEvent->when, rawEvent->deviceId); |
| break; |
| case EventHubInterface::FINISHED_DEVICE_SCAN: |
| handleConfigurationChangedLocked(rawEvent->when); |
| break; |
| default: |
| ALOG_ASSERT(false); // can't happen |
| break; |
| } |
| } |
| count -= batchSize; |
| rawEvent += batchSize; |
| } |
| } |
| |
| void InputReader::addDeviceLocked(nsecs_t when, int32_t deviceId) { |
| ssize_t deviceIndex = mDevices.indexOfKey(deviceId); |
| if (deviceIndex >= 0) { |
| ALOGW("Ignoring spurious device added event for deviceId %d.", deviceId); |
| return; |
| } |
| |
| InputDeviceIdentifier identifier = mEventHub->getDeviceIdentifier(deviceId); |
| uint32_t classes = mEventHub->getDeviceClasses(deviceId); |
| int32_t controllerNumber = mEventHub->getDeviceControllerNumber(deviceId); |
| |
| InputDevice* device = createDeviceLocked(deviceId, controllerNumber, identifier, classes); |
| device->configure(when, &mConfig, 0); |
| device->reset(when); |
| |
| if (device->isIgnored()) { |
| ALOGI("Device added: id=%d, name='%s' (ignored non-input device)", deviceId, |
| identifier.name.string()); |
| } else { |
| ALOGI("Device added: id=%d, name='%s', sources=0x%08x", deviceId, |
| identifier.name.string(), device->getSources()); |
| } |
| |
| mDevices.add(deviceId, device); |
| bumpGenerationLocked(); |
| |
| if (device->getClasses() & INPUT_DEVICE_CLASS_EXTERNAL_STYLUS) { |
| notifyExternalStylusPresenceChanged(); |
| } |
| } |
| |
| void InputReader::removeDeviceLocked(nsecs_t when, int32_t deviceId) { |
| InputDevice* device = NULL; |
| ssize_t deviceIndex = mDevices.indexOfKey(deviceId); |
| if (deviceIndex < 0) { |
| ALOGW("Ignoring spurious device removed event for deviceId %d.", deviceId); |
| return; |
| } |
| |
| device = mDevices.valueAt(deviceIndex); |
| mDevices.removeItemsAt(deviceIndex, 1); |
| bumpGenerationLocked(); |
| |
| if (device->isIgnored()) { |
| ALOGI("Device removed: id=%d, name='%s' (ignored non-input device)", |
| device->getId(), device->getName().string()); |
| } else { |
| ALOGI("Device removed: id=%d, name='%s', sources=0x%08x", |
| device->getId(), device->getName().string(), device->getSources()); |
| } |
| |
| if (device->getClasses() & INPUT_DEVICE_CLASS_EXTERNAL_STYLUS) { |
| notifyExternalStylusPresenceChanged(); |
| } |
| |
| device->reset(when); |
| delete device; |
| } |
| |
| InputDevice* InputReader::createDeviceLocked(int32_t deviceId, int32_t controllerNumber, |
| const InputDeviceIdentifier& identifier, uint32_t classes) { |
| InputDevice* device = new InputDevice(&mContext, deviceId, bumpGenerationLocked(), |
| controllerNumber, identifier, classes); |
| |
| // External devices. |
| if (classes & INPUT_DEVICE_CLASS_EXTERNAL) { |
| device->setExternal(true); |
| } |
| |
| // Devices with mics. |
| if (classes & INPUT_DEVICE_CLASS_MIC) { |
| device->setMic(true); |
| } |
| |
| // Switch-like devices. |
| if (classes & INPUT_DEVICE_CLASS_SWITCH) { |
| device->addMapper(new SwitchInputMapper(device)); |
| } |
| |
| // Scroll wheel-like devices. |
| if (classes & INPUT_DEVICE_CLASS_ROTARY_ENCODER) { |
| device->addMapper(new RotaryEncoderInputMapper(device)); |
| } |
| |
| // Vibrator-like devices. |
| if (classes & INPUT_DEVICE_CLASS_VIBRATOR) { |
| device->addMapper(new VibratorInputMapper(device)); |
| } |
| |
| // Keyboard-like devices. |
| uint32_t keyboardSource = 0; |
| int32_t keyboardType = AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC; |
| if (classes & INPUT_DEVICE_CLASS_KEYBOARD) { |
| keyboardSource |= AINPUT_SOURCE_KEYBOARD; |
| } |
| if (classes & INPUT_DEVICE_CLASS_ALPHAKEY) { |
| keyboardType = AINPUT_KEYBOARD_TYPE_ALPHABETIC; |
| } |
| if (classes & INPUT_DEVICE_CLASS_DPAD) { |
| keyboardSource |= AINPUT_SOURCE_DPAD; |
| } |
| if (classes & INPUT_DEVICE_CLASS_GAMEPAD) { |
| keyboardSource |= AINPUT_SOURCE_GAMEPAD; |
| } |
| |
| if (keyboardSource != 0) { |
| device->addMapper(new KeyboardInputMapper(device, keyboardSource, keyboardType)); |
| } |
| |
| // Cursor-like devices. |
| if (classes & INPUT_DEVICE_CLASS_CURSOR) { |
| device->addMapper(new CursorInputMapper(device)); |
| } |
| |
| // Touchscreens and touchpad devices. |
| if (classes & INPUT_DEVICE_CLASS_TOUCH_MT) { |
| device->addMapper(new MultiTouchInputMapper(device)); |
| } else if (classes & INPUT_DEVICE_CLASS_TOUCH) { |
| device->addMapper(new SingleTouchInputMapper(device)); |
| } |
| |
| // Joystick-like devices. |
| if (classes & INPUT_DEVICE_CLASS_JOYSTICK) { |
| device->addMapper(new JoystickInputMapper(device)); |
| } |
| |
| // External stylus-like devices. |
| if (classes & INPUT_DEVICE_CLASS_EXTERNAL_STYLUS) { |
| device->addMapper(new ExternalStylusInputMapper(device)); |
| } |
| |
| return device; |
| } |
| |
| void InputReader::processEventsForDeviceLocked(int32_t deviceId, |
| const RawEvent* rawEvents, size_t count) { |
| ssize_t deviceIndex = mDevices.indexOfKey(deviceId); |
| if (deviceIndex < 0) { |
| ALOGW("Discarding event for unknown deviceId %d.", deviceId); |
| return; |
| } |
| |
| InputDevice* device = mDevices.valueAt(deviceIndex); |
| if (device->isIgnored()) { |
| //ALOGD("Discarding event for ignored deviceId %d.", deviceId); |
| return; |
| } |
| |
| device->process(rawEvents, count); |
| } |
| |
| void InputReader::timeoutExpiredLocked(nsecs_t when) { |
| for (size_t i = 0; i < mDevices.size(); i++) { |
| InputDevice* device = mDevices.valueAt(i); |
| if (!device->isIgnored()) { |
| device->timeoutExpired(when); |
| } |
| } |
| } |
| |
| void InputReader::handleConfigurationChangedLocked(nsecs_t when) { |
| // Reset global meta state because it depends on the list of all configured devices. |
| updateGlobalMetaStateLocked(); |
| |
| // Enqueue configuration changed. |
| NotifyConfigurationChangedArgs args(when); |
| mQueuedListener->notifyConfigurationChanged(&args); |
| } |
| |
| void InputReader::refreshConfigurationLocked(uint32_t changes) { |
| mPolicy->getReaderConfiguration(&mConfig); |
| mEventHub->setExcludedDevices(mConfig.excludedDeviceNames); |
| |
| if (changes) { |
| ALOGI("Reconfiguring input devices. changes=0x%08x", changes); |
| nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); |
| |
| if (changes & InputReaderConfiguration::CHANGE_MUST_REOPEN) { |
| mEventHub->requestReopenDevices(); |
| } else { |
| for (size_t i = 0; i < mDevices.size(); i++) { |
| InputDevice* device = mDevices.valueAt(i); |
| device->configure(now, &mConfig, changes); |
| } |
| } |
| } |
| } |
| |
| void InputReader::updateGlobalMetaStateLocked() { |
| mGlobalMetaState = 0; |
| |
| for (size_t i = 0; i < mDevices.size(); i++) { |
| InputDevice* device = mDevices.valueAt(i); |
| mGlobalMetaState |= device->getMetaState(); |
| } |
| } |
| |
| int32_t InputReader::getGlobalMetaStateLocked() { |
| return mGlobalMetaState; |
| } |
| |
| void InputReader::notifyExternalStylusPresenceChanged() { |
| refreshConfigurationLocked(InputReaderConfiguration::CHANGE_EXTERNAL_STYLUS_PRESENCE); |
| } |
| |
| void InputReader::getExternalStylusDevicesLocked(Vector<InputDeviceInfo>& outDevices) { |
| for (size_t i = 0; i < mDevices.size(); i++) { |
| InputDevice* device = mDevices.valueAt(i); |
| if (device->getClasses() & INPUT_DEVICE_CLASS_EXTERNAL_STYLUS && !device->isIgnored()) { |
| outDevices.push(); |
| device->getDeviceInfo(&outDevices.editTop()); |
| } |
| } |
| } |
| |
| void InputReader::dispatchExternalStylusState(const StylusState& state) { |
| for (size_t i = 0; i < mDevices.size(); i++) { |
| InputDevice* device = mDevices.valueAt(i); |
| device->updateExternalStylusState(state); |
| } |
| } |
| |
| void InputReader::disableVirtualKeysUntilLocked(nsecs_t time) { |
| mDisableVirtualKeysTimeout = time; |
| } |
| |
| bool InputReader::shouldDropVirtualKeyLocked(nsecs_t now, |
| InputDevice* device, int32_t keyCode, int32_t scanCode) { |
| if (now < mDisableVirtualKeysTimeout) { |
| ALOGI("Dropping virtual key from device %s because virtual keys are " |
| "temporarily disabled for the next %0.3fms. keyCode=%d, scanCode=%d", |
| device->getName().string(), |
| (mDisableVirtualKeysTimeout - now) * 0.000001, |
| keyCode, scanCode); |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| void InputReader::fadePointerLocked() { |
| for (size_t i = 0; i < mDevices.size(); i++) { |
| InputDevice* device = mDevices.valueAt(i); |
| device->fadePointer(); |
| } |
| } |
| |
| void InputReader::requestTimeoutAtTimeLocked(nsecs_t when) { |
| if (when < mNextTimeout) { |
| mNextTimeout = when; |
| mEventHub->wake(); |
| } |
| } |
| |
| int32_t InputReader::bumpGenerationLocked() { |
| return ++mGeneration; |
| } |
| |
| void InputReader::getInputDevices(Vector<InputDeviceInfo>& outInputDevices) { |
| AutoMutex _l(mLock); |
| getInputDevicesLocked(outInputDevices); |
| } |
| |
| void InputReader::getInputDevicesLocked(Vector<InputDeviceInfo>& outInputDevices) { |
| outInputDevices.clear(); |
| |
| size_t numDevices = mDevices.size(); |
| for (size_t i = 0; i < numDevices; i++) { |
| InputDevice* device = mDevices.valueAt(i); |
| if (!device->isIgnored()) { |
| outInputDevices.push(); |
| device->getDeviceInfo(&outInputDevices.editTop()); |
| } |
| } |
| } |
| |
| int32_t InputReader::getKeyCodeState(int32_t deviceId, uint32_t sourceMask, |
| int32_t keyCode) { |
| AutoMutex _l(mLock); |
| |
| return getStateLocked(deviceId, sourceMask, keyCode, &InputDevice::getKeyCodeState); |
| } |
| |
| int32_t InputReader::getScanCodeState(int32_t deviceId, uint32_t sourceMask, |
| int32_t scanCode) { |
| AutoMutex _l(mLock); |
| |
| return getStateLocked(deviceId, sourceMask, scanCode, &InputDevice::getScanCodeState); |
| } |
| |
| int32_t InputReader::getSwitchState(int32_t deviceId, uint32_t sourceMask, int32_t switchCode) { |
| AutoMutex _l(mLock); |
| |
| return getStateLocked(deviceId, sourceMask, switchCode, &InputDevice::getSwitchState); |
| } |
| |
| int32_t InputReader::getStateLocked(int32_t deviceId, uint32_t sourceMask, int32_t code, |
| GetStateFunc getStateFunc) { |
| int32_t result = AKEY_STATE_UNKNOWN; |
| if (deviceId >= 0) { |
| ssize_t deviceIndex = mDevices.indexOfKey(deviceId); |
| if (deviceIndex >= 0) { |
| InputDevice* device = mDevices.valueAt(deviceIndex); |
| if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) { |
| result = (device->*getStateFunc)(sourceMask, code); |
| } |
| } |
| } else { |
| size_t numDevices = mDevices.size(); |
| for (size_t i = 0; i < numDevices; i++) { |
| InputDevice* device = mDevices.valueAt(i); |
| if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) { |
| // If any device reports AKEY_STATE_DOWN or AKEY_STATE_VIRTUAL, return that |
| // value. Otherwise, return AKEY_STATE_UP as long as one device reports it. |
| int32_t currentResult = (device->*getStateFunc)(sourceMask, code); |
| if (currentResult >= AKEY_STATE_DOWN) { |
| return currentResult; |
| } else if (currentResult == AKEY_STATE_UP) { |
| result = currentResult; |
| } |
| } |
| } |
| } |
| return result; |
| } |
| |
| void InputReader::toggleCapsLockState(int32_t deviceId) { |
| ssize_t deviceIndex = mDevices.indexOfKey(deviceId); |
| if (deviceIndex < 0) { |
| ALOGW("Ignoring toggleCapsLock for unknown deviceId %" PRId32 ".", deviceId); |
| return; |
| } |
| |
| InputDevice* device = mDevices.valueAt(deviceIndex); |
| if (device->isIgnored()) { |
| return; |
| } |
| |
| device->updateMetaState(AKEYCODE_CAPS_LOCK); |
| } |
| |
| bool InputReader::hasKeys(int32_t deviceId, uint32_t sourceMask, |
| size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) { |
| AutoMutex _l(mLock); |
| |
| memset(outFlags, 0, numCodes); |
| return markSupportedKeyCodesLocked(deviceId, sourceMask, numCodes, keyCodes, outFlags); |
| } |
| |
| bool InputReader::markSupportedKeyCodesLocked(int32_t deviceId, uint32_t sourceMask, |
| size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) { |
| bool result = false; |
| if (deviceId >= 0) { |
| ssize_t deviceIndex = mDevices.indexOfKey(deviceId); |
| if (deviceIndex >= 0) { |
| InputDevice* device = mDevices.valueAt(deviceIndex); |
| if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) { |
| result = device->markSupportedKeyCodes(sourceMask, |
| numCodes, keyCodes, outFlags); |
| } |
| } |
| } else { |
| size_t numDevices = mDevices.size(); |
| for (size_t i = 0; i < numDevices; i++) { |
| InputDevice* device = mDevices.valueAt(i); |
| if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) { |
| result |= device->markSupportedKeyCodes(sourceMask, |
| numCodes, keyCodes, outFlags); |
| } |
| } |
| } |
| return result; |
| } |
| |
| void InputReader::requestRefreshConfiguration(uint32_t changes) { |
| AutoMutex _l(mLock); |
| |
| if (changes) { |
| bool needWake = !mConfigurationChangesToRefresh; |
| mConfigurationChangesToRefresh |= changes; |
| |
| if (needWake) { |
| mEventHub->wake(); |
| } |
| } |
| } |
| |
| void InputReader::vibrate(int32_t deviceId, const nsecs_t* pattern, size_t patternSize, |
| ssize_t repeat, int32_t token) { |
| AutoMutex _l(mLock); |
| |
| ssize_t deviceIndex = mDevices.indexOfKey(deviceId); |
| if (deviceIndex >= 0) { |
| InputDevice* device = mDevices.valueAt(deviceIndex); |
| device->vibrate(pattern, patternSize, repeat, token); |
| } |
| } |
| |
| void InputReader::cancelVibrate(int32_t deviceId, int32_t token) { |
| AutoMutex _l(mLock); |
| |
| ssize_t deviceIndex = mDevices.indexOfKey(deviceId); |
| if (deviceIndex >= 0) { |
| InputDevice* device = mDevices.valueAt(deviceIndex); |
| device->cancelVibrate(token); |
| } |
| } |
| |
| bool InputReader::isInputDeviceEnabled(int32_t deviceId) { |
| AutoMutex _l(mLock); |
| |
| ssize_t deviceIndex = mDevices.indexOfKey(deviceId); |
| if (deviceIndex >= 0) { |
| InputDevice* device = mDevices.valueAt(deviceIndex); |
| return device->isEnabled(); |
| } |
| ALOGW("Ignoring invalid device id %" PRId32 ".", deviceId); |
| return false; |
| } |
| |
| void InputReader::dump(std::string& dump) { |
| AutoMutex _l(mLock); |
| |
| mEventHub->dump(dump); |
| dump += "\n"; |
| |
| dump += "Input Reader State:\n"; |
| |
| for (size_t i = 0; i < mDevices.size(); i++) { |
| mDevices.valueAt(i)->dump(dump); |
| } |
| |
| dump += INDENT "Configuration:\n"; |
| dump += INDENT2 "ExcludedDeviceNames: ["; |
| for (size_t i = 0; i < mConfig.excludedDeviceNames.size(); i++) { |
| if (i != 0) { |
| dump += ", "; |
| } |
| dump += mConfig.excludedDeviceNames.itemAt(i).string(); |
| } |
| dump += "]\n"; |
| dump += StringPrintf(INDENT2 "VirtualKeyQuietTime: %0.1fms\n", |
| mConfig.virtualKeyQuietTime * 0.000001f); |
| |
| dump += StringPrintf(INDENT2 "PointerVelocityControlParameters: " |
| "scale=%0.3f, lowThreshold=%0.3f, highThreshold=%0.3f, acceleration=%0.3f\n", |
| mConfig.pointerVelocityControlParameters.scale, |
| mConfig.pointerVelocityControlParameters.lowThreshold, |
| mConfig.pointerVelocityControlParameters.highThreshold, |
| mConfig.pointerVelocityControlParameters.acceleration); |
| |
| dump += StringPrintf(INDENT2 "WheelVelocityControlParameters: " |
| "scale=%0.3f, lowThreshold=%0.3f, highThreshold=%0.3f, acceleration=%0.3f\n", |
| mConfig.wheelVelocityControlParameters.scale, |
| mConfig.wheelVelocityControlParameters.lowThreshold, |
| mConfig.wheelVelocityControlParameters.highThreshold, |
| mConfig.wheelVelocityControlParameters.acceleration); |
| |
| dump += StringPrintf(INDENT2 "PointerGesture:\n"); |
| dump += StringPrintf(INDENT3 "Enabled: %s\n", |
| toString(mConfig.pointerGesturesEnabled)); |
| dump += StringPrintf(INDENT3 "QuietInterval: %0.1fms\n", |
| mConfig.pointerGestureQuietInterval * 0.000001f); |
| dump += StringPrintf(INDENT3 "DragMinSwitchSpeed: %0.1fpx/s\n", |
| mConfig.pointerGestureDragMinSwitchSpeed); |
| dump += StringPrintf(INDENT3 "TapInterval: %0.1fms\n", |
| mConfig.pointerGestureTapInterval * 0.000001f); |
| dump += StringPrintf(INDENT3 "TapDragInterval: %0.1fms\n", |
| mConfig.pointerGestureTapDragInterval * 0.000001f); |
| dump += StringPrintf(INDENT3 "TapSlop: %0.1fpx\n", |
| mConfig.pointerGestureTapSlop); |
| dump += StringPrintf(INDENT3 "MultitouchSettleInterval: %0.1fms\n", |
| mConfig.pointerGestureMultitouchSettleInterval * 0.000001f); |
| dump += StringPrintf(INDENT3 "MultitouchMinDistance: %0.1fpx\n", |
| mConfig.pointerGestureMultitouchMinDistance); |
| dump += StringPrintf(INDENT3 "SwipeTransitionAngleCosine: %0.1f\n", |
| mConfig.pointerGestureSwipeTransitionAngleCosine); |
| dump += StringPrintf(INDENT3 "SwipeMaxWidthRatio: %0.1f\n", |
| mConfig.pointerGestureSwipeMaxWidthRatio); |
| dump += StringPrintf(INDENT3 "MovementSpeedRatio: %0.1f\n", |
| mConfig.pointerGestureMovementSpeedRatio); |
| dump += StringPrintf(INDENT3 "ZoomSpeedRatio: %0.1f\n", |
| mConfig.pointerGestureZoomSpeedRatio); |
| |
| dump += INDENT3 "Viewports:\n"; |
| mConfig.dump(dump); |
| } |
| |
| void InputReader::monitor() { |
| // Acquire and release the lock to ensure that the reader has not deadlocked. |
| mLock.lock(); |
| mEventHub->wake(); |
| mReaderIsAliveCondition.wait(mLock); |
| mLock.unlock(); |
| |
| // Check the EventHub |
| mEventHub->monitor(); |
| } |
| |
| |
| // --- InputReader::ContextImpl --- |
| |
| InputReader::ContextImpl::ContextImpl(InputReader* reader) : |
| mReader(reader) { |
| } |
| |
| void InputReader::ContextImpl::updateGlobalMetaState() { |
| // lock is already held by the input loop |
| mReader->updateGlobalMetaStateLocked(); |
| } |
| |
| int32_t InputReader::ContextImpl::getGlobalMetaState() { |
| // lock is already held by the input loop |
| return mReader->getGlobalMetaStateLocked(); |
| } |
| |
| void InputReader::ContextImpl::disableVirtualKeysUntil(nsecs_t time) { |
| // lock is already held by the input loop |
| mReader->disableVirtualKeysUntilLocked(time); |
| } |
| |
| bool InputReader::ContextImpl::shouldDropVirtualKey(nsecs_t now, |
| InputDevice* device, int32_t keyCode, int32_t scanCode) { |
| // lock is already held by the input loop |
| return mReader->shouldDropVirtualKeyLocked(now, device, keyCode, scanCode); |
| } |
| |
| void InputReader::ContextImpl::fadePointer() { |
| // lock is already held by the input loop |
| mReader->fadePointerLocked(); |
| } |
| |
| void InputReader::ContextImpl::requestTimeoutAtTime(nsecs_t when) { |
| // lock is already held by the input loop |
| mReader->requestTimeoutAtTimeLocked(when); |
| } |
| |
| int32_t InputReader::ContextImpl::bumpGeneration() { |
| // lock is already held by the input loop |
| return mReader->bumpGenerationLocked(); |
| } |
| |
| void InputReader::ContextImpl::getExternalStylusDevices(Vector<InputDeviceInfo>& outDevices) { |
| // lock is already held by whatever called refreshConfigurationLocked |
| mReader->getExternalStylusDevicesLocked(outDevices); |
| } |
| |
| void InputReader::ContextImpl::dispatchExternalStylusState(const StylusState& state) { |
| mReader->dispatchExternalStylusState(state); |
| } |
| |
| InputReaderPolicyInterface* InputReader::ContextImpl::getPolicy() { |
| return mReader->mPolicy.get(); |
| } |
| |
| InputListenerInterface* InputReader::ContextImpl::getListener() { |
| return mReader->mQueuedListener.get(); |
| } |
| |
| EventHubInterface* InputReader::ContextImpl::getEventHub() { |
| return mReader->mEventHub.get(); |
| } |
| |
| |
| // --- InputReaderThread --- |
| |
| InputReaderThread::InputReaderThread(const sp<InputReaderInterface>& reader) : |
| Thread(/*canCallJava*/ true), mReader(reader) { |
| } |
| |
| InputReaderThread::~InputReaderThread() { |
| } |
| |
| bool InputReaderThread::threadLoop() { |
| mReader->loopOnce(); |
| return true; |
| } |
| |
| |
| // --- InputDevice --- |
| |
| InputDevice::InputDevice(InputReaderContext* context, int32_t id, int32_t generation, |
| int32_t controllerNumber, const InputDeviceIdentifier& identifier, uint32_t classes) : |
| mContext(context), mId(id), mGeneration(generation), mControllerNumber(controllerNumber), |
| mIdentifier(identifier), mClasses(classes), |
| mSources(0), mIsExternal(false), mHasMic(false), mDropUntilNextSync(false) { |
| } |
| |
| InputDevice::~InputDevice() { |
| size_t numMappers = mMappers.size(); |
| for (size_t i = 0; i < numMappers; i++) { |
| delete mMappers[i]; |
| } |
| mMappers.clear(); |
| } |
| |
| bool InputDevice::isEnabled() { |
| return getEventHub()->isDeviceEnabled(mId); |
| } |
| |
| void InputDevice::setEnabled(bool enabled, nsecs_t when) { |
| if (isEnabled() == enabled) { |
| return; |
| } |
| |
| if (enabled) { |
| getEventHub()->enableDevice(mId); |
| reset(when); |
| } else { |
| reset(when); |
| getEventHub()->disableDevice(mId); |
| } |
| // Must change generation to flag this device as changed |
| bumpGeneration(); |
| } |
| |
| void InputDevice::dump(std::string& dump) { |
| InputDeviceInfo deviceInfo; |
| getDeviceInfo(& deviceInfo); |
| |
| dump += StringPrintf(INDENT "Device %d: %s\n", deviceInfo.getId(), |
| deviceInfo.getDisplayName().string()); |
| dump += StringPrintf(INDENT2 "Generation: %d\n", mGeneration); |
| dump += StringPrintf(INDENT2 "IsExternal: %s\n", toString(mIsExternal)); |
| dump += StringPrintf(INDENT2 "HasMic: %s\n", toString(mHasMic)); |
| dump += StringPrintf(INDENT2 "Sources: 0x%08x\n", deviceInfo.getSources()); |
| dump += StringPrintf(INDENT2 "KeyboardType: %d\n", deviceInfo.getKeyboardType()); |
| |
| const Vector<InputDeviceInfo::MotionRange>& ranges = deviceInfo.getMotionRanges(); |
| if (!ranges.isEmpty()) { |
| dump += INDENT2 "Motion Ranges:\n"; |
| for (size_t i = 0; i < ranges.size(); i++) { |
| const InputDeviceInfo::MotionRange& range = ranges.itemAt(i); |
| const char* label = getAxisLabel(range.axis); |
| char name[32]; |
| if (label) { |
| strncpy(name, label, sizeof(name)); |
| name[sizeof(name) - 1] = '\0'; |
| } else { |
| snprintf(name, sizeof(name), "%d", range.axis); |
| } |
| dump += StringPrintf(INDENT3 "%s: source=0x%08x, " |
| "min=%0.3f, max=%0.3f, flat=%0.3f, fuzz=%0.3f, resolution=%0.3f\n", |
| name, range.source, range.min, range.max, range.flat, range.fuzz, |
| range.resolution); |
| } |
| } |
| |
| size_t numMappers = mMappers.size(); |
| for (size_t i = 0; i < numMappers; i++) { |
| InputMapper* mapper = mMappers[i]; |
| mapper->dump(dump); |
| } |
| } |
| |
| void InputDevice::addMapper(InputMapper* mapper) { |
| mMappers.add(mapper); |
| } |
| |
| void InputDevice::configure(nsecs_t when, const InputReaderConfiguration* config, uint32_t changes) { |
| mSources = 0; |
| |
| if (!isIgnored()) { |
| if (!changes) { // first time only |
| mContext->getEventHub()->getConfiguration(mId, &mConfiguration); |
| } |
| |
| if (!changes || (changes & InputReaderConfiguration::CHANGE_KEYBOARD_LAYOUTS)) { |
| if (!(mClasses & INPUT_DEVICE_CLASS_VIRTUAL)) { |
| sp<KeyCharacterMap> keyboardLayout = |
| mContext->getPolicy()->getKeyboardLayoutOverlay(mIdentifier); |
| if (mContext->getEventHub()->setKeyboardLayoutOverlay(mId, keyboardLayout)) { |
| bumpGeneration(); |
| } |
| } |
| } |
| |
| if (!changes || (changes & InputReaderConfiguration::CHANGE_DEVICE_ALIAS)) { |
| if (!(mClasses & INPUT_DEVICE_CLASS_VIRTUAL)) { |
| String8 alias = mContext->getPolicy()->getDeviceAlias(mIdentifier); |
| if (mAlias != alias) { |
| mAlias = alias; |
| bumpGeneration(); |
| } |
| } |
| } |
| |
| if (!changes || (changes & InputReaderConfiguration::CHANGE_ENABLED_STATE)) { |
| ssize_t index = config->disabledDevices.indexOf(mId); |
| bool enabled = index < 0; |
| setEnabled(enabled, when); |
| } |
| |
| size_t numMappers = mMappers.size(); |
| for (size_t i = 0; i < numMappers; i++) { |
| InputMapper* mapper = mMappers[i]; |
| mapper->configure(when, config, changes); |
| mSources |= mapper->getSources(); |
| } |
| } |
| } |
| |
| void InputDevice::reset(nsecs_t when) { |
| size_t numMappers = mMappers.size(); |
| for (size_t i = 0; i < numMappers; i++) { |
| InputMapper* mapper = mMappers[i]; |
| mapper->reset(when); |
| } |
| |
| mContext->updateGlobalMetaState(); |
| |
| notifyReset(when); |
| } |
| |
| void InputDevice::process(const RawEvent* rawEvents, size_t count) { |
| // Process all of the events in order for each mapper. |
| // We cannot simply ask each mapper to process them in bulk because mappers may |
| // have side-effects that must be interleaved. For example, joystick movement events and |
| // gamepad button presses are handled by different mappers but they should be dispatched |
| // in the order received. |
| size_t numMappers = mMappers.size(); |
| for (const RawEvent* rawEvent = rawEvents; count != 0; rawEvent++) { |
| #if DEBUG_RAW_EVENTS |
| ALOGD("Input event: device=%d type=0x%04x code=0x%04x value=0x%08x when=%" PRId64, |
| rawEvent->deviceId, rawEvent->type, rawEvent->code, rawEvent->value, |
| rawEvent->when); |
| #endif |
| |
| if (mDropUntilNextSync) { |
| if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) { |
| mDropUntilNextSync = false; |
| #if DEBUG_RAW_EVENTS |
| ALOGD("Recovered from input event buffer overrun."); |
| #endif |
| } else { |
| #if DEBUG_RAW_EVENTS |
| ALOGD("Dropped input event while waiting for next input sync."); |
| #endif |
| } |
| } else if (rawEvent->type == EV_SYN && rawEvent->code == SYN_DROPPED) { |
| ALOGI("Detected input event buffer overrun for device %s.", getName().string()); |
| mDropUntilNextSync = true; |
| reset(rawEvent->when); |
| } else { |
| for (size_t i = 0; i < numMappers; i++) { |
| InputMapper* mapper = mMappers[i]; |
| mapper->process(rawEvent); |
| } |
| } |
| --count; |
| } |
| } |
| |
| void InputDevice::timeoutExpired(nsecs_t when) { |
| size_t numMappers = mMappers.size(); |
| for (size_t i = 0; i < numMappers; i++) { |
| InputMapper* mapper = mMappers[i]; |
| mapper->timeoutExpired(when); |
| } |
| } |
| |
| void InputDevice::updateExternalStylusState(const StylusState& state) { |
| size_t numMappers = mMappers.size(); |
| for (size_t i = 0; i < numMappers; i++) { |
| InputMapper* mapper = mMappers[i]; |
| mapper->updateExternalStylusState(state); |
| } |
| } |
| |
| void InputDevice::getDeviceInfo(InputDeviceInfo* outDeviceInfo) { |
| outDeviceInfo->initialize(mId, mGeneration, mControllerNumber, mIdentifier, mAlias, |
| mIsExternal, mHasMic); |
| size_t numMappers = mMappers.size(); |
| for (size_t i = 0; i < numMappers; i++) { |
| InputMapper* mapper = mMappers[i]; |
| mapper->populateDeviceInfo(outDeviceInfo); |
| } |
| } |
| |
| int32_t InputDevice::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { |
| return getState(sourceMask, keyCode, & InputMapper::getKeyCodeState); |
| } |
| |
| int32_t InputDevice::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { |
| return getState(sourceMask, scanCode, & InputMapper::getScanCodeState); |
| } |
| |
| int32_t InputDevice::getSwitchState(uint32_t sourceMask, int32_t switchCode) { |
| return getState(sourceMask, switchCode, & InputMapper::getSwitchState); |
| } |
| |
| int32_t InputDevice::getState(uint32_t sourceMask, int32_t code, GetStateFunc getStateFunc) { |
| int32_t result = AKEY_STATE_UNKNOWN; |
| size_t numMappers = mMappers.size(); |
| for (size_t i = 0; i < numMappers; i++) { |
| InputMapper* mapper = mMappers[i]; |
| if (sourcesMatchMask(mapper->getSources(), sourceMask)) { |
| // If any mapper reports AKEY_STATE_DOWN or AKEY_STATE_VIRTUAL, return that |
| // value. Otherwise, return AKEY_STATE_UP as long as one mapper reports it. |
| int32_t currentResult = (mapper->*getStateFunc)(sourceMask, code); |
| if (currentResult >= AKEY_STATE_DOWN) { |
| return currentResult; |
| } else if (currentResult == AKEY_STATE_UP) { |
| result = currentResult; |
| } |
| } |
| } |
| return result; |
| } |
| |
| bool InputDevice::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, |
| const int32_t* keyCodes, uint8_t* outFlags) { |
| bool result = false; |
| size_t numMappers = mMappers.size(); |
| for (size_t i = 0; i < numMappers; i++) { |
| InputMapper* mapper = mMappers[i]; |
| if (sourcesMatchMask(mapper->getSources(), sourceMask)) { |
| result |= mapper->markSupportedKeyCodes(sourceMask, numCodes, keyCodes, outFlags); |
| } |
| } |
| return result; |
| } |
| |
| void InputDevice::vibrate(const nsecs_t* pattern, size_t patternSize, ssize_t repeat, |
| int32_t token) { |
| size_t numMappers = mMappers.size(); |
| for (size_t i = 0; i < numMappers; i++) { |
| InputMapper* mapper = mMappers[i]; |
| mapper->vibrate(pattern, patternSize, repeat, token); |
| } |
| } |
| |
| void InputDevice::cancelVibrate(int32_t token) { |
| size_t numMappers = mMappers.size(); |
| for (size_t i = 0; i < numMappers; i++) { |
| InputMapper* mapper = mMappers[i]; |
| mapper->cancelVibrate(token); |
| } |
| } |
| |
| void InputDevice::cancelTouch(nsecs_t when) { |
| size_t numMappers = mMappers.size(); |
| for (size_t i = 0; i < numMappers; i++) { |
| InputMapper* mapper = mMappers[i]; |
| mapper->cancelTouch(when); |
| } |
| } |
| |
| int32_t InputDevice::getMetaState() { |
| int32_t result = 0; |
| size_t numMappers = mMappers.size(); |
| for (size_t i = 0; i < numMappers; i++) { |
| InputMapper* mapper = mMappers[i]; |
| result |= mapper->getMetaState(); |
| } |
| return result; |
| } |
| |
| void InputDevice::updateMetaState(int32_t keyCode) { |
| size_t numMappers = mMappers.size(); |
| for (size_t i = 0; i < numMappers; i++) { |
| mMappers[i]->updateMetaState(keyCode); |
| } |
| } |
| |
| void InputDevice::fadePointer() { |
| size_t numMappers = mMappers.size(); |
| for (size_t i = 0; i < numMappers; i++) { |
| InputMapper* mapper = mMappers[i]; |
| mapper->fadePointer(); |
| } |
| } |
| |
| void InputDevice::bumpGeneration() { |
| mGeneration = mContext->bumpGeneration(); |
| } |
| |
| void InputDevice::notifyReset(nsecs_t when) { |
| NotifyDeviceResetArgs args(when, mId); |
| mContext->getListener()->notifyDeviceReset(&args); |
| } |
| |
| |
| // --- CursorButtonAccumulator --- |
| |
| CursorButtonAccumulator::CursorButtonAccumulator() { |
| clearButtons(); |
| } |
| |
| void CursorButtonAccumulator::reset(InputDevice* device) { |
| mBtnLeft = device->isKeyPressed(BTN_LEFT); |
| mBtnRight = device->isKeyPressed(BTN_RIGHT); |
| mBtnMiddle = device->isKeyPressed(BTN_MIDDLE); |
| mBtnBack = device->isKeyPressed(BTN_BACK); |
| mBtnSide = device->isKeyPressed(BTN_SIDE); |
| mBtnForward = device->isKeyPressed(BTN_FORWARD); |
| mBtnExtra = device->isKeyPressed(BTN_EXTRA); |
| mBtnTask = device->isKeyPressed(BTN_TASK); |
| } |
| |
| void CursorButtonAccumulator::clearButtons() { |
| mBtnLeft = 0; |
| mBtnRight = 0; |
| mBtnMiddle = 0; |
| mBtnBack = 0; |
| mBtnSide = 0; |
| mBtnForward = 0; |
| mBtnExtra = 0; |
| mBtnTask = 0; |
| } |
| |
| void CursorButtonAccumulator::process(const RawEvent* rawEvent) { |
| if (rawEvent->type == EV_KEY) { |
| switch (rawEvent->code) { |
| case BTN_LEFT: |
| mBtnLeft = rawEvent->value; |
| break; |
| case BTN_RIGHT: |
| mBtnRight = rawEvent->value; |
| break; |
| case BTN_MIDDLE: |
| mBtnMiddle = rawEvent->value; |
| break; |
| case BTN_BACK: |
| mBtnBack = rawEvent->value; |
| break; |
| case BTN_SIDE: |
| mBtnSide = rawEvent->value; |
| break; |
| case BTN_FORWARD: |
| mBtnForward = rawEvent->value; |
| break; |
| case BTN_EXTRA: |
| mBtnExtra = rawEvent->value; |
| break; |
| case BTN_TASK: |
| mBtnTask = rawEvent->value; |
| break; |
| } |
| } |
| } |
| |
| uint32_t CursorButtonAccumulator::getButtonState() const { |
| uint32_t result = 0; |
| if (mBtnLeft) { |
| result |= AMOTION_EVENT_BUTTON_PRIMARY; |
| } |
| if (mBtnRight) { |
| result |= AMOTION_EVENT_BUTTON_SECONDARY; |
| } |
| if (mBtnMiddle) { |
| result |= AMOTION_EVENT_BUTTON_TERTIARY; |
| } |
| if (mBtnBack || mBtnSide) { |
| result |= AMOTION_EVENT_BUTTON_BACK; |
| } |
| if (mBtnForward || mBtnExtra) { |
| result |= AMOTION_EVENT_BUTTON_FORWARD; |
| } |
| return result; |
| } |
| |
| |
| // --- CursorMotionAccumulator --- |
| |
| CursorMotionAccumulator::CursorMotionAccumulator() { |
| clearRelativeAxes(); |
| } |
| |
| void CursorMotionAccumulator::reset(InputDevice* device) { |
| clearRelativeAxes(); |
| } |
| |
| void CursorMotionAccumulator::clearRelativeAxes() { |
| mRelX = 0; |
| mRelY = 0; |
| } |
| |
| void CursorMotionAccumulator::process(const RawEvent* rawEvent) { |
| if (rawEvent->type == EV_REL) { |
| switch (rawEvent->code) { |
| case REL_X: |
| mRelX = rawEvent->value; |
| break; |
| case REL_Y: |
| mRelY = rawEvent->value; |
| break; |
| } |
| } |
| } |
| |
| void CursorMotionAccumulator::finishSync() { |
| clearRelativeAxes(); |
| } |
| |
| |
| // --- CursorScrollAccumulator --- |
| |
