| /* |
| * Copyright 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <inttypes.h> |
| |
| #define LOG_TAG "BufferQueueConsumer" |
| #define ATRACE_TAG ATRACE_TAG_GRAPHICS |
| //#define LOG_NDEBUG 0 |
| |
| #include <gui/BufferItem.h> |
| #include <gui/BufferQueueConsumer.h> |
| #include <gui/BufferQueueCore.h> |
| #include <gui/IConsumerListener.h> |
| #include <gui/IProducerListener.h> |
| |
| namespace android { |
| |
| BufferQueueConsumer::BufferQueueConsumer(const sp<BufferQueueCore>& core) : |
| mCore(core), |
| mSlots(core->mSlots), |
| mConsumerName() {} |
| |
| BufferQueueConsumer::~BufferQueueConsumer() {} |
| |
| status_t BufferQueueConsumer::acquireBuffer(BufferItem* outBuffer, |
| nsecs_t expectedPresent, uint64_t maxFrameNumber) { |
| ATRACE_CALL(); |
| Mutex::Autolock lock(mCore->mMutex); |
| |
| // Check that the consumer doesn't currently have the maximum number of |
| // buffers acquired. We allow the max buffer count to be exceeded by one |
| // buffer so that the consumer can successfully set up the newly acquired |
| // buffer before releasing the old one. |
| int numAcquiredBuffers = 0; |
| for (int s = 0; s < BufferQueueDefs::NUM_BUFFER_SLOTS; ++s) { |
| if (mSlots[s].mBufferState == BufferSlot::ACQUIRED) { |
| ++numAcquiredBuffers; |
| } |
| } |
| if (numAcquiredBuffers >= mCore->mMaxAcquiredBufferCount + 1) { |
| BQ_LOGE("acquireBuffer: max acquired buffer count reached: %d (max %d)", |
| numAcquiredBuffers, mCore->mMaxAcquiredBufferCount); |
| return INVALID_OPERATION; |
| } |
| |
| // Check if the queue is empty. |
| // In asynchronous mode the list is guaranteed to be one buffer deep, |
| // while in synchronous mode we use the oldest buffer. |
| if (mCore->mQueue.empty()) { |
| return NO_BUFFER_AVAILABLE; |
| } |
| |
| BufferQueueCore::Fifo::iterator front(mCore->mQueue.begin()); |
| |
| // If expectedPresent is specified, we may not want to return a buffer yet. |
| // If it's specified and there's more than one buffer queued, we may want |
| // to drop a buffer. |
| if (expectedPresent != 0) { |
| const int MAX_REASONABLE_NSEC = 1000000000ULL; // 1 second |
| |
| // The 'expectedPresent' argument indicates when the buffer is expected |
| // to be presented on-screen. If the buffer's desired present time is |
| // earlier (less) than expectedPresent -- meaning it will be displayed |
| // on time or possibly late if we show it as soon as possible -- we |
| // acquire and return it. If we don't want to display it until after the |
| // expectedPresent time, we return PRESENT_LATER without acquiring it. |
| // |
| // To be safe, we don't defer acquisition if expectedPresent is more |
| // than one second in the future beyond the desired present time |
| // (i.e., we'd be holding the buffer for a long time). |
| // |
| // NOTE: Code assumes monotonic time values from the system clock |
| // are positive. |
| |
| // Start by checking to see if we can drop frames. We skip this check if |
| // the timestamps are being auto-generated by Surface. If the app isn't |
| // generating timestamps explicitly, it probably doesn't want frames to |
| // be discarded based on them. |
| while (mCore->mQueue.size() > 1 && !mCore->mQueue[0].mIsAutoTimestamp) { |