| CursorScrollAccumulator::CursorScrollAccumulator() : |
| mHaveRelWheel(false), mHaveRelHWheel(false) { |
| clearRelativeAxes(); |
| } |
| |
| void CursorScrollAccumulator::configure(InputDevice* device) { |
| mHaveRelWheel = device->getEventHub()->hasRelativeAxis(device->getId(), REL_WHEEL); |
| mHaveRelHWheel = device->getEventHub()->hasRelativeAxis(device->getId(), REL_HWHEEL); |
| } |
| |
| void CursorScrollAccumulator::reset(InputDevice* device) { |
| clearRelativeAxes(); |
| } |
| |
| void CursorScrollAccumulator::clearRelativeAxes() { |
| mRelWheel = 0; |
| mRelHWheel = 0; |
| } |
| |
| void CursorScrollAccumulator::process(const RawEvent* rawEvent) { |
| if (rawEvent->type == EV_REL) { |
| switch (rawEvent->code) { |
| case REL_WHEEL: |
| mRelWheel = rawEvent->value; |
| break; |
| case REL_HWHEEL: |
| mRelHWheel = rawEvent->value; |
| break; |
| } |
| } |
| } |
| |
| void CursorScrollAccumulator::finishSync() { |
| clearRelativeAxes(); |
| } |
| |
| |
| // --- TouchButtonAccumulator --- |
| |
| TouchButtonAccumulator::TouchButtonAccumulator() : |
| mHaveBtnTouch(false), mHaveStylus(false) { |
| clearButtons(); |
| } |
| |
| void TouchButtonAccumulator::configure(InputDevice* device) { |
| mHaveBtnTouch = device->hasKey(BTN_TOUCH); |
| mHaveStylus = device->hasKey(BTN_TOOL_PEN) |
| || device->hasKey(BTN_TOOL_RUBBER) |
| || device->hasKey(BTN_TOOL_BRUSH) |
| || device->hasKey(BTN_TOOL_PENCIL) |
| || device->hasKey(BTN_TOOL_AIRBRUSH); |
| } |
| |
| void TouchButtonAccumulator::reset(InputDevice* device) { |
| mBtnTouch = device->isKeyPressed(BTN_TOUCH); |
| mBtnStylus = device->isKeyPressed(BTN_STYLUS); |
| // BTN_0 is what gets mapped for the HID usage Digitizers.SecondaryBarrelSwitch |
| mBtnStylus2 = |
| device->isKeyPressed(BTN_STYLUS2) || device->isKeyPressed(BTN_0); |
| mBtnToolFinger = device->isKeyPressed(BTN_TOOL_FINGER); |
| mBtnToolPen = device->isKeyPressed(BTN_TOOL_PEN); |
| mBtnToolRubber = device->isKeyPressed(BTN_TOOL_RUBBER); |
| mBtnToolBrush = device->isKeyPressed(BTN_TOOL_BRUSH); |
| mBtnToolPencil = device->isKeyPressed(BTN_TOOL_PENCIL); |
| mBtnToolAirbrush = device->isKeyPressed(BTN_TOOL_AIRBRUSH); |
| mBtnToolMouse = device->isKeyPressed(BTN_TOOL_MOUSE); |
| mBtnToolLens = device->isKeyPressed(BTN_TOOL_LENS); |
| mBtnToolDoubleTap = device->isKeyPressed(BTN_TOOL_DOUBLETAP); |
| mBtnToolTripleTap = device->isKeyPressed(BTN_TOOL_TRIPLETAP); |
| mBtnToolQuadTap = device->isKeyPressed(BTN_TOOL_QUADTAP); |
| } |
| |
| void TouchButtonAccumulator::clearButtons() { |
| mBtnTouch = 0; |
| mBtnStylus = 0; |
| mBtnStylus2 = 0; |
| mBtnToolFinger = 0; |
| mBtnToolPen = 0; |
| mBtnToolRubber = 0; |
| mBtnToolBrush = 0; |
| mBtnToolPencil = 0; |
| mBtnToolAirbrush = 0; |
| mBtnToolMouse = 0; |
| mBtnToolLens = 0; |
| mBtnToolDoubleTap = 0; |
| mBtnToolTripleTap = 0; |
| mBtnToolQuadTap = 0; |
| } |
| |
| void TouchButtonAccumulator::process(const RawEvent* rawEvent) { |
| if (rawEvent->type == EV_KEY) { |
| switch (rawEvent->code) { |
| case BTN_TOUCH: |
| mBtnTouch = rawEvent->value; |
| break; |
| case BTN_STYLUS: |
| mBtnStylus = rawEvent->value; |
| break; |
| case BTN_STYLUS2: |
| case BTN_0:// BTN_0 is what gets mapped for the HID usage Digitizers.SecondaryBarrelSwitch |
| mBtnStylus2 = rawEvent->value; |
| break; |
| case BTN_TOOL_FINGER: |
| mBtnToolFinger = rawEvent->value; |
| break; |
| case BTN_TOOL_PEN: |
| mBtnToolPen = rawEvent->value; |
| break; |
| case BTN_TOOL_RUBBER: |
| mBtnToolRubber = rawEvent->value; |
| break; |
| case BTN_TOOL_BRUSH: |
| mBtnToolBrush = rawEvent->value; |
| break; |
| case BTN_TOOL_PENCIL: |
| mBtnToolPencil = rawEvent->value; |
| break; |
| case BTN_TOOL_AIRBRUSH: |
| mBtnToolAirbrush = rawEvent->value; |
| break; |
| case BTN_TOOL_MOUSE: |
| mBtnToolMouse = rawEvent->value; |
| break; |
| case BTN_TOOL_LENS: |
| mBtnToolLens = rawEvent->value; |
| break; |
| case BTN_TOOL_DOUBLETAP: |
| mBtnToolDoubleTap = rawEvent->value; |
| break; |
| case BTN_TOOL_TRIPLETAP: |
| mBtnToolTripleTap = rawEvent->value; |
| break; |
| case BTN_TOOL_QUADTAP: |
| mBtnToolQuadTap = rawEvent->value; |
| break; |
| } |
| } |
| } |
| |
| uint32_t TouchButtonAccumulator::getButtonState() const { |
| uint32_t result = 0; |
| if (mBtnStylus) { |
| result |= AMOTION_EVENT_BUTTON_STYLUS_PRIMARY; |
| } |
| if (mBtnStylus2) { |
| result |= AMOTION_EVENT_BUTTON_STYLUS_SECONDARY; |
| } |
| return result; |
| } |
| |
| int32_t TouchButtonAccumulator::getToolType() const { |
| if (mBtnToolMouse || mBtnToolLens) { |
| return AMOTION_EVENT_TOOL_TYPE_MOUSE; |
| } |
| if (mBtnToolRubber) { |
| return AMOTION_EVENT_TOOL_TYPE_ERASER; |
| } |
| if (mBtnToolPen || mBtnToolBrush || mBtnToolPencil || mBtnToolAirbrush) { |
| return AMOTION_EVENT_TOOL_TYPE_STYLUS; |
| } |
| if (mBtnToolFinger || mBtnToolDoubleTap || mBtnToolTripleTap || mBtnToolQuadTap) { |
| return AMOTION_EVENT_TOOL_TYPE_FINGER; |
| } |
| return AMOTION_EVENT_TOOL_TYPE_UNKNOWN; |
| } |
| |
| bool TouchButtonAccumulator::isToolActive() const { |
| return mBtnTouch || mBtnToolFinger || mBtnToolPen || mBtnToolRubber |
| || mBtnToolBrush || mBtnToolPencil || mBtnToolAirbrush |
| || mBtnToolMouse || mBtnToolLens |
| || mBtnToolDoubleTap || mBtnToolTripleTap || mBtnToolQuadTap; |
| } |
| |
| bool TouchButtonAccumulator::isHovering() const { |
| return mHaveBtnTouch && !mBtnTouch; |
| } |
| |
| bool TouchButtonAccumulator::hasStylus() const { |
| return mHaveStylus; |
| } |
| |
| |
| // --- RawPointerAxes --- |
| |
| RawPointerAxes::RawPointerAxes() { |
| clear(); |
| } |
| |
| void RawPointerAxes::clear() { |
| x.clear(); |
| y.clear(); |
| pressure.clear(); |
| touchMajor.clear(); |
| touchMinor.clear(); |
| toolMajor.clear(); |
| toolMinor.clear(); |
| orientation.clear(); |
| distance.clear(); |
| tiltX.clear(); |
| tiltY.clear(); |
| trackingId.clear(); |
| slot.clear(); |
| } |
| |
| |
| // --- RawPointerData --- |
| |
| RawPointerData::RawPointerData() { |
| clear(); |
| } |
| |
| void RawPointerData::clear() { |
| pointerCount = 0; |
| clearIdBits(); |
| } |
| |
| void RawPointerData::copyFrom(const RawPointerData& other) { |
| pointerCount = other.pointerCount; |
| hoveringIdBits = other.hoveringIdBits; |
| touchingIdBits = other.touchingIdBits; |
| |
| for (uint32_t i = 0; i < pointerCount; i++) { |
| pointers[i] = other.pointers[i]; |
| |
| int id = pointers[i].id; |
| idToIndex[id] = other.idToIndex[id]; |
| } |
| } |
| |
| void RawPointerData::getCentroidOfTouchingPointers(float* outX, float* outY) const { |
| float x = 0, y = 0; |
| uint32_t count = touchingIdBits.count(); |
| if (count) { |
| for (BitSet32 idBits(touchingIdBits); !idBits.isEmpty(); ) { |
| uint32_t id = idBits.clearFirstMarkedBit(); |
| const Pointer& pointer = pointerForId(id); |
| x += pointer.x; |
| y += pointer.y; |
| } |
| x /= count; |
| y /= count; |
| } |
| *outX = x; |
| *outY = y; |
| } |
| |
| |
| // --- CookedPointerData --- |
| |
| CookedPointerData::CookedPointerData() { |
| clear(); |
| } |
| |
| void CookedPointerData::clear() { |
| pointerCount = 0; |
| hoveringIdBits.clear(); |
| touchingIdBits.clear(); |
| } |
| |
| void CookedPointerData::copyFrom(const CookedPointerData& other) { |
| pointerCount = other.pointerCount; |
| hoveringIdBits = other.hoveringIdBits; |
| touchingIdBits = other.touchingIdBits; |
| |
| for (uint32_t i = 0; i < pointerCount; i++) { |
| pointerProperties[i].copyFrom(other.pointerProperties[i]); |
| pointerCoords[i].copyFrom(other.pointerCoords[i]); |
| |
| int id = pointerProperties[i].id; |
| idToIndex[id] = other.idToIndex[id]; |
| } |
| } |
| |
| |
| // --- SingleTouchMotionAccumulator --- |
| |
| SingleTouchMotionAccumulator::SingleTouchMotionAccumulator() { |
| clearAbsoluteAxes(); |
| } |
| |
| void SingleTouchMotionAccumulator::reset(InputDevice* device) { |
| mAbsX = device->getAbsoluteAxisValue(ABS_X); |
| mAbsY = device->getAbsoluteAxisValue(ABS_Y); |
| mAbsPressure = device->getAbsoluteAxisValue(ABS_PRESSURE); |
| mAbsToolWidth = device->getAbsoluteAxisValue(ABS_TOOL_WIDTH); |
| mAbsDistance = device->getAbsoluteAxisValue(ABS_DISTANCE); |
| mAbsTiltX = device->getAbsoluteAxisValue(ABS_TILT_X); |
| mAbsTiltY = device->getAbsoluteAxisValue(ABS_TILT_Y); |
| } |
| |
| void SingleTouchMotionAccumulator::clearAbsoluteAxes() { |
| mAbsX = 0; |
| mAbsY = 0; |
| mAbsPressure = 0; |
| mAbsToolWidth = 0; |
| mAbsDistance = 0; |
| mAbsTiltX = 0; |
| mAbsTiltY = 0; |
| } |
| |
| void SingleTouchMotionAccumulator::process(const RawEvent* rawEvent) { |
| if (rawEvent->type == EV_ABS) { |
| switch (rawEvent->code) { |
| case ABS_X: |
| mAbsX = rawEvent->value; |
| break; |
| case ABS_Y: |
| mAbsY = rawEvent->value; |
| break; |
| case ABS_PRESSURE: |
| mAbsPressure = rawEvent->value; |
| break; |
| case ABS_TOOL_WIDTH: |
| mAbsToolWidth = rawEvent->value; |
| break; |
| case ABS_DISTANCE: |
| mAbsDistance = rawEvent->value; |
| break; |
| case ABS_TILT_X: |
| mAbsTiltX = rawEvent->value; |
| break; |
| case ABS_TILT_Y: |
| mAbsTiltY = rawEvent->value; |
| break; |
| } |
| } |
| } |
| |
| |
| // --- MultiTouchMotionAccumulator --- |
| |
| MultiTouchMotionAccumulator::MultiTouchMotionAccumulator() : |
| mCurrentSlot(-1), mSlots(NULL), mSlotCount(0), mUsingSlotsProtocol(false), |
| mHaveStylus(false), mDeviceTimestamp(0) { |
| } |
| |
| MultiTouchMotionAccumulator::~MultiTouchMotionAccumulator() { |
| delete[] mSlots; |
| } |
| |
| void MultiTouchMotionAccumulator::configure(InputDevice* device, |
| size_t slotCount, bool usingSlotsProtocol) { |
| mSlotCount = slotCount; |
| mUsingSlotsProtocol = usingSlotsProtocol; |
| mHaveStylus = device->hasAbsoluteAxis(ABS_MT_TOOL_TYPE); |
| |
| delete[] mSlots; |
| mSlots = new Slot[slotCount]; |
| } |
| |
| void MultiTouchMotionAccumulator::reset(InputDevice* device) { |
| // Unfortunately there is no way to read the initial contents of the slots. |
| // So when we reset the accumulator, we must assume they are all zeroes. |
| if (mUsingSlotsProtocol) { |
| // Query the driver for the current slot index and use it as the initial slot |
| // before we start reading events from the device. It is possible that the |
| // current slot index will not be the same as it was when the first event was |
| // written into the evdev buffer, which means the input mapper could start |
| // out of sync with the initial state of the events in the evdev buffer. |
| // In the extremely unlikely case that this happens, the data from |
| // two slots will be confused until the next ABS_MT_SLOT event is received. |
| // This can cause the touch point to "jump", but at least there will be |
| // no stuck touches. |
| int32_t initialSlot; |
| status_t status = device->getEventHub()->getAbsoluteAxisValue(device->getId(), |
| ABS_MT_SLOT, &initialSlot); |
| if (status) { |
| ALOGD("Could not retrieve current multitouch slot index. status=%d", status); |
| initialSlot = -1; |
| } |
| clearSlots(initialSlot); |
| } else { |
| clearSlots(-1); |
| } |
| mDeviceTimestamp = 0; |
| } |
| |
| void MultiTouchMotionAccumulator::clearSlots(int32_t initialSlot) { |
| if (mSlots) { |
| for (size_t i = 0; i < mSlotCount; i++) { |
| mSlots[i].clear(); |
| } |
| } |
| mCurrentSlot = initialSlot; |
| } |
| |
| void MultiTouchMotionAccumulator::process(const RawEvent* rawEvent) { |
| if (rawEvent->type == EV_ABS) { |
| bool newSlot = false; |
| if (mUsingSlotsProtocol) { |
| if (rawEvent->code == ABS_MT_SLOT) { |
| mCurrentSlot = rawEvent->value; |
| newSlot = true; |
| } |
| } else if (mCurrentSlot < 0) { |
| mCurrentSlot = 0; |
| } |
| |
| if (mCurrentSlot < 0 || size_t(mCurrentSlot) >= mSlotCount) { |
| #if DEBUG_POINTERS |
| if (newSlot) { |
| ALOGW("MultiTouch device emitted invalid slot index %d but it " |
| "should be between 0 and %zd; ignoring this slot.", |
| mCurrentSlot, mSlotCount - 1); |
| } |
| #endif |
| } else { |
| Slot* slot = &mSlots[mCurrentSlot]; |
| |
| switch (rawEvent->code) { |
| case ABS_MT_POSITION_X: |
| slot->mInUse = true; |
| slot->mAbsMTPositionX = rawEvent->value; |
| break; |
| case ABS_MT_POSITION_Y: |
| slot->mInUse = true; |
| slot->mAbsMTPositionY = rawEvent->value; |
| break; |
| case ABS_MT_TOUCH_MAJOR: |
| slot->mInUse = true; |
| slot->mAbsMTTouchMajor = rawEvent->value; |
| break; |
| case ABS_MT_TOUCH_MINOR: |
| slot->mInUse = true; |
| slot->mAbsMTTouchMinor = rawEvent->value; |
| slot->mHaveAbsMTTouchMinor = true; |
| break; |
| case ABS_MT_WIDTH_MAJOR: |
| slot->mInUse = true; |
| slot->mAbsMTWidthMajor = rawEvent->value; |
| break; |
| case ABS_MT_WIDTH_MINOR: |
| slot->mInUse = true; |
| slot->mAbsMTWidthMinor = rawEvent->value; |
| slot->mHaveAbsMTWidthMinor = true; |
| break; |
| case ABS_MT_ORIENTATION: |
| slot->mInUse = true; |
| slot->mAbsMTOrientation = rawEvent->value; |
| break; |
| case ABS_MT_TRACKING_ID: |
| if (mUsingSlotsProtocol && rawEvent->value < 0) { |
| // The slot is no longer in use but it retains its previous contents, |
| // which may be reused for subsequent touches. |
| slot->mInUse = false; |
| } else { |
| slot->mInUse = true; |
| slot->mAbsMTTrackingId = rawEvent->value; |
| } |
| break; |
| case ABS_MT_PRESSURE: |
| slot->mInUse = true; |
| slot->mAbsMTPressure = rawEvent->value; |
| break; |
| case ABS_MT_DISTANCE: |
| slot->mInUse = true; |
| slot->mAbsMTDistance = rawEvent->value; |
| break; |
| case ABS_MT_TOOL_TYPE: |
| slot->mInUse = true; |
| slot->mAbsMTToolType = rawEvent->value; |
| slot->mHaveAbsMTToolType = true; |
| break; |
| } |
| } |
| } else if (rawEvent->type == EV_SYN && rawEvent->code == SYN_MT_REPORT) { |
| // MultiTouch Sync: The driver has returned all data for *one* of the pointers. |
| mCurrentSlot += 1; |
| } else if (rawEvent->type == EV_MSC && rawEvent->code == MSC_TIMESTAMP) { |
| mDeviceTimestamp = rawEvent->value; |
| } |
| } |
| |
| void MultiTouchMotionAccumulator::finishSync() { |
| if (!mUsingSlotsProtocol) { |
| clearSlots(-1); |
| } |
| } |
| |
| bool MultiTouchMotionAccumulator::hasStylus() const { |
| return mHaveStylus; |
| } |
| |
| |
| // --- MultiTouchMotionAccumulator::Slot --- |
| |
| MultiTouchMotionAccumulator::Slot::Slot() { |
| clear(); |
| } |
| |
| void MultiTouchMotionAccumulator::Slot::clear() { |
| mInUse = false; |
| mHaveAbsMTTouchMinor = false; |
| mHaveAbsMTWidthMinor = false; |
| mHaveAbsMTToolType = false; |
| mAbsMTPositionX = 0; |
| mAbsMTPositionY = 0; |
| mAbsMTTouchMajor = 0; |
| mAbsMTTouchMinor = 0; |
| mAbsMTWidthMajor = 0; |
| mAbsMTWidthMinor = 0; |
| mAbsMTOrientation = 0; |
| mAbsMTTrackingId = -1; |
| mAbsMTPressure = 0; |
| mAbsMTDistance = 0; |
| mAbsMTToolType = 0; |
| } |
| |
| int32_t MultiTouchMotionAccumulator::Slot::getToolType() const { |
| if (mHaveAbsMTToolType) { |
| switch (mAbsMTToolType) { |
| case MT_TOOL_FINGER: |
| return AMOTION_EVENT_TOOL_TYPE_FINGER; |
| case MT_TOOL_PEN: |
| return AMOTION_EVENT_TOOL_TYPE_STYLUS; |
| } |
| } |
| return AMOTION_EVENT_TOOL_TYPE_UNKNOWN; |
| } |
| |
| |
| // --- InputMapper --- |
| |
| InputMapper::InputMapper(InputDevice* device) : |
| mDevice(device), mContext(device->getContext()) { |
| } |
| |
| InputMapper::~InputMapper() { |
| } |
| |
| void InputMapper::populateDeviceInfo(InputDeviceInfo* info) { |
| info->addSource(getSources()); |
| } |
| |
| void InputMapper::dump(std::string& dump) { |
| } |
| |
| void InputMapper::configure(nsecs_t when, |
| const InputReaderConfiguration* config, uint32_t changes) { |
| } |
| |
| void InputMapper::reset(nsecs_t when) { |
| } |
| |
| void InputMapper::timeoutExpired(nsecs_t when) { |
| } |
| |
| int32_t InputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { |
| return AKEY_STATE_UNKNOWN; |
| } |
| |
| int32_t InputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { |
| return AKEY_STATE_UNKNOWN; |
| } |
| |
| int32_t InputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) { |
| return AKEY_STATE_UNKNOWN; |
| } |
| |
| bool InputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, |
| const int32_t* keyCodes, uint8_t* outFlags) { |
| return false; |
| } |
| |
| void InputMapper::vibrate(const nsecs_t* pattern, size_t patternSize, ssize_t repeat, |
| int32_t token) { |
| } |
| |
| void InputMapper::cancelVibrate(int32_t token) { |
| } |
| |
| void InputMapper::cancelTouch(nsecs_t when) { |
| } |
| |
| int32_t InputMapper::getMetaState() { |
| return 0; |
| } |
| |
| void InputMapper::updateMetaState(int32_t keyCode) { |
| } |
| |
| void InputMapper::updateExternalStylusState(const StylusState& state) { |
| |
| } |
| |
| void InputMapper::fadePointer() { |
| } |
| |
| status_t InputMapper::getAbsoluteAxisInfo(int32_t axis, RawAbsoluteAxisInfo* axisInfo) { |
| return getEventHub()->getAbsoluteAxisInfo(getDeviceId(), axis, axisInfo); |
| } |
| |
| void InputMapper::bumpGeneration() { |
| mDevice->bumpGeneration(); |
| } |
| |
| void InputMapper::dumpRawAbsoluteAxisInfo(std::string& dump, |
| const RawAbsoluteAxisInfo& axis, const char* name) { |
| if (axis.valid) { |
| dump += StringPrintf(INDENT4 "%s: min=%d, max=%d, flat=%d, fuzz=%d, resolution=%d\n", |
| name, axis.minValue, axis.maxValue, axis.flat, axis.fuzz, axis.resolution); |
| } else { |
| dump += StringPrintf(INDENT4 "%s: unknown range\n", name); |
| } |
| } |
| |
| void InputMapper::dumpStylusState(std::string& dump, const StylusState& state) { |
| dump += StringPrintf(INDENT4 "When: %" PRId64 "\n", state.when); |
| dump += StringPrintf(INDENT4 "Pressure: %f\n", state.pressure); |
| dump += StringPrintf(INDENT4 "Button State: 0x%08x\n", state.buttons); |
| dump += StringPrintf(INDENT4 "Tool Type: %" PRId32 "\n", state.toolType); |
| } |
| |
| // --- SwitchInputMapper --- |
| |
| SwitchInputMapper::SwitchInputMapper(InputDevice* device) : |
| InputMapper(device), mSwitchValues(0), mUpdatedSwitchMask(0) { |
| } |
| |
| SwitchInputMapper::~SwitchInputMapper() { |
| } |
| |
| uint32_t SwitchInputMapper::getSources() { |
| return AINPUT_SOURCE_SWITCH; |
| } |
| |
| void SwitchInputMapper::process(const RawEvent* rawEvent) { |
| switch (rawEvent->type) { |
| case EV_SW: |
| processSwitch(rawEvent->code, rawEvent->value); |
| break; |
| |
| case EV_SYN: |
| if (rawEvent->code == SYN_REPORT) { |
| sync(rawEvent->when); |
| } |
| } |
| } |
| |
| void SwitchInputMapper::processSwitch(int32_t switchCode, int32_t switchValue) { |
| if (switchCode >= 0 && switchCode < 32) { |
| if (switchValue) { |
| mSwitchValues |= 1 << switchCode; |
| } else { |
| mSwitchValues &= ~(1 << switchCode); |
| } |
| mUpdatedSwitchMask |= 1 << switchCode; |
| } |
| } |
| |
| void SwitchInputMapper::sync(nsecs_t when) { |
| if (mUpdatedSwitchMask) { |
| uint32_t updatedSwitchValues = mSwitchValues & mUpdatedSwitchMask; |
| NotifySwitchArgs args(when, 0, updatedSwitchValues, mUpdatedSwitchMask); |
| getListener()->notifySwitch(&args); |
| |
| mUpdatedSwitchMask = 0; |
| } |
| } |
| |
| int32_t SwitchInputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) { |
| return getEventHub()->getSwitchState(getDeviceId(), switchCode); |
| } |
| |
| void SwitchInputMapper::dump(std::string& dump) { |
| dump += INDENT2 "Switch Input Mapper:\n"; |
| dump += StringPrintf(INDENT3 "SwitchValues: %x\n", mSwitchValues); |
| } |
| |
| // --- VibratorInputMapper --- |
| |
| VibratorInputMapper::VibratorInputMapper(InputDevice* device) : |
| InputMapper(device), mVibrating(false) { |
| } |
| |
| VibratorInputMapper::~VibratorInputMapper() { |
| } |
| |
| uint32_t VibratorInputMapper::getSources() { |
| return 0; |
| } |
| |
| void VibratorInputMapper::populateDeviceInfo(InputDeviceInfo* info) { |
| InputMapper::populateDeviceInfo(info); |
| |
| info->setVibrator(true); |
| } |
| |
| void VibratorInputMapper::process(const RawEvent* rawEvent) { |
| // TODO: Handle FF_STATUS, although it does not seem to be widely supported. |
| } |
| |
| void VibratorInputMapper::vibrate(const nsecs_t* pattern, size_t patternSize, ssize_t repeat, |
| int32_t token) { |
| #if DEBUG_VIBRATOR |
| std::string patternStr; |
| for (size_t i = 0; i < patternSize; i++) { |
| if (i != 0) { |
| patternStr += ", "; |
| } |
| patternStr += StringPrintf("%" PRId64, pattern[i]); |
| } |
| ALOGD("vibrate: deviceId=%d, pattern=[%s], repeat=%zd, token=%d", |
| getDeviceId(), patternStr.c_str(), repeat, token); |
| #endif |
| |
| mVibrating = true; |
| memcpy(mPattern, pattern, patternSize * sizeof(nsecs_t)); |
| mPatternSize = patternSize; |
| mRepeat = repeat; |
| mToken = token; |
| mIndex = -1; |
| |
| nextStep(); |
| } |
| |
| void VibratorInputMapper::cancelVibrate(int32_t token) { |
| #if DEBUG_VIBRATOR |
| ALOGD("cancelVibrate: deviceId=%d, token=%d", getDeviceId(), token); |
| #endif |
| |
| if (mVibrating && mToken == token) { |
| stopVibrating(); |
| } |
| } |
| |
| void VibratorInputMapper::timeoutExpired(nsecs_t when) { |
| if (mVibrating) { |
| if (when >= mNextStepTime) { |
| nextStep(); |
| } else { |
| getContext()->requestTimeoutAtTime(mNextStepTime); |
| } |
| } |
| } |
| |
| void VibratorInputMapper::nextStep() { |
| mIndex += 1; |
| if (size_t(mIndex) >= mPatternSize) { |
| if (mRepeat < 0) { |
| // We are done. |
| stopVibrating(); |
| return; |
| } |
| mIndex = mRepeat; |
| } |
| |
| bool vibratorOn = mIndex & 1; |
| nsecs_t duration = mPattern[mIndex]; |
| if (vibratorOn) { |
| #if DEBUG_VIBRATOR |
| ALOGD("nextStep: sending vibrate deviceId=%d, duration=%" PRId64, getDeviceId(), duration); |
| #endif |
| getEventHub()->vibrate(getDeviceId(), duration); |
| } else { |
| #if DEBUG_VIBRATOR |
| ALOGD("nextStep: sending cancel vibrate deviceId=%d", getDeviceId()); |
| #endif |
| getEventHub()->cancelVibrate(getDeviceId()); |
| } |
| nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); |
| mNextStepTime = now + duration; |
| getContext()->requestTimeoutAtTime(mNextStepTime); |
| #if DEBUG_VIBRATOR |
| ALOGD("nextStep: scheduled timeout in %0.3fms", duration * 0.000001f); |
| #endif |
| } |
| |
| void VibratorInputMapper::stopVibrating() { |
| mVibrating = false; |
| #if DEBUG_VIBRATOR |
| ALOGD("stopVibrating: sending cancel vibrate deviceId=%d", getDeviceId()); |
| #endif |
| getEventHub()->cancelVibrate(getDeviceId()); |
| } |
| |
| void VibratorInputMapper::dump(std::string& dump) { |
| dump += INDENT2 "Vibrator Input Mapper:\n"; |
| dump += StringPrintf(INDENT3 "Vibrating: %s\n", toString(mVibrating)); |
| } |
| |
| |
| // --- KeyboardInputMapper --- |
| |
| KeyboardInputMapper::KeyboardInputMapper(InputDevice* device, |
| uint32_t source, int32_t keyboardType) : |
| InputMapper(device), mSource(source), |
| mKeyboardType(keyboardType) { |
| } |
| |
| KeyboardInputMapper::~KeyboardInputMapper() { |
| } |
| |
| uint32_t KeyboardInputMapper::getSources() { |
| return mSource; |
| } |
| |
| void KeyboardInputMapper::populateDeviceInfo(InputDeviceInfo* info) { |
| InputMapper::populateDeviceInfo(info); |
| |
| info->setKeyboardType(mKeyboardType); |
| info->setKeyCharacterMap(getEventHub()->getKeyCharacterMap(getDeviceId())); |
| } |
| |
| void KeyboardInputMapper::dump(std::string& dump) { |
| dump += INDENT2 "Keyboard Input Mapper:\n"; |
| dumpParameters(dump); |
| dump += StringPrintf(INDENT3 "KeyboardType: %d\n", mKeyboardType); |
| dump += StringPrintf(INDENT3 "Orientation: %d\n", mOrientation); |
| dump += StringPrintf(INDENT3 "KeyDowns: %zu keys currently down\n", mKeyDowns.size()); |
| dump += StringPrintf(INDENT3 "MetaState: 0x%0x\n", mMetaState); |
| dump += StringPrintf(INDENT3 "DownTime: %" PRId64 "\n", mDownTime); |
| } |
| |
| |
| void KeyboardInputMapper::configure(nsecs_t when, |
| const InputReaderConfiguration* config, uint32_t changes) { |
| InputMapper::configure(when, config, changes); |
| |
| if (!changes) { // first time only |
| // Configure basic parameters. |
| configureParameters(); |
| } |
| |
| if (!changes || (changes & InputReaderConfiguration::CHANGE_DISPLAY_INFO)) { |
| if (mParameters.orientationAware && mParameters.hasAssociatedDisplay) { |
| DisplayViewport v; |
| if (config->getDisplayViewport(ViewportType::VIEWPORT_INTERNAL, NULL, &v)) { |
| mOrientation = v.orientation; |
| } else { |
| mOrientation = DISPLAY_ORIENTATION_0; |
| } |
| } else { |
| mOrientation = DISPLAY_ORIENTATION_0; |
| } |
| } |
| } |
| |
| static void mapStemKey(int32_t keyCode, const PropertyMap& config, char const *property) { |
| int32_t mapped = 0; |
| if (config.tryGetProperty(String8(property), mapped) && mapped > 0) { |
| for (size_t i = 0; i < stemKeyRotationMapSize; i++) { |
| if (stemKeyRotationMap[i][0] == keyCode) { |
| stemKeyRotationMap[i][1] = mapped; |
| return; |
| } |
| } |
| } |
| } |
| |
| void KeyboardInputMapper::configureParameters() { |
| mParameters.orientationAware = false; |
| const PropertyMap& config = getDevice()->getConfiguration(); |
| config.tryGetProperty(String8("keyboard.orientationAware"), |
| mParameters.orientationAware); |
| |
| mParameters.hasAssociatedDisplay = false; |
| if (mParameters.orientationAware) { |
| mParameters.hasAssociatedDisplay = true; |
| |
| mapStemKey(AKEYCODE_STEM_PRIMARY, config, "keyboard.rotated.stem_primary"); |
| mapStemKey(AKEYCODE_STEM_1, config, "keyboard.rotated.stem_1"); |
| mapStemKey(AKEYCODE_STEM_2, config, "keyboard.rotated.stem_2"); |
| mapStemKey(AKEYCODE_STEM_3, config, "keyboard.rotated.stem_3"); |
| } |
| |
| mParameters.handlesKeyRepeat = false; |
| config.tryGetProperty(String8("keyboard.handlesKeyRepeat"), |
| mParameters.handlesKeyRepeat); |
| } |
| |
| void KeyboardInputMapper::dumpParameters(std::string& dump) { |
| dump += INDENT3 "Parameters:\n"; |
| dump += StringPrintf(INDENT4 "HasAssociatedDisplay: %s\n", |
| toString(mParameters.hasAssociatedDisplay)); |
| dump += StringPrintf(INDENT4 "OrientationAware: %s\n", |
| toString(mParameters.orientationAware)); |
| dump += StringPrintf(INDENT4 "HandlesKeyRepeat: %s\n", |
| toString(mParameters.handlesKeyRepeat)); |
| } |
| |
| void KeyboardInputMapper::reset(nsecs_t when) { |
| mMetaState = AMETA_NONE; |
| mDownTime = 0; |
| mKeyDowns.clear(); |
| mCurrentHidUsage = 0; |
| |
| resetLedState(); |
| |
| InputMapper::reset(when); |
| } |
| |
| void KeyboardInputMapper::process(const RawEvent* rawEvent) { |
| switch (rawEvent->type) { |
| case EV_KEY: { |
| int32_t scanCode = rawEvent->code; |
| int32_t usageCode = mCurrentHidUsage; |
| mCurrentHidUsage = 0; |
| |
| if (isKeyboardOrGamepadKey(scanCode)) { |
| processKey(rawEvent->when, rawEvent->value != 0, scanCode, usageCode); |
| } |
| break; |
| } |
| case EV_MSC: { |
| if (rawEvent->code == MSC_SCAN) { |
| mCurrentHidUsage = rawEvent->value; |
| } |
| break; |
| } |
| case EV_SYN: { |
| if (rawEvent->code == SYN_REPORT) { |
| mCurrentHidUsage = 0; |
| } |
| } |
| } |
| } |
| |
| bool KeyboardInputMapper::isKeyboardOrGamepadKey(int32_t scanCode) { |
| return scanCode < BTN_MOUSE |
| || scanCode >= KEY_OK |
| || (scanCode >= BTN_MISC && scanCode < BTN_MOUSE) |
| || (scanCode >= BTN_JOYSTICK && scanCode < BTN_DIGI); |
| } |
| |
| bool KeyboardInputMapper::isMediaKey(int32_t keyCode) { |
| switch (keyCode) { |
| case AKEYCODE_MEDIA_PLAY: |
| case AKEYCODE_MEDIA_PAUSE: |
| case AKEYCODE_MEDIA_PLAY_PAUSE: |
| case AKEYCODE_MUTE: |
| case AKEYCODE_HEADSETHOOK: |
| case AKEYCODE_MEDIA_STOP: |
| case AKEYCODE_MEDIA_NEXT: |
| case AKEYCODE_MEDIA_PREVIOUS: |
| case AKEYCODE_MEDIA_REWIND: |
| case AKEYCODE_MEDIA_RECORD: |
| case AKEYCODE_MEDIA_FAST_FORWARD: |
| case AKEYCODE_MEDIA_SKIP_FORWARD: |
| case AKEYCODE_MEDIA_SKIP_BACKWARD: |
| case AKEYCODE_MEDIA_STEP_FORWARD: |
| case AKEYCODE_MEDIA_STEP_BACKWARD: |
| case AKEYCODE_MEDIA_AUDIO_TRACK: |
| case AKEYCODE_VOLUME_UP: |
| case AKEYCODE_VOLUME_DOWN: |
| case AKEYCODE_VOLUME_MUTE: |
| case AKEYCODE_TV_AUDIO_DESCRIPTION: |
| case AKEYCODE_TV_AUDIO_DESCRIPTION_MIX_UP: |
| case AKEYCODE_TV_AUDIO_DESCRIPTION_MIX_DOWN: |
| return true; |
| } |
| return false; |
| } |
| |
| void KeyboardInputMapper::processKey(nsecs_t when, bool down, int32_t scanCode, |
| int32_t usageCode) { |
| int32_t keyCode; |
| int32_t keyMetaState; |
| uint32_t policyFlags; |
| |
| if (getEventHub()->mapKey(getDeviceId(), scanCode, usageCode, mMetaState, |
| &keyCode, &keyMetaState, &policyFlags)) { |
| keyCode = AKEYCODE_UNKNOWN; |
| keyMetaState = mMetaState; |
| policyFlags = 0; |
| } |
| |
| if (down) { |
| // Rotate key codes according to orientation if needed. |
| if (mParameters.orientationAware && mParameters.hasAssociatedDisplay) { |
| keyCode = rotateKeyCode(keyCode, mOrientation); |
| } |
| |
| // Add key down. |
| ssize_t keyDownIndex = findKeyDown(scanCode); |
| if (keyDownIndex >= 0) { |
| // key repeat, be sure to use same keycode as before in case of rotation |
| keyCode = mKeyDowns.itemAt(keyDownIndex).keyCode; |
| } else { |
| // key down |
| if ((policyFlags & POLICY_FLAG_VIRTUAL) |
| && mContext->shouldDropVirtualKey(when, |
| getDevice(), keyCode, scanCode)) { |
| return; |
| } |
| if (policyFlags & POLICY_FLAG_GESTURE) { |
| mDevice->cancelTouch(when); |
| } |
| |
| mKeyDowns.push(); |
| KeyDown& keyDown = mKeyDowns.editTop(); |
| keyDown.keyCode = keyCode; |
| keyDown.scanCode = scanCode; |
| } |
| |
| mDownTime = when; |
| } else { |
| // Remove key down. |
| ssize_t keyDownIndex = findKeyDown(scanCode); |
| if (keyDownIndex >= 0) { |
| // key up, be sure to use same keycode as before in case of rotation |
| keyCode = mKeyDowns.itemAt(keyDownIndex).keyCode; |
| mKeyDowns.removeAt(size_t(keyDownIndex)); |
| } else { |
| // key was not actually down |
| ALOGI("Dropping key up from device %s because the key was not down. " |
| "keyCode=%d, scanCode=%d", |
| getDeviceName().string(), keyCode, scanCode); |
| return; |
| } |
| } |
| |
| if (updateMetaStateIfNeeded(keyCode, down)) { |
| // If global meta state changed send it along with the key. |
| // If it has not changed then we'll use what keymap gave us, |
| // since key replacement logic might temporarily reset a few |
| // meta bits for given key. |
| keyMetaState = mMetaState; |
| } |
| |
| nsecs_t downTime = mDownTime; |
| |
| // Key down on external an keyboard should wake the device. |
| // We don't do this for internal keyboards to prevent them from waking up in your pocket. |
| // For internal keyboards, the key layout file should specify the policy flags for |
| // each wake key individually. |
| // TODO: Use the input device configuration to control this behavior more finely. |
| if (down && getDevice()->isExternal() && !isMediaKey(keyCode)) { |
| policyFlags |= POLICY_FLAG_WAKE; |
| } |
| |
| if (mParameters.handlesKeyRepeat) { |
| policyFlags |= POLICY_FLAG_DISABLE_KEY_REPEAT; |
| } |
| |
| NotifyKeyArgs args(when, getDeviceId(), mSource, policyFlags, |
| down ? AKEY_EVENT_ACTION_DOWN : AKEY_EVENT_ACTION_UP, |
| AKEY_EVENT_FLAG_FROM_SYSTEM, keyCode, scanCode, keyMetaState, downTime); |
| getListener()->notifyKey(&args); |
| } |
| |
| ssize_t KeyboardInputMapper::findKeyDown(int32_t scanCode) { |
| size_t n = mKeyDowns.size(); |
| for (size_t i = 0; i < n; i++) { |
| if (mKeyDowns[i].scanCode == scanCode) { |
| return i; |
| } |
| } |
| return -1; |
| } |
| |
| int32_t KeyboardInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { |
| return getEventHub()->getKeyCodeState(getDeviceId(), keyCode); |
| } |
| |
| int32_t KeyboardInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { |
| return getEventHub()->getScanCodeState(getDeviceId(), scanCode); |
| } |
| |
| bool KeyboardInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, |
| const int32_t* keyCodes, uint8_t* outFlags) { |
| return getEventHub()->markSupportedKeyCodes(getDeviceId(), numCodes, keyCodes, outFlags); |
| } |
| |
| int32_t KeyboardInputMapper::getMetaState() { |
| return mMetaState; |
| } |
| |
| void KeyboardInputMapper::updateMetaState(int32_t keyCode) { |
| updateMetaStateIfNeeded(keyCode, false); |
| } |
| |
| bool KeyboardInputMapper::updateMetaStateIfNeeded(int32_t keyCode, bool down) { |
| int32_t oldMetaState = mMetaState; |
| int32_t newMetaState = android::updateMetaState(keyCode, down, oldMetaState); |
| bool metaStateChanged = oldMetaState != newMetaState; |
| if (metaStateChanged) { |
| mMetaState = newMetaState; |
| updateLedState(false); |
| |
| getContext()->updateGlobalMetaState(); |
| } |
| |
| return metaStateChanged; |
| } |
| |
| void KeyboardInputMapper::resetLedState() { |
| initializeLedState(mCapsLockLedState, ALED_CAPS_LOCK); |
| initializeLedState(mNumLockLedState, ALED_NUM_LOCK); |
| initializeLedState(mScrollLockLedState, ALED_SCROLL_LOCK); |
| |
| updateLedState(true); |
| } |
| |
| void KeyboardInputMapper::initializeLedState(LedState& ledState, int32_t led) { |
| ledState.avail = getEventHub()->hasLed(getDeviceId(), led); |
| ledState.on = false; |
| } |
| |
| void KeyboardInputMapper::updateLedState(bool reset) { |
| updateLedStateForModifier(mCapsLockLedState, ALED_CAPS_LOCK, |
| AMETA_CAPS_LOCK_ON, reset); |
| updateLedStateForModifier(mNumLockLedState, ALED_NUM_LOCK, |
| AMETA_NUM_LOCK_ON, reset); |
| updateLedStateForModifier(mScrollLockLedState, ALED_SCROLL_LOCK, |
| AMETA_SCROLL_LOCK_ON, reset); |
| } |
| |
| void KeyboardInputMapper::updateLedStateForModifier(LedState& ledState, |
| int32_t led, int32_t modifier, bool reset) { |
| if (ledState.avail) { |
| bool desiredState = (mMetaState & modifier) != 0; |
| if (reset || ledState.on != desiredState) { |
| getEventHub()->setLedState(getDeviceId(), led, desiredState); |
| ledState.on = desiredState; |
| } |
| } |
| } |
| |
| |
| // --- CursorInputMapper --- |
| |
| CursorInputMapper::CursorInputMapper(InputDevice* device) : |
| InputMapper(device) { |
| } |
| |
| CursorInputMapper::~CursorInputMapper() { |
| } |
| |
| uint32_t CursorInputMapper::getSources() { |
| return mSource; |
| } |
| |
| void CursorInputMapper::populateDeviceInfo(InputDeviceInfo* info) { |
| InputMapper::populateDeviceInfo(info); |
| |
| if (mParameters.mode == Parameters::MODE_POINTER) { |
| float minX, minY, maxX, maxY; |
| if (mPointerController->getBounds(&minX, &minY, &maxX, &maxY)) { |
| info->addMotionRange(AMOTION_EVENT_AXIS_X, mSource, minX, maxX, 0.0f, 0.0f, 0.0f); |
| info->addMotionRange(AMOTION_EVENT_AXIS_Y, mSource, minY, maxY, 0.0f, 0.0f, 0.0f); |
| } |
| } else { |
| info->addMotionRange(AMOTION_EVENT_AXIS_X, mSource, -1.0f, 1.0f, 0.0f, mXScale, 0.0f); |
| info->addMotionRange(AMOTION_EVENT_AXIS_Y, mSource, -1.0f, 1.0f, 0.0f, mYScale, 0.0f); |
| } |
| info->addMotionRange(AMOTION_EVENT_AXIS_PRESSURE, mSource, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f); |
| |
| if (mCursorScrollAccumulator.haveRelativeVWheel()) { |
| info->addMotionRange(AMOTION_EVENT_AXIS_VSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f); |
| } |
| if (mCursorScrollAccumulator.haveRelativeHWheel()) { |
| info->addMotionRange(AMOTION_EVENT_AXIS_HSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f); |
| } |
| } |
| |
| void CursorInputMapper::dump(std::string& dump) { |
| dump += INDENT2 "Cursor Input Mapper:\n"; |
| dumpParameters(dump); |
| dump += StringPrintf(INDENT3 "XScale: %0.3f\n", mXScale); |
| dump += StringPrintf(INDENT3 "YScale: %0.3f\n", mYScale); |
| dump += StringPrintf(INDENT3 "XPrecision: %0.3f\n", mXPrecision); |
| dump += StringPrintf(INDENT3 "YPrecision: %0.3f\n", mYPrecision); |
| dump += StringPrintf(INDENT3 "HaveVWheel: %s\n", |
| toString(mCursorScrollAccumulator.haveRelativeVWheel())); |
| dump += StringPrintf(INDENT3 "HaveHWheel: %s\n", |
| toString(mCursorScrollAccumulator.haveRelativeHWheel())); |
| dump += StringPrintf(INDENT3 "VWheelScale: %0.3f\n", mVWheelScale); |
| dump += StringPrintf(INDENT3 "HWheelScale: %0.3f\n", mHWheelScale); |
| dump += StringPrintf(INDENT3 "Orientation: %d\n", mOrientation); |
| dump += StringPrintf(INDENT3 "ButtonState: 0x%08x\n", mButtonState); |
| dump += StringPrintf(INDENT3 "Down: %s\n", toString(isPointerDown(mButtonState))); |
| dump += StringPrintf(INDENT3 "DownTime: %" PRId64 "\n", mDownTime); |
| } |
| |
| void CursorInputMapper::configure(nsecs_t when, |
| const InputReaderConfiguration* config, uint32_t changes) { |
| InputMapper::configure(when, config, changes); |
| |
| if (!changes) { // first time only |
| mCursorScrollAccumulator.configure(getDevice()); |
| |
| // Configure basic parameters. |
| configureParameters(); |
| |
| // Configure device mode. |
| switch (mParameters.mode) { |
| case Parameters::MODE_POINTER_RELATIVE: |
| // Should not happen during first time configuration. |
| ALOGE("Cannot start a device in MODE_POINTER_RELATIVE, starting in MODE_POINTER"); |
| mParameters.mode = Parameters::MODE_POINTER; |
| [[fallthrough]]; |
| case Parameters::MODE_POINTER: |
| mSource = AINPUT_SOURCE_MOUSE; |
| mXPrecision = 1.0f; |
| mYPrecision = 1.0f; |
| mXScale = 1.0f; |
| mYScale = 1.0f; |
| mPointerController = getPolicy()->obtainPointerController(getDeviceId()); |
| break; |
| case Parameters::MODE_NAVIGATION: |
| mSource = AINPUT_SOURCE_TRACKBALL; |
| mXPrecision = TRACKBALL_MOVEMENT_THRESHOLD; |
| mYPrecision = TRACKBALL_MOVEMENT_THRESHOLD; |
| mXScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD; |
| mYScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD; |
| break; |
| } |
| |
| mVWheelScale = 1.0f; |
| mHWheelScale = 1.0f; |
| } |
| |
| if ((!changes && config->pointerCapture) |
| || (changes & InputReaderConfiguration::CHANGE_POINTER_CAPTURE)) { |
| if (config->pointerCapture) { |
| if (mParameters.mode == Parameters::MODE_POINTER) { |
| mParameters.mode = Parameters::MODE_POINTER_RELATIVE; |
| mSource = AINPUT_SOURCE_MOUSE_RELATIVE; |
| // Keep PointerController around in order to preserve the pointer position. |
| mPointerController->fade(PointerControllerInterface::TRANSITION_IMMEDIATE); |
| } else { |
| ALOGE("Cannot request pointer capture, device is not in MODE_POINTER"); |
| } |
| } else { |
| if (mParameters.mode == Parameters::MODE_POINTER_RELATIVE) { |
| mParameters.mode = Parameters::MODE_POINTER; |
| mSource = AINPUT_SOURCE_MOUSE; |
| } else { |
| ALOGE("Cannot release pointer capture, device is not in MODE_POINTER_RELATIVE"); |
| } |
| } |
| bumpGeneration(); |
| if (changes) { |
| getDevice()->notifyReset(when); |
| } |
| } |
| |
| if (!changes || (changes & InputReaderConfiguration::CHANGE_POINTER_SPEED)) { |
| mPointerVelocityControl.setParameters(config->pointerVelocityControlParameters); |
| mWheelXVelocityControl.setParameters(config->wheelVelocityControlParameters); |
| mWheelYVelocityControl.setParameters(config->wheelVelocityControlParameters); |
| } |
| |
| if (!changes || (changes & InputReaderConfiguration::CHANGE_DISPLAY_INFO)) { |
| if (mParameters.orientationAware && mParameters.hasAssociatedDisplay) { |
| DisplayViewport v; |
| if (config->getDisplayViewport(ViewportType::VIEWPORT_INTERNAL, NULL, &v)) { |
| mOrientation = v.orientation; |
| } else { |
| mOrientation = DISPLAY_ORIENTATION_0; |
| } |
| } else { |
| mOrientation = DISPLAY_ORIENTATION_0; |
| } |
| bumpGeneration(); |
| } |
| } |
| |
| void CursorInputMapper::configureParameters() { |
| mParameters.mode = Parameters::MODE_POINTER; |
| String8 cursorModeString; |
| if (getDevice()->getConfiguration().tryGetProperty(String8("cursor.mode"), cursorModeString)) { |
| if (cursorModeString == "navigation") { |
| mParameters.mode = Parameters::MODE_NAVIGATION; |
| } else if (cursorModeString != "pointer" && cursorModeString != "default") { |
| ALOGW("Invalid value for cursor.mode: '%s'", cursorModeString.string()); |
| } |
| } |
| |
| mParameters.orientationAware = false; |
| getDevice()->getConfiguration().tryGetProperty(String8("cursor.orientationAware"), |
| mParameters.orientationAware); |
| |
| mParameters.hasAssociatedDisplay = false; |
| if (mParameters.mode == Parameters::MODE_POINTER || mParameters.orientationAware) { |
| mParameters.hasAssociatedDisplay = true; |
| } |
| } |
| |
| void CursorInputMapper::dumpParameters(std::string& dump) { |
| dump += INDENT3 "Parameters:\n"; |
| dump += StringPrintf(INDENT4 "HasAssociatedDisplay: %s\n", |
| toString(mParameters.hasAssociatedDisplay)); |
| |
| switch (mParameters.mode) { |
| case Parameters::MODE_POINTER: |
| dump += INDENT4 "Mode: pointer\n"; |
| break; |
| case Parameters::MODE_POINTER_RELATIVE: |
| dump += INDENT4 "Mode: relative pointer\n"; |
| break; |
| case Parameters::MODE_NAVIGATION: |
| dump += INDENT4 "Mode: navigation\n"; |
| break; |
| default: |
| ALOG_ASSERT(false); |
| } |
| |
| dump += StringPrintf(INDENT4 "OrientationAware: %s\n", |
| toString(mParameters.orientationAware)); |
| } |
| |
| void CursorInputMapper::reset(nsecs_t when) { |
| mButtonState = 0; |
| mDownTime = 0; |
| |
| mPointerVelocityControl.reset(); |
| mWheelXVelocityControl.reset(); |
| mWheelYVelocityControl.reset(); |
| |
| mCursorButtonAccumulator.reset(getDevice()); |
| mCursorMotionAccumulator.reset(getDevice()); |
| mCursorScrollAccumulator.reset(getDevice()); |
| |
| InputMapper::reset(when); |
| } |
| |
| void CursorInputMapper::process(const RawEvent* rawEvent) { |
| mCursorButtonAccumulator.process(rawEvent); |
| mCursorMotionAccumulator.process(rawEvent); |
| mCursorScrollAccumulator.process(rawEvent); |
| |
| if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) { |
| sync(rawEvent->when); |
| } |
| } |
| |
| void CursorInputMapper::sync(nsecs_t when) { |
| int32_t lastButtonState = mButtonState; |
| int32_t currentButtonState = mCursorButtonAccumulator.getButtonState(); |
| mButtonState = currentButtonState; |
| |
| bool wasDown = isPointerDown(lastButtonState); |
| bool down = isPointerDown(currentButtonState); |
| bool downChanged; |
| if (!wasDown && down) { |
| mDownTime = when; |
| downChanged = true; |
| } else if (wasDown && !down) { |
| downChanged = true; |
| } else { |
| downChanged = false; |
| } |
| nsecs_t downTime = mDownTime; |
| bool buttonsChanged = currentButtonState != lastButtonState; |
| int32_t buttonsPressed = currentButtonState & ~lastButtonState; |
| int32_t buttonsReleased = lastButtonState & ~currentButtonState; |
| |
| float deltaX = mCursorMotionAccumulator.getRelativeX() * mXScale; |
| float deltaY = mCursorMotionAccumulator.getRelativeY() * mYScale; |
| bool moved = deltaX != 0 || deltaY != 0; |
| |
| // Rotate delta according to orientation if needed. |
| if (mParameters.orientationAware && mParameters.hasAssociatedDisplay |
| && (deltaX != 0.0f || deltaY != 0.0f)) { |
| rotateDelta(mOrientation, &deltaX, &deltaY); |
| } |
| |
| // Move the pointer. |
| PointerProperties pointerProperties; |
| pointerProperties.clear(); |
| pointerProperties.id = 0; |
| pointerProperties.toolType = AMOTION_EVENT_TOOL_TYPE_MOUSE; |
| |
| PointerCoords pointerCoords; |
| pointerCoords.clear(); |
| |
| float vscroll = mCursorScrollAccumulator.getRelativeVWheel(); |
| float hscroll = mCursorScrollAccumulator.getRelativeHWheel(); |
| bool scrolled = vscroll != 0 || hscroll != 0; |
| |
| mWheelYVelocityControl.move(when, NULL, &vscroll); |
| mWheelXVelocityControl.move(when, &hscroll, NULL); |
| |
| mPointerVelocityControl.move(when, &deltaX, &deltaY); |
| |
| int32_t displayId; |
| if (mSource == AINPUT_SOURCE_MOUSE) { |
| if (moved || scrolled || buttonsChanged) { |
| mPointerController->setPresentation( |
| PointerControllerInterface::PRESENTATION_POINTER); |
| |
| if (moved) { |
| mPointerController->move(deltaX, deltaY); |
| } |
| |
| if (buttonsChanged) { |
| mPointerController->setButtonState(currentButtonState); |
| } |
| |
| mPointerController->unfade(PointerControllerInterface::TRANSITION_IMMEDIATE); |
| } |
| |
| float x, y; |
| mPointerController->getPosition(&x, &y); |
| pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x); |
| pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y); |
| pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_RELATIVE_X, deltaX); |
| pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_RELATIVE_Y, deltaY); |
| displayId = ADISPLAY_ID_DEFAULT; |
| } else { |
| pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, deltaX); |
| pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, deltaY); |
| displayId = ADISPLAY_ID_NONE; |
| } |
| |
| pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, down ? 1.0f : 0.0f); |
| |
| // Moving an external trackball or mouse should wake the device. |
| // We don't do this for internal cursor devices to prevent them from waking up |
| // the device in your pocket. |
| // TODO: Use the input device configuration to control this behavior more finely. |
| uint32_t policyFlags = 0; |
| if ((buttonsPressed || moved || scrolled) && getDevice()->isExternal()) { |
| policyFlags |= POLICY_FLAG_WAKE; |
| } |
| |
| // Synthesize key down from buttons if needed. |
| synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_DOWN, when, getDeviceId(), mSource, |
| policyFlags, lastButtonState, currentButtonState); |
| |
| // Send motion event. |
| if (downChanged || moved || scrolled || buttonsChanged) { |
| int32_t metaState = mContext->getGlobalMetaState(); |
| int32_t buttonState = lastButtonState; |
| int32_t motionEventAction; |
| if (downChanged) { |
| motionEventAction = down ? AMOTION_EVENT_ACTION_DOWN : AMOTION_EVENT_ACTION_UP; |
| } else if (down || (mSource != AINPUT_SOURCE_MOUSE)) { |
| motionEventAction = AMOTION_EVENT_ACTION_MOVE; |
| } else { |
| motionEventAction = AMOTION_EVENT_ACTION_HOVER_MOVE; |
| } |
| |
| if (buttonsReleased) { |
| BitSet32 released(buttonsReleased); |
| while (!released.isEmpty()) { |
| int32_t actionButton = BitSet32::valueForBit(released.clearFirstMarkedBit()); |
| buttonState &= ~actionButton; |
| NotifyMotionArgs releaseArgs(when, getDeviceId(), mSource, policyFlags, |
| AMOTION_EVENT_ACTION_BUTTON_RELEASE, actionButton, 0, |
| metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, |
| displayId, /* deviceTimestamp */ 0, 1, &pointerProperties, &pointerCoords, |
| mXPrecision, mYPrecision, downTime); |
| getListener()->notifyMotion(&releaseArgs); |
| } |
| } |
| |
| NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, |
| motionEventAction, 0, 0, metaState, currentButtonState, |
| AMOTION_EVENT_EDGE_FLAG_NONE, |
| displayId, /* deviceTimestamp */ 0, 1, &pointerProperties, &pointerCoords, |
| mXPrecision, mYPrecision, downTime); |
| getListener()->notifyMotion(&args); |
| |
| if (buttonsPressed) { |
| BitSet32 pressed(buttonsPressed); |
| while (!pressed.isEmpty()) { |
| int32_t actionButton = BitSet32::valueForBit(pressed.clearFirstMarkedBit()); |
| buttonState |= actionButton; |
| NotifyMotionArgs pressArgs(when, getDeviceId(), mSource, policyFlags, |
| AMOTION_EVENT_ACTION_BUTTON_PRESS, actionButton, 0, |
| metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, |
| displayId, /* deviceTimestamp */ 0, 1, &pointerProperties, &pointerCoords, |
| mXPrecision, mYPrecision, downTime); |
| getListener()->notifyMotion(&pressArgs); |
| } |
| } |
| |
| ALOG_ASSERT(buttonState == currentButtonState); |
| |
| // Send hover move after UP to tell the application that the mouse is hovering now. |
| if (motionEventAction == AMOTION_EVENT_ACTION_UP |
| && (mSource == AINPUT_SOURCE_MOUSE)) { |
| NotifyMotionArgs hoverArgs(when, getDeviceId(), mSource, policyFlags, |
| AMOTION_EVENT_ACTION_HOVER_MOVE, 0, 0, |
| metaState, currentButtonState, AMOTION_EVENT_EDGE_FLAG_NONE, |
| displayId, /* deviceTimestamp */ 0, 1, &pointerProperties, &pointerCoords, |
| mXPrecision, mYPrecision, downTime); |
| getListener()->notifyMotion(&hoverArgs); |
| } |
| |
| // Send scroll events. |
| if (scrolled) { |
| pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_VSCROLL, vscroll); |
| pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_HSCROLL, hscroll); |
| |
| NotifyMotionArgs scrollArgs(when, getDeviceId(), mSource, policyFlags, |
| AMOTION_EVENT_ACTION_SCROLL, 0, 0, metaState, currentButtonState, |
| AMOTION_EVENT_EDGE_FLAG_NONE, |
| displayId, /* deviceTimestamp */ 0, 1, &pointerProperties, &pointerCoords, |
| mXPrecision, mYPrecision, downTime); |
| getListener()->notifyMotion(&scrollArgs); |
| } |
| } |
| |
| // Synthesize key up from buttons if needed. |
| synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_UP, when, getDeviceId(), mSource, |
| policyFlags, lastButtonState, currentButtonState); |
| |
| mCursorMotionAccumulator.finishSync(); |
| mCursorScrollAccumulator.finishSync(); |
| } |
| |
| int32_t CursorInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { |
| if (scanCode >= BTN_MOUSE && scanCode < BTN_JOYSTICK) { |
| return getEventHub()->getScanCodeState(getDeviceId(), scanCode); |
| } else { |
| return AKEY_STATE_UNKNOWN; |
| } |
| } |
| |
| void CursorInputMapper::fadePointer() { |
| if (mPointerController != NULL) { |
| mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL); |
| } |
| } |
| |
| // --- RotaryEncoderInputMapper --- |
| |
| RotaryEncoderInputMapper::RotaryEncoderInputMapper(InputDevice* device) : |
| InputMapper(device), mOrientation(DISPLAY_ORIENTATION_0) { |
| mSource = AINPUT_SOURCE_ROTARY_ENCODER; |
| } |
| |
| RotaryEncoderInputMapper::~RotaryEncoderInputMapper() { |
| } |
| |
| uint32_t RotaryEncoderInputMapper::getSources() { |
| return mSource; |
| } |
| |
| void RotaryEncoderInputMapper::populateDeviceInfo(InputDeviceInfo* info) { |
| InputMapper::populateDeviceInfo(info); |
| |
| if (mRotaryEncoderScrollAccumulator.haveRelativeVWheel()) { |
| float res = 0.0f; |
| if (!mDevice->getConfiguration().tryGetProperty(String8("device.res"), res)) { |
| ALOGW("Rotary Encoder device configuration file didn't specify resolution!\n"); |
| } |
| if (!mDevice->getConfiguration().tryGetProperty(String8("device.scalingFactor"), |
| mScalingFactor)) { |
| ALOGW("Rotary Encoder device configuration file didn't specify scaling factor," |
| "default to 1.0!\n"); |
| mScalingFactor = 1.0f; |
| } |
| info->addMotionRange(AMOTION_EVENT_AXIS_SCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f, |
| res * mScalingFactor); |
| } |
| } |
| |
| void RotaryEncoderInputMapper::dump(std::string& dump) { |
| dump += INDENT2 "Rotary Encoder Input Mapper:\n"; |
| dump += StringPrintf(INDENT3 "HaveWheel: %s\n", |
| toString(mRotaryEncoderScrollAccumulator.haveRelativeVWheel())); |
| } |
| |
| void RotaryEncoderInputMapper::configure(nsecs_t when, |
| const InputReaderConfiguration* config, uint32_t changes) { |
| InputMapper::configure(when, config, changes); |
| if (!changes) { |
| mRotaryEncoderScrollAccumulator.configure(getDevice()); |
| } |
| if (!changes || (changes & InputReaderConfiguration::CHANGE_DISPLAY_INFO)) { |
| DisplayViewport v; |
| if (config->getDisplayViewport(ViewportType::VIEWPORT_INTERNAL, NULL, &v)) { |
| mOrientation = v.orientation; |
| } else { |
| mOrientation = DISPLAY_ORIENTATION_0; |
| } |
| } |
| } |
| |
| void RotaryEncoderInputMapper::reset(nsecs_t when) { |
| mRotaryEncoderScrollAccumulator.reset(getDevice()); |
| |
| InputMapper::reset(when); |
| } |
| |
| void RotaryEncoderInputMapper::process(const RawEvent* rawEvent) { |
| mRotaryEncoderScrollAccumulator.process(rawEvent); |
| |
| if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) { |
| sync(rawEvent->when); |
| } |
| } |
| |
| void RotaryEncoderInputMapper::sync(nsecs_t when) { |
| PointerCoords pointerCoords; |
| pointerCoords.clear(); |
| |
| PointerProperties pointerProperties; |
| pointerProperties.clear(); |
| pointerProperties.id = 0; |
| pointerProperties.toolType = AMOTION_EVENT_TOOL_TYPE_UNKNOWN; |
| |
| float scroll = mRotaryEncoderScrollAccumulator.getRelativeVWheel(); |
| bool scrolled = scroll != 0; |
| |
| // This is not a pointer, so it's not associated with a display. |
| int32_t displayId = ADISPLAY_ID_NONE; |
| |
| // Moving the rotary encoder should wake the device (if specified). |
| uint32_t policyFlags = 0; |
| if (scrolled && getDevice()->isExternal()) { |
| policyFlags |= POLICY_FLAG_WAKE; |
| } |
| |
| if (mOrientation == DISPLAY_ORIENTATION_180) { |
| scroll = -scroll; |
| } |
| |
| // Send motion event. |
| if (scrolled) { |
| int32_t metaState = mContext->getGlobalMetaState(); |
| pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_SCROLL, scroll * mScalingFactor); |
| |
| NotifyMotionArgs scrollArgs(when, getDeviceId(), mSource, policyFlags, |
| AMOTION_EVENT_ACTION_SCROLL, 0, 0, metaState, 0, |
| AMOTION_EVENT_EDGE_FLAG_NONE, |
| displayId, /* deviceTimestamp */ 0, 1, &pointerProperties, &pointerCoords, |
| 0, 0, 0); |
| getListener()->notifyMotion(&scrollArgs); |
| } |
| |
| mRotaryEncoderScrollAccumulator.finishSync(); |
| } |
| |
| // --- TouchInputMapper --- |
| |
| TouchInputMapper::TouchInputMapper(InputDevice* device) : |
| InputMapper(device), |
| mSource(0), mDeviceMode(DEVICE_MODE_DISABLED), |
| mSurfaceWidth(-1), mSurfaceHeight(-1), mSurfaceLeft(0), mSurfaceTop(0), |
| mPhysicalWidth(-1), mPhysicalHeight(-1), mPhysicalLeft(0), mPhysicalTop(0), |
| mSurfaceOrientation(DISPLAY_ORIENTATION_0) { |
| } |
| |
| TouchInputMapper::~TouchInputMapper() { |
| } |
| |
| uint32_t TouchInputMapper::getSources() { |
| return mSource; |
| } |
| |
| void TouchInputMapper::populateDeviceInfo(InputDeviceInfo* info) { |
| InputMapper::populateDeviceInfo(info); |
| |
| if (mDeviceMode != DEVICE_MODE_DISABLED) { |
| info->addMotionRange(mOrientedRanges.x); |
| info->addMotionRange(mOrientedRanges.y); |
| info->addMotionRange(mOrientedRanges.pressure); |
| |
| if (mOrientedRanges.haveSize) { |
| info->addMotionRange(mOrientedRanges.size); |
| } |
| |
| if (mOrientedRanges.haveTouchSize) { |
| info->addMotionRange(mOrientedRanges.touchMajor); |
| info->addMotionRange(mOrientedRanges.touchMinor); |
| } |
| |
| if (mOrientedRanges.haveToolSize) { |
| info->addMotionRange(mOrientedRanges.toolMajor); |
| info->addMotionRange(mOrientedRanges.toolMinor); |
| } |
| |
| if (mOrientedRanges.haveOrientation) { |
| info->addMotionRange(mOrientedRanges.orientation); |
| } |
| |
| if (mOrientedRanges.haveDistance) { |
| info->addMotionRange(mOrientedRanges.distance); |
| } |
| |
| if (mOrientedRanges.haveTilt) { |
| info->addMotionRange(mOrientedRanges.tilt); |
| } |
| |
| if (mCursorScrollAccumulator.haveRelativeVWheel()) { |
| info->addMotionRange(AMOTION_EVENT_AXIS_VSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f, |
| 0.0f); |
| } |
| if (mCursorScrollAccumulator.haveRelativeHWheel()) { |
| info->addMotionRange(AMOTION_EVENT_AXIS_HSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f, |
| 0.0f); |
| } |
| if (mCalibration.coverageCalibration == Calibration::COVERAGE_CALIBRATION_BOX) { |
| const InputDeviceInfo::MotionRange& x = mOrientedRanges.x; |
| const InputDeviceInfo::MotionRange& y = mOrientedRanges.y; |
| info->addMotionRange(AMOTION_EVENT_AXIS_GENERIC_1, mSource, x.min, x.max, x.flat, |
| x.fuzz, x.resolution); |
| info->addMotionRange(AMOTION_EVENT_AXIS_GENERIC_2, mSource, y.min, y.max, y.flat, |
| y.fuzz, y.resolution); |
| info->addMotionRange(AMOTION_EVENT_AXIS_GENERIC_3, mSource, x.min, x.max, x.flat, |
| x.fuzz, x.resolution); |
| info->addMotionRange(AMOTION_EVENT_AXIS_GENERIC_4, mSource, y.min, y.max, y.flat, |
| y.fuzz, y.resolution); |
| } |
| info->setButtonUnderPad(mParameters.hasButtonUnderPad); |
| } |
| } |
| |
| void TouchInputMapper::dump(std::string& dump) { |
| dump += StringPrintf(INDENT2 "Touch Input Mapper (mode - %s):\n", modeToString(mDeviceMode)); |
| dumpParameters(dump); |
| dumpVirtualKeys(dump); |
| dumpRawPointerAxes(dump); |
| dumpCalibration(dump); |
| dumpAffineTransformation(dump); |
| dumpSurface(dump); |
| |
| dump += StringPrintf(INDENT3 "Translation and Scaling Factors:\n"); |
| dump += StringPrintf(INDENT4 "XTranslate: %0.3f\n", mXTranslate); |
| dump += StringPrintf(INDENT4 "YTranslate: %0.3f\n", mYTranslate); |
| dump += StringPrintf(INDENT4 "XScale: %0.3f\n", mXScale); |
| dump += StringPrintf(INDENT4 "YScale: %0.3f\n", mYScale); |
| dump += StringPrintf(INDENT4 "XPrecision: %0.3f\n", mXPrecision); |
| dump += StringPrintf(INDENT4 "YPrecision: %0.3f\n", mYPrecision); |
| dump += StringPrintf(INDENT4 "GeometricScale: %0.3f\n", mGeometricScale); |
| dump += StringPrintf(INDENT4 "PressureScale: %0.3f\n", mPressureScale); |
| dump += StringPrintf(INDENT4 "SizeScale: %0.3f\n", mSizeScale); |
| dump += StringPrintf(INDENT4 "OrientationScale: %0.3f\n", mOrientationScale); |
| dump += StringPrintf(INDENT4 "DistanceScale: %0.3f\n", mDistanceScale); |
| dump += StringPrintf(INDENT4 "HaveTilt: %s\n", toString(mHaveTilt)); |
| dump += StringPrintf(INDENT4 "TiltXCenter: %0.3f\n", mTiltXCenter); |
| dump += StringPrintf(INDENT4 "TiltXScale: %0.3f\n", mTiltXScale); |
| dump += StringPrintf(INDENT4 "TiltYCenter: %0.3f\n", mTiltYCenter); |
| dump += StringPrintf(INDENT4 "TiltYScale: %0.3f\n", mTiltYScale); |
| |
| dump += StringPrintf(INDENT3 "Last Raw Button State: 0x%08x\n", mLastRawState.buttonState); |
| dump += StringPrintf(INDENT3 "Last Raw Touch: pointerCount=%d\n", |
| mLastRawState.rawPointerData.pointerCount); |
| for (uint32_t i = 0; i < mLastRawState.rawPointerData.pointerCount; i++) { |
| const RawPointerData::Pointer& pointer = mLastRawState.rawPointerData.pointers[i]; |
| dump += StringPrintf(INDENT4 "[%d]: id=%d, x=%d, y=%d, pressure=%d, " |
| "touchMajor=%d, touchMinor=%d, toolMajor=%d, toolMinor=%d, " |
| "orientation=%d, tiltX=%d, tiltY=%d, distance=%d, " |
| "toolType=%d, isHovering=%s\n", i, |
| pointer.id, pointer.x, pointer.y, pointer.pressure, |
| pointer.touchMajor, pointer.touchMinor, |
| pointer.toolMajor, pointer.toolMinor, |
| pointer.orientation, pointer.tiltX, pointer.tiltY, pointer.distance, |
| pointer.toolType, toString(pointer.isHovering)); |
| } |
| |
| dump += StringPrintf(INDENT3 "Last Cooked Button State: 0x%08x\n", mLastCookedState.buttonState); |
| dump += StringPrintf(INDENT3 "Last Cooked Touch: pointerCount=%d\n", |
| mLastCookedState.cookedPointerData.pointerCount); |
| for (uint32_t i = 0; i < mLastCookedState.cookedPointerData.pointerCount; i++) { |
| const PointerProperties& pointerProperties = |
| mLastCookedState.cookedPointerData.pointerProperties[i]; |
| const PointerCoords& pointerCoords = mLastCookedState.cookedPointerData.pointerCoords[i]; |
| dump += StringPrintf(INDENT4 "[%d]: id=%d, x=%0.3f, y=%0.3f, pressure=%0.3f, " |
| "touchMajor=%0.3f, touchMinor=%0.3f, toolMajor=%0.3f, toolMinor=%0.3f, " |
| "orientation=%0.3f, tilt=%0.3f, distance=%0.3f, " |
| "toolType=%d, isHovering=%s\n", i, |
| pointerProperties.id, |
| pointerCoords.getX(), |
| pointerCoords.getY(), |
| pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE), |
| pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR), |
| pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR), |
| pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR), |
| pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR), |
| pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION), |
| pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TILT), |
| pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_DISTANCE), |
| pointerProperties.toolType, |
| toString(mLastCookedState.cookedPointerData.isHovering(i))); |
| } |
| |
| dump += INDENT3 "Stylus Fusion:\n"; |
| dump += StringPrintf(INDENT4 "ExternalStylusConnected: %s\n", |
| toString(mExternalStylusConnected)); |
| dump += StringPrintf(INDENT4 "External Stylus ID: %" PRId64 "\n", mExternalStylusId); |
| dump += StringPrintf(INDENT4 "External Stylus Data Timeout: %" PRId64 "\n", |
| mExternalStylusFusionTimeout); |
| dump += INDENT3 "External Stylus State:\n"; |
| dumpStylusState(dump, mExternalStylusState); |
| |
| if (mDeviceMode == DEVICE_MODE_POINTER) { |
| dump += StringPrintf(INDENT3 "Pointer Gesture Detector:\n"); |
| dump += StringPrintf(INDENT4 "XMovementScale: %0.3f\n", |
| mPointerXMovementScale); |
| dump += StringPrintf(INDENT4 "YMovementScale: %0.3f\n", |
| mPointerYMovementScale); |
| dump += StringPrintf(INDENT4 "XZoomScale: %0.3f\n", |
| mPointerXZoomScale); |
| dump += StringPrintf(INDENT4 "YZoomScale: %0.3f\n", |
| mPointerYZoomScale); |
| dump += StringPrintf(INDENT4 "MaxSwipeWidth: %f\n", |
| mPointerGestureMaxSwipeWidth); |
| } |
| } |
| |
| const char* TouchInputMapper::modeToString(DeviceMode deviceMode) { |
| switch (deviceMode) { |
| case DEVICE_MODE_DISABLED: |
| return "disabled"; |
| case DEVICE_MODE_DIRECT: |
| return "direct"; |
| case DEVICE_MODE_UNSCALED: |
| return "unscaled"; |
| case DEVICE_MODE_NAVIGATION: |
| return "navigation"; |
| case DEVICE_MODE_POINTER: |
| return "pointer"; |
| } |
| return "unknown"; |
| } |
| |
| void TouchInputMapper::configure(nsecs_t when, |
| const InputReaderConfiguration* config, uint32_t changes) { |
| InputMapper::configure(when, config, changes); |
| |
| mConfig = *config; |
| |
| if (!changes) { // first time only |
| // Configure basic parameters. |
| configureParameters(); |
| |
| // Configure common accumulators. |
| mCursorScrollAccumulator.configure(getDevice()); |
| mTouchButtonAccumulator.configure(getDevice()); |
| |
| // Configure absolute axis information. |
| configureRawPointerAxes(); |
| |
| // Prepare input device calibration. |
| parseCalibration(); |
| resolveCalibration(); |
| } |
| |
| if (!changes || (changes & InputReaderConfiguration::CHANGE_TOUCH_AFFINE_TRANSFORMATION)) { |
| // Update location calibration to reflect current settings |
| updateAffineTransformation(); |
| } |
| |
| if (!changes || (changes & InputReaderConfiguration::CHANGE_POINTER_SPEED)) { |
| // Update pointer speed. |
| mPointerVelocityControl.setParameters(mConfig.pointerVelocityControlParameters); |
| mWheelXVelocityControl.setParameters(mConfig.wheelVelocityControlParameters); |
| mWheelYVelocityControl.setParameters(mConfig.wheelVelocityControlParameters); |
| } |
| |
| bool resetNeeded = false; |
| if (!changes || (changes & (InputReaderConfiguration::CHANGE_DISPLAY_INFO |
| | InputReaderConfiguration::CHANGE_POINTER_GESTURE_ENABLEMENT |
| | InputReaderConfiguration::CHANGE_SHOW_TOUCHES |
| | InputReaderConfiguration::CHANGE_EXTERNAL_STYLUS_PRESENCE))) { |
| // Configure device sources, surface dimensions, orientation and |
| // scaling factors. |
| configureSurface(when, &resetNeeded); |
| } |
| |
| if (changes && resetNeeded) { |
| // Send reset, unless this is the first time the device has been configured, |
| // in which case the reader will call reset itself after all mappers are ready. |
| getDevice()->notifyReset(when); |
| } |
| } |
| |
| void TouchInputMapper::resolveExternalStylusPresence() { |
| Vector<InputDeviceInfo> devices; |
| mContext->getExternalStylusDevices(devices); |
| mExternalStylusConnected = !devices.isEmpty(); |
| |
| if (!mExternalStylusConnected) { |
| resetExternalStylus(); |
| } |
| } |
| |
| void TouchInputMapper::configureParameters() { |
| // Use the pointer presentation mode for devices that do not support distinct |
| // multitouch. The spot-based presentation relies on being able to accurately |
| // locate two or more fingers on the touch pad. |
| mParameters.gestureMode = getEventHub()->hasInputProperty(getDeviceId(), INPUT_PROP_SEMI_MT) |
| ? Parameters::GESTURE_MODE_SINGLE_TOUCH : Parameters::GESTURE_MODE_MULTI_TOUCH; |
| |
| String8 gestureModeString; |
| if (getDevice()->getConfiguration().tryGetProperty(String8("touch.gestureMode"), |
| gestureModeString)) { |
| if (gestureModeString == "single-touch") { |
| mParameters.gestureMode = Parameters::GESTURE_MODE_SINGLE_TOUCH; |
| } else if (gestureModeString == "multi-touch") { |
| mParameters.gestureMode = Parameters::GESTURE_MODE_MULTI_TOUCH; |
| } else if (gestureModeString != "default") { |
| ALOGW("Invalid value for touch.gestureMode: '%s'", gestureModeString.string()); |
| } |
| } |
| |
| if (getEventHub()->hasInputProperty(getDeviceId(), INPUT_PROP_DIRECT)) { |
| // The device is a touch screen. |
| mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_SCREEN; |
| } else if (getEventHub()->hasInputProperty(getDeviceId(), INPUT_PROP_POINTER)) { |
| // The device is a pointing device like a track pad. |
| mParameters.deviceType = Parameters::DEVICE_TYPE_POINTER; |
| } else if (getEventHub()->hasRelativeAxis(getDeviceId(), REL_X) |
| || getEventHub()->hasRelativeAxis(getDeviceId(), REL_Y)) { |
| // The device is a cursor device with a touch pad attached. |
| // By default don't use the touch pad to move the pointer. |
| mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_PAD; |
| } else { |
| // The device is a touch pad of unknown purpose. |
| mParameters.deviceType = Parameters::DEVICE_TYPE_POINTER; |
| } |
| |
| mParameters.hasButtonUnderPad= |
| getEventHub()->hasInputProperty(getDeviceId(), INPUT_PROP_BUTTONPAD); |
| |
| String8 deviceTypeString; |
| if (getDevice()->getConfiguration().tryGetProperty(String8("touch.deviceType"), |
| deviceTypeString)) { |
| if (deviceTypeString == "touchScreen") { |
| mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_SCREEN; |
| } else if (deviceTypeString == "touchPad") { |
| mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_PAD; |