| const BufferItem& bufferItem(mCore->mQueue[1]); |
| |
| // If dropping entry[0] would leave us with a buffer that the |
| // consumer is not yet ready for, don't drop it. |
| if (maxFrameNumber && bufferItem.mFrameNumber > maxFrameNumber) { |
| break; |
| } |
| |
| // If entry[1] is timely, drop entry[0] (and repeat). We apply an |
| // additional criterion here: we only drop the earlier buffer if our |
| // desiredPresent falls within +/- 1 second of the expected present. |
| // Otherwise, bogus desiredPresent times (e.g., 0 or a small |
| // relative timestamp), which normally mean "ignore the timestamp |
| // and acquire immediately", would cause us to drop frames. |
| // |
| // We may want to add an additional criterion: don't drop the |
| // earlier buffer if entry[1]'s fence hasn't signaled yet. |
| nsecs_t desiredPresent = bufferItem.mTimestamp; |
| if (desiredPresent < expectedPresent - MAX_REASONABLE_NSEC || |
| desiredPresent > expectedPresent) { |
| // This buffer is set to display in the near future, or |
| // desiredPresent is garbage. Either way we don't want to drop |
| // the previous buffer just to get this on the screen sooner. |
| BQ_LOGV("acquireBuffer: nodrop desire=%" PRId64 " expect=%" |
| PRId64 " (%" PRId64 ") now=%" PRId64, |
| desiredPresent, expectedPresent, |
| desiredPresent - expectedPresent, |
| systemTime(CLOCK_MONOTONIC)); |
| break; |
| } |
| |
| BQ_LOGV("acquireBuffer: drop desire=%" PRId64 " expect=%" PRId64 |
| " size=%zu", |
| desiredPresent, expectedPresent, mCore->mQueue.size()); |
| if (mCore->stillTracking(front)) { |
| // Front buffer is still in mSlots, so mark the slot as free |
| mSlots[front->mSlot].mBufferState = BufferSlot::FREE; |
| mCore->mFreeBuffers.push_back(front->mSlot); |
| } |
| mCore->mQueue.erase(front); |
| front = mCore->mQueue.begin(); |
| } |
| |
| // See if the front buffer is ready to be acquired |
| nsecs_t desiredPresent = front->mTimestamp; |
| bool bufferIsDue = desiredPresent <= expectedPresent || |
| desiredPresent > expectedPresent + MAX_REASONABLE_NSEC; |
| bool consumerIsReady = maxFrameNumber > 0 ? |
| front->mFrameNumber <= maxFrameNumber : true; |
| if (!bufferIsDue || !consumerIsReady) { |
| BQ_LOGV("acquireBuffer: defer desire=%" PRId64 " expect=%" PRId64 |
| " (%" PRId64 ") now=%" PRId64 " frame=%" PRIu64 |
| " consumer=%" PRIu64, |
| desiredPresent, expectedPresent, |
| desiredPresent - expectedPresent, |
| systemTime(CLOCK_MONOTONIC), |
| front->mFrameNumber, maxFrameNumber); |
| return PRESENT_LATER; |
| } |
| |
| BQ_LOGV("acquireBuffer: accept desire=%" PRId64 " expect=%" PRId64 " " |
| "(%" PRId64 ") now=%" PRId64, desiredPresent, expectedPresent, |
| desiredPresent - expectedPresent, |
| systemTime(CLOCK_MONOTONIC)); |
| } |
| |
| int slot = front->mSlot; |
| *outBuffer = *front; |
| ATRACE_BUFFER_INDEX(slot); |
| |
| BQ_LOGV("acquireBuffer: acquiring { slot=%d/%" PRIu64 " buffer=%p }", |
| slot, front->mFrameNumber, front->mGraphicBuffer->handle); |
| // If the front buffer is still being tracked, update its slot state |
| if (mCore->stillTracking(front)) { |
| mSlots[slot].mAcquireCalled = true; |