| } else if (deviceTypeString == "touchNavigation") { |
| mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_NAVIGATION; |
| } else if (deviceTypeString == "pointer") { |
| mParameters.deviceType = Parameters::DEVICE_TYPE_POINTER; |
| } else if (deviceTypeString != "default") { |
| ALOGW("Invalid value for touch.deviceType: '%s'", deviceTypeString.string()); |
| } |
| } |
| |
| mParameters.orientationAware = mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN; |
| getDevice()->getConfiguration().tryGetProperty(String8("touch.orientationAware"), |
| mParameters.orientationAware); |
| |
| mParameters.hasAssociatedDisplay = false; |
| mParameters.associatedDisplayIsExternal = false; |
| if (mParameters.orientationAware |
| || mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN |
| || mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER) { |
| mParameters.hasAssociatedDisplay = true; |
| if (mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN) { |
| mParameters.associatedDisplayIsExternal = getDevice()->isExternal(); |
| getDevice()->getConfiguration().tryGetProperty(String8("touch.displayId"), |
| mParameters.uniqueDisplayId); |
| } |
| } |
| |
| // Initial downs on external touch devices should wake the device. |
| // Normally we don't do this for internal touch screens to prevent them from waking |
| // up in your pocket but you can enable it using the input device configuration. |
| mParameters.wake = getDevice()->isExternal(); |
| getDevice()->getConfiguration().tryGetProperty(String8("touch.wake"), |
| mParameters.wake); |
| } |
| |
| void TouchInputMapper::dumpParameters(std::string& dump) { |
| dump += INDENT3 "Parameters:\n"; |
| |
| switch (mParameters.gestureMode) { |
| case Parameters::GESTURE_MODE_SINGLE_TOUCH: |
| dump += INDENT4 "GestureMode: single-touch\n"; |
| break; |
| case Parameters::GESTURE_MODE_MULTI_TOUCH: |
| dump += INDENT4 "GestureMode: multi-touch\n"; |
| break; |
| default: |
| assert(false); |
| } |
| |
| switch (mParameters.deviceType) { |
| case Parameters::DEVICE_TYPE_TOUCH_SCREEN: |
| dump += INDENT4 "DeviceType: touchScreen\n"; |
| break; |
| case Parameters::DEVICE_TYPE_TOUCH_PAD: |
| dump += INDENT4 "DeviceType: touchPad\n"; |
| break; |
| case Parameters::DEVICE_TYPE_TOUCH_NAVIGATION: |
| dump += INDENT4 "DeviceType: touchNavigation\n"; |
| break; |
| case Parameters::DEVICE_TYPE_POINTER: |
| dump += INDENT4 "DeviceType: pointer\n"; |
| break; |
| default: |
| ALOG_ASSERT(false); |
| } |
| |
| dump += StringPrintf( |
| INDENT4 "AssociatedDisplay: hasAssociatedDisplay=%s, isExternal=%s, displayId='%s'\n", |
| toString(mParameters.hasAssociatedDisplay), |
| toString(mParameters.associatedDisplayIsExternal), |
| mParameters.uniqueDisplayId.c_str()); |
| dump += StringPrintf(INDENT4 "OrientationAware: %s\n", |
| toString(mParameters.orientationAware)); |
| } |
| |
| void TouchInputMapper::configureRawPointerAxes() { |
| mRawPointerAxes.clear(); |
| } |
| |
| void TouchInputMapper::dumpRawPointerAxes(std::string& dump) { |
| dump += INDENT3 "Raw Touch Axes:\n"; |
| dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.x, "X"); |
| dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.y, "Y"); |
| dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.pressure, "Pressure"); |
| dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.touchMajor, "TouchMajor"); |
| dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.touchMinor, "TouchMinor"); |
| dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.toolMajor, "ToolMajor"); |
| dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.toolMinor, "ToolMinor"); |
| dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.orientation, "Orientation"); |
| dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.distance, "Distance"); |
| dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.tiltX, "TiltX"); |
| dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.tiltY, "TiltY"); |
| dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.trackingId, "TrackingId"); |
| dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.slot, "Slot"); |
| } |
| |
| bool TouchInputMapper::hasExternalStylus() const { |
| return mExternalStylusConnected; |
| } |
| |
| void TouchInputMapper::configureSurface(nsecs_t when, bool* outResetNeeded) { |
| int32_t oldDeviceMode = mDeviceMode; |
| |
| resolveExternalStylusPresence(); |
| |
| // Determine device mode. |
| if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER |
| && mConfig.pointerGesturesEnabled) { |
| mSource = AINPUT_SOURCE_MOUSE; |
| mDeviceMode = DEVICE_MODE_POINTER; |
| if (hasStylus()) { |
| mSource |= AINPUT_SOURCE_STYLUS; |
| } |
| } else if (mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN |
| && mParameters.hasAssociatedDisplay) { |
| mSource = AINPUT_SOURCE_TOUCHSCREEN; |
| mDeviceMode = DEVICE_MODE_DIRECT; |
| if (hasStylus()) { |
| mSource |= AINPUT_SOURCE_STYLUS; |
| } |
| if (hasExternalStylus()) { |
| mSource |= AINPUT_SOURCE_BLUETOOTH_STYLUS; |
| } |
| } else if (mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_NAVIGATION) { |
| mSource = AINPUT_SOURCE_TOUCH_NAVIGATION; |
| mDeviceMode = DEVICE_MODE_NAVIGATION; |
| } else { |
| mSource = AINPUT_SOURCE_TOUCHPAD; |
| mDeviceMode = DEVICE_MODE_UNSCALED; |
| } |
| |
| // Ensure we have valid X and Y axes. |
| if (!mRawPointerAxes.x.valid || !mRawPointerAxes.y.valid) { |
| ALOGW(INDENT "Touch device '%s' did not report support for X or Y axis! " |
| "The device will be inoperable.", getDeviceName().string()); |
| mDeviceMode = DEVICE_MODE_DISABLED; |
| return; |
| } |
| |
| // Raw width and height in the natural orientation. |
| int32_t rawWidth = mRawPointerAxes.x.maxValue - mRawPointerAxes.x.minValue + 1; |
| int32_t rawHeight = mRawPointerAxes.y.maxValue - mRawPointerAxes.y.minValue + 1; |
| |
| // Get associated display dimensions. |
| DisplayViewport newViewport; |
| if (mParameters.hasAssociatedDisplay) { |
| const String8* uniqueDisplayId = NULL; |
| ViewportType viewportTypeToUse; |
| |
| if (mParameters.associatedDisplayIsExternal) { |
| viewportTypeToUse = ViewportType::VIEWPORT_EXTERNAL; |
| } else if (!mParameters.uniqueDisplayId.isEmpty()) { |
| // If the IDC file specified a unique display Id, then it expects to be linked to a |
| // virtual display with the same unique ID. |
| uniqueDisplayId = &mParameters.uniqueDisplayId; |
| viewportTypeToUse = ViewportType::VIEWPORT_VIRTUAL; |
| } else { |
| viewportTypeToUse = ViewportType::VIEWPORT_INTERNAL; |
| } |
| |
| if (!mConfig.getDisplayViewport(viewportTypeToUse, uniqueDisplayId, &newViewport)) { |
| ALOGI(INDENT "Touch device '%s' could not query the properties of its associated " |
| "display. The device will be inoperable until the display size " |
| "becomes available.", |
| getDeviceName().string()); |
| mDeviceMode = DEVICE_MODE_DISABLED; |
| return; |
| } |
| } else { |
| newViewport.setNonDisplayViewport(rawWidth, rawHeight); |
| } |
| bool viewportChanged = mViewport != newViewport; |
| if (viewportChanged) { |
| mViewport = newViewport; |
| |
| if (mDeviceMode == DEVICE_MODE_DIRECT || mDeviceMode == DEVICE_MODE_POINTER) { |
| // Convert rotated viewport to natural surface coordinates. |
| int32_t naturalLogicalWidth, naturalLogicalHeight; |
| int32_t naturalPhysicalWidth, naturalPhysicalHeight; |
| int32_t naturalPhysicalLeft, naturalPhysicalTop; |
| int32_t naturalDeviceWidth, naturalDeviceHeight; |
| switch (mViewport.orientation) { |
| case DISPLAY_ORIENTATION_90: |
| naturalLogicalWidth = mViewport.logicalBottom - mViewport.logicalTop; |
| naturalLogicalHeight = mViewport.logicalRight - mViewport.logicalLeft; |
| naturalPhysicalWidth = mViewport.physicalBottom - mViewport.physicalTop; |
| naturalPhysicalHeight = mViewport.physicalRight - mViewport.physicalLeft; |
| naturalPhysicalLeft = mViewport.deviceHeight - mViewport.physicalBottom; |
| naturalPhysicalTop = mViewport.physicalLeft; |
| naturalDeviceWidth = mViewport.deviceHeight; |
| naturalDeviceHeight = mViewport.deviceWidth; |
| break; |
| case DISPLAY_ORIENTATION_180: |
| naturalLogicalWidth = mViewport.logicalRight - mViewport.logicalLeft; |
| naturalLogicalHeight = mViewport.logicalBottom - mViewport.logicalTop; |
| naturalPhysicalWidth = mViewport.physicalRight - mViewport.physicalLeft; |
| naturalPhysicalHeight = mViewport.physicalBottom - mViewport.physicalTop; |
| naturalPhysicalLeft = mViewport.deviceWidth - mViewport.physicalRight; |
| naturalPhysicalTop = mViewport.deviceHeight - mViewport.physicalBottom; |
| naturalDeviceWidth = mViewport.deviceWidth; |
| naturalDeviceHeight = mViewport.deviceHeight; |
| break; |
| case DISPLAY_ORIENTATION_270: |
| naturalLogicalWidth = mViewport.logicalBottom - mViewport.logicalTop; |
| naturalLogicalHeight = mViewport.logicalRight - mViewport.logicalLeft; |
| naturalPhysicalWidth = mViewport.physicalBottom - mViewport.physicalTop; |
| naturalPhysicalHeight = mViewport.physicalRight - mViewport.physicalLeft; |
| naturalPhysicalLeft = mViewport.physicalTop; |
| naturalPhysicalTop = mViewport.deviceWidth - mViewport.physicalRight; |
| naturalDeviceWidth = mViewport.deviceHeight; |
| naturalDeviceHeight = mViewport.deviceWidth; |
| break; |
| case DISPLAY_ORIENTATION_0: |
| default: |
| naturalLogicalWidth = mViewport.logicalRight - mViewport.logicalLeft; |
| naturalLogicalHeight = mViewport.logicalBottom - mViewport.logicalTop; |
| naturalPhysicalWidth = mViewport.physicalRight - mViewport.physicalLeft; |
| naturalPhysicalHeight = mViewport.physicalBottom - mViewport.physicalTop; |
| naturalPhysicalLeft = mViewport.physicalLeft; |
| naturalPhysicalTop = mViewport.physicalTop; |
| naturalDeviceWidth = mViewport.deviceWidth; |
| naturalDeviceHeight = mViewport.deviceHeight; |
| break; |
| } |
| |
| mPhysicalWidth = naturalPhysicalWidth; |
| mPhysicalHeight = naturalPhysicalHeight; |
| mPhysicalLeft = naturalPhysicalLeft; |
| mPhysicalTop = naturalPhysicalTop; |
| |
| mSurfaceWidth = naturalLogicalWidth * naturalDeviceWidth / naturalPhysicalWidth; |
| mSurfaceHeight = naturalLogicalHeight * naturalDeviceHeight / naturalPhysicalHeight; |
| mSurfaceLeft = naturalPhysicalLeft * naturalLogicalWidth / naturalPhysicalWidth; |
| mSurfaceTop = naturalPhysicalTop * naturalLogicalHeight / naturalPhysicalHeight; |
| |
| mSurfaceOrientation = mParameters.orientationAware ? |
| mViewport.orientation : DISPLAY_ORIENTATION_0; |
| } else { |
| mPhysicalWidth = rawWidth; |
| mPhysicalHeight = rawHeight; |
| mPhysicalLeft = 0; |
| mPhysicalTop = 0; |
| |
| mSurfaceWidth = rawWidth; |
| mSurfaceHeight = rawHeight; |
| mSurfaceLeft = 0; |
| mSurfaceTop = 0; |
| mSurfaceOrientation = DISPLAY_ORIENTATION_0; |
| } |
| } |
| |
| // If moving between pointer modes, need to reset some state. |
| bool deviceModeChanged = mDeviceMode != oldDeviceMode; |
| if (deviceModeChanged) { |
| mOrientedRanges.clear(); |
| } |
| |
| // Create pointer controller if needed. |
| if (mDeviceMode == DEVICE_MODE_POINTER || |
| (mDeviceMode == DEVICE_MODE_DIRECT && mConfig.showTouches)) { |
| if (mPointerController == NULL) { |
| mPointerController = getPolicy()->obtainPointerController(getDeviceId()); |
| } |
| } else { |
| mPointerController.clear(); |
| } |
| |
| if (viewportChanged || deviceModeChanged) { |
| ALOGI("Device reconfigured: id=%d, name='%s', size %dx%d, orientation %d, mode %d, " |
| "display id %d", |
| getDeviceId(), getDeviceName().string(), mSurfaceWidth, mSurfaceHeight, |
| mSurfaceOrientation, mDeviceMode, mViewport.displayId); |
| |
| // Configure X and Y factors. |
| mXScale = float(mSurfaceWidth) / rawWidth; |
| mYScale = float(mSurfaceHeight) / rawHeight; |
| mXTranslate = -mSurfaceLeft; |
| mYTranslate = -mSurfaceTop; |
| mXPrecision = 1.0f / mXScale; |
| mYPrecision = 1.0f / mYScale; |
| |
| mOrientedRanges.x.axis = AMOTION_EVENT_AXIS_X; |
| mOrientedRanges.x.source = mSource; |
| mOrientedRanges.y.axis = AMOTION_EVENT_AXIS_Y; |
| mOrientedRanges.y.source = mSource; |
| |
| configureVirtualKeys(); |
| |
| // Scale factor for terms that are not oriented in a particular axis. |
| // If the pixels are square then xScale == yScale otherwise we fake it |
| // by choosing an average. |
| mGeometricScale = avg(mXScale, mYScale); |
| |
| // Size of diagonal axis. |
| float diagonalSize = hypotf(mSurfaceWidth, mSurfaceHeight); |
| |
| // Size factors. |
| if (mCalibration.sizeCalibration != Calibration::SIZE_CALIBRATION_NONE) { |
| if (mRawPointerAxes.touchMajor.valid |
| && mRawPointerAxes.touchMajor.maxValue != 0) { |
| mSizeScale = 1.0f / mRawPointerAxes.touchMajor.maxValue; |
| } else if (mRawPointerAxes.toolMajor.valid |
| && mRawPointerAxes.toolMajor.maxValue != 0) { |
| mSizeScale = 1.0f / mRawPointerAxes.toolMajor.maxValue; |
| } else { |
| mSizeScale = 0.0f; |
| } |
| |
| mOrientedRanges.haveTouchSize = true; |
| mOrientedRanges.haveToolSize = true; |
| mOrientedRanges.haveSize = true; |
| |
| mOrientedRanges.touchMajor.axis = AMOTION_EVENT_AXIS_TOUCH_MAJOR; |
| mOrientedRanges.touchMajor.source = mSource; |
| mOrientedRanges.touchMajor.min = 0; |
| mOrientedRanges.touchMajor.max = diagonalSize; |
| mOrientedRanges.touchMajor.flat = 0; |
| mOrientedRanges.touchMajor.fuzz = 0; |
| mOrientedRanges.touchMajor.resolution = 0; |
| |
| mOrientedRanges.touchMinor = mOrientedRanges.touchMajor; |
| mOrientedRanges.touchMinor.axis = AMOTION_EVENT_AXIS_TOUCH_MINOR; |
| |
| mOrientedRanges.toolMajor.axis = AMOTION_EVENT_AXIS_TOOL_MAJOR; |
| mOrientedRanges.toolMajor.source = mSource; |
| mOrientedRanges.toolMajor.min = 0; |
| mOrientedRanges.toolMajor.max = diagonalSize; |
| mOrientedRanges.toolMajor.flat = 0; |
| mOrientedRanges.toolMajor.fuzz = 0; |
| mOrientedRanges.toolMajor.resolution = 0; |
| |
| mOrientedRanges.toolMinor = mOrientedRanges.toolMajor; |
| mOrientedRanges.toolMinor.axis = AMOTION_EVENT_AXIS_TOOL_MINOR; |
| |
| mOrientedRanges.size.axis = AMOTION_EVENT_AXIS_SIZE; |
| mOrientedRanges.size.source = mSource; |
| mOrientedRanges.size.min = 0; |
| mOrientedRanges.size.max = 1.0; |
| mOrientedRanges.size.flat = 0; |
| mOrientedRanges.size.fuzz = 0; |
| mOrientedRanges.size.resolution = 0; |
| } else { |
| mSizeScale = 0.0f; |
| } |
| |
| // Pressure factors. |
| mPressureScale = 0; |
| float pressureMax = 1.0; |
| if (mCalibration.pressureCalibration == Calibration::PRESSURE_CALIBRATION_PHYSICAL |
| || mCalibration.pressureCalibration |
| == Calibration::PRESSURE_CALIBRATION_AMPLITUDE) { |
| if (mCalibration.havePressureScale) { |
| mPressureScale = mCalibration.pressureScale; |
| pressureMax = mPressureScale * mRawPointerAxes.pressure.maxValue; |
| } else if (mRawPointerAxes.pressure.valid |
| && mRawPointerAxes.pressure.maxValue != 0) { |
| mPressureScale = 1.0f / mRawPointerAxes.pressure.maxValue; |
| } |
| } |
| |
| mOrientedRanges.pressure.axis = AMOTION_EVENT_AXIS_PRESSURE; |
| mOrientedRanges.pressure.source = mSource; |
| mOrientedRanges.pressure.min = 0; |
| mOrientedRanges.pressure.max = pressureMax; |
| mOrientedRanges.pressure.flat = 0; |
| mOrientedRanges.pressure.fuzz = 0; |
| mOrientedRanges.pressure.resolution = 0; |
| |
| // Tilt |
| mTiltXCenter = 0; |
| mTiltXScale = 0; |
| mTiltYCenter = 0; |
| mTiltYScale = 0; |
| mHaveTilt = mRawPointerAxes.tiltX.valid && mRawPointerAxes.tiltY.valid; |
| if (mHaveTilt) { |
| mTiltXCenter = avg(mRawPointerAxes.tiltX.minValue, |
| mRawPointerAxes.tiltX.maxValue); |
| mTiltYCenter = avg(mRawPointerAxes.tiltY.minValue, |
| mRawPointerAxes.tiltY.maxValue); |
| mTiltXScale = M_PI / 180; |
| mTiltYScale = M_PI / 180; |
| |
| mOrientedRanges.haveTilt = true; |
| |
| mOrientedRanges.tilt.axis = AMOTION_EVENT_AXIS_TILT; |
| mOrientedRanges.tilt.source = mSource; |
| mOrientedRanges.tilt.min = 0; |
| mOrientedRanges.tilt.max = M_PI_2; |
| mOrientedRanges.tilt.flat = 0; |
| mOrientedRanges.tilt.fuzz = 0; |
| mOrientedRanges.tilt.resolution = 0; |
| } |
| |
| // Orientation |
| mOrientationScale = 0; |
| if (mHaveTilt) { |
| mOrientedRanges.haveOrientation = true; |
| |
| mOrientedRanges.orientation.axis = AMOTION_EVENT_AXIS_ORIENTATION; |
| mOrientedRanges.orientation.source = mSource; |
| mOrientedRanges.orientation.min = -M_PI; |
| mOrientedRanges.orientation.max = M_PI; |
| mOrientedRanges.orientation.flat = 0; |
| mOrientedRanges.orientation.fuzz = 0; |
| mOrientedRanges.orientation.resolution = 0; |
| } else if (mCalibration.orientationCalibration != |
| Calibration::ORIENTATION_CALIBRATION_NONE) { |
| if (mCalibration.orientationCalibration |
| == Calibration::ORIENTATION_CALIBRATION_INTERPOLATED) { |
| if (mRawPointerAxes.orientation.valid) { |
| if (mRawPointerAxes.orientation.maxValue > 0) { |
| mOrientationScale = M_PI_2 / mRawPointerAxes.orientation.maxValue; |
| } else if (mRawPointerAxes.orientation.minValue < 0) { |
| mOrientationScale = -M_PI_2 / mRawPointerAxes.orientation.minValue; |
| } else { |
| mOrientationScale = 0; |
| } |
| } |
| } |
| |
| mOrientedRanges.haveOrientation = true; |
| |
| mOrientedRanges.orientation.axis = AMOTION_EVENT_AXIS_ORIENTATION; |
| mOrientedRanges.orientation.source = mSource; |
| mOrientedRanges.orientation.min = -M_PI_2; |
| mOrientedRanges.orientation.max = M_PI_2; |
| mOrientedRanges.orientation.flat = 0; |
| mOrientedRanges.orientation.fuzz = 0; |
| mOrientedRanges.orientation.resolution = 0; |
| } |
| |
| // Distance |
| mDistanceScale = 0; |
| if (mCalibration.distanceCalibration != Calibration::DISTANCE_CALIBRATION_NONE) { |
| if (mCalibration.distanceCalibration |
| == Calibration::DISTANCE_CALIBRATION_SCALED) { |
| if (mCalibration.haveDistanceScale) { |
| mDistanceScale = mCalibration.distanceScale; |
| } else { |
| mDistanceScale = 1.0f; |
| } |
| } |
| |
| mOrientedRanges.haveDistance = true; |
| |
| mOrientedRanges.distance.axis = AMOTION_EVENT_AXIS_DISTANCE; |
| mOrientedRanges.distance.source = mSource; |
| mOrientedRanges.distance.min = |
| mRawPointerAxes.distance.minValue * mDistanceScale; |
| mOrientedRanges.distance.max = |
| mRawPointerAxes.distance.maxValue * mDistanceScale; |
| mOrientedRanges.distance.flat = 0; |
| mOrientedRanges.distance.fuzz = |
| mRawPointerAxes.distance.fuzz * mDistanceScale; |
| mOrientedRanges.distance.resolution = 0; |
| } |
| |
| // Compute oriented precision, scales and ranges. |
| // Note that the maximum value reported is an inclusive maximum value so it is one |
| // unit less than the total width or height of surface. |
| switch (mSurfaceOrientation) { |
| case DISPLAY_ORIENTATION_90: |
| case DISPLAY_ORIENTATION_270: |
| mOrientedXPrecision = mYPrecision; |
| mOrientedYPrecision = mXPrecision; |
| |
| mOrientedRanges.x.min = mYTranslate; |
| mOrientedRanges.x.max = mSurfaceHeight + mYTranslate - 1; |
| mOrientedRanges.x.flat = 0; |
| mOrientedRanges.x.fuzz = 0; |
| mOrientedRanges.x.resolution = mRawPointerAxes.y.resolution * mYScale; |
| |
| mOrientedRanges.y.min = mXTranslate; |
| mOrientedRanges.y.max = mSurfaceWidth + mXTranslate - 1; |
| mOrientedRanges.y.flat = 0; |
| mOrientedRanges.y.fuzz = 0; |
| mOrientedRanges.y.resolution = mRawPointerAxes.x.resolution * mXScale; |
| break; |
| |
| default: |
| mOrientedXPrecision = mXPrecision; |
| mOrientedYPrecision = mYPrecision; |
| |
| mOrientedRanges.x.min = mXTranslate; |
| mOrientedRanges.x.max = mSurfaceWidth + mXTranslate - 1; |
| mOrientedRanges.x.flat = 0; |
| mOrientedRanges.x.fuzz = 0; |
| mOrientedRanges.x.resolution = mRawPointerAxes.x.resolution * mXScale; |
| |
| mOrientedRanges.y.min = mYTranslate; |
| mOrientedRanges.y.max = mSurfaceHeight + mYTranslate - 1; |
| mOrientedRanges.y.flat = 0; |
| mOrientedRanges.y.fuzz = 0; |
| mOrientedRanges.y.resolution = mRawPointerAxes.y.resolution * mYScale; |
| break; |
| } |
| |
| // Location |
| updateAffineTransformation(); |
| |
| if (mDeviceMode == DEVICE_MODE_POINTER) { |
| // Compute pointer gesture detection parameters. |
| float rawDiagonal = hypotf(rawWidth, rawHeight); |
| float displayDiagonal = hypotf(mSurfaceWidth, mSurfaceHeight); |
| |
| // Scale movements such that one whole swipe of the touch pad covers a |
| // given area relative to the diagonal size of the display when no acceleration |
| // is applied. |
| // Assume that the touch pad has a square aspect ratio such that movements in |
| // X and Y of the same number of raw units cover the same physical distance. |
| mPointerXMovementScale = mConfig.pointerGestureMovementSpeedRatio |
| * displayDiagonal / rawDiagonal; |
| mPointerYMovementScale = mPointerXMovementScale; |
| |
| // Scale zooms to cover a smaller range of the display than movements do. |
| // This value determines the area around the pointer that is affected by freeform |
| // pointer gestures. |
| mPointerXZoomScale = mConfig.pointerGestureZoomSpeedRatio |
| * displayDiagonal / rawDiagonal; |
| mPointerYZoomScale = mPointerXZoomScale; |
| |
| // Max width between pointers to detect a swipe gesture is more than some fraction |
| // of the diagonal axis of the touch pad. Touches that are wider than this are |
| // translated into freeform gestures. |
| mPointerGestureMaxSwipeWidth = |
| mConfig.pointerGestureSwipeMaxWidthRatio * rawDiagonal; |
| |
| // Abort current pointer usages because the state has changed. |
| abortPointerUsage(when, 0 /*policyFlags*/); |
| } |
| |
| // Inform the dispatcher about the changes. |
| *outResetNeeded = true; |
| bumpGeneration(); |
| } |
| } |
| |
| void TouchInputMapper::dumpSurface(std::string& dump) { |
| dump += StringPrintf(INDENT3 "Viewport: displayId=%d, orientation=%d, " |
| "logicalFrame=[%d, %d, %d, %d], " |
| "physicalFrame=[%d, %d, %d, %d], " |
| "deviceSize=[%d, %d]\n", |
| mViewport.displayId, mViewport.orientation, |
| mViewport.logicalLeft, mViewport.logicalTop, |
| mViewport.logicalRight, mViewport.logicalBottom, |
| mViewport.physicalLeft, mViewport.physicalTop, |
| mViewport.physicalRight, mViewport.physicalBottom, |
| mViewport.deviceWidth, mViewport.deviceHeight); |
| |
| dump += StringPrintf(INDENT3 "SurfaceWidth: %dpx\n", mSurfaceWidth); |
| dump += StringPrintf(INDENT3 "SurfaceHeight: %dpx\n", mSurfaceHeight); |
| dump += StringPrintf(INDENT3 "SurfaceLeft: %d\n", mSurfaceLeft); |
| dump += StringPrintf(INDENT3 "SurfaceTop: %d\n", mSurfaceTop); |
| dump += StringPrintf(INDENT3 "PhysicalWidth: %dpx\n", mPhysicalWidth); |
| dump += StringPrintf(INDENT3 "PhysicalHeight: %dpx\n", mPhysicalHeight); |
| dump += StringPrintf(INDENT3 "PhysicalLeft: %d\n", mPhysicalLeft); |
| dump += StringPrintf(INDENT3 "PhysicalTop: %d\n", mPhysicalTop); |
| dump += StringPrintf(INDENT3 "SurfaceOrientation: %d\n", mSurfaceOrientation); |
| } |
| |
| void TouchInputMapper::configureVirtualKeys() { |
| Vector<VirtualKeyDefinition> virtualKeyDefinitions; |
| getEventHub()->getVirtualKeyDefinitions(getDeviceId(), virtualKeyDefinitions); |
| |
| mVirtualKeys.clear(); |
| |
| if (virtualKeyDefinitions.size() == 0) { |
| return; |
| } |
| |
| mVirtualKeys.setCapacity(virtualKeyDefinitions.size()); |
| |
| int32_t touchScreenLeft = mRawPointerAxes.x.minValue; |
| int32_t touchScreenTop = mRawPointerAxes.y.minValue; |
| int32_t touchScreenWidth = mRawPointerAxes.x.maxValue - mRawPointerAxes.x.minValue + 1; |
| int32_t touchScreenHeight = mRawPointerAxes.y.maxValue - mRawPointerAxes.y.minValue + 1; |
| |
| for (size_t i = 0; i < virtualKeyDefinitions.size(); i++) { |
| const VirtualKeyDefinition& virtualKeyDefinition = |
| virtualKeyDefinitions[i]; |
| |
| mVirtualKeys.add(); |
| VirtualKey& virtualKey = mVirtualKeys.editTop(); |
| |
| virtualKey.scanCode = virtualKeyDefinition.scanCode; |
| int32_t keyCode; |
| int32_t dummyKeyMetaState; |
| uint32_t flags; |
| if (getEventHub()->mapKey(getDeviceId(), virtualKey.scanCode, 0, 0, |
| &keyCode, &dummyKeyMetaState, &flags)) { |
| ALOGW(INDENT "VirtualKey %d: could not obtain key code, ignoring", |
| virtualKey.scanCode); |
| mVirtualKeys.pop(); // drop the key |
| continue; |
| } |
| |
| virtualKey.keyCode = keyCode; |
| virtualKey.flags = flags; |
| |
| // convert the key definition's display coordinates into touch coordinates for a hit box |
| int32_t halfWidth = virtualKeyDefinition.width / 2; |
| int32_t halfHeight = virtualKeyDefinition.height / 2; |
| |
| virtualKey.hitLeft = (virtualKeyDefinition.centerX - halfWidth) |
| * touchScreenWidth / mSurfaceWidth + touchScreenLeft; |
| virtualKey.hitRight= (virtualKeyDefinition.centerX + halfWidth) |
| * touchScreenWidth / mSurfaceWidth + touchScreenLeft; |
| virtualKey.hitTop = (virtualKeyDefinition.centerY - halfHeight) |
| * touchScreenHeight / mSurfaceHeight + touchScreenTop; |
| virtualKey.hitBottom = (virtualKeyDefinition.centerY + halfHeight) |
| * touchScreenHeight / mSurfaceHeight + touchScreenTop; |
| } |
| } |
| |
| void TouchInputMapper::dumpVirtualKeys(std::string& dump) { |
| if (!mVirtualKeys.isEmpty()) { |
| dump += INDENT3 "Virtual Keys:\n"; |
| |
| for (size_t i = 0; i < mVirtualKeys.size(); i++) { |
| const VirtualKey& virtualKey = mVirtualKeys.itemAt(i); |
| dump += StringPrintf(INDENT4 "%zu: scanCode=%d, keyCode=%d, " |
| "hitLeft=%d, hitRight=%d, hitTop=%d, hitBottom=%d\n", |
| i, virtualKey.scanCode, virtualKey.keyCode, |
| virtualKey.hitLeft, virtualKey.hitRight, |
| virtualKey.hitTop, virtualKey.hitBottom); |
| } |
| } |
| } |
| |
| void TouchInputMapper::parseCalibration() { |
| const PropertyMap& in = getDevice()->getConfiguration(); |
| Calibration& out = mCalibration; |
| |
| // Size |
| out.sizeCalibration = Calibration::SIZE_CALIBRATION_DEFAULT; |
| String8 sizeCalibrationString; |
| if (in.tryGetProperty(String8("touch.size.calibration"), sizeCalibrationString)) { |
| if (sizeCalibrationString == "none") { |
| out.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE; |
| } else if (sizeCalibrationString == "geometric") { |
| out.sizeCalibration = Calibration::SIZE_CALIBRATION_GEOMETRIC; |
| } else if (sizeCalibrationString == "diameter") { |
| out.sizeCalibration = Calibration::SIZE_CALIBRATION_DIAMETER; |
| } else if (sizeCalibrationString == "box") { |
| out.sizeCalibration = Calibration::SIZE_CALIBRATION_BOX; |
| } else if (sizeCalibrationString == "area") { |
| out.sizeCalibration = Calibration::SIZE_CALIBRATION_AREA; |
| } else if (sizeCalibrationString != "default") { |
| ALOGW("Invalid value for touch.size.calibration: '%s'", |
| sizeCalibrationString.string()); |
| } |
| } |
| |
| out.haveSizeScale = in.tryGetProperty(String8("touch.size.scale"), |
| out.sizeScale); |
| out.haveSizeBias = in.tryGetProperty(String8("touch.size.bias"), |
| out.sizeBias); |
| out.haveSizeIsSummed = in.tryGetProperty(String8("touch.size.isSummed"), |
| out.sizeIsSummed); |
| |
| // Pressure |
| out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_DEFAULT; |
| String8 pressureCalibrationString; |
| if (in.tryGetProperty(String8("touch.pressure.calibration"), pressureCalibrationString)) { |
| if (pressureCalibrationString == "none") { |
| out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE; |
| } else if (pressureCalibrationString == "physical") { |
| out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_PHYSICAL; |
| } else if (pressureCalibrationString == "amplitude") { |
| out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_AMPLITUDE; |
| } else if (pressureCalibrationString != "default") { |
| ALOGW("Invalid value for touch.pressure.calibration: '%s'", |
| pressureCalibrationString.string()); |
| } |
| } |
| |
| out.havePressureScale = in.tryGetProperty(String8("touch.pressure.scale"), |
| out.pressureScale); |
| |
| // Orientation |
| out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_DEFAULT; |
| String8 orientationCalibrationString; |
| if (in.tryGetProperty(String8("touch.orientation.calibration"), orientationCalibrationString)) { |
| if (orientationCalibrationString == "none") { |
| out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE; |
| } else if (orientationCalibrationString == "interpolated") { |
| out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED; |
| } else if (orientationCalibrationString == "vector") { |
| out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_VECTOR; |
| } else if (orientationCalibrationString != "default") { |
| ALOGW("Invalid value for touch.orientation.calibration: '%s'", |
| orientationCalibrationString.string()); |
| } |
| } |
| |
| // Distance |
| out.distanceCalibration = Calibration::DISTANCE_CALIBRATION_DEFAULT; |
| String8 distanceCalibrationString; |
| if (in.tryGetProperty(String8("touch.distance.calibration"), distanceCalibrationString)) { |
| if (distanceCalibrationString == "none") { |
| out.distanceCalibration = Calibration::DISTANCE_CALIBRATION_NONE; |
| } else if (distanceCalibrationString == "scaled") { |
| out.distanceCalibration = Calibration::DISTANCE_CALIBRATION_SCALED; |
| } else if (distanceCalibrationString != "default") { |
| ALOGW("Invalid value for touch.distance.calibration: '%s'", |
| distanceCalibrationString.string()); |
| } |
| } |
| |
| out.haveDistanceScale = in.tryGetProperty(String8("touch.distance.scale"), |
| out.distanceScale); |
| |
| out.coverageCalibration = Calibration::COVERAGE_CALIBRATION_DEFAULT; |
| String8 coverageCalibrationString; |
| if (in.tryGetProperty(String8("touch.coverage.calibration"), coverageCalibrationString)) { |
| if (coverageCalibrationString == "none") { |
| out.coverageCalibration = Calibration::COVERAGE_CALIBRATION_NONE; |
| } else if (coverageCalibrationString == "box") { |
| out.coverageCalibration = Calibration::COVERAGE_CALIBRATION_BOX; |
| } else if (coverageCalibrationString != "default") { |
| ALOGW("Invalid value for touch.coverage.calibration: '%s'", |
| coverageCalibrationString.string()); |
| } |
| } |
| } |
| |
| void TouchInputMapper::resolveCalibration() { |
| // Size |
| if (mRawPointerAxes.touchMajor.valid || mRawPointerAxes.toolMajor.valid) { |
| if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_DEFAULT) { |
| mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_GEOMETRIC; |
| } |
| } else { |
| mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE; |
| } |
| |
| // Pressure |
| if (mRawPointerAxes.pressure.valid) { |
| if (mCalibration.pressureCalibration == Calibration::PRESSURE_CALIBRATION_DEFAULT) { |
| mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_PHYSICAL; |
| } |
| } else { |
| mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE; |
| } |
| |
| // Orientation |
| if (mRawPointerAxes.orientation.valid) { |
| if (mCalibration.orientationCalibration == Calibration::ORIENTATION_CALIBRATION_DEFAULT) { |
| mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED; |
| } |
| } else { |
| mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE; |
| } |
| |
| // Distance |
| if (mRawPointerAxes.distance.valid) { |
| if (mCalibration.distanceCalibration == Calibration::DISTANCE_CALIBRATION_DEFAULT) { |
| mCalibration.distanceCalibration = Calibration::DISTANCE_CALIBRATION_SCALED; |
| } |
| } else { |
| mCalibration.distanceCalibration = Calibration::DISTANCE_CALIBRATION_NONE; |
| } |
| |
| // Coverage |
| if (mCalibration.coverageCalibration == Calibration::COVERAGE_CALIBRATION_DEFAULT) { |
| mCalibration.coverageCalibration = Calibration::COVERAGE_CALIBRATION_NONE; |
| } |
| } |
| |
| void TouchInputMapper::dumpCalibration(std::string& dump) { |
| dump += INDENT3 "Calibration:\n"; |
| |
| // Size |
| switch (mCalibration.sizeCalibration) { |
| case Calibration::SIZE_CALIBRATION_NONE: |
| dump += INDENT4 "touch.size.calibration: none\n"; |
| break; |
| case Calibration::SIZE_CALIBRATION_GEOMETRIC: |
| dump += INDENT4 "touch.size.calibration: geometric\n"; |
| break; |
| case Calibration::SIZE_CALIBRATION_DIAMETER: |
| dump += INDENT4 "touch.size.calibration: diameter\n"; |
| break; |
| case Calibration::SIZE_CALIBRATION_BOX: |
| dump += INDENT4 "touch.size.calibration: box\n"; |
| break; |
| case Calibration::SIZE_CALIBRATION_AREA: |
| dump += INDENT4 "touch.size.calibration: area\n"; |
| break; |
| default: |
| ALOG_ASSERT(false); |
| } |
| |
| if (mCalibration.haveSizeScale) { |
| dump += StringPrintf(INDENT4 "touch.size.scale: %0.3f\n", |
| mCalibration.sizeScale); |
| } |
| |
| if (mCalibration.haveSizeBias) { |
| dump += StringPrintf(INDENT4 "touch.size.bias: %0.3f\n", |
| mCalibration.sizeBias); |
| } |
| |
| if (mCalibration.haveSizeIsSummed) { |
| dump += StringPrintf(INDENT4 "touch.size.isSummed: %s\n", |
| toString(mCalibration.sizeIsSummed)); |