| mSlots[slot].mNeedsCleanupOnRelease = false; |
| mSlots[slot].mBufferState = BufferSlot::ACQUIRED; |
| mSlots[slot].mFence = Fence::NO_FENCE; |
| } |
| |
| // If the buffer has previously been acquired by the consumer, set |
| // mGraphicBuffer to NULL to avoid unnecessarily remapping this buffer |
| // on the consumer side |
| if (outBuffer->mAcquireCalled) { |
| outBuffer->mGraphicBuffer = NULL; |
| } |
| |
| mCore->mQueue.erase(front); |
| |
| // We might have freed a slot while dropping old buffers, or the producer |
| // may be blocked waiting for the number of buffers in the queue to |
| // decrease. |
| mCore->mDequeueCondition.broadcast(); |
| |
| ATRACE_INT(mCore->mConsumerName.string(), mCore->mQueue.size()); |
| |
| mCore->validateConsistencyLocked(); |
| |
| return NO_ERROR; |
| } |
| |
| status_t BufferQueueConsumer::detachBuffer(int slot) { |
| ATRACE_CALL(); |
| ATRACE_BUFFER_INDEX(slot); |
| BQ_LOGV("detachBuffer(C): slot %d", slot); |
| Mutex::Autolock lock(mCore->mMutex); |
| |
| if (mCore->mIsAbandoned) { |
| BQ_LOGE("detachBuffer(C): BufferQueue has been abandoned"); |
| return NO_INIT; |
| } |
| |
| if (slot < 0 || slot >= BufferQueueDefs::NUM_BUFFER_SLOTS) { |
| BQ_LOGE("detachBuffer(C): slot index %d out of range [0, %d)", |
| slot, BufferQueueDefs::NUM_BUFFER_SLOTS); |
| return BAD_VALUE; |
| } else if (mSlots[slot].mBufferState != BufferSlot::ACQUIRED) { |
| BQ_LOGE("detachBuffer(C): slot %d is not owned by the consumer " |
| "(state = %d)", slot, mSlots[slot].mBufferState); |
| return BAD_VALUE; |
| } |
| |
| mCore->freeBufferLocked(slot); |
| mCore->mDequeueCondition.broadcast(); |
| mCore->validateConsistencyLocked(); |
| |
| return NO_ERROR; |
| } |
| |
| status_t BufferQueueConsumer::attachBuffer(int* outSlot, |
| const sp<android::GraphicBuffer>& buffer) { |
| ATRACE_CALL(); |
| |
| if (outSlot == NULL) { |
| BQ_LOGE("attachBuffer(P): outSlot must not be NULL"); |
| return BAD_VALUE; |
| } else if (buffer == NULL) { |
| BQ_LOGE("attachBuffer(P): cannot attach NULL buffer"); |
| return BAD_VALUE; |
| } |
| |
| Mutex::Autolock lock(mCore->mMutex); |
| |
| // Make sure we don't have too many acquired buffers |
| int numAcquiredBuffers = 0; |
| for (int s = 0; s < BufferQueueDefs::NUM_BUFFER_SLOTS; ++s) { |
| if (mSlots[s].mBufferState == BufferSlot::ACQUIRED) { |
| ++numAcquiredBuffers; |
| } |
| } |
| |
| if (numAcquiredBuffers >= mCore->mMaxAcquiredBufferCount + 1) { |
| BQ_LOGE("attachBuffer(P): max acquired buffer count reached: %d " |
| "(max %d)", numAcquiredBuffers, |
| mCore->mMaxAcquiredBufferCount); |
| return INVALID_OPERATION; |
| } |
| |
| if (buffer->getGenerationNumber() != mCore->mGenerationNumber) { |
| BQ_LOGE("attachBuffer: generation number mismatch [buffer %u] " |
| "[queue %u]", buffer->getGenerationNumber(), |
| mCore->mGenerationNumber); |
| return BAD_VALUE; |
| } |
| |
| // Find a free slot to put the buffer into |
| int found = BufferQueueCore::INVALID_BUFFER_SLOT; |
| if (!mCore->mFreeSlots.empty()) { |
| auto slot = mCore->mFreeSlots.begin(); |
| found = *slot; |
| mCore->mFreeSlots.erase(slot); |
| } else if (!mCore->mFreeBuffers.empty()) { |
| found = mCore->mFreeBuffers.front(); |
| mCore->mFreeBuffers.remove(found); |
| } |
| if (found == BufferQueueCore::INVALID_BUFFER_SLOT) { |
| BQ_LOGE("attachBuffer(P): could not find free buffer slot"); |
| return NO_MEMORY; |
| } |
| |
| *outSlot = found; |
| ATRACE_BUFFER_INDEX(*outSlot); |
| BQ_LOGV("attachBuffer(C): returning slot %d", *outSlot); |
| |
| mSlots[*outSlot].mGraphicBuffer = buffer; |
| mSlots[*outSlot].mBufferState = BufferSlot::ACQUIRED; |
| mSlots[*outSlot].mAttachedByConsumer = true; |
| mSlots[*outSlot].mNeedsCleanupOnRelease = false; |
| mSlots[*outSlot].mFence = Fence::NO_FENCE; |
| mSlots[*outSlot].mFrameNumber = 0; |
| |
| // mAcquireCalled tells BufferQueue that it doesn't need to send a valid |
| // GraphicBuffer pointer on the next acquireBuffer call, which decreases |
| // Binder traffic by not un/flattening the GraphicBuffer. However, it |
| // requires that the consumer maintain a cached copy of the slot <--> buffer |
| // mappings, which is why the consumer doesn't need the valid pointer on |
| // acquire. |
| // |
| // The StreamSplitter is one of the primary users of the attach/detach |
| // logic, and while it is running, all buffers it acquires are immediately |
| // detached, and all buffers it eventually releases are ones that were |
| // attached (as opposed to having been obtained from acquireBuffer), so it |
| // doesn't make sense to maintain the slot/buffer mappings, which would |
| // become invalid for every buffer during detach/attach. By setting this to |
| // false, the valid GraphicBuffer pointer will always be sent with acquire |
| // for attached buffers. |
| mSlots[*outSlot].mAcquireCalled = false; |
| |
| mCore->validateConsistencyLocked(); |
| |
| return NO_ERROR; |
| } |
| |
| status_t BufferQueueConsumer::releaseBuffer(int slot, uint64_t frameNumber, |
| const sp<Fence>& releaseFence, EGLDisplay eglDisplay, |
| EGLSyncKHR eglFence) { |
| ATRACE_CALL(); |
| ATRACE_BUFFER_INDEX(slot); |
| |
| if (slot < 0 || slot >= BufferQueueDefs::NUM_BUFFER_SLOTS || |
| releaseFence == NULL) { |
| BQ_LOGE("releaseBuffer: slot %d out of range or fence %p NULL", slot, |
| releaseFence.get()); |
| return BAD_VALUE; |
| } |
| |
| sp<IProducerListener> listener; |
| { // Autolock scope |
| Mutex::Autolock lock(mCore->mMutex); |
| |
| // If the frame number has changed because the buffer has been reallocated, |
| // we can ignore this releaseBuffer for the old buffer |
| if (frameNumber != mSlots[slot].mFrameNumber) { |
| return STALE_BUFFER_SLOT; |
| } |
| |
| // Make sure this buffer hasn't been queued while acquired by the consumer |
| BufferQueueCore::Fifo::iterator current(mCore->mQueue.begin()); |
| while (current != mCore->mQueue.end()) { |
| if (current->mSlot == slot) { |
| BQ_LOGE("releaseBuffer: buffer slot %d pending release is " |
| "currently queued", slot); |
| return BAD_VALUE; |
| } |
| ++current; |
| } |
| |
| if (mSlots[slot].mBufferState == BufferSlot::ACQUIRED) { |
| mSlots[slot].mEglDisplay = eglDisplay; |
| mSlots[slot].mEglFence = eglFence; |
| mSlots[slot].mFence = releaseFence; |
| mSlots[slot].mBufferState = BufferSlot::FREE; |
| mCore->mFreeBuffers.push_back(slot); |
| listener = mCore->mConnectedProducerListener; |