| } |
| |
| // Pressure |
| switch (mCalibration.pressureCalibration) { |
| case Calibration::PRESSURE_CALIBRATION_NONE: |
| dump += INDENT4 "touch.pressure.calibration: none\n"; |
| break; |
| case Calibration::PRESSURE_CALIBRATION_PHYSICAL: |
| dump += INDENT4 "touch.pressure.calibration: physical\n"; |
| break; |
| case Calibration::PRESSURE_CALIBRATION_AMPLITUDE: |
| dump += INDENT4 "touch.pressure.calibration: amplitude\n"; |
| break; |
| default: |
| ALOG_ASSERT(false); |
| } |
| |
| if (mCalibration.havePressureScale) { |
| dump += StringPrintf(INDENT4 "touch.pressure.scale: %0.3f\n", |
| mCalibration.pressureScale); |
| } |
| |
| // Orientation |
| switch (mCalibration.orientationCalibration) { |
| case Calibration::ORIENTATION_CALIBRATION_NONE: |
| dump += INDENT4 "touch.orientation.calibration: none\n"; |
| break; |
| case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED: |
| dump += INDENT4 "touch.orientation.calibration: interpolated\n"; |
| break; |
| case Calibration::ORIENTATION_CALIBRATION_VECTOR: |
| dump += INDENT4 "touch.orientation.calibration: vector\n"; |
| break; |
| default: |
| ALOG_ASSERT(false); |
| } |
| |
| // Distance |
| switch (mCalibration.distanceCalibration) { |
| case Calibration::DISTANCE_CALIBRATION_NONE: |
| dump += INDENT4 "touch.distance.calibration: none\n"; |
| break; |
| case Calibration::DISTANCE_CALIBRATION_SCALED: |
| dump += INDENT4 "touch.distance.calibration: scaled\n"; |
| break; |
| default: |
| ALOG_ASSERT(false); |
| } |
| |
| if (mCalibration.haveDistanceScale) { |
| dump += StringPrintf(INDENT4 "touch.distance.scale: %0.3f\n", |
| mCalibration.distanceScale); |
| } |
| |
| switch (mCalibration.coverageCalibration) { |
| case Calibration::COVERAGE_CALIBRATION_NONE: |
| dump += INDENT4 "touch.coverage.calibration: none\n"; |
| break; |
| case Calibration::COVERAGE_CALIBRATION_BOX: |
| dump += INDENT4 "touch.coverage.calibration: box\n"; |
| break; |
| default: |
| ALOG_ASSERT(false); |
| } |
| } |
| |
| void TouchInputMapper::dumpAffineTransformation(std::string& dump) { |
| dump += INDENT3 "Affine Transformation:\n"; |
| |
| dump += StringPrintf(INDENT4 "X scale: %0.3f\n", mAffineTransform.x_scale); |
| dump += StringPrintf(INDENT4 "X ymix: %0.3f\n", mAffineTransform.x_ymix); |
| dump += StringPrintf(INDENT4 "X offset: %0.3f\n", mAffineTransform.x_offset); |
| dump += StringPrintf(INDENT4 "Y xmix: %0.3f\n", mAffineTransform.y_xmix); |
| dump += StringPrintf(INDENT4 "Y scale: %0.3f\n", mAffineTransform.y_scale); |
| dump += StringPrintf(INDENT4 "Y offset: %0.3f\n", mAffineTransform.y_offset); |
| } |
| |
| void TouchInputMapper::updateAffineTransformation() { |
| mAffineTransform = getPolicy()->getTouchAffineTransformation(mDevice->getDescriptor(), |
| mSurfaceOrientation); |
| } |
| |
| void TouchInputMapper::reset(nsecs_t when) { |
| mCursorButtonAccumulator.reset(getDevice()); |
| mCursorScrollAccumulator.reset(getDevice()); |
| mTouchButtonAccumulator.reset(getDevice()); |
| |
| mPointerVelocityControl.reset(); |
| mWheelXVelocityControl.reset(); |
| mWheelYVelocityControl.reset(); |
| |
| mRawStatesPending.clear(); |
| mCurrentRawState.clear(); |
| mCurrentCookedState.clear(); |
| mLastRawState.clear(); |
| mLastCookedState.clear(); |
| mPointerUsage = POINTER_USAGE_NONE; |
| mSentHoverEnter = false; |
| mHavePointerIds = false; |
| mCurrentMotionAborted = false; |
| mDownTime = 0; |
| |
| mCurrentVirtualKey.down = false; |
| |
| mPointerGesture.reset(); |
| mPointerSimple.reset(); |
| resetExternalStylus(); |
| |
| if (mPointerController != NULL) { |
| mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL); |
| mPointerController->clearSpots(); |
| } |
| |
| InputMapper::reset(when); |
| } |
| |
| void TouchInputMapper::resetExternalStylus() { |
| mExternalStylusState.clear(); |
| mExternalStylusId = -1; |
| mExternalStylusFusionTimeout = LLONG_MAX; |
| mExternalStylusDataPending = false; |
| } |
| |
| void TouchInputMapper::clearStylusDataPendingFlags() { |
| mExternalStylusDataPending = false; |
| mExternalStylusFusionTimeout = LLONG_MAX; |
| } |
| |
| void TouchInputMapper::process(const RawEvent* rawEvent) { |
| mCursorButtonAccumulator.process(rawEvent); |
| mCursorScrollAccumulator.process(rawEvent); |
| mTouchButtonAccumulator.process(rawEvent); |
| |
| if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) { |
| sync(rawEvent->when); |
| } |
| } |
| |
| void TouchInputMapper::sync(nsecs_t when) { |
| const RawState* last = mRawStatesPending.isEmpty() ? |
| &mCurrentRawState : &mRawStatesPending.top(); |
| |
| // Push a new state. |
| mRawStatesPending.push(); |
| RawState* next = &mRawStatesPending.editTop(); |
| next->clear(); |
| next->when = when; |
| |
| // Sync button state. |
| next->buttonState = mTouchButtonAccumulator.getButtonState() |
| | mCursorButtonAccumulator.getButtonState(); |
| |
| // Sync scroll |
| next->rawVScroll = mCursorScrollAccumulator.getRelativeVWheel(); |
| next->rawHScroll = mCursorScrollAccumulator.getRelativeHWheel(); |
| mCursorScrollAccumulator.finishSync(); |
| |
| // Sync touch |
| syncTouch(when, next); |
| |
| // Assign pointer ids. |
| if (!mHavePointerIds) { |
| assignPointerIds(last, next); |
| } |
| |
| #if DEBUG_RAW_EVENTS |
| ALOGD("syncTouch: pointerCount %d -> %d, touching ids 0x%08x -> 0x%08x, " |
| "hovering ids 0x%08x -> 0x%08x", |
| last->rawPointerData.pointerCount, |
| next->rawPointerData.pointerCount, |
| last->rawPointerData.touchingIdBits.value, |
| next->rawPointerData.touchingIdBits.value, |
| last->rawPointerData.hoveringIdBits.value, |
| next->rawPointerData.hoveringIdBits.value); |
| #endif |
| |
| processRawTouches(false /*timeout*/); |
| } |
| |
| void TouchInputMapper::processRawTouches(bool timeout) { |
| if (mDeviceMode == DEVICE_MODE_DISABLED) { |
| // Drop all input if the device is disabled. |
| mCurrentRawState.clear(); |
| mRawStatesPending.clear(); |
| return; |
| } |
| |
| // Drain any pending touch states. The invariant here is that the mCurrentRawState is always |
| // valid and must go through the full cook and dispatch cycle. This ensures that anything |
| // touching the current state will only observe the events that have been dispatched to the |
| // rest of the pipeline. |
| const size_t N = mRawStatesPending.size(); |
| size_t count; |
| for(count = 0; count < N; count++) { |
| const RawState& next = mRawStatesPending[count]; |
| |
| // A failure to assign the stylus id means that we're waiting on stylus data |
| // and so should defer the rest of the pipeline. |
| if (assignExternalStylusId(next, timeout)) { |
| break; |
| } |
| |
| // All ready to go. |
| clearStylusDataPendingFlags(); |
| mCurrentRawState.copyFrom(next); |
| if (mCurrentRawState.when < mLastRawState.when) { |
| mCurrentRawState.when = mLastRawState.when; |
| } |
| cookAndDispatch(mCurrentRawState.when); |
| } |
| if (count != 0) { |
| mRawStatesPending.removeItemsAt(0, count); |
| } |
| |
| if (mExternalStylusDataPending) { |
| if (timeout) { |
| nsecs_t when = mExternalStylusFusionTimeout - STYLUS_DATA_LATENCY; |
| clearStylusDataPendingFlags(); |
| mCurrentRawState.copyFrom(mLastRawState); |
| #if DEBUG_STYLUS_FUSION |
| ALOGD("Timeout expired, synthesizing event with new stylus data"); |
| #endif |
| cookAndDispatch(when); |
| } else if (mExternalStylusFusionTimeout == LLONG_MAX) { |
| mExternalStylusFusionTimeout = mExternalStylusState.when + TOUCH_DATA_TIMEOUT; |
| getContext()->requestTimeoutAtTime(mExternalStylusFusionTimeout); |
| } |
| } |
| } |
| |
| void TouchInputMapper::cookAndDispatch(nsecs_t when) { |
| // Always start with a clean state. |
| mCurrentCookedState.clear(); |
| |
| // Apply stylus buttons to current raw state. |
| applyExternalStylusButtonState(when); |
| |
| // Handle policy on initial down or hover events. |
| bool initialDown = mLastRawState.rawPointerData.pointerCount == 0 |
| && mCurrentRawState.rawPointerData.pointerCount != 0; |
| |
| uint32_t policyFlags = 0; |
| bool buttonsPressed = mCurrentRawState.buttonState & ~mLastRawState.buttonState; |
| if (initialDown || buttonsPressed) { |
| // If this is a touch screen, hide the pointer on an initial down. |
| if (mDeviceMode == DEVICE_MODE_DIRECT) { |
| getContext()->fadePointer(); |
| } |
| |
| if (mParameters.wake) { |
| policyFlags |= POLICY_FLAG_WAKE; |
| } |
| } |
| |
| // Consume raw off-screen touches before cooking pointer data. |
| // If touches are consumed, subsequent code will not receive any pointer data. |
| if (consumeRawTouches(when, policyFlags)) { |
| mCurrentRawState.rawPointerData.clear(); |
| } |
| |
| // Cook pointer data. This call populates the mCurrentCookedState.cookedPointerData structure |
| // with cooked pointer data that has the same ids and indices as the raw data. |
| // The following code can use either the raw or cooked data, as needed. |
| cookPointerData(); |
| |
| // Apply stylus pressure to current cooked state. |
| applyExternalStylusTouchState(when); |
| |
| // Synthesize key down from raw buttons if needed. |
| synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_DOWN, when, getDeviceId(), mSource, |
| policyFlags, mLastCookedState.buttonState, mCurrentCookedState.buttonState); |
| |
| // Dispatch the touches either directly or by translation through a pointer on screen. |
| if (mDeviceMode == DEVICE_MODE_POINTER) { |
| for (BitSet32 idBits(mCurrentRawState.rawPointerData.touchingIdBits); |
| !idBits.isEmpty(); ) { |
| uint32_t id = idBits.clearFirstMarkedBit(); |
| const RawPointerData::Pointer& pointer = |
| mCurrentRawState.rawPointerData.pointerForId(id); |
| if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_STYLUS |
| || pointer.toolType == AMOTION_EVENT_TOOL_TYPE_ERASER) { |
| mCurrentCookedState.stylusIdBits.markBit(id); |
| } else if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_FINGER |
| || pointer.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) { |
| mCurrentCookedState.fingerIdBits.markBit(id); |
| } else if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_MOUSE) { |
| mCurrentCookedState.mouseIdBits.markBit(id); |
| } |
| } |
| for (BitSet32 idBits(mCurrentRawState.rawPointerData.hoveringIdBits); |
| !idBits.isEmpty(); ) { |
| uint32_t id = idBits.clearFirstMarkedBit(); |
| const RawPointerData::Pointer& pointer = |
| mCurrentRawState.rawPointerData.pointerForId(id); |
| if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_STYLUS |
| || pointer.toolType == AMOTION_EVENT_TOOL_TYPE_ERASER) { |
| mCurrentCookedState.stylusIdBits.markBit(id); |
| } |
| } |
| |
| // Stylus takes precedence over all tools, then mouse, then finger. |
| PointerUsage pointerUsage = mPointerUsage; |
| if (!mCurrentCookedState.stylusIdBits.isEmpty()) { |
| mCurrentCookedState.mouseIdBits.clear(); |
| mCurrentCookedState.fingerIdBits.clear(); |
| pointerUsage = POINTER_USAGE_STYLUS; |
| } else if (!mCurrentCookedState.mouseIdBits.isEmpty()) { |
| mCurrentCookedState.fingerIdBits.clear(); |
| pointerUsage = POINTER_USAGE_MOUSE; |
| } else if (!mCurrentCookedState.fingerIdBits.isEmpty() || |
| isPointerDown(mCurrentRawState.buttonState)) { |
| pointerUsage = POINTER_USAGE_GESTURES; |
| } |
| |
| dispatchPointerUsage(when, policyFlags, pointerUsage); |
| } else { |
| if (mDeviceMode == DEVICE_MODE_DIRECT |
| && mConfig.showTouches && mPointerController != NULL) { |
| mPointerController->setPresentation(PointerControllerInterface::PRESENTATION_SPOT); |
| mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL); |
| |
| mPointerController->setButtonState(mCurrentRawState.buttonState); |
| mPointerController->setSpots(mCurrentCookedState.cookedPointerData.pointerCoords, |
| mCurrentCookedState.cookedPointerData.idToIndex, |
| mCurrentCookedState.cookedPointerData.touchingIdBits); |
| } |
| |
| if (!mCurrentMotionAborted) { |
| dispatchButtonRelease(when, policyFlags); |
| dispatchHoverExit(when, policyFlags); |
| dispatchTouches(when, policyFlags); |
| dispatchHoverEnterAndMove(when, policyFlags); |
| dispatchButtonPress(when, policyFlags); |
| } |
| |
| if (mCurrentCookedState.cookedPointerData.pointerCount == 0) { |
| mCurrentMotionAborted = false; |
| } |
| } |
| |
| // Synthesize key up from raw buttons if needed. |
| synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_UP, when, getDeviceId(), mSource, |
| policyFlags, mLastCookedState.buttonState, mCurrentCookedState.buttonState); |
| |
| // Clear some transient state. |
| mCurrentRawState.rawVScroll = 0; |
| mCurrentRawState.rawHScroll = 0; |
| |
| // Copy current touch to last touch in preparation for the next cycle. |
| mLastRawState.copyFrom(mCurrentRawState); |
| mLastCookedState.copyFrom(mCurrentCookedState); |
| } |
| |
| void TouchInputMapper::applyExternalStylusButtonState(nsecs_t when) { |
| if (mDeviceMode == DEVICE_MODE_DIRECT && hasExternalStylus() && mExternalStylusId != -1) { |
| mCurrentRawState.buttonState |= mExternalStylusState.buttons; |
| } |
| } |
| |
| void TouchInputMapper::applyExternalStylusTouchState(nsecs_t when) { |
| CookedPointerData& currentPointerData = mCurrentCookedState.cookedPointerData; |
| const CookedPointerData& lastPointerData = mLastCookedState.cookedPointerData; |
| |
| if (mExternalStylusId != -1 && currentPointerData.isTouching(mExternalStylusId)) { |
| float pressure = mExternalStylusState.pressure; |
| if (pressure == 0.0f && lastPointerData.isTouching(mExternalStylusId)) { |
| const PointerCoords& coords = lastPointerData.pointerCoordsForId(mExternalStylusId); |
| pressure = coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE); |
| } |
| PointerCoords& coords = currentPointerData.editPointerCoordsWithId(mExternalStylusId); |
| coords.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, pressure); |
| |
| PointerProperties& properties = |
| currentPointerData.editPointerPropertiesWithId(mExternalStylusId); |
| if (mExternalStylusState.toolType != AMOTION_EVENT_TOOL_TYPE_UNKNOWN) { |
| properties.toolType = mExternalStylusState.toolType; |
| } |
| } |
| } |
| |
| bool TouchInputMapper::assignExternalStylusId(const RawState& state, bool timeout) { |
| if (mDeviceMode != DEVICE_MODE_DIRECT || !hasExternalStylus()) { |
| return false; |
| } |
| |
| const bool initialDown = mLastRawState.rawPointerData.pointerCount == 0 |
| && state.rawPointerData.pointerCount != 0; |
| if (initialDown) { |
| if (mExternalStylusState.pressure != 0.0f) { |
| #if DEBUG_STYLUS_FUSION |
| ALOGD("Have both stylus and touch data, beginning fusion"); |
| #endif |
| mExternalStylusId = state.rawPointerData.touchingIdBits.firstMarkedBit(); |
| } else if (timeout) { |
| #if DEBUG_STYLUS_FUSION |
| ALOGD("Timeout expired, assuming touch is not a stylus."); |
| #endif |
| resetExternalStylus(); |
| } else { |
| if (mExternalStylusFusionTimeout == LLONG_MAX) { |
| mExternalStylusFusionTimeout = state.when + EXTERNAL_STYLUS_DATA_TIMEOUT; |
| } |
| #if DEBUG_STYLUS_FUSION |
| ALOGD("No stylus data but stylus is connected, requesting timeout " |
| "(%" PRId64 "ms)", mExternalStylusFusionTimeout); |
| #endif |
| getContext()->requestTimeoutAtTime(mExternalStylusFusionTimeout); |
| return true; |
| } |
| } |
| |
| // Check if the stylus pointer has gone up. |
| if (mExternalStylusId != -1 && |
| !state.rawPointerData.touchingIdBits.hasBit(mExternalStylusId)) { |
| #if DEBUG_STYLUS_FUSION |
| ALOGD("Stylus pointer is going up"); |
| #endif |
| mExternalStylusId = -1; |
| } |
| |
| return false; |
| } |
| |
| void TouchInputMapper::timeoutExpired(nsecs_t when) { |
| if (mDeviceMode == DEVICE_MODE_POINTER) { |
| if (mPointerUsage == POINTER_USAGE_GESTURES) { |
| dispatchPointerGestures(when, 0 /*policyFlags*/, true /*isTimeout*/); |
| } |
| } else if (mDeviceMode == DEVICE_MODE_DIRECT) { |
| if (mExternalStylusFusionTimeout < when) { |
| processRawTouches(true /*timeout*/); |
| } else if (mExternalStylusFusionTimeout != LLONG_MAX) { |
| getContext()->requestTimeoutAtTime(mExternalStylusFusionTimeout); |
| } |
| } |
| } |
| |
| void TouchInputMapper::updateExternalStylusState(const StylusState& state) { |
| mExternalStylusState.copyFrom(state); |
| if (mExternalStylusId != -1 || mExternalStylusFusionTimeout != LLONG_MAX) { |
| // We're either in the middle of a fused stream of data or we're waiting on data before |
| // dispatching the initial down, so go ahead and dispatch now that we have fresh stylus |
| // data. |
| mExternalStylusDataPending = true; |
| processRawTouches(false /*timeout*/); |
| } |
| } |
| |
| bool TouchInputMapper::consumeRawTouches(nsecs_t when, uint32_t policyFlags) { |
| // Check for release of a virtual key. |
| if (mCurrentVirtualKey.down) { |
| if (mCurrentRawState.rawPointerData.touchingIdBits.isEmpty()) { |
| // Pointer went up while virtual key was down. |
| mCurrentVirtualKey.down = false; |
| if (!mCurrentVirtualKey.ignored) { |
| #if DEBUG_VIRTUAL_KEYS |
| ALOGD("VirtualKeys: Generating key up: keyCode=%d, scanCode=%d", |
| mCurrentVirtualKey.keyCode, mCurrentVirtualKey.scanCode); |
| #endif |
| dispatchVirtualKey(when, policyFlags, |
| AKEY_EVENT_ACTION_UP, |
| AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY); |
| } |
| return true; |
| } |
| |
| if (mCurrentRawState.rawPointerData.touchingIdBits.count() == 1) { |
| uint32_t id = mCurrentRawState.rawPointerData.touchingIdBits.firstMarkedBit(); |
| const RawPointerData::Pointer& pointer = |
| mCurrentRawState.rawPointerData.pointerForId(id); |
| const VirtualKey* virtualKey = findVirtualKeyHit(pointer.x, pointer.y); |
| if (virtualKey && virtualKey->keyCode == mCurrentVirtualKey.keyCode) { |
| // Pointer is still within the space of the virtual key. |
| return true; |
| } |
| } |
| |
| // Pointer left virtual key area or another pointer also went down. |
| // Send key cancellation but do not consume the touch yet. |
| // This is useful when the user swipes through from the virtual key area |
| // into the main display surface. |
| mCurrentVirtualKey.down = false; |
| if (!mCurrentVirtualKey.ignored) { |
| #if DEBUG_VIRTUAL_KEYS |
| ALOGD("VirtualKeys: Canceling key: keyCode=%d, scanCode=%d", |
| mCurrentVirtualKey.keyCode, mCurrentVirtualKey.scanCode); |
| #endif |
| dispatchVirtualKey(when, policyFlags, |
| AKEY_EVENT_ACTION_UP, |
| AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY |
| | AKEY_EVENT_FLAG_CANCELED); |
| } |
| } |
| |
| if (mLastRawState.rawPointerData.touchingIdBits.isEmpty() |
| && !mCurrentRawState.rawPointerData.touchingIdBits.isEmpty()) { |
| // Pointer just went down. Check for virtual key press or off-screen touches. |
| uint32_t id = mCurrentRawState.rawPointerData.touchingIdBits.firstMarkedBit(); |
| const RawPointerData::Pointer& pointer = mCurrentRawState.rawPointerData.pointerForId(id); |
| if (!isPointInsideSurface(pointer.x, pointer.y)) { |
| // If exactly one pointer went down, check for virtual key hit. |
| // Otherwise we will drop the entire stroke. |
| if (mCurrentRawState.rawPointerData.touchingIdBits.count() == 1) { |
| const VirtualKey* virtualKey = findVirtualKeyHit(pointer.x, pointer.y); |
| if (virtualKey) { |
| mCurrentVirtualKey.down = true; |
| mCurrentVirtualKey.downTime = when; |
| mCurrentVirtualKey.keyCode = virtualKey->keyCode; |
| mCurrentVirtualKey.scanCode = virtualKey->scanCode; |
| mCurrentVirtualKey.ignored = mContext->shouldDropVirtualKey( |
| when, getDevice(), virtualKey->keyCode, virtualKey->scanCode); |
| |
| if (!mCurrentVirtualKey.ignored) { |
| #if DEBUG_VIRTUAL_KEYS |
| ALOGD("VirtualKeys: Generating key down: keyCode=%d, scanCode=%d", |
| mCurrentVirtualKey.keyCode, |
| mCurrentVirtualKey.scanCode); |
| #endif |
| dispatchVirtualKey(when, policyFlags, |
| AKEY_EVENT_ACTION_DOWN, |
| AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY); |
| } |
| } |
| } |
| return true; |
| } |
| } |
| |
| // Disable all virtual key touches that happen within a short time interval of the |
| // most recent touch within the screen area. The idea is to filter out stray |
| // virtual key presses when interacting with the touch screen. |
| // |
| // Problems we're trying to solve: |
| // |
| // 1. While scrolling a list or dragging the window shade, the user swipes down into a |
| // virtual key area that is implemented by a separate touch panel and accidentally |
| // triggers a virtual key. |
| // |
| // 2. While typing in the on screen keyboard, the user taps slightly outside the screen |
| // area and accidentally triggers a virtual key. This often happens when virtual keys |
| // are layed out below the screen near to where the on screen keyboard's space bar |
| // is displayed. |
| if (mConfig.virtualKeyQuietTime > 0 && |
| !mCurrentRawState.rawPointerData.touchingIdBits.isEmpty()) { |
| mContext->disableVirtualKeysUntil(when + mConfig.virtualKeyQuietTime); |
| } |
| return false; |
| } |
| |
| void TouchInputMapper::dispatchVirtualKey(nsecs_t when, uint32_t policyFlags, |
| int32_t keyEventAction, int32_t keyEventFlags) { |
| int32_t keyCode = mCurrentVirtualKey.keyCode; |
| int32_t scanCode = mCurrentVirtualKey.scanCode; |
| nsecs_t downTime = mCurrentVirtualKey.downTime; |
| int32_t metaState = mContext->getGlobalMetaState(); |
| policyFlags |= POLICY_FLAG_VIRTUAL; |
| |
| NotifyKeyArgs args(when, getDeviceId(), AINPUT_SOURCE_KEYBOARD, policyFlags, |
| keyEventAction, keyEventFlags, keyCode, scanCode, metaState, downTime); |
| getListener()->notifyKey(&args); |
| } |
| |
| void TouchInputMapper::abortTouches(nsecs_t when, uint32_t policyFlags) { |
| BitSet32 currentIdBits = mCurrentCookedState.cookedPointerData.touchingIdBits; |
| if (!currentIdBits.isEmpty()) { |
| int32_t metaState = getContext()->getGlobalMetaState(); |
| int32_t buttonState = mCurrentCookedState.buttonState; |
| dispatchMotion(when, policyFlags, mSource, AMOTION_EVENT_ACTION_CANCEL, 0, 0, |
| metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, |
| mCurrentCookedState.deviceTimestamp, |
| mCurrentCookedState.cookedPointerData.pointerProperties, |
| mCurrentCookedState.cookedPointerData.pointerCoords, |
| mCurrentCookedState.cookedPointerData.idToIndex, |
| currentIdBits, -1, |
| mOrientedXPrecision, mOrientedYPrecision, mDownTime); |
| mCurrentMotionAborted = true; |
| } |
| } |
| |
| void TouchInputMapper::dispatchTouches(nsecs_t when, uint32_t policyFlags) { |
| BitSet32 currentIdBits = mCurrentCookedState.cookedPointerData.touchingIdBits; |
| BitSet32 lastIdBits = mLastCookedState.cookedPointerData.touchingIdBits; |
| int32_t metaState = getContext()->getGlobalMetaState(); |
| int32_t buttonState = mCurrentCookedState.buttonState; |
| |
| if (currentIdBits == lastIdBits) { |
| if (!currentIdBits.isEmpty()) { |
| // No pointer id changes so this is a move event. |
| // The listener takes care of batching moves so we don't have to deal with that here. |
| dispatchMotion(when, policyFlags, mSource, |
| AMOTION_EVENT_ACTION_MOVE, 0, 0, metaState, buttonState, |
| AMOTION_EVENT_EDGE_FLAG_NONE, |
| mCurrentCookedState.deviceTimestamp, |
| mCurrentCookedState.cookedPointerData.pointerProperties, |
| mCurrentCookedState.cookedPointerData.pointerCoords, |
| mCurrentCookedState.cookedPointerData.idToIndex, |
| currentIdBits, -1, |
| mOrientedXPrecision, mOrientedYPrecision, mDownTime); |
| } |
| } else { |
| // There may be pointers going up and pointers going down and pointers moving |
| // all at the same time. |
| BitSet32 upIdBits(lastIdBits.value & ~currentIdBits.value); |
| BitSet32 downIdBits(currentIdBits.value & ~lastIdBits.value); |
| BitSet32 moveIdBits(lastIdBits.value & currentIdBits.value); |
| BitSet32 dispatchedIdBits(lastIdBits.value); |
| |
| // Update last coordinates of pointers that have moved so that we observe the new |
| // pointer positions at the same time as other pointers that have just gone up. |
| bool moveNeeded = updateMovedPointers( |
| mCurrentCookedState.cookedPointerData.pointerProperties, |
| mCurrentCookedState.cookedPointerData.pointerCoords, |
| mCurrentCookedState.cookedPointerData.idToIndex, |
| mLastCookedState.cookedPointerData.pointerProperties, |
| mLastCookedState.cookedPointerData.pointerCoords, |
| mLastCookedState.cookedPointerData.idToIndex, |
| moveIdBits); |
| if (buttonState != mLastCookedState.buttonState) { |
| moveNeeded = true; |
| } |
| |
| // Dispatch pointer up events. |
| while (!upIdBits.isEmpty()) { |
| uint32_t upId = upIdBits.clearFirstMarkedBit(); |
| |
| dispatchMotion(when, policyFlags, mSource, |
| AMOTION_EVENT_ACTION_POINTER_UP, 0, 0, metaState, buttonState, 0, |
| mCurrentCookedState.deviceTimestamp, |
| mLastCookedState.cookedPointerData.pointerProperties, |
| mLastCookedState.cookedPointerData.pointerCoords, |
| mLastCookedState.cookedPointerData.idToIndex, |
| dispatchedIdBits, upId, mOrientedXPrecision, mOrientedYPrecision, mDownTime); |
| dispatchedIdBits.clearBit(upId); |
| } |
| |
| // Dispatch move events if any of the remaining pointers moved from their old locations. |
| // Although applications receive new locations as part of individual pointer up |
| // events, they do not generally handle them except when presented in a move event. |
| if (moveNeeded && !moveIdBits.isEmpty()) { |
| ALOG_ASSERT(moveIdBits.value == dispatchedIdBits.value); |
| dispatchMotion(when, policyFlags, mSource, |
| AMOTION_EVENT_ACTION_MOVE, 0, 0, metaState, buttonState, 0, |
| mCurrentCookedState.deviceTimestamp, |
| mCurrentCookedState.cookedPointerData.pointerProperties, |
| mCurrentCookedState.cookedPointerData.pointerCoords, |
| mCurrentCookedState.cookedPointerData.idToIndex, |
| dispatchedIdBits, -1, mOrientedXPrecision, mOrientedYPrecision, mDownTime); |
| } |
| |
| // Dispatch pointer down events using the new pointer locations. |
| while (!downIdBits.isEmpty()) { |
| uint32_t downId = downIdBits.clearFirstMarkedBit(); |
| dispatchedIdBits.markBit(downId); |
| |
| if (dispatchedIdBits.count() == 1) { |
| // First pointer is going down. Set down time. |
| mDownTime = when; |
| } |
| |
| dispatchMotion(when, policyFlags, mSource, |
| AMOTION_EVENT_ACTION_POINTER_DOWN, 0, 0, metaState, buttonState, 0, |
| mCurrentCookedState.deviceTimestamp, |
| mCurrentCookedState.cookedPointerData.pointerProperties, |
| mCurrentCookedState.cookedPointerData.pointerCoords, |
| mCurrentCookedState.cookedPointerData.idToIndex, |
| dispatchedIdBits, downId, mOrientedXPrecision, mOrientedYPrecision, mDownTime); |
| } |
| } |
| } |
| |
| void TouchInputMapper::dispatchHoverExit(nsecs_t when, uint32_t policyFlags) { |
| if (mSentHoverEnter && |
| (mCurrentCookedState.cookedPointerData.hoveringIdBits.isEmpty() |
| || !mCurrentCookedState.cookedPointerData.touchingIdBits.isEmpty())) { |
| int32_t metaState = getContext()->getGlobalMetaState(); |
| dispatchMotion(when, policyFlags, mSource, |
| AMOTION_EVENT_ACTION_HOVER_EXIT, 0, 0, metaState, mLastCookedState.buttonState, 0, |
| mLastCookedState.deviceTimestamp, |
| mLastCookedState.cookedPointerData.pointerProperties, |
| mLastCookedState.cookedPointerData.pointerCoords, |
| mLastCookedState.cookedPointerData.idToIndex, |
| mLastCookedState.cookedPointerData.hoveringIdBits, -1, |
| mOrientedXPrecision, mOrientedYPrecision, mDownTime); |
| mSentHoverEnter = false; |
| } |
| } |
| |
| void TouchInputMapper::dispatchHoverEnterAndMove(nsecs_t when, uint32_t policyFlags) { |
| if (mCurrentCookedState.cookedPointerData.touchingIdBits.isEmpty() |
| && !mCurrentCookedState.cookedPointerData.hoveringIdBits.isEmpty()) { |
| int32_t metaState = getContext()->getGlobalMetaState(); |
| if (!mSentHoverEnter) { |
| dispatchMotion(when, policyFlags, mSource, AMOTION_EVENT_ACTION_HOVER_ENTER, |
| 0, 0, metaState, mCurrentRawState.buttonState, 0, |
| mCurrentCookedState.deviceTimestamp, |
| mCurrentCookedState.cookedPointerData.pointerProperties, |
| mCurrentCookedState.cookedPointerData.pointerCoords, |
| mCurrentCookedState.cookedPointerData.idToIndex, |
| mCurrentCookedState.cookedPointerData.hoveringIdBits, -1, |
| mOrientedXPrecision, mOrientedYPrecision, mDownTime); |
| mSentHoverEnter = true; |
| } |
| |
| dispatchMotion(when, policyFlags, mSource, |
| AMOTION_EVENT_ACTION_HOVER_MOVE, 0, 0, metaState, |
| mCurrentRawState.buttonState, 0, |
| mCurrentCookedState.deviceTimestamp, |
| mCurrentCookedState.cookedPointerData.pointerProperties, |
| mCurrentCookedState.cookedPointerData.pointerCoords, |
| mCurrentCookedState.cookedPointerData.idToIndex, |
| mCurrentCookedState.cookedPointerData.hoveringIdBits, -1, |
| mOrientedXPrecision, mOrientedYPrecision, mDownTime); |
| } |
| } |
| |
| void TouchInputMapper::dispatchButtonRelease(nsecs_t when, uint32_t policyFlags) { |
| BitSet32 releasedButtons(mLastCookedState.buttonState & ~mCurrentCookedState.buttonState); |
| const BitSet32& idBits = findActiveIdBits(mLastCookedState.cookedPointerData); |
| const int32_t metaState = getContext()->getGlobalMetaState(); |
| int32_t buttonState = mLastCookedState.buttonState; |
| while (!releasedButtons.isEmpty()) { |
| int32_t actionButton = BitSet32::valueForBit(releasedButtons.clearFirstMarkedBit()); |
| buttonState &= ~actionButton; |
| dispatchMotion(when, policyFlags, mSource, |
| AMOTION_EVENT_ACTION_BUTTON_RELEASE, actionButton, |
| 0, metaState, buttonState, 0, |
| mCurrentCookedState.deviceTimestamp, |
| mCurrentCookedState.cookedPointerData.pointerProperties, |
| mCurrentCookedState.cookedPointerData.pointerCoords, |
| mCurrentCookedState.cookedPointerData.idToIndex, idBits, -1, |
| mOrientedXPrecision, mOrientedYPrecision, mDownTime); |
| } |
| } |
| |
| void TouchInputMapper::dispatchButtonPress(nsecs_t when, uint32_t policyFlags) { |
| BitSet32 pressedButtons(mCurrentCookedState.buttonState & ~mLastCookedState.buttonState); |
| const BitSet32& idBits = findActiveIdBits(mCurrentCookedState.cookedPointerData); |
| const int32_t metaState = getContext()->getGlobalMetaState(); |
| int32_t buttonState = mLastCookedState.buttonState; |
| while (!pressedButtons.isEmpty()) { |
| int32_t actionButton = BitSet32::valueForBit(pressedButtons.clearFirstMarkedBit()); |
| buttonState |= actionButton; |
| dispatchMotion(when, policyFlags, mSource, AMOTION_EVENT_ACTION_BUTTON_PRESS, actionButton, |
| 0, metaState, buttonState, 0, |
| mCurrentCookedState.deviceTimestamp, |
| mCurrentCookedState.cookedPointerData.pointerProperties, |
| mCurrentCookedState.cookedPointerData.pointerCoords, |
| mCurrentCookedState.cookedPointerData.idToIndex, idBits, -1, |
| mOrientedXPrecision, mOrientedYPrecision, mDownTime); |
| } |
| } |
| |
| const BitSet32& TouchInputMapper::findActiveIdBits(const CookedPointerData& cookedPointerData) { |
| if (!cookedPointerData.touchingIdBits.isEmpty()) { |
| return cookedPointerData.touchingIdBits; |
| } |
| return cookedPointerData.hoveringIdBits; |
| } |
| |
| void TouchInputMapper::cookPointerData() { |
| uint32_t currentPointerCount = mCurrentRawState.rawPointerData.pointerCount; |
| |
| mCurrentCookedState.cookedPointerData.clear(); |
| mCurrentCookedState.deviceTimestamp = |
| mCurrentRawState.deviceTimestamp; |
| mCurrentCookedState.cookedPointerData.pointerCount = currentPointerCount; |
| mCurrentCookedState.cookedPointerData.hoveringIdBits = |
| mCurrentRawState.rawPointerData.hoveringIdBits; |
| mCurrentCookedState.cookedPointerData.touchingIdBits = |
| mCurrentRawState.rawPointerData.touchingIdBits; |
| |
| if (mCurrentCookedState.cookedPointerData.pointerCount == 0) { |
| mCurrentCookedState.buttonState = 0; |
| } else { |
| mCurrentCookedState.buttonState = mCurrentRawState.buttonState; |
| } |
| |
| // Walk through the the active pointers and map device coordinates onto |
| // surface coordinates and adjust for display orientation. |
| for (uint32_t i = 0; i < currentPointerCount; i++) { |
| const RawPointerData::Pointer& in = mCurrentRawState.rawPointerData.pointers[i]; |
| |
| // Size |
| float touchMajor, touchMinor, toolMajor, toolMinor, size; |
| switch (mCalibration.sizeCalibration) { |
| case Calibration::SIZE_CALIBRATION_GEOMETRIC: |
| case Calibration::SIZE_CALIBRATION_DIAMETER: |
| case Calibration::SIZE_CALIBRATION_BOX: |
| case Calibration::SIZE_CALIBRATION_AREA: |
| if (mRawPointerAxes.touchMajor.valid && mRawPointerAxes.toolMajor.valid) { |
| touchMajor = in.touchMajor; |
| touchMinor = mRawPointerAxes.touchMinor.valid ? in.touchMinor : in.touchMajor; |
| toolMajor = in.toolMajor; |
| toolMinor = mRawPointerAxes.toolMinor.valid ? in.toolMinor : in.toolMajor; |
| size = mRawPointerAxes.touchMinor.valid |
| ? avg(in.touchMajor, in.touchMinor) : in.touchMajor; |
| } else if (mRawPointerAxes.touchMajor.valid) { |
| toolMajor = touchMajor = in.touchMajor; |
| toolMinor = touchMinor = mRawPointerAxes.touchMinor.valid |
| ? in.touchMinor : in.touchMajor; |
| size = mRawPointerAxes.touchMinor.valid |
| ? avg(in.touchMajor, in.touchMinor) : in.touchMajor; |
| } else if (mRawPointerAxes.toolMajor.valid) { |
| touchMajor = toolMajor = in.toolMajor; |
| touchMinor = toolMinor = mRawPointerAxes.toolMinor.valid |
| ? in.toolMinor : in.toolMajor; |
| size = mRawPointerAxes.toolMinor.valid |
| ? avg(in.toolMajor, in.toolMinor) : in.toolMajor; |
| } else { |
| ALOG_ASSERT(false, "No touch or tool axes. " |
| "Size calibration should have been resolved to NONE."); |
| touchMajor = 0; |
| touchMinor = 0; |
| toolMajor = 0; |
| toolMinor = 0; |
| size = 0; |
| } |
| |
| if (mCalibration.haveSizeIsSummed && mCalibration.sizeIsSummed) { |
| uint32_t touchingCount = |
| mCurrentRawState.rawPointerData.touchingIdBits.count(); |
| if (touchingCount > 1) { |
| touchMajor /= touchingCount; |
| touchMinor /= touchingCount; |
| toolMajor /= touchingCount; |
| toolMinor /= touchingCount; |
| size /= touchingCount; |
| } |
| } |
| |
| if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_GEOMETRIC) { |
| touchMajor *= mGeometricScale; |
| touchMinor *= mGeometricScale; |
| toolMajor *= mGeometricScale; |
| toolMinor *= mGeometricScale; |
| } else if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_AREA) { |
| touchMajor = touchMajor > 0 ? sqrtf(touchMajor) : 0; |
| touchMinor = touchMajor; |
| toolMajor = toolMajor > 0 ? sqrtf(toolMajor) : 0; |
| toolMinor = toolMajor; |
| } else if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_DIAMETER) { |
| touchMinor = touchMajor; |
| toolMinor = toolMajor; |
| } |
| |
| mCalibration.applySizeScaleAndBias(&touchMajor); |
| mCalibration.applySizeScaleAndBias(&touchMinor); |
| mCalibration.applySizeScaleAndBias(&toolMajor); |
| mCalibration.applySizeScaleAndBias(&toolMinor); |
| size *= mSizeScale; |
| break; |
| default: |
| touchMajor = 0; |
| touchMinor = 0; |
| toolMajor = 0; |
| toolMinor = 0; |
| size = 0; |
| break; |
| } |
| |
| // Pressure |
| float pressure; |
| switch (mCalibration.pressureCalibration) { |
| case Calibration::PRESSURE_CALIBRATION_PHYSICAL: |
| case Calibration::PRESSURE_CALIBRATION_AMPLITUDE: |
| pressure = in.pressure * mPressureScale; |
| break; |
| default: |
| pressure = in.isHovering ? 0 : 1; |
| break; |
| } |
| |
| // Tilt and Orientation |
| float tilt; |
| float orientation; |
| if (mHaveTilt) { |
| float tiltXAngle = (in.tiltX - mTiltXCenter) * mTiltXScale; |
| float tiltYAngle = (in.tiltY - mTiltYCenter) * mTiltYScale; |
| orientation = atan2f(-sinf(tiltXAngle), sinf(tiltYAngle)); |
| tilt = acosf(cosf(tiltXAngle) * cosf(tiltYAngle)); |
| } else { |
| tilt = 0; |
| |
| switch (mCalibration.orientationCalibration) { |
| case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED: |
| orientation = in.orientation * mOrientationScale; |
| break; |
| case Calibration::ORIENTATION_CALIBRATION_VECTOR: { |
| int32_t c1 = signExtendNybble((in.orientation & 0xf0) >> 4); |
| int32_t c2 = signExtendNybble(in.orientation & 0x0f); |
| if (c1 != 0 || c2 != 0) { |
| orientation = atan2f(c1, c2) * 0.5f; |
| float confidence = hypotf(c1, c2); |
| float scale = 1.0f + confidence / 16.0f; |
| touchMajor *= scale; |
| touchMinor /= scale; |
| toolMajor *= scale; |
| toolMinor /= scale; |
| } else { |
| orientation = 0; |
| } |
| break; |
| } |
| default: |
| orientation = 0; |
| } |
| } |
| |
| // Distance |
| float distance; |
| switch (mCalibration.distanceCalibration) { |
| case Calibration::DISTANCE_CALIBRATION_SCALED: |
| distance = in.distance * mDistanceScale; |
| break; |
| default: |
| distance = 0; |
| } |
| |
| // Coverage |
| int32_t rawLeft, rawTop, rawRight, rawBottom; |
| switch (mCalibration.coverageCalibration) { |
| case Calibration::COVERAGE_CALIBRATION_BOX: |
| rawLeft = (in.toolMinor & 0xffff0000) >> 16; |
| rawRight = in.toolMinor & 0x0000ffff; |
| rawBottom = in.toolMajor & 0x0000ffff; |
| rawTop = (in.toolMajor & 0xffff0000) >> 16; |
| break; |
| default: |
| rawLeft = rawTop = rawRight = rawBottom = 0; |
| break; |
| } |
| |
| // Adjust X,Y coords for device calibration |
| // TODO: Adjust coverage coords? |
| float xTransformed = in.x, yTransformed = in.y; |
| mAffineTransform.applyTo(xTransformed, yTransformed); |
| |
| // Adjust X, Y, and coverage coords for surface orientation. |
| float x, y; |
| float left, top, right, bottom; |
| |
| switch (mSurfaceOrientation) { |
| case DISPLAY_ORIENTATION_90: |
| x = float(yTransformed - mRawPointerAxes.y.minValue) * mYScale + mYTranslate; |
| y = float(mRawPointerAxes.x.maxValue - xTransformed) * mXScale + mXTranslate; |
| left = float(rawTop - mRawPointerAxes.y.minValue) * mYScale + mYTranslate; |
| right = float(rawBottom- mRawPointerAxes.y.minValue) * mYScale + mYTranslate; |
| bottom = float(mRawPointerAxes.x.maxValue - rawLeft) * mXScale + mXTranslate; |
| top = float(mRawPointerAxes.x.maxValue - rawRight) * mXScale + mXTranslate; |
| orientation -= M_PI_2; |
| if (mOrientedRanges.haveOrientation && orientation < mOrientedRanges.orientation.min) { |
| orientation += (mOrientedRanges.orientation.max - mOrientedRanges.orientation.min); |
| } |
| break; |
| case DISPLAY_ORIENTATION_180: |
| x = float(mRawPointerAxes.x.maxValue - xTransformed) * mXScale; |
| y = float(mRawPointerAxes.y.maxValue - yTransformed) * mYScale + mYTranslate; |
| left = float(mRawPointerAxes.x.maxValue - rawRight) * mXScale; |
| right = float(mRawPointerAxes.x.maxValue - rawLeft) * mXScale; |
| bottom = float(mRawPointerAxes.y.maxValue - rawTop) * mYScale + mYTranslate; |
| top = float(mRawPointerAxes.y.maxValue - rawBottom) * mYScale + mYTranslate; |
| orientation -= M_PI; |
| if (mOrientedRanges.haveOrientation && orientation < mOrientedRanges.orientation.min) { |
| orientation += (mOrientedRanges.orientation.max - mOrientedRanges.orientation.min); |
| } |
| break; |
| case DISPLAY_ORIENTATION_270: |
| x = float(mRawPointerAxes.y.maxValue - yTransformed) * mYScale; |
| y = float(xTransformed - mRawPointerAxes.x.minValue) * mXScale + mXTranslate; |
| left = float(mRawPointerAxes.y.maxValue - rawBottom) * mYScale; |
| right = float(mRawPointerAxes.y.maxValue - rawTop) * mYScale; |
| bottom = float(rawRight - mRawPointerAxes.x.minValue) * mXScale + mXTranslate; |
| top = float(rawLeft - mRawPointerAxes.x.minValue) * mXScale + mXTranslate; |
| orientation += M_PI_2; |
| if (mOrientedRanges.haveOrientation && orientation > mOrientedRanges.orientation.max) { |
| orientation -= (mOrientedRanges.orientation.max - mOrientedRanges.orientation.min); |
| } |
| break; |
| default: |
| x = float(xTransformed - mRawPointerAxes.x.minValue) * mXScale + mXTranslate; |
| y = float(yTransformed - mRawPointerAxes.y.minValue) * mYScale + mYTranslate; |
| left = float(rawLeft - mRawPointerAxes.x.minValue) * mXScale + mXTranslate; |
| right = float(rawRight - mRawPointerAxes.x.minValue) * mXScale + mXTranslate; |
| bottom = float(rawBottom - mRawPointerAxes.y.minValue) * mYScale + mYTranslate; |
| top = float(rawTop - mRawPointerAxes.y.minValue) * mYScale + mYTranslate; |
| break; |
| } |
| |
| // Write output coords. |
| PointerCoords& out = mCurrentCookedState.cookedPointerData.pointerCoords[i]; |
| out.clear(); |
| out.setAxisValue(AMOTION_EVENT_AXIS_X, x); |
| out.setAxisValue(AMOTION_EVENT_AXIS_Y, y); |
| out.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, pressure); |
| out.setAxisValue(AMOTION_EVENT_AXIS_SIZE, size); |
| out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, touchMajor); |
| out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, touchMinor); |
| out.setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, orientation); |
| out.setAxisValue(AMOTION_EVENT_AXIS_TILT, tilt); |
| out.setAxisValue(AMOTION_EVENT_AXIS_DISTANCE, distance); |
| if (mCalibration.coverageCalibration == Calibration::COVERAGE_CALIBRATION_BOX) { |
| out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_1, left); |
| out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_2, top); |
| out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_3, right); |
| out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_4, bottom); |
| } else { |
| out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, toolMajor); |
| out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, toolMinor); |
| } |
| |
| // Write output properties. |
| PointerProperties& properties = |
| mCurrentCookedState.cookedPointerData.pointerProperties[i]; |
| uint32_t id = in.id; |
| properties.clear(); |
| properties.id = id; |
| properties.toolType = in.toolType; |
| |
| // Write id index. |
| mCurrentCookedState.cookedPointerData.idToIndex[id] = i; |
| } |
| } |
| |
| void TouchInputMapper::dispatchPointerUsage(nsecs_t when, uint32_t policyFlags, |
| PointerUsage pointerUsage) { |
| if (pointerUsage != mPointerUsage) { |
| abortPointerUsage(when, policyFlags); |
| mPointerUsage = pointerUsage; |
| } |
| |
| switch (mPointerUsage) { |
| case POINTER_USAGE_GESTURES: |
| dispatchPointerGestures(when, policyFlags, false /*isTimeout*/); |
| break; |
| case POINTER_USAGE_STYLUS: |
| dispatchPointerStylus(when, policyFlags); |
| break; |
| case POINTER_USAGE_MOUSE: |
| dispatchPointerMouse(when, policyFlags); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| void TouchInputMapper::abortPointerUsage(nsecs_t when, uint32_t policyFlags) { |
| switch (mPointerUsage) { |
| case POINTER_USAGE_GESTURES: |
| abortPointerGestures(when, policyFlags); |
| break; |
| case POINTER_USAGE_STYLUS: |
| abortPointerStylus(when, policyFlags); |
| break; |
| case POINTER_USAGE_MOUSE: |
| abortPointerMouse(when, policyFlags); |
| break; |
| default: |
| break; |
| } |
| |
| mPointerUsage = POINTER_USAGE_NONE; |
| } |
| |
| void TouchInputMapper::dispatchPointerGestures(nsecs_t when, uint32_t policyFlags, |
| bool isTimeout) { |
| // Update current gesture coordinates. |
| bool cancelPreviousGesture, finishPreviousGesture; |
| bool sendEvents = preparePointerGestures(when, |
| &cancelPreviousGesture, &finishPreviousGesture, isTimeout); |
| if (!sendEvents) { |
| return; |
| } |
| if (finishPreviousGesture) { |
| cancelPreviousGesture = false; |
| } |
| |
| // Update the pointer presentation and spots. |
| if (mParameters.gestureMode == Parameters::GESTURE_MODE_MULTI_TOUCH) { |
| mPointerController->setPresentation(PointerControllerInterface::PRESENTATION_POINTER); |
| if (finishPreviousGesture || cancelPreviousGesture) { |
| mPointerController->clearSpots(); |
| } |
| |
| if (mPointerGesture.currentGestureMode == PointerGesture::FREEFORM) { |
| mPointerController->setSpots(mPointerGesture.currentGestureCoords, |
| mPointerGesture.currentGestureIdToIndex, |
| mPointerGesture.currentGestureIdBits); |
| } |
| } else { |
| mPointerController->setPresentation(PointerControllerInterface::PRESENTATION_POINTER); |
| } |
| |
| // Show or hide the pointer if needed. |
| switch (mPointerGesture.currentGestureMode) { |
| case PointerGesture::NEUTRAL: |
| case PointerGesture::QUIET: |
| if (mParameters.gestureMode == Parameters::GESTURE_MODE_MULTI_TOUCH |
| && mPointerGesture.lastGestureMode == PointerGesture::FREEFORM) { |
| // Remind the user of where the pointer is after finishing a gesture with spots. |
| mPointerController->unfade(PointerControllerInterface::TRANSITION_GRADUAL); |
| } |
| break; |
| case PointerGesture::TAP: |
| case PointerGesture::TAP_DRAG: |
| case PointerGesture::BUTTON_CLICK_OR_DRAG: |
| case PointerGesture::HOVER: |
| case PointerGesture::PRESS: |
| case PointerGesture::SWIPE: |
| // Unfade the pointer when the current gesture manipulates the |
| // area directly under the pointer. |
| mPointerController->unfade(PointerControllerInterface::TRANSITION_IMMEDIATE); |
| break; |
| case PointerGesture::FREEFORM: |
| // Fade the pointer when the current gesture manipulates a different |
| // area and there are spots to guide the user experience. |
| if (mParameters.gestureMode == Parameters::GESTURE_MODE_MULTI_TOUCH) { |
| mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL); |
| } else { |
| mPointerController->unfade(PointerControllerInterface::TRANSITION_IMMEDIATE); |
| } |
| break; |
| } |
| |
| // Send events! |
| int32_t metaState = getContext()->getGlobalMetaState(); |
| int32_t buttonState = mCurrentCookedState.buttonState; |
| |
| // Update last coordinates of pointers that have moved so that we observe the new |
| // pointer positions at the same time as other pointers that have just gone up. |
| bool down = mPointerGesture.currentGestureMode == PointerGesture::TAP |
| || mPointerGesture.currentGestureMode == PointerGesture::TAP_DRAG |
| || mPointerGesture.currentGestureMode == PointerGesture::BUTTON_CLICK_OR_DRAG |
| || mPointerGesture.currentGestureMode == PointerGesture::PRESS |
| || mPointerGesture.currentGestureMode == PointerGesture::SWIPE |
| || mPointerGesture.currentGestureMode == PointerGesture::FREEFORM; |
| bool moveNeeded = false; |
| if (down && !cancelPreviousGesture && !finishPreviousGesture |
| && !mPointerGesture.lastGestureIdBits.isEmpty() |
| && !mPointerGesture.currentGestureIdBits.isEmpty()) { |
| BitSet32 movedGestureIdBits(mPointerGesture.currentGestureIdBits.value |
| & mPointerGesture.lastGestureIdBits.value); |
| moveNeeded = updateMovedPointers(mPointerGesture.currentGestureProperties, |
| mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex, |
| mPointerGesture.lastGestureProperties, |
| mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex, |
| movedGestureIdBits); |
| if (buttonState != mLastCookedState.buttonState) { |
| moveNeeded = true; |
| } |
| } |
| |
| // Send motion events for all pointers that went up or were canceled. |
| BitSet32 dispatchedGestureIdBits(mPointerGesture.lastGestureIdBits); |
| if (!dispatchedGestureIdBits.isEmpty()) { |
| if (cancelPreviousGesture) { |
| dispatchMotion(when, policyFlags, mSource, |
| AMOTION_EVENT_ACTION_CANCEL, 0, 0, metaState, buttonState, |
| AMOTION_EVENT_EDGE_FLAG_NONE, /* deviceTimestamp */ 0, |
| mPointerGesture.lastGestureProperties, |
| mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex, |
| dispatchedGestureIdBits, -1, 0, |
| 0, mPointerGesture.downTime); |
| |
| dispatchedGestureIdBits.clear(); |
| } else { |
| BitSet32 upGestureIdBits; |
| if (finishPreviousGesture) { |
| upGestureIdBits = dispatchedGestureIdBits; |
| } else { |
| upGestureIdBits.value = dispatchedGestureIdBits.value |
| & ~mPointerGesture.currentGestureIdBits.value; |
| } |
| while (!upGestureIdBits.isEmpty()) { |
| uint32_t id = upGestureIdBits.clearFirstMarkedBit(); |
| |
| dispatchMotion(when, policyFlags, mSource, |
| AMOTION_EVENT_ACTION_POINTER_UP, 0, 0, |
| metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, |
| /* deviceTimestamp */ 0, |
| mPointerGesture.lastGestureProperties, |
| mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex, |
| dispatchedGestureIdBits, id, |
| 0, 0, mPointerGesture.downTime); |
| |
| dispatchedGestureIdBits.clearBit(id); |
| } |
| } |
| } |
| |
| // Send motion events for all pointers that moved. |
| if (moveNeeded) { |
| dispatchMotion(when, policyFlags, mSource, |
| AMOTION_EVENT_ACTION_MOVE, 0, 0, metaState, buttonState, |
| AMOTION_EVENT_EDGE_FLAG_NONE, /* deviceTimestamp */ 0, |
| mPointerGesture.currentGestureProperties, |
| mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex, |
| dispatchedGestureIdBits, -1, |
| 0, 0, mPointerGesture.downTime); |
| } |
| |
| // Send motion events for all pointers that went down. |
| if (down) { |
| BitSet32 downGestureIdBits(mPointerGesture.currentGestureIdBits.value |
| & ~dispatchedGestureIdBits.value); |
| while (!downGestureIdBits.isEmpty()) { |
| uint32_t id = downGestureIdBits.clearFirstMarkedBit(); |
| dispatchedGestureIdBits.markBit(id); |
| |
| if (dispatchedGestureIdBits.count() == 1) { |
| mPointerGesture.downTime = when; |
| } |
| |
| dispatchMotion(when, policyFlags, mSource, |
| AMOTION_EVENT_ACTION_POINTER_DOWN, 0, 0, metaState, buttonState, 0, |
| /* deviceTimestamp */ 0, |
| mPointerGesture.currentGestureProperties, |
| mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex, |
| dispatchedGestureIdBits, id, |
| 0, 0, mPointerGesture.downTime); |
| } |
| } |
| |
| // Send motion events for hover. |
| if (mPointerGesture.currentGestureMode == PointerGesture::HOVER) { |
| dispatchMotion(when, policyFlags, mSource, |
| AMOTION_EVENT_ACTION_HOVER_MOVE, 0, 0, |
| metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, /* deviceTimestamp */ 0, |
| mPointerGesture.currentGestureProperties, |
| mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex, |
| mPointerGesture.currentGestureIdBits, -1, |
| 0, 0, mPointerGesture.downTime); |
| } else if (dispatchedGestureIdBits.isEmpty() |
| && !mPointerGesture.lastGestureIdBits.isEmpty()) { |
| // Synthesize a hover move event after all pointers go up to indicate that |
| // the pointer is hovering again even if the user is not currently touching |
| // the touch pad. This ensures that a view will receive a fresh hover enter |
| // event after a tap. |
| float x, y; |
| mPointerController->getPosition(&x, &y); |
| |
| PointerProperties pointerProperties; |
| pointerProperties.clear(); |
| pointerProperties.id = 0; |
| pointerProperties.toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; |
| |
| PointerCoords pointerCoords; |
| pointerCoords.clear(); |
| pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x); |
| pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y); |
| |
| NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, |
| AMOTION_EVENT_ACTION_HOVER_MOVE, 0, 0, |
| metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, |
| mViewport.displayId, /* deviceTimestamp */ 0, 1, &pointerProperties, &pointerCoords, |
| 0, 0, mPointerGesture.downTime); |
| getListener()->notifyMotion(&args); |
| } |
| |
| // Update state. |
| mPointerGesture.lastGestureMode = mPointerGesture.currentGestureMode; |
| if (!down) { |
| mPointerGesture.lastGestureIdBits.clear(); |
| } else { |
| mPointerGesture.lastGestureIdBits = mPointerGesture.currentGestureIdBits; |
| for (BitSet32 idBits(mPointerGesture.currentGestureIdBits); !idBits.isEmpty(); ) { |
| uint32_t id = idBits.clearFirstMarkedBit(); |
| uint32_t index = mPointerGesture.currentGestureIdToIndex[id]; |
| mPointerGesture.lastGestureProperties[index].copyFrom( |
| mPointerGesture.currentGestureProperties[index]); |
| mPointerGesture.lastGestureCoords[index].copyFrom( |
| mPointerGesture.currentGestureCoords[index]); |
| mPointerGesture.lastGestureIdToIndex[id] = index; |
| } |
| } |
| } |
| |
| void TouchInputMapper::abortPointerGestures(nsecs_t when, uint32_t policyFlags) { |
| // Cancel previously dispatches pointers. |
| if (!mPointerGesture.lastGestureIdBits.isEmpty()) { |
| int32_t metaState = getContext()->getGlobalMetaState(); |
| int32_t buttonState = mCurrentRawState.buttonState; |
| dispatchMotion(when, policyFlags, mSource, |
| AMOTION_EVENT_ACTION_CANCEL, 0, 0, metaState, buttonState, |
| AMOTION_EVENT_EDGE_FLAG_NONE, /* deviceTimestamp */ 0, |
| mPointerGesture.lastGestureProperties, |
| mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex, |
| mPointerGesture.lastGestureIdBits, -1, |
| 0, 0, mPointerGesture.downTime); |
| } |
| |
| // Reset the current pointer gesture. |
| mPointerGesture.reset(); |
| mPointerVelocityControl.reset(); |
| |
| // Remove any current spots. |
| if (mPointerController != NULL) { |
| mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL); |
| mPointerController->clearSpots(); |
| } |
| } |
| |
| bool TouchInputMapper::preparePointerGestures(nsecs_t when, |
| bool* outCancelPreviousGesture, bool* outFinishPreviousGesture, bool isTimeout) { |
| *outCancelPreviousGesture = false; |
| *outFinishPreviousGesture = false; |
| |
| // Handle TAP timeout. |
| if (isTimeout) { |
| #if DEBUG_GESTURES |
| ALOGD("Gestures: Processing timeout"); |
| #endif |
| |
| if (mPointerGesture.lastGestureMode == PointerGesture::TAP) { |
| if (when <= mPointerGesture.tapUpTime + mConfig.pointerGestureTapDragInterval) { |
| // The tap/drag timeout has not yet expired. |
| getContext()->requestTimeoutAtTime(mPointerGesture.tapUpTime |
| + mConfig.pointerGestureTapDragInterval); |
| } else { |
| // The tap is finished. |
| #if DEBUG_GESTURES |
| ALOGD("Gestures: TAP finished"); |
| #endif |
| *outFinishPreviousGesture = true; |
| |
| mPointerGesture.activeGestureId = -1; |
| mPointerGesture.currentGestureMode = PointerGesture::NEUTRAL; |
| mPointerGesture.currentGestureIdBits.clear(); |
| |
| mPointerVelocityControl.reset(); |
| return true; |
| } |
| } |
| |
| // We did not handle this timeout. |
| return false; |
| } |
| |
| const uint32_t currentFingerCount = mCurrentCookedState.fingerIdBits.count(); |
| const uint32_t lastFingerCount = mLastCookedState.fingerIdBits.count(); |
| |
| // Update the velocity tracker. |
| { |
| VelocityTracker::Position positions[MAX_POINTERS]; |
| uint32_t count = 0; |
| for (BitSet32 idBits(mCurrentCookedState.fingerIdBits); !idBits.isEmpty(); count++) { |
| uint32_t id = idBits.clearFirstMarkedBit(); |
| const RawPointerData::Pointer& pointer = |
| mCurrentRawState.rawPointerData.pointerForId(id); |
| positions[count].x = pointer.x * mPointerXMovementScale; |
| positions[count].y = pointer.y * mPointerYMovementScale; |
| } |
| mPointerGesture.velocityTracker.addMovement(when, |
| mCurrentCookedState.fingerIdBits, positions); |
| } |
| |
| // If the gesture ever enters a mode other than TAP, HOVER or TAP_DRAG, without first returning |
| // to NEUTRAL, then we should not generate tap event. |
| if (mPointerGesture.lastGestureMode != PointerGesture::HOVER |
| && mPointerGesture.lastGestureMode != PointerGesture::TAP |
| && mPointerGesture.lastGestureMode != PointerGesture::TAP_DRAG) { |
| mPointerGesture.resetTap(); |
| } |
| |
| // Pick a new active touch id if needed. |
| // Choose an arbitrary pointer that just went down, if there is one. |
| // Otherwise choose an arbitrary remaining pointer. |
| // This guarantees we always have an active touch id when there is at least one pointer. |
| // We keep the same active touch id for as long as possible. |
| int32_t lastActiveTouchId = mPointerGesture.activeTouchId; |
| int32_t activeTouchId = lastActiveTouchId; |
| if (activeTouchId < 0) { |
| if (!mCurrentCookedState.fingerIdBits.isEmpty()) { |
| activeTouchId = mPointerGesture.activeTouchId = |
| mCurrentCookedState.fingerIdBits.firstMarkedBit(); |
| mPointerGesture.firstTouchTime = when; |
| } |
| } else if (!mCurrentCookedState.fingerIdBits.hasBit(activeTouchId)) { |
| if (!mCurrentCookedState.fingerIdBits.isEmpty()) { |
| activeTouchId = mPointerGesture.activeTouchId = |
| mCurrentCookedState.fingerIdBits.firstMarkedBit(); |
| } else { |
| activeTouchId = mPointerGesture.activeTouchId = -1; |
| } |
| } |
| |
| // Determine whether we are in quiet time. |
| bool isQuietTime = false; |
| if (activeTouchId < 0) { |
| mPointerGesture.resetQuietTime(); |
| } else { |
| isQuietTime = when < mPointerGesture.quietTime + mConfig.pointerGestureQuietInterval; |
| if (!isQuietTime) { |
| if ((mPointerGesture.lastGestureMode == PointerGesture::PRESS |
| || mPointerGesture.lastGestureMode == PointerGesture::SWIPE |
| || mPointerGesture.lastGestureMode == PointerGesture::FREEFORM) |
| && currentFingerCount < 2) { |
| // Enter quiet time when exiting swipe or freeform state. |
| // This is to prevent accidentally entering the hover state and flinging the |
| // pointer when finishing a swipe and there is still one pointer left onscreen. |
| isQuietTime = true; |
| } else if (mPointerGesture.lastGestureMode == PointerGesture::BUTTON_CLICK_OR_DRAG |
| && currentFingerCount >= 2 |
| && !isPointerDown(mCurrentRawState.buttonState)) { |
| // Enter quiet time when releasing the button and there are still two or more |
| // fingers down. This may indicate that one finger was used to press the button |
| // but it has not gone up yet. |
| isQuietTime = true; |
| } |
| if (isQuietTime) { |
| mPointerGesture.quietTime = when; |
| } |
| } |
| } |
| |
| // Switch states based on button and pointer state. |
| if (isQuietTime) { |
| // Case 1: Quiet time. (QUIET) |
| #if DEBUG_GESTURES |
| ALOGD("Gestures: QUIET for next %0.3fms", (mPointerGesture.quietTime |
| + mConfig.pointerGestureQuietInterval - when) * 0.000001f); |
| #endif |
| if (mPointerGesture.lastGestureMode != PointerGesture::QUIET) { |
| *outFinishPreviousGesture = true; |
| } |
| |
| mPointerGesture.activeGestureId = -1; |
| mPointerGesture.currentGestureMode = PointerGesture::QUIET; |
| mPointerGesture.currentGestureIdBits.clear(); |
| |
| mPointerVelocityControl.reset(); |
| } else if (isPointerDown(mCurrentRawState.buttonState)) { |
| // Case 2: Button is pressed. (BUTTON_CLICK_OR_DRAG) |
| // The pointer follows the active touch point. |
| // Emit DOWN, MOVE, UP events at the pointer location. |
| // |
| // Only the active touch matters; other fingers are ignored. This policy helps |
| // to handle the case where the user places a second finger on the touch pad |
| // to apply the necessary force to depress an integrated button below the surface. |
| // We don't want the second finger to be delivered to applications. |
| // |
| // For this to work well, we need to make sure to track the pointer that is really |
| // active. If the user first puts one finger down to click then adds another |
| // finger to drag then the active pointer should switch to the finger that is |
| // being dragged. |
| #if DEBUG_GESTURES |
| ALOGD("Gestures: BUTTON_CLICK_OR_DRAG activeTouchId=%d, " |
| "currentFingerCount=%d", activeTouchId, currentFingerCount); |
| #endif |
| // Reset state when just starting. |
| if (mPointerGesture.lastGestureMode != PointerGesture::BUTTON_CLICK_OR_DRAG) { |
| *outFinishPreviousGesture = true; |
| mPointerGesture.activeGestureId = 0; |
| } |
| |
| // Switch pointers if needed. |
| // Find the fastest pointer and follow it. |
| if (activeTouchId >= 0 && currentFingerCount > 1) { |
| int32_t bestId = -1; |
| float bestSpeed = mConfig.pointerGestureDragMinSwitchSpeed; |
| for (BitSet32 idBits(mCurrentCookedState.fingerIdBits); !idBits.isEmpty(); ) { |
| uint32_t id = idBits.clearFirstMarkedBit(); |
| float vx, vy; |
| if (mPointerGesture.velocityTracker.getVelocity(id, &vx, &vy)) { |
| float speed = hypotf(vx, vy); |
| if (speed > bestSpeed) { |
| bestId = id; |
| bestSpeed = speed; |
| } |
| } |
| } |
| if (bestId >= 0 && bestId != activeTouchId) { |
| mPointerGesture.activeTouchId = activeTouchId = bestId; |
| #if DEBUG_GESTURES |
| ALOGD("Gestures: BUTTON_CLICK_OR_DRAG switched pointers, " |
| "bestId=%d, bestSpeed=%0.3f", bestId, bestSpeed); |
| #endif |
| } |
| } |
| |
| float deltaX = 0, deltaY = 0; |
| if (activeTouchId >= 0 && mLastCookedState.fingerIdBits.hasBit(activeTouchId)) { |
| const RawPointerData::Pointer& currentPointer = |
| mCurrentRawState.rawPointerData.pointerForId(activeTouchId); |
| const RawPointerData::Pointer& lastPointer = |
| mLastRawState.rawPointerData.pointerForId(activeTouchId); |
| deltaX = (currentPointer.x - lastPointer.x) * mPointerXMovementScale; |
| deltaY = (currentPointer.y - lastPointer.y) * mPointerYMovementScale; |
| |
| rotateDelta(mSurfaceOrientation, &deltaX, &deltaY); |
| mPointerVelocityControl.move(when, &deltaX, &deltaY); |
| |
| // Move the pointer using a relative motion. |
| // When using spots, the click will occur at the position of the anchor |
| // spot and all other spots will move there. |
| mPointerController->move(deltaX, deltaY); |
| } else { |
| mPointerVelocityControl.reset(); |
| } |
| |
| float x, y; |
| mPointerController->getPosition(&x, &y); |
| |
| mPointerGesture.currentGestureMode = PointerGesture::BUTTON_CLICK_OR_DRAG; |
| mPointerGesture.currentGestureIdBits.clear(); |
| mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId); |
| mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0; |
| mPointerGesture.currentGestureProperties[0].clear(); |
| mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId; |
| mPointerGesture.currentGestureProperties[0].toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; |
| mPointerGesture.currentGestureCoords[0].clear(); |
| mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, x); |
| mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, y); |
| mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f); |
| } else if (currentFingerCount == 0) { |
| // Case 3. No fingers down and button is not pressed. (NEUTRAL) |
| if (mPointerGesture.lastGestureMode != PointerGesture::NEUTRAL) { |
| *outFinishPreviousGesture = true; |
| } |
| |
| // Watch for taps coming out of HOVER or TAP_DRAG mode. |
| // Checking for taps after TAP_DRAG allows us to detect double-taps. |
| bool tapped = false; |
| if ((mPointerGesture.lastGestureMode == PointerGesture::HOVER |
| || mPointerGesture.lastGestureMode == PointerGesture::TAP_DRAG) |
| && lastFingerCount == 1) { |
| if (when <= mPointerGesture.tapDownTime + mConfig.pointerGestureTapInterval) { |
| float x, y; |
| mPointerController->getPosition(&x, &y); |
| if (fabs(x - mPointerGesture.tapX) <= mConfig.pointerGestureTapSlop |
| && fabs(y - mPointerGesture.tapY) <= mConfig.pointerGestureTapSlop) { |
| #if DEBUG_GESTURES |
| ALOGD("Gestures: TAP"); |
| #endif |
| |
| mPointerGesture.tapUpTime = when; |
| getContext()->requestTimeoutAtTime(when |
| + mConfig.pointerGestureTapDragInterval); |
| |
| mPointerGesture.activeGestureId = 0; |
| mPointerGesture.currentGestureMode = PointerGesture::TAP; |
| mPointerGesture.currentGestureIdBits.clear(); |
| mPointerGesture.currentGestureIdBits.markBit( |
| mPointerGesture.activeGestureId); |
| mPointerGesture.currentGestureIdToIndex[ |
| mPointerGesture.activeGestureId] = 0; |
| mPointerGesture.currentGestureProperties[0].clear(); |
| mPointerGesture.currentGestureProperties[0].id = |
| mPointerGesture.activeGestureId; |
| mPointerGesture.currentGestureProperties[0].toolType = |
| AMOTION_EVENT_TOOL_TYPE_FINGER; |
| mPointerGesture.currentGestureCoords[0].clear(); |
| mPointerGesture.currentGestureCoords[0].setAxisValue( |
| AMOTION_EVENT_AXIS_X, mPointerGesture.tapX); |
| mPointerGesture.currentGestureCoords[0].setAxisValue( |
| AMOTION_EVENT_AXIS_Y, mPointerGesture.tapY); |
| mPointerGesture.currentGestureCoords[0].setAxisValue( |
| AMOTION_EVENT_AXIS_PRESSURE, 1.0f); |
| |
| tapped = true; |
| } else { |
| #if DEBUG_GESTURES |
| ALOGD("Gestures: Not a TAP, deltaX=%f, deltaY=%f", |
| x - mPointerGesture.tapX, |
| y - mPointerGesture.tapY); |
| #endif |
| } |
| } else { |
| #if DEBUG_GESTURES |
| if (mPointerGesture.tapDownTime != LLONG_MIN) { |
| ALOGD("Gestures: Not a TAP, %0.3fms since down", |
| (when - mPointerGesture.tapDownTime) * 0.000001f); |
| } else { |
| ALOGD("Gestures: Not a TAP, incompatible mode transitions"); |
| } |
| #endif |
| } |
| } |
| |
| mPointerVelocityControl.reset(); |
| |
| if (!tapped) { |
| #if DEBUG_GESTURES |
| ALOGD("Gestures: NEUTRAL"); |
| #endif |
| mPointerGesture.activeGestureId = -1; |
| mPointerGesture.currentGestureMode = PointerGesture::NEUTRAL; |
| mPointerGesture.currentGestureIdBits.clear(); |
| } |
| } else if (currentFingerCount == 1) { |
| // Case 4. Exactly one finger down, button is not pressed. (HOVER or TAP_DRAG) |
| // The pointer follows the active touch point. |
| // When in HOVER, emit HOVER_MOVE events at the pointer location. |
| // When in TAP_DRAG, emit MOVE events at the pointer location. |
| ALOG_ASSERT(activeTouchId >= 0); |
| |
| mPointerGesture.currentGestureMode = PointerGesture::HOVER; |
| if (mPointerGesture.lastGestureMode == PointerGesture::TAP) { |
| if (when <= mPointerGesture.tapUpTime + mConfig.pointerGestureTapDragInterval) { |
| float x, y; |
| mPointerController->getPosition(&x, &y); |
| if (fabs(x - mPointerGesture.tapX) <= mConfig.pointerGestureTapSlop |
| && fabs(y - mPointerGesture.tapY) <= mConfig.pointerGestureTapSlop) { |
| mPointerGesture.currentGestureMode = PointerGesture::TAP_DRAG; |
| } else { |
| #if DEBUG_GESTURES |
| ALOGD("Gestures: Not a TAP_DRAG, deltaX=%f, deltaY=%f", |
| x - mPointerGesture.tapX, |
| y - mPointerGesture.tapY); |