| BQ_LOGV("releaseBuffer: releasing slot %d", slot); |
| } else if (mSlots[slot].mNeedsCleanupOnRelease) { |
| BQ_LOGV("releaseBuffer: releasing a stale buffer slot %d " |
| "(state = %d)", slot, mSlots[slot].mBufferState); |
| mSlots[slot].mNeedsCleanupOnRelease = false; |
| return STALE_BUFFER_SLOT; |
| } else { |
| BQ_LOGE("releaseBuffer: attempted to release buffer slot %d " |
| "but its state was %d", slot, mSlots[slot].mBufferState); |
| return BAD_VALUE; |
| } |
| |
| mCore->mDequeueCondition.broadcast(); |
| mCore->validateConsistencyLocked(); |
| } // Autolock scope |
| |
| // Call back without lock held |
| if (listener != NULL) { |
| listener->onBufferReleased(); |
| } |
| |
| return NO_ERROR; |
| } |
| |
| status_t BufferQueueConsumer::connect( |
| const sp<IConsumerListener>& consumerListener, bool controlledByApp) { |
| ATRACE_CALL(); |
| |
| if (consumerListener == NULL) { |
| BQ_LOGE("connect(C): consumerListener may not be NULL"); |
| return BAD_VALUE; |
| } |
| |
| BQ_LOGV("connect(C): controlledByApp=%s", |
| controlledByApp ? "true" : "false"); |
| |
| Mutex::Autolock lock(mCore->mMutex); |
| |
| if (mCore->mIsAbandoned) { |
| BQ_LOGE("connect(C): BufferQueue has been abandoned"); |
| return NO_INIT; |
| } |
| |
| mCore->mConsumerListener = consumerListener; |
| mCore->mConsumerControlledByApp = controlledByApp; |
| |
| return NO_ERROR; |
| } |
| |
| status_t BufferQueueConsumer::disconnect() { |
| ATRACE_CALL(); |
| |
| BQ_LOGV("disconnect(C)"); |
| |
| Mutex::Autolock lock(mCore->mMutex); |
| |
| if (mCore->mConsumerListener == NULL) { |
| BQ_LOGE("disconnect(C): no consumer is connected"); |
| return BAD_VALUE; |
| } |
| |
| mCore->mIsAbandoned = true; |
| mCore->mConsumerListener = NULL; |
| mCore->mQueue.clear(); |
| mCore->freeAllBuffersLocked(); |
| mCore->mDequeueCondition.broadcast(); |
| return NO_ERROR; |
| } |
| |
| status_t BufferQueueConsumer::getReleasedBuffers(uint64_t *outSlotMask) { |
| ATRACE_CALL(); |
| |
| if (outSlotMask == NULL) { |
| BQ_LOGE("getReleasedBuffers: outSlotMask may not be NULL"); |
| return BAD_VALUE; |
| } |
| |
| Mutex::Autolock lock(mCore->mMutex); |
| |
| if (mCore->mIsAbandoned) { |
| BQ_LOGE("getReleasedBuffers: BufferQueue has been abandoned"); |
| return NO_INIT; |
| } |
| |
| uint64_t mask = 0; |
| for (int s = 0; s < BufferQueueDefs::NUM_BUFFER_SLOTS; ++s) { |
| if (!mSlots[s].mAcquireCalled) { |
| mask |= (1ULL << s); |
| } |
| } |
| |
| // Remove from the mask queued buffers for which acquire has been called, |
| // since the consumer will not receive their buffer addresses and so must |
| // retain their cached information |
| BufferQueueCore::Fifo::iterator current(mCore->mQueue.begin()); |
| while (current != mCore->mQueue.end()) { |
| if (current->mAcquireCalled) { |
| mask &= ~(1ULL << current->mSlot); |
| } |
| ++current; |
| } |
| |
| BQ_LOGV("getReleasedBuffers: returning mask %#" PRIx64, mask); |
| *outSlotMask = mask; |
| return NO_ERROR; |
| } |
| |
| status_t BufferQueueConsumer::setDefaultBufferSize(uint32_t width, |
| uint32_t height) { |
| ATRACE_CALL(); |
| |
| if (width == 0 || height == 0) { |
| BQ_LOGV("setDefaultBufferSize: dimensions cannot be 0 (width=%u " |