| #endif |
| } |
| } else { |
| #if DEBUG_GESTURES |
| ALOGD("Gestures: Not a TAP_DRAG, %0.3fms time since up", |
| (when - mPointerGesture.tapUpTime) * 0.000001f); |
| #endif |
| } |
| } else if (mPointerGesture.lastGestureMode == PointerGesture::TAP_DRAG) { |
| mPointerGesture.currentGestureMode = PointerGesture::TAP_DRAG; |
| } |
| |
| float deltaX = 0, deltaY = 0; |
| if (mLastCookedState.fingerIdBits.hasBit(activeTouchId)) { |
| const RawPointerData::Pointer& currentPointer = |
| mCurrentRawState.rawPointerData.pointerForId(activeTouchId); |
| const RawPointerData::Pointer& lastPointer = |
| mLastRawState.rawPointerData.pointerForId(activeTouchId); |
| deltaX = (currentPointer.x - lastPointer.x) * mPointerXMovementScale; |
| deltaY = (currentPointer.y - lastPointer.y) * mPointerYMovementScale; |
| |
| rotateDelta(mSurfaceOrientation, &deltaX, &deltaY); |
| mPointerVelocityControl.move(when, &deltaX, &deltaY); |
| |
| // Move the pointer using a relative motion. |
| // When using spots, the hover or drag will occur at the position of the anchor spot. |
| mPointerController->move(deltaX, deltaY); |
| } else { |
| mPointerVelocityControl.reset(); |
| } |
| |
| bool down; |
| if (mPointerGesture.currentGestureMode == PointerGesture::TAP_DRAG) { |
| #if DEBUG_GESTURES |
| ALOGD("Gestures: TAP_DRAG"); |
| #endif |
| down = true; |
| } else { |
| #if DEBUG_GESTURES |
| ALOGD("Gestures: HOVER"); |
| #endif |
| if (mPointerGesture.lastGestureMode != PointerGesture::HOVER) { |
| *outFinishPreviousGesture = true; |
| } |
| mPointerGesture.activeGestureId = 0; |
| down = false; |
| } |
| |
| float x, y; |
| mPointerController->getPosition(&x, &y); |
| |
| mPointerGesture.currentGestureIdBits.clear(); |
| mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId); |
| mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0; |
| mPointerGesture.currentGestureProperties[0].clear(); |
| mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId; |
| mPointerGesture.currentGestureProperties[0].toolType = |
| AMOTION_EVENT_TOOL_TYPE_FINGER; |
| mPointerGesture.currentGestureCoords[0].clear(); |
| mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, x); |
| mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, y); |
| mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, |
| down ? 1.0f : 0.0f); |
| |
| if (lastFingerCount == 0 && currentFingerCount != 0) { |
| mPointerGesture.resetTap(); |
| mPointerGesture.tapDownTime = when; |
| mPointerGesture.tapX = x; |
| mPointerGesture.tapY = y; |
| } |
| } else { |
| // Case 5. At least two fingers down, button is not pressed. (PRESS, SWIPE or FREEFORM) |
| // We need to provide feedback for each finger that goes down so we cannot wait |
| // for the fingers to move before deciding what to do. |
| // |
| // The ambiguous case is deciding what to do when there are two fingers down but they |
| // have not moved enough to determine whether they are part of a drag or part of a |
| // freeform gesture, or just a press or long-press at the pointer location. |
| // |
| // When there are two fingers we start with the PRESS hypothesis and we generate a |
| // down at the pointer location. |
| // |
| // When the two fingers move enough or when additional fingers are added, we make |
| // a decision to transition into SWIPE or FREEFORM mode accordingly. |
| ALOG_ASSERT(activeTouchId >= 0); |
| |
| bool settled = when >= mPointerGesture.firstTouchTime |
| + mConfig.pointerGestureMultitouchSettleInterval; |
| if (mPointerGesture.lastGestureMode != PointerGesture::PRESS |
| && mPointerGesture.lastGestureMode != PointerGesture::SWIPE |
| && mPointerGesture.lastGestureMode != PointerGesture::FREEFORM) { |
| *outFinishPreviousGesture = true; |
| } else if (!settled && currentFingerCount > lastFingerCount) { |
| // Additional pointers have gone down but not yet settled. |
| // Reset the gesture. |
| #if DEBUG_GESTURES |
| ALOGD("Gestures: Resetting gesture since additional pointers went down for MULTITOUCH, " |
| "settle time remaining %0.3fms", (mPointerGesture.firstTouchTime |
| + mConfig.pointerGestureMultitouchSettleInterval - when) |
| * 0.000001f); |
| #endif |
| *outCancelPreviousGesture = true; |
| } else { |
| // Continue previous gesture. |
| mPointerGesture.currentGestureMode = mPointerGesture.lastGestureMode; |
| } |
| |
| if (*outFinishPreviousGesture || *outCancelPreviousGesture) { |
| mPointerGesture.currentGestureMode = PointerGesture::PRESS; |
| mPointerGesture.activeGestureId = 0; |
| mPointerGesture.referenceIdBits.clear(); |
| mPointerVelocityControl.reset(); |
| |
| // Use the centroid and pointer location as the reference points for the gesture. |
| #if DEBUG_GESTURES |
| ALOGD("Gestures: Using centroid as reference for MULTITOUCH, " |
| "settle time remaining %0.3fms", (mPointerGesture.firstTouchTime |
| + mConfig.pointerGestureMultitouchSettleInterval - when) |
| * 0.000001f); |
| #endif |
| mCurrentRawState.rawPointerData.getCentroidOfTouchingPointers( |
| &mPointerGesture.referenceTouchX, |
| &mPointerGesture.referenceTouchY); |
| mPointerController->getPosition(&mPointerGesture.referenceGestureX, |
| &mPointerGesture.referenceGestureY); |
| } |
| |
| // Clear the reference deltas for fingers not yet included in the reference calculation. |
| for (BitSet32 idBits(mCurrentCookedState.fingerIdBits.value |
| & ~mPointerGesture.referenceIdBits.value); !idBits.isEmpty(); ) { |
| uint32_t id = idBits.clearFirstMarkedBit(); |
| mPointerGesture.referenceDeltas[id].dx = 0; |
| mPointerGesture.referenceDeltas[id].dy = 0; |
| } |
| mPointerGesture.referenceIdBits = mCurrentCookedState.fingerIdBits; |
| |
| // Add delta for all fingers and calculate a common movement delta. |
| float commonDeltaX = 0, commonDeltaY = 0; |
| BitSet32 commonIdBits(mLastCookedState.fingerIdBits.value |
| & mCurrentCookedState.fingerIdBits.value); |
| for (BitSet32 idBits(commonIdBits); !idBits.isEmpty(); ) { |
| bool first = (idBits == commonIdBits); |
| uint32_t id = idBits.clearFirstMarkedBit(); |
| const RawPointerData::Pointer& cpd = mCurrentRawState.rawPointerData.pointerForId(id); |
| const RawPointerData::Pointer& lpd = mLastRawState.rawPointerData.pointerForId(id); |
| PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id]; |
| delta.dx += cpd.x - lpd.x; |
| delta.dy += cpd.y - lpd.y; |
| |
| if (first) { |
| commonDeltaX = delta.dx; |
| commonDeltaY = delta.dy; |
| } else { |
| commonDeltaX = calculateCommonVector(commonDeltaX, delta.dx); |
| commonDeltaY = calculateCommonVector(commonDeltaY, delta.dy); |
| } |
| } |
| |
| // Consider transitions from PRESS to SWIPE or MULTITOUCH. |
| if (mPointerGesture.currentGestureMode == PointerGesture::PRESS) { |
| float dist[MAX_POINTER_ID + 1]; |
| int32_t distOverThreshold = 0; |
| for (BitSet32 idBits(mPointerGesture.referenceIdBits); !idBits.isEmpty(); ) { |
| uint32_t id = idBits.clearFirstMarkedBit(); |
| PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id]; |
| dist[id] = hypotf(delta.dx * mPointerXZoomScale, |
| delta.dy * mPointerYZoomScale); |
| if (dist[id] > mConfig.pointerGestureMultitouchMinDistance) { |
| distOverThreshold += 1; |
| } |
| } |
| |
| // Only transition when at least two pointers have moved further than |
| // the minimum distance threshold. |
| if (distOverThreshold >= 2) { |
| if (currentFingerCount > 2) { |
| // There are more than two pointers, switch to FREEFORM. |
| #if DEBUG_GESTURES |
| ALOGD("Gestures: PRESS transitioned to FREEFORM, number of pointers %d > 2", |
| currentFingerCount); |
| #endif |
| *outCancelPreviousGesture = true; |
| mPointerGesture.currentGestureMode = PointerGesture::FREEFORM; |
| } else { |
| // There are exactly two pointers. |
| BitSet32 idBits(mCurrentCookedState.fingerIdBits); |
| uint32_t id1 = idBits.clearFirstMarkedBit(); |
| uint32_t id2 = idBits.firstMarkedBit(); |
| const RawPointerData::Pointer& p1 = |
| mCurrentRawState.rawPointerData.pointerForId(id1); |
| const RawPointerData::Pointer& p2 = |
| mCurrentRawState.rawPointerData.pointerForId(id2); |
| float mutualDistance = distance(p1.x, p1.y, p2.x, p2.y); |
| if (mutualDistance > mPointerGestureMaxSwipeWidth) { |
| // There are two pointers but they are too far apart for a SWIPE, |
| // switch to FREEFORM. |
| #if DEBUG_GESTURES |
| ALOGD("Gestures: PRESS transitioned to FREEFORM, distance %0.3f > %0.3f", |
| mutualDistance, mPointerGestureMaxSwipeWidth); |
| #endif |
| *outCancelPreviousGesture = true; |
| mPointerGesture.currentGestureMode = PointerGesture::FREEFORM; |
| } else { |
| // There are two pointers. Wait for both pointers to start moving |
| // before deciding whether this is a SWIPE or FREEFORM gesture. |
| float dist1 = dist[id1]; |
| float dist2 = dist[id2]; |
| if (dist1 >= mConfig.pointerGestureMultitouchMinDistance |
| && dist2 >= mConfig.pointerGestureMultitouchMinDistance) { |
| // Calculate the dot product of the displacement vectors. |
| // When the vectors are oriented in approximately the same direction, |
| // the angle betweeen them is near zero and the cosine of the angle |
| // approches 1.0. Recall that dot(v1, v2) = cos(angle) * mag(v1) * mag(v2). |
| PointerGesture::Delta& delta1 = mPointerGesture.referenceDeltas[id1]; |
| PointerGesture::Delta& delta2 = mPointerGesture.referenceDeltas[id2]; |
| float dx1 = delta1.dx * mPointerXZoomScale; |
| float dy1 = delta1.dy * mPointerYZoomScale; |
| float dx2 = delta2.dx * mPointerXZoomScale; |
| float dy2 = delta2.dy * mPointerYZoomScale; |
| float dot = dx1 * dx2 + dy1 * dy2; |
| float cosine = dot / (dist1 * dist2); // denominator always > 0 |
| if (cosine >= mConfig.pointerGestureSwipeTransitionAngleCosine) { |
| // Pointers are moving in the same direction. Switch to SWIPE. |
| #if DEBUG_GESTURES |
| ALOGD("Gestures: PRESS transitioned to SWIPE, " |
| "dist1 %0.3f >= %0.3f, dist2 %0.3f >= %0.3f, " |
| "cosine %0.3f >= %0.3f", |
| dist1, mConfig.pointerGestureMultitouchMinDistance, |
| dist2, mConfig.pointerGestureMultitouchMinDistance, |
| cosine, mConfig.pointerGestureSwipeTransitionAngleCosine); |
| #endif |
| mPointerGesture.currentGestureMode = PointerGesture::SWIPE; |
| } else { |
| // Pointers are moving in different directions. Switch to FREEFORM. |
| #if DEBUG_GESTURES |
| ALOGD("Gestures: PRESS transitioned to FREEFORM, " |
| "dist1 %0.3f >= %0.3f, dist2 %0.3f >= %0.3f, " |
| "cosine %0.3f < %0.3f", |
| dist1, mConfig.pointerGestureMultitouchMinDistance, |
| dist2, mConfig.pointerGestureMultitouchMinDistance, |
| cosine, mConfig.pointerGestureSwipeTransitionAngleCosine); |
| #endif |
| *outCancelPreviousGesture = true; |
| mPointerGesture.currentGestureMode = PointerGesture::FREEFORM; |
| } |
| } |
| } |
| } |
| } |
| } else if (mPointerGesture.currentGestureMode == PointerGesture::SWIPE) { |
| // Switch from SWIPE to FREEFORM if additional pointers go down. |
| // Cancel previous gesture. |
| if (currentFingerCount > 2) { |
| #if DEBUG_GESTURES |
| ALOGD("Gestures: SWIPE transitioned to FREEFORM, number of pointers %d > 2", |
| currentFingerCount); |
| #endif |
| *outCancelPreviousGesture = true; |
| mPointerGesture.currentGestureMode = PointerGesture::FREEFORM; |
| } |
| } |
| |
| // Move the reference points based on the overall group motion of the fingers |
| // except in PRESS mode while waiting for a transition to occur. |
| if (mPointerGesture.currentGestureMode != PointerGesture::PRESS |
| && (commonDeltaX || commonDeltaY)) { |
| for (BitSet32 idBits(mPointerGesture.referenceIdBits); !idBits.isEmpty(); ) { |
| uint32_t id = idBits.clearFirstMarkedBit(); |
| PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id]; |
| delta.dx = 0; |
| delta.dy = 0; |
| } |
| |
| mPointerGesture.referenceTouchX += commonDeltaX; |
| mPointerGesture.referenceTouchY += commonDeltaY; |
| |
| commonDeltaX *= mPointerXMovementScale; |
| commonDeltaY *= mPointerYMovementScale; |
| |
| rotateDelta(mSurfaceOrientation, &commonDeltaX, &commonDeltaY); |
| mPointerVelocityControl.move(when, &commonDeltaX, &commonDeltaY); |
| |
| mPointerGesture.referenceGestureX += commonDeltaX; |
| mPointerGesture.referenceGestureY += commonDeltaY; |
| } |
| |
| // Report gestures. |
| if (mPointerGesture.currentGestureMode == PointerGesture::PRESS |
| || mPointerGesture.currentGestureMode == PointerGesture::SWIPE) { |
| // PRESS or SWIPE mode. |
| #if DEBUG_GESTURES |
| ALOGD("Gestures: PRESS or SWIPE activeTouchId=%d," |
| "activeGestureId=%d, currentTouchPointerCount=%d", |
| activeTouchId, mPointerGesture.activeGestureId, currentFingerCount); |
| #endif |
| ALOG_ASSERT(mPointerGesture.activeGestureId >= 0); |
| |
| mPointerGesture.currentGestureIdBits.clear(); |
| mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId); |
| mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0; |
| mPointerGesture.currentGestureProperties[0].clear(); |
| mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId; |
| mPointerGesture.currentGestureProperties[0].toolType = |
| AMOTION_EVENT_TOOL_TYPE_FINGER; |
| mPointerGesture.currentGestureCoords[0].clear(); |
| mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, |
| mPointerGesture.referenceGestureX); |
| mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, |
| mPointerGesture.referenceGestureY); |
| mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f); |
| } else if (mPointerGesture.currentGestureMode == PointerGesture::FREEFORM) { |
| // FREEFORM mode. |
| #if DEBUG_GESTURES |
| ALOGD("Gestures: FREEFORM activeTouchId=%d," |
| "activeGestureId=%d, currentTouchPointerCount=%d", |
| activeTouchId, mPointerGesture.activeGestureId, currentFingerCount); |
| #endif |
| ALOG_ASSERT(mPointerGesture.activeGestureId >= 0); |
| |
| mPointerGesture.currentGestureIdBits.clear(); |
| |
| BitSet32 mappedTouchIdBits; |
| BitSet32 usedGestureIdBits; |
| if (mPointerGesture.lastGestureMode != PointerGesture::FREEFORM) { |
| // Initially, assign the active gesture id to the active touch point |
| // if there is one. No other touch id bits are mapped yet. |
| if (!*outCancelPreviousGesture) { |
| mappedTouchIdBits.markBit(activeTouchId); |
| usedGestureIdBits.markBit(mPointerGesture.activeGestureId); |
| mPointerGesture.freeformTouchToGestureIdMap[activeTouchId] = |
| mPointerGesture.activeGestureId; |
| } else { |
| mPointerGesture.activeGestureId = -1; |
| } |
| } else { |
| // Otherwise, assume we mapped all touches from the previous frame. |
| // Reuse all mappings that are still applicable. |
| mappedTouchIdBits.value = mLastCookedState.fingerIdBits.value |
| & mCurrentCookedState.fingerIdBits.value; |
| usedGestureIdBits = mPointerGesture.lastGestureIdBits; |
| |
| // Check whether we need to choose a new active gesture id because the |
| // current went went up. |
| for (BitSet32 upTouchIdBits(mLastCookedState.fingerIdBits.value |
| & ~mCurrentCookedState.fingerIdBits.value); |
| !upTouchIdBits.isEmpty(); ) { |
| uint32_t upTouchId = upTouchIdBits.clearFirstMarkedBit(); |
| uint32_t upGestureId = mPointerGesture.freeformTouchToGestureIdMap[upTouchId]; |
| if (upGestureId == uint32_t(mPointerGesture.activeGestureId)) { |
| mPointerGesture.activeGestureId = -1; |
| break; |
| } |
| } |
| } |
| |
| #if DEBUG_GESTURES |
| ALOGD("Gestures: FREEFORM follow up " |
| "mappedTouchIdBits=0x%08x, usedGestureIdBits=0x%08x, " |
| "activeGestureId=%d", |
| mappedTouchIdBits.value, usedGestureIdBits.value, |
| mPointerGesture.activeGestureId); |
| #endif |
| |
| BitSet32 idBits(mCurrentCookedState.fingerIdBits); |
| for (uint32_t i = 0; i < currentFingerCount; i++) { |
| uint32_t touchId = idBits.clearFirstMarkedBit(); |
| uint32_t gestureId; |
| if (!mappedTouchIdBits.hasBit(touchId)) { |
| gestureId = usedGestureIdBits.markFirstUnmarkedBit(); |
| mPointerGesture.freeformTouchToGestureIdMap[touchId] = gestureId; |
| #if DEBUG_GESTURES |
| ALOGD("Gestures: FREEFORM " |
| "new mapping for touch id %d -> gesture id %d", |
| touchId, gestureId); |
| #endif |
| } else { |
| gestureId = mPointerGesture.freeformTouchToGestureIdMap[touchId]; |
| #if DEBUG_GESTURES |
| ALOGD("Gestures: FREEFORM " |
| "existing mapping for touch id %d -> gesture id %d", |
| touchId, gestureId); |
| #endif |
| } |
| mPointerGesture.currentGestureIdBits.markBit(gestureId); |
| mPointerGesture.currentGestureIdToIndex[gestureId] = i; |
| |
| const RawPointerData::Pointer& pointer = |
| mCurrentRawState.rawPointerData.pointerForId(touchId); |
| float deltaX = (pointer.x - mPointerGesture.referenceTouchX) |
| * mPointerXZoomScale; |
| float deltaY = (pointer.y - mPointerGesture.referenceTouchY) |
| * mPointerYZoomScale; |
| rotateDelta(mSurfaceOrientation, &deltaX, &deltaY); |
| |
| mPointerGesture.currentGestureProperties[i].clear(); |
| mPointerGesture.currentGestureProperties[i].id = gestureId; |
| mPointerGesture.currentGestureProperties[i].toolType = |
| AMOTION_EVENT_TOOL_TYPE_FINGER; |
| mPointerGesture.currentGestureCoords[i].clear(); |
| mPointerGesture.currentGestureCoords[i].setAxisValue( |
| AMOTION_EVENT_AXIS_X, mPointerGesture.referenceGestureX + deltaX); |
| mPointerGesture.currentGestureCoords[i].setAxisValue( |
| AMOTION_EVENT_AXIS_Y, mPointerGesture.referenceGestureY + deltaY); |
| mPointerGesture.currentGestureCoords[i].setAxisValue( |
| AMOTION_EVENT_AXIS_PRESSURE, 1.0f); |
| } |
| |
| if (mPointerGesture.activeGestureId < 0) { |
| mPointerGesture.activeGestureId = |
| mPointerGesture.currentGestureIdBits.firstMarkedBit(); |
| #if DEBUG_GESTURES |
| ALOGD("Gestures: FREEFORM new " |
| "activeGestureId=%d", mPointerGesture.activeGestureId); |
| #endif |
| } |
| } |
| } |
| |
| mPointerController->setButtonState(mCurrentRawState.buttonState); |
| |
| #if DEBUG_GESTURES |
| ALOGD("Gestures: finishPreviousGesture=%s, cancelPreviousGesture=%s, " |
| "currentGestureMode=%d, currentGestureIdBits=0x%08x, " |
| "lastGestureMode=%d, lastGestureIdBits=0x%08x", |
| toString(*outFinishPreviousGesture), toString(*outCancelPreviousGesture), |
| mPointerGesture.currentGestureMode, mPointerGesture.currentGestureIdBits.value, |
| mPointerGesture.lastGestureMode, mPointerGesture.lastGestureIdBits.value); |
| for (BitSet32 idBits = mPointerGesture.currentGestureIdBits; !idBits.isEmpty(); ) { |
| uint32_t id = idBits.clearFirstMarkedBit(); |
| uint32_t index = mPointerGesture.currentGestureIdToIndex[id]; |
| const PointerProperties& properties = mPointerGesture.currentGestureProperties[index]; |
| const PointerCoords& coords = mPointerGesture.currentGestureCoords[index]; |
| ALOGD(" currentGesture[%d]: index=%d, toolType=%d, " |
| "x=%0.3f, y=%0.3f, pressure=%0.3f", |
| id, index, properties.toolType, |
| coords.getAxisValue(AMOTION_EVENT_AXIS_X), |
| coords.getAxisValue(AMOTION_EVENT_AXIS_Y), |
| coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE)); |
| } |
| for (BitSet32 idBits = mPointerGesture.lastGestureIdBits; !idBits.isEmpty(); ) { |
| uint32_t id = idBits.clearFirstMarkedBit(); |
| uint32_t index = mPointerGesture.lastGestureIdToIndex[id]; |
| const PointerProperties& properties = mPointerGesture.lastGestureProperties[index]; |
| const PointerCoords& coords = mPointerGesture.lastGestureCoords[index]; |
| ALOGD(" lastGesture[%d]: index=%d, toolType=%d, " |
| "x=%0.3f, y=%0.3f, pressure=%0.3f", |
| id, index, properties.toolType, |
| coords.getAxisValue(AMOTION_EVENT_AXIS_X), |
| coords.getAxisValue(AMOTION_EVENT_AXIS_Y), |
| coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE)); |
| } |
| #endif |
| return true; |
| } |
| |
| void TouchInputMapper::dispatchPointerStylus(nsecs_t when, uint32_t policyFlags) { |
| mPointerSimple.currentCoords.clear(); |
| mPointerSimple.currentProperties.clear(); |
| |
| bool down, hovering; |
| if (!mCurrentCookedState.stylusIdBits.isEmpty()) { |
| uint32_t id = mCurrentCookedState.stylusIdBits.firstMarkedBit(); |
| uint32_t index = mCurrentCookedState.cookedPointerData.idToIndex[id]; |
| float x = mCurrentCookedState.cookedPointerData.pointerCoords[index].getX(); |
| float y = mCurrentCookedState.cookedPointerData.pointerCoords[index].getY(); |
| mPointerController->setPosition(x, y); |
| |
| hovering = mCurrentCookedState.cookedPointerData.hoveringIdBits.hasBit(id); |
| down = !hovering; |
| |
| mPointerController->getPosition(&x, &y); |
| mPointerSimple.currentCoords.copyFrom( |
| mCurrentCookedState.cookedPointerData.pointerCoords[index]); |
| mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x); |
| mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y); |
| mPointerSimple.currentProperties.id = 0; |
| mPointerSimple.currentProperties.toolType = |
| mCurrentCookedState.cookedPointerData.pointerProperties[index].toolType; |
| } else { |
| down = false; |
| hovering = false; |
| } |
| |
| dispatchPointerSimple(when, policyFlags, down, hovering); |
| } |
| |
| void TouchInputMapper::abortPointerStylus(nsecs_t when, uint32_t policyFlags) { |
| abortPointerSimple(when, policyFlags); |
| } |
| |
| void TouchInputMapper::dispatchPointerMouse(nsecs_t when, uint32_t policyFlags) { |
| mPointerSimple.currentCoords.clear(); |
| mPointerSimple.currentProperties.clear(); |
| |
| bool down, hovering; |
| if (!mCurrentCookedState.mouseIdBits.isEmpty()) { |
| uint32_t id = mCurrentCookedState.mouseIdBits.firstMarkedBit(); |
| uint32_t currentIndex = mCurrentRawState.rawPointerData.idToIndex[id]; |
| float deltaX = 0, deltaY = 0; |
| if (mLastCookedState.mouseIdBits.hasBit(id)) { |
| uint32_t lastIndex = mCurrentRawState.rawPointerData.idToIndex[id]; |
| deltaX = (mCurrentRawState.rawPointerData.pointers[currentIndex].x |
| - mLastRawState.rawPointerData.pointers[lastIndex].x) |
| * mPointerXMovementScale; |
| deltaY = (mCurrentRawState.rawPointerData.pointers[currentIndex].y |
| - mLastRawState.rawPointerData.pointers[lastIndex].y) |
| * mPointerYMovementScale; |
| |
| rotateDelta(mSurfaceOrientation, &deltaX, &deltaY); |
| mPointerVelocityControl.move(when, &deltaX, &deltaY); |
| |
| mPointerController->move(deltaX, deltaY); |
| } else { |
| mPointerVelocityControl.reset(); |
| } |
| |
| down = isPointerDown(mCurrentRawState.buttonState); |
| hovering = !down; |
| |
| float x, y; |
| mPointerController->getPosition(&x, &y); |
| mPointerSimple.currentCoords.copyFrom( |
| mCurrentCookedState.cookedPointerData.pointerCoords[currentIndex]); |
| mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x); |
| mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y); |
| mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, |
| hovering ? 0.0f : 1.0f); |
| mPointerSimple.currentProperties.id = 0; |
| mPointerSimple.currentProperties.toolType = |
| mCurrentCookedState.cookedPointerData.pointerProperties[currentIndex].toolType; |
| } else { |
| mPointerVelocityControl.reset(); |
| |
| down = false; |
| hovering = false; |
| } |
| |
| dispatchPointerSimple(when, policyFlags, down, hovering); |
| } |
| |
| void TouchInputMapper::abortPointerMouse(nsecs_t when, uint32_t policyFlags) { |
| abortPointerSimple(when, policyFlags); |
| |
| mPointerVelocityControl.reset(); |
| } |
| |
| void TouchInputMapper::dispatchPointerSimple(nsecs_t when, uint32_t policyFlags, |
| bool down, bool hovering) { |
| int32_t metaState = getContext()->getGlobalMetaState(); |
| |
| if (mPointerController != NULL) { |
| if (down || hovering) { |
| mPointerController->setPresentation(PointerControllerInterface::PRESENTATION_POINTER); |
| mPointerController->clearSpots(); |
| mPointerController->setButtonState(mCurrentRawState.buttonState); |
| mPointerController->unfade(PointerControllerInterface::TRANSITION_IMMEDIATE); |
| } else if (!down && !hovering && (mPointerSimple.down || mPointerSimple.hovering)) { |
| mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL); |
| } |
| } |
| |
| if (mPointerSimple.down && !down) { |
| mPointerSimple.down = false; |
| |
| // Send up. |
| NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, |
| AMOTION_EVENT_ACTION_UP, 0, 0, metaState, mLastRawState.buttonState, 0, |
| mViewport.displayId, /* deviceTimestamp */ 0, |
| 1, &mPointerSimple.lastProperties, &mPointerSimple.lastCoords, |
| mOrientedXPrecision, mOrientedYPrecision, |
| mPointerSimple.downTime); |
| getListener()->notifyMotion(&args); |
| } |
| |
| if (mPointerSimple.hovering && !hovering) { |
| mPointerSimple.hovering = false; |
| |
| // Send hover exit. |
| NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, |
| AMOTION_EVENT_ACTION_HOVER_EXIT, 0, 0, metaState, mLastRawState.buttonState, 0, |
| mViewport.displayId, /* deviceTimestamp */ 0, |
| 1, &mPointerSimple.lastProperties, &mPointerSimple.lastCoords, |
| mOrientedXPrecision, mOrientedYPrecision, |
| mPointerSimple.downTime); |
| getListener()->notifyMotion(&args); |
| } |
| |
| if (down) { |
| if (!mPointerSimple.down) { |
| mPointerSimple.down = true; |
| mPointerSimple.downTime = when; |
| |
| // Send down. |
| NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, |
| AMOTION_EVENT_ACTION_DOWN, 0, 0, metaState, mCurrentRawState.buttonState, 0, |
| mViewport.displayId, /* deviceTimestamp */ 0, |
| 1, &mPointerSimple.currentProperties, &mPointerSimple.currentCoords, |
| mOrientedXPrecision, mOrientedYPrecision, |
| mPointerSimple.downTime); |
| getListener()->notifyMotion(&args); |
| } |
| |
| // Send move. |
| NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, |
| AMOTION_EVENT_ACTION_MOVE, 0, 0, metaState, mCurrentRawState.buttonState, 0, |
| mViewport.displayId, /* deviceTimestamp */ 0, |
| 1, &mPointerSimple.currentProperties, &mPointerSimple.currentCoords, |
| mOrientedXPrecision, mOrientedYPrecision, |
| mPointerSimple.downTime); |
| getListener()->notifyMotion(&args); |
| } |
| |
| if (hovering) { |
| if (!mPointerSimple.hovering) { |
| mPointerSimple.hovering = true; |
| |
| // Send hover enter. |
| NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, |
| AMOTION_EVENT_ACTION_HOVER_ENTER, 0, 0, metaState, |
| mCurrentRawState.buttonState, 0, |
| mViewport.displayId, /* deviceTimestamp */ 0, |
| 1, &mPointerSimple.currentProperties, &mPointerSimple.currentCoords, |
| mOrientedXPrecision, mOrientedYPrecision, |
| mPointerSimple.downTime); |
| getListener()->notifyMotion(&args); |
| } |
| |
| // Send hover move. |
| NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, |
| AMOTION_EVENT_ACTION_HOVER_MOVE, 0, 0, metaState, |
| mCurrentRawState.buttonState, 0, |
| mViewport.displayId, /* deviceTimestamp */ 0, |
| 1, &mPointerSimple.currentProperties, &mPointerSimple.currentCoords, |
| mOrientedXPrecision, mOrientedYPrecision, |
| mPointerSimple.downTime); |
| getListener()->notifyMotion(&args); |
| } |
| |
| if (mCurrentRawState.rawVScroll || mCurrentRawState.rawHScroll) { |
| float vscroll = mCurrentRawState.rawVScroll; |
| float hscroll = mCurrentRawState.rawHScroll; |
| mWheelYVelocityControl.move(when, NULL, &vscroll); |
| mWheelXVelocityControl.move(when, &hscroll, NULL); |
| |
| // Send scroll. |
| PointerCoords pointerCoords; |
| pointerCoords.copyFrom(mPointerSimple.currentCoords); |
| pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_VSCROLL, vscroll); |
| pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_HSCROLL, hscroll); |
| |
| NotifyMotionArgs args(when, getDeviceId(), mSource, policyFlags, |
| AMOTION_EVENT_ACTION_SCROLL, 0, 0, metaState, mCurrentRawState.buttonState, 0, |
| mViewport.displayId, /* deviceTimestamp */ 0, |
| 1, &mPointerSimple.currentProperties, &pointerCoords, |
| mOrientedXPrecision, mOrientedYPrecision, |
| mPointerSimple.downTime); |
| getListener()->notifyMotion(&args); |
| } |
| |
| // Save state. |
| if (down || hovering) { |
| mPointerSimple.lastCoords.copyFrom(mPointerSimple.currentCoords); |
| mPointerSimple.lastProperties.copyFrom(mPointerSimple.currentProperties); |
| } else { |
| mPointerSimple.reset(); |
| } |
| } |
| |
| void TouchInputMapper::abortPointerSimple(nsecs_t when, uint32_t policyFlags) { |
| mPointerSimple.currentCoords.clear(); |
| mPointerSimple.currentProperties.clear(); |
| |
| dispatchPointerSimple(when, policyFlags, false, false); |
| } |
| |
| void TouchInputMapper::dispatchMotion(nsecs_t when, uint32_t policyFlags, uint32_t source, |
| int32_t action, int32_t actionButton, int32_t flags, |
| int32_t metaState, int32_t buttonState, int32_t edgeFlags, uint32_t deviceTimestamp, |
| const PointerProperties* properties, const PointerCoords* coords, |
| const uint32_t* idToIndex, BitSet32 idBits, int32_t changedId, |
| float xPrecision, float yPrecision, nsecs_t downTime) { |
| PointerCoords pointerCoords[MAX_POINTERS]; |
| PointerProperties pointerProperties[MAX_POINTERS]; |
| uint32_t pointerCount = 0; |
| while (!idBits.isEmpty()) { |
| uint32_t id = idBits.clearFirstMarkedBit(); |
| uint32_t index = idToIndex[id]; |
| pointerProperties[pointerCount].copyFrom(properties[index]); |
| pointerCoords[pointerCount].copyFrom(coords[index]); |
| |
| if (changedId >= 0 && id == uint32_t(changedId)) { |
| action |= pointerCount << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT; |
| } |
| |
| pointerCount += 1; |
| } |
| |
| ALOG_ASSERT(pointerCount != 0); |
| |
| if (changedId >= 0 && pointerCount == 1) { |
| // Replace initial down and final up action. |
| // We can compare the action without masking off the changed pointer index |
| // because we know the index is 0. |
| if (action == AMOTION_EVENT_ACTION_POINTER_DOWN) { |
| action = AMOTION_EVENT_ACTION_DOWN; |
| } else if (action == AMOTION_EVENT_ACTION_POINTER_UP) { |
| action = AMOTION_EVENT_ACTION_UP; |
| } else { |
| // Can't happen. |
| ALOG_ASSERT(false); |
| } |
| } |
| |
| NotifyMotionArgs args(when, getDeviceId(), source, policyFlags, |
| action, actionButton, flags, metaState, buttonState, edgeFlags, |
| mViewport.displayId, deviceTimestamp, pointerCount, pointerProperties, pointerCoords, |
| xPrecision, yPrecision, downTime); |
| getListener()->notifyMotion(&args); |
| } |
| |
| bool TouchInputMapper::updateMovedPointers(const PointerProperties* inProperties, |
| const PointerCoords* inCoords, const uint32_t* inIdToIndex, |
| PointerProperties* outProperties, PointerCoords* outCoords, const uint32_t* outIdToIndex, |
| BitSet32 idBits) const { |
| bool changed = false; |
| while (!idBits.isEmpty()) { |
| uint32_t id = idBits.clearFirstMarkedBit(); |
| uint32_t inIndex = inIdToIndex[id]; |
| uint32_t outIndex = outIdToIndex[id]; |
| |
| const PointerProperties& curInProperties = inProperties[inIndex]; |
| const PointerCoords& curInCoords = inCoords[inIndex]; |
| PointerProperties& curOutProperties = outProperties[outIndex]; |
| PointerCoords& curOutCoords = outCoords[outIndex]; |
| |
| if (curInProperties != curOutProperties) { |
| curOutProperties.copyFrom(curInProperties); |
| changed = true; |
| } |
| |
| if (curInCoords != curOutCoords) { |
| curOutCoords.copyFrom(curInCoords); |
| changed = true; |
| } |
| } |
| return changed; |
| } |
| |
| void TouchInputMapper::fadePointer() { |
| if (mPointerController != NULL) { |
| mPointerController->fade(PointerControllerInterface::TRANSITION_GRADUAL); |
| } |
| } |
| |
| void TouchInputMapper::cancelTouch(nsecs_t when) { |
| abortPointerUsage(when, 0 /*policyFlags*/); |
| abortTouches(when, 0 /* policyFlags*/); |
| } |
| |
| bool TouchInputMapper::isPointInsideSurface(int32_t x, int32_t y) { |
| const float scaledX = x * mXScale; |
| const float scaledY = y * mYScale; |
| return x >= mRawPointerAxes.x.minValue && x <= mRawPointerAxes.x.maxValue |
| && scaledX >= mPhysicalLeft && scaledX <= mPhysicalLeft + mPhysicalWidth |
| && y >= mRawPointerAxes.y.minValue && y <= mRawPointerAxes.y.maxValue |
| && scaledY >= mPhysicalTop && scaledY <= mPhysicalTop + mPhysicalHeight; |
| } |
| |
| const TouchInputMapper::VirtualKey* TouchInputMapper::findVirtualKeyHit( |
| int32_t x, int32_t y) { |
| size_t numVirtualKeys = mVirtualKeys.size(); |
| for (size_t i = 0; i < numVirtualKeys; i++) { |
| const VirtualKey& virtualKey = mVirtualKeys[i]; |
| |
| #if DEBUG_VIRTUAL_KEYS |
| ALOGD("VirtualKeys: Hit test (%d, %d): keyCode=%d, scanCode=%d, " |
| "left=%d, top=%d, right=%d, bottom=%d", |
| x, y, |
| virtualKey.keyCode, virtualKey.scanCode, |
| virtualKey.hitLeft, virtualKey.hitTop, |
| virtualKey.hitRight, virtualKey.hitBottom); |
| #endif |
| |
| if (virtualKey.isHit(x, y)) { |
| return & virtualKey; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| void TouchInputMapper::assignPointerIds(const RawState* last, RawState* current) { |
| uint32_t currentPointerCount = current->rawPointerData.pointerCount; |
| uint32_t lastPointerCount = last->rawPointerData.pointerCount; |
| |
| current->rawPointerData.clearIdBits(); |
| |
| if (currentPointerCount == 0) { |
| // No pointers to assign. |
| return; |
| } |
| |
| if (lastPointerCount == 0) { |
| // All pointers are new. |
| for (uint32_t i = 0; i < currentPointerCount; i++) { |
| uint32_t id = i; |
| current->rawPointerData.pointers[i].id = id; |
| current->rawPointerData.idToIndex[id] = i; |
| current->rawPointerData.markIdBit(id, current->rawPointerData.isHovering(i)); |
| } |
| return; |
| } |
| |
| if (currentPointerCount == 1 && lastPointerCount == 1 |
| && current->rawPointerData.pointers[0].toolType |
| == last->rawPointerData.pointers[0].toolType) { |
| // Only one pointer and no change in count so it must have the same id as before. |
| uint32_t id = last->rawPointerData.pointers[0].id; |
| current->rawPointerData.pointers[0].id = id; |
| current->rawPointerData.idToIndex[id] = 0; |
| current->rawPointerData.markIdBit(id, current->rawPointerData.isHovering(0)); |
| return; |
| } |
| |
| // General case. |
| // We build a heap of squared euclidean distances between current and last pointers |
| // associated with the current and last pointer indices. Then, we find the best |
| // match (by distance) for each current pointer. |
| // The pointers must have the same tool type but it is possible for them to |
| // transition from hovering to touching or vice-versa while retaining the same id. |
| PointerDistanceHeapElement heap[MAX_POINTERS * MAX_POINTERS]; |
| |
| uint32_t heapSize = 0; |
| for (uint32_t currentPointerIndex = 0; currentPointerIndex < currentPointerCount; |
| currentPointerIndex++) { |
| for (uint32_t lastPointerIndex = 0; lastPointerIndex < lastPointerCount; |
| lastPointerIndex++) { |
| const RawPointerData::Pointer& currentPointer = |
| current->rawPointerData.pointers[currentPointerIndex]; |
| const RawPointerData::Pointer& lastPointer = |
| last->rawPointerData.pointers[lastPointerIndex]; |
| if (currentPointer.toolType == lastPointer.toolType) { |
| int64_t deltaX = currentPointer.x - lastPointer.x; |
| int64_t deltaY = currentPointer.y - lastPointer.y; |
| |
| uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY); |
| |
| // Insert new element into the heap (sift up). |
| heap[heapSize].currentPointerIndex = currentPointerIndex; |
| heap[heapSize].lastPointerIndex = lastPointerIndex; |
| heap[heapSize].distance = distance; |
| heapSize += 1; |
| } |
| } |
| } |
| |
| // Heapify |
| for (uint32_t startIndex = heapSize / 2; startIndex != 0; ) { |
| startIndex -= 1; |
| for (uint32_t parentIndex = startIndex; ;) { |
| uint32_t childIndex = parentIndex * 2 + 1; |
| if (childIndex >= heapSize) { |
| break; |
| } |
| |
| if (childIndex + 1 < heapSize |
| && heap[childIndex + 1].distance < heap[childIndex].distance) { |
| childIndex += 1; |
| } |
| |
| if (heap[parentIndex].distance <= heap[childIndex].distance) { |
| break; |
| } |
| |
| swap(heap[parentIndex], heap[childIndex]); |
| parentIndex = childIndex; |
| } |
| } |
| |
| #if DEBUG_POINTER_ASSIGNMENT |
| ALOGD("assignPointerIds - initial distance min-heap: size=%d", heapSize); |
| for (size_t i = 0; i < heapSize; i++) { |
| ALOGD(" heap[%zu]: cur=%" PRIu32 ", last=%" PRIu32 ", distance=%" PRIu64, |
| i, heap[i].currentPointerIndex, heap[i].lastPointerIndex, |
| heap[i].distance); |
| } |
| #endif |
| |
| // Pull matches out by increasing order of distance. |
| // To avoid reassigning pointers that have already been matched, the loop keeps track |
| // of which last and current pointers have been matched using the matchedXXXBits variables. |
| // It also tracks the used pointer id bits. |
| BitSet32 matchedLastBits(0); |
| BitSet32 matchedCurrentBits(0); |
| BitSet32 usedIdBits(0); |
| bool first = true; |
| for (uint32_t i = min(currentPointerCount, lastPointerCount); heapSize > 0 && i > 0; i--) { |
| while (heapSize > 0) { |
| if (first) { |
| // The first time through the loop, we just consume the root element of |
| // the heap (the one with smallest distance). |
| first = false; |
| } else { |
| // Previous iterations consumed the root element of the heap. |
| // Pop root element off of the heap (sift down). |
| heap[0] = heap[heapSize]; |
| for (uint32_t parentIndex = 0; ;) { |
| uint32_t childIndex = parentIndex * 2 + 1; |
| if (childIndex >= heapSize) { |
| break; |
| } |
| |
| if (childIndex + 1 < heapSize |
| && heap[childIndex + 1].distance < heap[childIndex].distance) { |
| childIndex += 1; |
| } |
| |
| if (heap[parentIndex].distance <= heap[childIndex].distance) { |
| break; |
| } |
| |
| swap(heap[parentIndex], heap[childIndex]); |
| parentIndex = childIndex; |
| } |
| |
| #if DEBUG_POINTER_ASSIGNMENT |
| ALOGD("assignPointerIds - reduced distance min-heap: size=%d", heapSize); |
| for (size_t i = 0; i < heapSize; i++) { |
| ALOGD(" heap[%zu]: cur=%" PRIu32 ", last=%" PRIu32 ", distance=%" PRIu64, |
| i, heap[i].currentPointerIndex, heap[i].lastPointerIndex, |
| heap[i].distance); |
| } |
| #endif |
| } |
| |
| heapSize -= 1; |
| |
| uint32_t currentPointerIndex = heap[0].currentPointerIndex; |
| if (matchedCurrentBits.hasBit(currentPointerIndex)) continue; // already matched |
| |
| uint32_t lastPointerIndex = heap[0].lastPointerIndex; |
| if (matchedLastBits.hasBit(lastPointerIndex)) continue; // already matched |
| |
| matchedCurrentBits.markBit(currentPointerIndex); |
| matchedLastBits.markBit(lastPointerIndex); |
| |
| uint32_t id = last->rawPointerData.pointers[lastPointerIndex].id; |
| current->rawPointerData.pointers[currentPointerIndex].id = id; |
| current->rawPointerData.idToIndex[id] = currentPointerIndex; |
| current->rawPointerData.markIdBit(id, |
| current->rawPointerData.isHovering(currentPointerIndex)); |
| usedIdBits.markBit(id); |
| |
| #if DEBUG_POINTER_ASSIGNMENT |
| ALOGD("assignPointerIds - matched: cur=%" PRIu32 ", last=%" PRIu32 |
| ", id=%" PRIu32 ", distance=%" PRIu64, |
| lastPointerIndex, currentPointerIndex, id, heap[0].distance); |
| #endif |
| break; |
| } |
| } |
| |
| // Assign fresh ids to pointers that were not matched in the process. |
| for (uint32_t i = currentPointerCount - matchedCurrentBits.count(); i != 0; i--) { |
| uint32_t currentPointerIndex = matchedCurrentBits.markFirstUnmarkedBit(); |
| uint32_t id = usedIdBits.markFirstUnmarkedBit(); |
| |
| current->rawPointerData.pointers[currentPointerIndex].id = id; |
| current->rawPointerData.idToIndex[id] = currentPointerIndex; |
| current->rawPointerData.markIdBit(id, |
| current->rawPointerData.isHovering(currentPointerIndex)); |
| |
| #if DEBUG_POINTER_ASSIGNMENT |
| ALOGD("assignPointerIds - assigned: cur=%" PRIu32 ", id=%" PRIu32, currentPointerIndex, id); |
| #endif |
| } |
| } |
| |
| int32_t TouchInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { |
| if (mCurrentVirtualKey.down && mCurrentVirtualKey.keyCode == keyCode) { |
| return AKEY_STATE_VIRTUAL; |
| } |
| |
| size_t numVirtualKeys = mVirtualKeys.size(); |
| for (size_t i = 0; i < numVirtualKeys; i++) { |
| const VirtualKey& virtualKey = mVirtualKeys[i]; |
| if (virtualKey.keyCode == keyCode) { |
| return AKEY_STATE_UP; |
| } |
| } |
| |
| return AKEY_STATE_UNKNOWN; |
| } |
| |
| int32_t TouchInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { |
| if (mCurrentVirtualKey.down && mCurrentVirtualKey.scanCode == scanCode) { |
| return AKEY_STATE_VIRTUAL; |
| } |
| |
| size_t numVirtualKeys = mVirtualKeys.size(); |
| for (size_t i = 0; i < numVirtualKeys; i++) { |
| const VirtualKey& virtualKey = mVirtualKeys[i]; |
| if (virtualKey.scanCode == scanCode) { |
| return AKEY_STATE_UP; |
| } |
| } |
| |
| return AKEY_STATE_UNKNOWN; |
| } |
| |
| bool TouchInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, |
| const int32_t* keyCodes, uint8_t* outFlags) { |
| size_t numVirtualKeys = mVirtualKeys.size(); |
| for (size_t i = 0; i < numVirtualKeys; i++) { |
| const VirtualKey& virtualKey = mVirtualKeys[i]; |
| |
| for (size_t i = 0; i < numCodes; i++) { |
| if (virtualKey.keyCode == keyCodes[i]) { |
| outFlags[i] = 1; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| |
| // --- SingleTouchInputMapper --- |
| |
| SingleTouchInputMapper::SingleTouchInputMapper(InputDevice* device) : |
| TouchInputMapper(device) { |
| } |
| |
| SingleTouchInputMapper::~SingleTouchInputMapper() { |
| } |
| |
| void SingleTouchInputMapper::reset(nsecs_t when) { |
| mSingleTouchMotionAccumulator.reset(getDevice()); |
| |
| TouchInputMapper::reset(when); |
| } |
| |
| void SingleTouchInputMapper::process(const RawEvent* rawEvent) { |
| TouchInputMapper::process(rawEvent); |
| |
| mSingleTouchMotionAccumulator.process(rawEvent); |
| } |
| |
| void SingleTouchInputMapper::syncTouch(nsecs_t when, RawState* outState) { |
| if (mTouchButtonAccumulator.isToolActive()) { |
| outState->rawPointerData.pointerCount = 1; |
| outState->rawPointerData.idToIndex[0] = 0; |
| |
| bool isHovering = mTouchButtonAccumulator.getToolType() != AMOTION_EVENT_TOOL_TYPE_MOUSE |
| && (mTouchButtonAccumulator.isHovering() |
| || (mRawPointerAxes.pressure.valid |
| && mSingleTouchMotionAccumulator.getAbsolutePressure() <= 0)); |
| outState->rawPointerData.markIdBit(0, isHovering); |
| |
| RawPointerData::Pointer& outPointer = outState->rawPointerData.pointers[0]; |
| outPointer.id = 0; |
| outPointer.x = mSingleTouchMotionAccumulator.getAbsoluteX(); |
| outPointer.y = mSingleTouchMotionAccumulator.getAbsoluteY(); |
| outPointer.pressure = mSingleTouchMotionAccumulator.getAbsolutePressure(); |
| outPointer.touchMajor = 0; |
| outPointer.touchMinor = 0; |
| outPointer.toolMajor = mSingleTouchMotionAccumulator.getAbsoluteToolWidth(); |
| outPointer.toolMinor = mSingleTouchMotionAccumulator.getAbsoluteToolWidth(); |
| outPointer.orientation = 0; |
| outPointer.distance = mSingleTouchMotionAccumulator.getAbsoluteDistance(); |
| outPointer.tiltX = mSingleTouchMotionAccumulator.getAbsoluteTiltX(); |
| outPointer.tiltY = mSingleTouchMotionAccumulator.getAbsoluteTiltY(); |
| outPointer.toolType = mTouchButtonAccumulator.getToolType(); |
| if (outPointer.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) { |
| outPointer.toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; |
| } |
| outPointer.isHovering = isHovering; |
| } |
| } |
| |
| void SingleTouchInputMapper::configureRawPointerAxes() { |
| TouchInputMapper::configureRawPointerAxes(); |
| |
| getAbsoluteAxisInfo(ABS_X, &mRawPointerAxes.x); |
| getAbsoluteAxisInfo(ABS_Y, &mRawPointerAxes.y); |
| getAbsoluteAxisInfo(ABS_PRESSURE, &mRawPointerAxes.pressure); |
| getAbsoluteAxisInfo(ABS_TOOL_WIDTH, &mRawPointerAxes.toolMajor); |
| getAbsoluteAxisInfo(ABS_DISTANCE, &mRawPointerAxes.distance); |
| getAbsoluteAxisInfo(ABS_TILT_X, &mRawPointerAxes.tiltX); |
| getAbsoluteAxisInfo(ABS_TILT_Y, &mRawPointerAxes.tiltY); |
| } |
| |
| bool SingleTouchInputMapper::hasStylus() const { |
| return mTouchButtonAccumulator.hasStylus(); |
| } |
| |
| |
| // --- MultiTouchInputMapper --- |
| |
| MultiTouchInputMapper::MultiTouchInputMapper(InputDevice* device) : |
| TouchInputMapper(device) { |
| } |
| |
| MultiTouchInputMapper::~MultiTouchInputMapper() { |
| } |
| |
| void MultiTouchInputMapper::reset(nsecs_t when) { |
| mMultiTouchMotionAccumulator.reset(getDevice()); |
| |
| mPointerIdBits.clear(); |
| |
| TouchInputMapper::reset(when); |
| } |
| |
| void MultiTouchInputMapper::process(const RawEvent* rawEvent) { |
| TouchInputMapper::process(rawEvent); |
| |
| mMultiTouchMotionAccumulator.process(rawEvent); |
| } |
| |
| void MultiTouchInputMapper::syncTouch(nsecs_t when, RawState* outState) { |
| size_t inCount = mMultiTouchMotionAccumulator.getSlotCount(); |
| size_t outCount = 0; |
| BitSet32 newPointerIdBits; |
| mHavePointerIds = true; |
| |
| for (size_t inIndex = 0; inIndex < inCount; inIndex++) { |
| const MultiTouchMotionAccumulator::Slot* inSlot = |
| mMultiTouchMotionAccumulator.getSlot(inIndex); |
| if (!inSlot->isInUse()) { |
| continue; |
| } |
| |
| if (outCount >= MAX_POINTERS) { |
| #if DEBUG_POINTERS |
| ALOGD("MultiTouch device %s emitted more than maximum of %d pointers; " |
| "ignoring the rest.", |
| getDeviceName().string(), MAX_POINTERS); |
| #endif |
| break; // too many fingers! |
| } |
| |
| RawPointerData::Pointer& outPointer = outState->rawPointerData.pointers[outCount]; |
| outPointer.x = inSlot->getX(); |
| outPointer.y = inSlot->getY(); |
| outPointer.pressure = inSlot->getPressure(); |
| outPointer.touchMajor = inSlot->getTouchMajor(); |
| outPointer.touchMinor = inSlot->getTouchMinor(); |
| outPointer.toolMajor = inSlot->getToolMajor(); |
| outPointer.toolMinor = inSlot->getToolMinor(); |
| outPointer.orientation = inSlot->getOrientation(); |
| outPointer.distance = inSlot->getDistance(); |
| outPointer.tiltX = 0; |
| outPointer.tiltY = 0; |
| |
| outPointer.toolType = inSlot->getToolType(); |
| if (outPointer.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) { |
| outPointer.toolType = mTouchButtonAccumulator.getToolType(); |
| if (outPointer.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) { |
| outPointer.toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; |
| } |
| } |
| |
| bool isHovering = mTouchButtonAccumulator.getToolType() != AMOTION_EVENT_TOOL_TYPE_MOUSE |
| && (mTouchButtonAccumulator.isHovering() |
| || (mRawPointerAxes.pressure.valid && inSlot->getPressure() <= 0)); |
| outPointer.isHovering = isHovering; |
| |
| // Assign pointer id using tracking id if available. |
| if (mHavePointerIds) { |
| int32_t trackingId = inSlot->getTrackingId(); |
| int32_t id = -1; |
| if (trackingId >= 0) { |
| for (BitSet32 idBits(mPointerIdBits); !idBits.isEmpty(); ) { |
| uint32_t n = idBits.clearFirstMarkedBit(); |
| if (mPointerTrackingIdMap[n] == trackingId) { |
| id = n; |
| } |
| } |
| |
| if (id < 0 && !mPointerIdBits.isFull()) { |
| id = mPointerIdBits.markFirstUnmarkedBit(); |
| mPointerTrackingIdMap[id] = trackingId; |
| } |
| } |
| if (id < 0) { |
| mHavePointerIds = false; |
| outState->rawPointerData.clearIdBits(); |
| newPointerIdBits.clear(); |
| } else { |
| outPointer.id = id; |
| outState->rawPointerData.idToIndex[id] = outCount; |
| outState->rawPointerData.markIdBit(id, isHovering); |
| newPointerIdBits.markBit(id); |
| } |
| } |
| outCount += 1; |
| } |
| |
| outState->deviceTimestamp = mMultiTouchMotionAccumulator.getDeviceTimestamp(); |
| outState->rawPointerData.pointerCount = outCount; |
| mPointerIdBits = newPointerIdBits; |
| |
| mMultiTouchMotionAccumulator.finishSync(); |
| } |
| |
| void MultiTouchInputMapper::configureRawPointerAxes() { |
| TouchInputMapper::configureRawPointerAxes(); |
| |
| getAbsoluteAxisInfo(ABS_MT_POSITION_X, &mRawPointerAxes.x); |
| getAbsoluteAxisInfo(ABS_MT_POSITION_Y, &mRawPointerAxes.y); |
| getAbsoluteAxisInfo(ABS_MT_TOUCH_MAJOR, &mRawPointerAxes.touchMajor); |
| getAbsoluteAxisInfo(ABS_MT_TOUCH_MINOR, &mRawPointerAxes.touchMinor); |
| getAbsoluteAxisInfo(ABS_MT_WIDTH_MAJOR, &mRawPointerAxes.toolMajor); |
| getAbsoluteAxisInfo(ABS_MT_WIDTH_MINOR, &mRawPointerAxes.toolMinor); |
| getAbsoluteAxisInfo(ABS_MT_ORIENTATION, &mRawPointerAxes.orientation); |
| getAbsoluteAxisInfo(ABS_MT_PRESSURE, &mRawPointerAxes.pressure); |
| getAbsoluteAxisInfo(ABS_MT_DISTANCE, &mRawPointerAxes.distance); |
| getAbsoluteAxisInfo(ABS_MT_TRACKING_ID, &mRawPointerAxes.trackingId); |
| getAbsoluteAxisInfo(ABS_MT_SLOT, &mRawPointerAxes.slot); |
| |
| if (mRawPointerAxes.trackingId.valid |
| && mRawPointerAxes.slot.valid |
| && mRawPointerAxes.slot.minValue == 0 && mRawPointerAxes.slot.maxValue > 0) { |
| size_t slotCount = mRawPointerAxes.slot.maxValue + 1; |
| if (slotCount > MAX_SLOTS) { |
| ALOGW("MultiTouch Device %s reported %zu slots but the framework " |
| "only supports a maximum of %zu slots at this time.", |
| getDeviceName().string(), slotCount, MAX_SLOTS); |
| slotCount = MAX_SLOTS; |
| } |
| mMultiTouchMotionAccumulator.configure(getDevice(), |
| slotCount, true /*usingSlotsProtocol*/); |
| } else { |
| mMultiTouchMotionAccumulator.configure(getDevice(), |
| MAX_POINTERS, false /*usingSlotsProtocol*/); |
| } |
| } |
| |
| bool MultiTouchInputMapper::hasStylus() const { |
| return mMultiTouchMotionAccumulator.hasStylus() |
| || mTouchButtonAccumulator.hasStylus(); |
| } |
| |
| // --- ExternalStylusInputMapper |
| |
| ExternalStylusInputMapper::ExternalStylusInputMapper(InputDevice* device) : |
| InputMapper(device) { |
| |
| } |
| |
| uint32_t ExternalStylusInputMapper::getSources() { |
| return AINPUT_SOURCE_STYLUS; |
| } |
| |
| void ExternalStylusInputMapper::populateDeviceInfo(InputDeviceInfo* info) { |
| InputMapper::populateDeviceInfo(info); |
| info->addMotionRange(AMOTION_EVENT_AXIS_PRESSURE, AINPUT_SOURCE_STYLUS, |
| 0.0f, 1.0f, 0.0f, 0.0f, 0.0f); |
| } |
| |
| void ExternalStylusInputMapper::dump(std::string& dump) { |
| dump += INDENT2 "External Stylus Input Mapper:\n"; |
| dump += INDENT3 "Raw Stylus Axes:\n"; |
| dumpRawAbsoluteAxisInfo(dump, mRawPressureAxis, "Pressure"); |
| dump += INDENT3 "Stylus State:\n"; |
| dumpStylusState(dump, mStylusState); |
| } |
| |
| void ExternalStylusInputMapper::configure(nsecs_t when, |
| const InputReaderConfiguration* config, uint32_t changes) { |
| getAbsoluteAxisInfo(ABS_PRESSURE, &mRawPressureAxis); |
| mTouchButtonAccumulator.configure(getDevice()); |
| } |
| |
| void ExternalStylusInputMapper::reset(nsecs_t when) { |
| InputDevice* device = getDevice(); |
| mSingleTouchMotionAccumulator.reset(device); |
| mTouchButtonAccumulator.reset(device); |
| InputMapper::reset(when); |
| } |
| |
| void ExternalStylusInputMapper::process(const RawEvent* rawEvent) { |
| mSingleTouchMotionAccumulator.process(rawEvent); |
| mTouchButtonAccumulator.process(rawEvent); |
| |
| if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) { |
| sync(rawEvent->when); |
| } |
| } |
| |
| void ExternalStylusInputMapper::sync(nsecs_t when) { |
| mStylusState.clear(); |
| |
| mStylusState.when = when; |
| |
| mStylusState.toolType = mTouchButtonAccumulator.getToolType(); |
| if (mStylusState.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) { |
| mStylusState.toolType = AMOTION_EVENT_TOOL_TYPE_STYLUS; |
| } |
| |
| int32_t pressure = mSingleTouchMotionAccumulator.getAbsolutePressure(); |
| if (mRawPressureAxis.valid) { |
| mStylusState.pressure = float(pressure) / mRawPressureAxis.maxValue; |
| } else if (mTouchButtonAccumulator.isToolActive()) { |
| mStylusState.pressure = 1.0f; |
| } else { |
| mStylusState.pressure = 0.0f; |
| } |
| |
| mStylusState.buttons = mTouchButtonAccumulator.getButtonState(); |
| |
| mContext->dispatchExternalStylusState(mStylusState); |
| } |
| |
| |
| // --- JoystickInputMapper --- |
| |
| JoystickInputMapper::JoystickInputMapper(InputDevice* device) : |
| InputMapper(device) { |
| } |
| |
| JoystickInputMapper::~JoystickInputMapper() { |
| } |
| |
| uint32_t JoystickInputMapper::getSources() { |
| return AINPUT_SOURCE_JOYSTICK; |
| } |
| |
| void JoystickInputMapper::populateDeviceInfo(InputDeviceInfo* info) { |
| InputMapper::populateDeviceInfo(info); |
| |
| for (size_t i = 0; i < mAxes.size(); i++) { |
| const Axis& axis = mAxes.valueAt(i); |
| addMotionRange(axis.axisInfo.axis, axis, info); |
| |
| if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) { |
| addMotionRange(axis.axisInfo.highAxis, axis, info); |
| |
| } |
| } |
| } |
| |
| void JoystickInputMapper::addMotionRange(int32_t axisId, const Axis& axis, |
| InputDeviceInfo* info) { |
| info->addMotionRange(axisId, AINPUT_SOURCE_JOYSTICK, |
| axis.min, axis.max, axis.flat, axis.fuzz, axis.resolution); |
| /* In order to ease the transition for developers from using the old axes |
| * to the newer, more semantically correct axes, we'll continue to register |
| * the old axes as duplicates of their corresponding new ones. */ |
| int32_t compatAxis = getCompatAxis(axisId); |
| if (compatAxis >= 0) { |
| info->addMotionRange(compatAxis, AINPUT_SOURCE_JOYSTICK, |
| axis.min, axis.max, axis.flat, axis.fuzz, axis.resolution); |
| } |
| } |
| |
| /* A mapping from axes the joystick actually has to the axes that should be |
| * artificially created for compatibility purposes. |
| * Returns -1 if no compatibility axis is needed. */ |
| int32_t JoystickInputMapper::getCompatAxis(int32_t axis) { |
| switch(axis) { |
| case AMOTION_EVENT_AXIS_LTRIGGER: |
| return AMOTION_EVENT_AXIS_BRAKE; |
| case AMOTION_EVENT_AXIS_RTRIGGER: |
| return AMOTION_EVENT_AXIS_GAS; |
| } |
| return -1; |
| } |
| |
| void JoystickInputMapper::dump(std::string& dump) { |
| dump += INDENT2 "Joystick Input Mapper:\n"; |
| |
| dump += INDENT3 "Axes:\n"; |
| size_t numAxes = mAxes.size(); |
| for (size_t i = 0; i < numAxes; i++) { |
| const Axis& axis = mAxes.valueAt(i); |
| const char* label = getAxisLabel(axis.axisInfo.axis); |
| if (label) { |
| dump += StringPrintf(INDENT4 "%s", label); |
| } else { |
| dump += StringPrintf(INDENT4 "%d", axis.axisInfo.axis); |
| } |
| if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) { |
| label = getAxisLabel(axis.axisInfo.highAxis); |
| if (label) { |
| dump += StringPrintf(" / %s (split at %d)", label, axis.axisInfo.splitValue); |
| } else { |
| dump += StringPrintf(" / %d (split at %d)", axis.axisInfo.highAxis, |
| axis.axisInfo.splitValue); |
| } |
| } else if (axis.axisInfo.mode == AxisInfo::MODE_INVERT) { |
| dump += " (invert)"; |
| } |
| |
| dump += StringPrintf(": min=%0.5f, max=%0.5f, flat=%0.5f, fuzz=%0.5f, resolution=%0.5f\n", |
| axis.min, axis.max, axis.flat, axis.fuzz, axis.resolution); |
| dump += StringPrintf(INDENT4 " scale=%0.5f, offset=%0.5f, " |
| "highScale=%0.5f, highOffset=%0.5f\n", |
| axis.scale, axis.offset, axis.highScale, axis.highOffset); |
| dump += StringPrintf(INDENT4 " rawAxis=%d, rawMin=%d, rawMax=%d, " |
| "rawFlat=%d, rawFuzz=%d, rawResolution=%d\n", |
| mAxes.keyAt(i), axis.rawAxisInfo.minValue, axis.rawAxisInfo.maxValue, |
| axis.rawAxisInfo.flat, axis.rawAxisInfo.fuzz, axis.rawAxisInfo.resolution); |
| } |
| } |
| |
| void JoystickInputMapper::configure(nsecs_t when, |
| const InputReaderConfiguration* config, uint32_t changes) { |
| InputMapper::configure(when, config, changes); |
| |
| if (!changes) { // first time only |
| // Collect all axes. |
| for (int32_t abs = 0; abs <= ABS_MAX; abs++) { |
| if (!(getAbsAxisUsage(abs, getDevice()->getClasses()) |
| & INPUT_DEVICE_CLASS_JOYSTICK)) { |
| continue; // axis must be claimed by a different device |
| } |
| |
| RawAbsoluteAxisInfo rawAxisInfo; |
| getAbsoluteAxisInfo(abs, &rawAxisInfo); |
| if (rawAxisInfo.valid) { |
| // Map axis. |
| AxisInfo axisInfo; |
| bool explicitlyMapped = !getEventHub()->mapAxis(getDeviceId(), abs, &axisInfo); |
| if (!explicitlyMapped) { |
| // Axis is not explicitly mapped, will choose a generic axis later. |
| axisInfo.mode = AxisInfo::MODE_NORMAL; |
| axisInfo.axis = -1; |
| } |
| |
| // Apply flat override. |
| int32_t rawFlat = axisInfo.flatOverride < 0 |
| ? rawAxisInfo.flat : axisInfo.flatOverride; |
| |
| // Calculate scaling factors and limits. |
| Axis axis; |
| if (axisInfo.mode == AxisInfo::MODE_SPLIT) { |
| float scale = 1.0f / (axisInfo.splitValue - rawAxisInfo.minValue); |
| float highScale = 1.0f / (rawAxisInfo.maxValue - axisInfo.splitValue); |
| axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped, |
| scale, 0.0f, highScale, 0.0f, |
| 0.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale, |
| rawAxisInfo.resolution * scale); |
| } else if (isCenteredAxis(axisInfo.axis)) { |
| float scale = 2.0f / (rawAxisInfo.maxValue - rawAxisInfo.minValue); |
| float offset = avg(rawAxisInfo.minValue, rawAxisInfo.maxValue) * -scale; |
| axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped, |
| scale, offset, scale, offset, |
| -1.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale, |
| rawAxisInfo.resolution * scale); |
| } else { |
| float scale = 1.0f / (rawAxisInfo.maxValue - rawAxisInfo.minValue); |
| axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped, |
| scale, 0.0f, scale, 0.0f, |
| 0.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale, |
| rawAxisInfo.resolution * scale); |
| } |
| |
| // To eliminate noise while the joystick is at rest, filter out small variations |
| // in axis values up front. |
| axis.filter = axis.fuzz ? axis.fuzz : axis.flat * 0.25f; |
| |
| mAxes.add(abs, axis); |
| } |
| } |
| |
| // If there are too many axes, start dropping them. |
| // Prefer to keep explicitly mapped axes. |
| if (mAxes.size() > PointerCoords::MAX_AXES) { |
| ALOGI("Joystick '%s' has %zu axes but the framework only supports a maximum of %d.", |
| getDeviceName().string(), mAxes.size(), PointerCoords::MAX_AXES); |
| pruneAxes(true); |
| pruneAxes(false); |
| } |
| |
| // Assign generic axis ids to remaining axes. |
| int32_t nextGenericAxisId = AMOTION_EVENT_AXIS_GENERIC_1; |
| size_t numAxes = mAxes.size(); |
| for (size_t i = 0; i < numAxes; i++) { |
| Axis& axis = mAxes.editValueAt(i); |
| if (axis.axisInfo.axis < 0) { |
| while (nextGenericAxisId <= AMOTION_EVENT_AXIS_GENERIC_16 |
| && haveAxis(nextGenericAxisId)) { |
| nextGenericAxisId += 1; |
| } |
| |
| if (nextGenericAxisId <= AMOTION_EVENT_AXIS_GENERIC_16) { |
| axis.axisInfo.axis = nextGenericAxisId; |
| nextGenericAxisId += 1; |
| } else { |
| ALOGI("Ignoring joystick '%s' axis %d because all of the generic axis ids " |
| "have already been assigned to other axes.", |
| getDeviceName().string(), mAxes.keyAt(i)); |
| mAxes.removeItemsAt(i--); |
| numAxes -= 1; |
| } |
| } |
| } |
| } |
| } |
| |
| bool JoystickInputMapper::haveAxis(int32_t axisId) { |
| size_t numAxes = mAxes.size(); |
| for (size_t i = 0; i < numAxes; i++) { |
| const Axis& axis = mAxes.valueAt(i); |
| if (axis.axisInfo.axis == axisId |
| || (axis.axisInfo.mode == AxisInfo::MODE_SPLIT |
| && axis.axisInfo.highAxis == axisId)) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void JoystickInputMapper::pruneAxes(bool ignoreExplicitlyMappedAxes) { |
| size_t i = mAxes.size(); |
| while (mAxes.size() > PointerCoords::MAX_AXES && i-- > 0) { |
| if (ignoreExplicitlyMappedAxes && mAxes.valueAt(i).explicitlyMapped) { |
| continue; |
| } |
| ALOGI("Discarding joystick '%s' axis %d because there are too many axes.", |
| getDeviceName().string(), mAxes.keyAt(i)); |
| mAxes.removeItemsAt(i); |
| } |
| } |
| |
| bool JoystickInputMapper::isCenteredAxis(int32_t axis) { |
| switch (axis) { |
| case AMOTION_EVENT_AXIS_X: |
| case AMOTION_EVENT_AXIS_Y: |
| case AMOTION_EVENT_AXIS_Z: |
| case AMOTION_EVENT_AXIS_RX: |
| case AMOTION_EVENT_AXIS_RY: |
| case AMOTION_EVENT_AXIS_RZ: |
| case AMOTION_EVENT_AXIS_HAT_X: |
| case AMOTION_EVENT_AXIS_HAT_Y: |
| case AMOTION_EVENT_AXIS_ORIENTATION: |
| case AMOTION_EVENT_AXIS_RUDDER: |
| case AMOTION_EVENT_AXIS_WHEEL: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| void JoystickInputMapper::reset(nsecs_t when) { |
| // Recenter all axes. |
| size_t numAxes = mAxes.size(); |
| for (size_t i = 0; i < numAxes; i++) { |
| Axis& axis = mAxes.editValueAt(i); |
| axis.resetValue(); |
| } |
| |
| InputMapper::reset(when); |
| } |
| |
| void JoystickInputMapper::process(const RawEvent* rawEvent) { |
| switch (rawEvent->type) { |
| case EV_ABS: { |
| ssize_t index = mAxes.indexOfKey(rawEvent->code); |
| if (index >= 0) { |
| Axis& axis = mAxes.editValueAt(index); |
| float newValue, highNewValue; |
| switch (axis.axisInfo.mode) { |
| case AxisInfo::MODE_INVERT: |
| newValue = (axis.rawAxisInfo.maxValue - rawEvent->value) |
| * axis.scale + axis.offset; |
| highNewValue = 0.0f; |
| break; |
| case AxisInfo::MODE_SPLIT: |
| if (rawEvent->value < axis.axisInfo.splitValue) { |
| newValue = (axis.axisInfo.splitValue - rawEvent->value) |
| * axis.scale + axis.offset; |
| highNewValue = 0.0f; |
| } else if (rawEvent->value > axis.axisInfo.splitValue) { |
| newValue = 0.0f; |
| highNewValue = (rawEvent->value - axis.axisInfo.splitValue) |
| * axis.highScale + axis.highOffset; |
| } else { |
| newValue = 0.0f; |
| highNewValue = 0.0f; |
| } |
| break; |
| default: |
| newValue = rawEvent->value * axis.scale + axis.offset; |
| highNewValue = 0.0f; |
| break; |
| } |
| axis.newValue = newValue; |
| axis.highNewValue = highNewValue; |
| } |
| break; |
| } |
| |
| case EV_SYN: |
| switch (rawEvent->code) { |
| case SYN_REPORT: |
| sync(rawEvent->when, false /*force*/); |
| break; |
| } |
| break; |
| } |
| } |
| |
| void JoystickInputMapper::sync(nsecs_t when, bool force) { |
| if (!filterAxes(force)) { |
| return; |
| } |
| |
| int32_t metaState = mContext->getGlobalMetaState(); |
| int32_t buttonState = 0; |
| |
| PointerProperties pointerProperties; |
| pointerProperties.clear(); |
| pointerProperties.id = 0; |
| pointerProperties.toolType = AMOTION_EVENT_TOOL_TYPE_UNKNOWN; |
| |
| PointerCoords pointerCoords; |
| pointerCoords.clear(); |
| |
| size_t numAxes = mAxes.size(); |
| for (size_t i = 0; i < numAxes; i++) { |
| const Axis& axis = mAxes.valueAt(i); |
| setPointerCoordsAxisValue(&pointerCoords, axis.axisInfo.axis, axis.currentValue); |
| if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) { |
| setPointerCoordsAxisValue(&pointerCoords, axis.axisInfo.highAxis, |
| axis.highCurrentValue); |
| } |
| } |
| |
| // Moving a joystick axis should not wake the device because joysticks can |
| // be fairly noisy even when not in use. On the other hand, pushing a gamepad |
| // button will likely wake the device. |
| // TODO: Use the input device configuration to control this behavior more finely. |
| uint32_t policyFlags = 0; |
| |
| NotifyMotionArgs args(when, getDeviceId(), AINPUT_SOURCE_JOYSTICK, policyFlags, |
| AMOTION_EVENT_ACTION_MOVE, 0, 0, metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, |
| ADISPLAY_ID_NONE, /* deviceTimestamp */ 0, 1, &pointerProperties, &pointerCoords, |
| 0, 0, 0); |
| getListener()->notifyMotion(&args); |
| } |
| |
| void JoystickInputMapper::setPointerCoordsAxisValue(PointerCoords* pointerCoords, |
| int32_t axis, float value) { |
| pointerCoords->setAxisValue(axis, value); |
| /* In order to ease the transition for developers from using the old axes |
| * to the newer, more semantically correct axes, we'll continue to produce |
| * values for the old axes as mirrors of the value of their corresponding |
| * new axes. */ |
| int32_t compatAxis = getCompatAxis(axis); |
| if (compatAxis >= 0) { |
| pointerCoords->setAxisValue(compatAxis, value); |
| } |
| } |
| |
| bool JoystickInputMapper::filterAxes(bool force) { |
| bool atLeastOneSignificantChange = force; |
| size_t numAxes = mAxes.size(); |
| for (size_t i = 0; i < numAxes; i++) { |
| Axis& axis = mAxes.editValueAt(i); |
| if (force || hasValueChangedSignificantly(axis.filter, |
| axis.newValue, axis.currentValue, axis.min, axis.max)) { |
| axis.currentValue = axis.newValue; |
| atLeastOneSignificantChange = true; |
| } |
| if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) { |
| if (force || hasValueChangedSignificantly(axis.filter, |
| axis.highNewValue, axis.highCurrentValue, axis.min, axis.max)) { |
| axis.highCurrentValue = axis.highNewValue; |
| atLeastOneSignificantChange = true; |
| } |
| } |
| } |
| return atLeastOneSignificantChange; |
| } |
| |
| bool JoystickInputMapper::hasValueChangedSignificantly( |
| float filter, float newValue, float currentValue, float min, float max) { |
| if (newValue != currentValue) { |
| // Filter out small changes in value unless the value is converging on the axis |
| // bounds or center point. This is intended to reduce the amount of information |
| // sent to applications by particularly noisy joysticks (such as PS3). |
| if (fabs(newValue - currentValue) > filter |
| || hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, min) |
| || hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, max) |
| || hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, 0)) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool JoystickInputMapper::hasMovedNearerToValueWithinFilteredRange( |
| float filter, float newValue, float currentValue, float thresholdValue) { |
| float newDistance = fabs(newValue - thresholdValue); |
| if (newDistance < filter) { |
| float oldDistance = fabs(currentValue - thresholdValue); |
| if (newDistance < oldDistance) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| } // namespace android |