| "height=%u)", width, height); |
| return BAD_VALUE; |
| } |
| |
| BQ_LOGV("setDefaultBufferSize: width=%u height=%u", width, height); |
| |
| Mutex::Autolock lock(mCore->mMutex); |
| mCore->mDefaultWidth = width; |
| mCore->mDefaultHeight = height; |
| return NO_ERROR; |
| } |
| |
| status_t BufferQueueConsumer::setDefaultMaxBufferCount(int bufferCount) { |
| ATRACE_CALL(); |
| Mutex::Autolock lock(mCore->mMutex); |
| return mCore->setDefaultMaxBufferCountLocked(bufferCount); |
| } |
| |
| status_t BufferQueueConsumer::disableAsyncBuffer() { |
| ATRACE_CALL(); |
| |
| Mutex::Autolock lock(mCore->mMutex); |
| |
| if (mCore->mConsumerListener != NULL) { |
| BQ_LOGE("disableAsyncBuffer: consumer already connected"); |
| return INVALID_OPERATION; |
| } |
| |
| BQ_LOGV("disableAsyncBuffer"); |
| mCore->mUseAsyncBuffer = false; |
| return NO_ERROR; |
| } |
| |
| status_t BufferQueueConsumer::setMaxAcquiredBufferCount( |
| int maxAcquiredBuffers) { |
| ATRACE_CALL(); |
| |
| if (maxAcquiredBuffers < 1 || |
| maxAcquiredBuffers > BufferQueueCore::MAX_MAX_ACQUIRED_BUFFERS) { |
| BQ_LOGE("setMaxAcquiredBufferCount: invalid count %d", |
| maxAcquiredBuffers); |
| return BAD_VALUE; |
| } |
| |
| Mutex::Autolock lock(mCore->mMutex); |
| |
| if (mCore->mConnectedApi != BufferQueueCore::NO_CONNECTED_API) { |
| BQ_LOGE("setMaxAcquiredBufferCount: producer is already connected"); |
| return INVALID_OPERATION; |
| } |
| |
| BQ_LOGV("setMaxAcquiredBufferCount: %d", maxAcquiredBuffers); |
| mCore->mMaxAcquiredBufferCount = maxAcquiredBuffers; |
| return NO_ERROR; |
| } |
| |
| void BufferQueueConsumer::setConsumerName(const String8& name) { |
| ATRACE_CALL(); |
| BQ_LOGV("setConsumerName: '%s'", name.string()); |
| Mutex::Autolock lock(mCore->mMutex); |
| mCore->mConsumerName = name; |
| mConsumerName = name; |
| } |
| |
| status_t BufferQueueConsumer::setDefaultBufferFormat(PixelFormat defaultFormat) { |
| ATRACE_CALL(); |
| BQ_LOGV("setDefaultBufferFormat: %u", defaultFormat); |
| Mutex::Autolock lock(mCore->mMutex); |
| mCore->mDefaultBufferFormat = defaultFormat; |
| return NO_ERROR; |
| } |
| |
| status_t BufferQueueConsumer::setDefaultBufferDataSpace( |
| android_dataspace defaultDataSpace) { |
| ATRACE_CALL(); |
| BQ_LOGV("setDefaultBufferDataSpace: %u", defaultDataSpace); |
| Mutex::Autolock lock(mCore->mMutex); |
| mCore->mDefaultBufferDataSpace = defaultDataSpace; |
| return NO_ERROR; |
| } |
| |
| status_t BufferQueueConsumer::setConsumerUsageBits(uint32_t usage) { |
| ATRACE_CALL(); |
| BQ_LOGV("setConsumerUsageBits: %#x", usage); |
| Mutex::Autolock lock(mCore->mMutex); |
| mCore->mConsumerUsageBits = usage; |
| return NO_ERROR; |
| } |
| |
| status_t BufferQueueConsumer::setTransformHint(uint32_t hint) { |
| ATRACE_CALL(); |
| BQ_LOGV("setTransformHint: %#x", hint); |
| Mutex::Autolock lock(mCore->mMutex); |
| mCore->mTransformHint = hint; |
| return NO_ERROR; |
| } |
| |
| sp<NativeHandle> BufferQueueConsumer::getSidebandStream() const { |
| return mCore->mSidebandStream; |
| } |
| |
| void BufferQueueConsumer::dump(String8& result, const char* prefix) const { |
| mCore->dump(result, prefix); |
| } |
| |
| } // namespace android |