blob: ae796b14db0bc916dba21fc90bbf8bb31bc7bef2 [file] [log] [blame]
/*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <inttypes.h>
#define LOG_TAG "BufferQueueConsumer"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
//#define LOG_NDEBUG 0
#include <gui/BufferItem.h>
#include <gui/BufferQueueConsumer.h>
#include <gui/BufferQueueCore.h>
#include <gui/IConsumerListener.h>
#include <gui/IProducerListener.h>
namespace android {
BufferQueueConsumer::BufferQueueConsumer(const sp<BufferQueueCore>& core) :
mCore(core),
mSlots(core->mSlots),
mConsumerName() {}
BufferQueueConsumer::~BufferQueueConsumer() {}
status_t BufferQueueConsumer::acquireBuffer(BufferItem* outBuffer,
nsecs_t expectedPresent, uint64_t maxFrameNumber) {
ATRACE_CALL();
Mutex::Autolock lock(mCore->mMutex);
// Check that the consumer doesn't currently have the maximum number of
// buffers acquired. We allow the max buffer count to be exceeded by one
// buffer so that the consumer can successfully set up the newly acquired
// buffer before releasing the old one.
int numAcquiredBuffers = 0;
for (int s = 0; s < BufferQueueDefs::NUM_BUFFER_SLOTS; ++s) {
if (mSlots[s].mBufferState == BufferSlot::ACQUIRED) {
++numAcquiredBuffers;
}
}
if (numAcquiredBuffers >= mCore->mMaxAcquiredBufferCount + 1) {
BQ_LOGE("acquireBuffer: max acquired buffer count reached: %d (max %d)",
numAcquiredBuffers, mCore->mMaxAcquiredBufferCount);
return INVALID_OPERATION;
}
// Check if the queue is empty.
// In asynchronous mode the list is guaranteed to be one buffer deep,
// while in synchronous mode we use the oldest buffer.
if (mCore->mQueue.empty()) {
return NO_BUFFER_AVAILABLE;
}
BufferQueueCore::Fifo::iterator front(mCore->mQueue.begin());
// If expectedPresent is specified, we may not want to return a buffer yet.
// If it's specified and there's more than one buffer queued, we may want
// to drop a buffer.
if (expectedPresent != 0) {
const int MAX_REASONABLE_NSEC = 1000000000ULL; // 1 second
// The 'expectedPresent' argument indicates when the buffer is expected
// to be presented on-screen. If the buffer's desired present time is
// earlier (less) than expectedPresent -- meaning it will be displayed
// on time or possibly late if we show it as soon as possible -- we
// acquire and return it. If we don't want to display it until after the
// expectedPresent time, we return PRESENT_LATER without acquiring it.
//
// To be safe, we don't defer acquisition if expectedPresent is more
// than one second in the future beyond the desired present time
// (i.e., we'd be holding the buffer for a long time).
//
// NOTE: Code assumes monotonic time values from the system clock
// are positive.
// Start by checking to see if we can drop frames. We skip this check if
// the timestamps are being auto-generated by Surface. If the app isn't
// generating timestamps explicitly, it probably doesn't want frames to
// be discarded based on them.
while (mCore->mQueue.size() > 1 && !mCore->mQueue[0].mIsAutoTimestamp) {
const BufferItem& bufferItem(mCore->mQueue[1]);
// If dropping entry[0] would leave us with a buffer that the
// consumer is not yet ready for, don't drop it.
if (maxFrameNumber && bufferItem.mFrameNumber > maxFrameNumber) {
break;
}
// If entry[1] is timely, drop entry[0] (and repeat). We apply an
// additional criterion here: we only drop the earlier buffer if our
// desiredPresent falls within +/- 1 second of the expected present.
// Otherwise, bogus desiredPresent times (e.g., 0 or a small
// relative timestamp), which normally mean "ignore the timestamp
// and acquire immediately", would cause us to drop frames.
//
// We may want to add an additional criterion: don't drop the
// earlier buffer if entry[1]'s fence hasn't signaled yet.
nsecs_t desiredPresent = bufferItem.mTimestamp;
if (desiredPresent < expectedPresent - MAX_REASONABLE_NSEC ||
desiredPresent > expectedPresent) {
// This buffer is set to display in the near future, or
// desiredPresent is garbage. Either way we don't want to drop
// the previous buffer just to get this on the screen sooner.
BQ_LOGV("acquireBuffer: nodrop desire=%" PRId64 " expect=%"
PRId64 " (%" PRId64 ") now=%" PRId64,
desiredPresent, expectedPresent,
desiredPresent - expectedPresent,
systemTime(CLOCK_MONOTONIC));
break;
}
BQ_LOGV("acquireBuffer: drop desire=%" PRId64 " expect=%" PRId64
" size=%zu",
desiredPresent, expectedPresent, mCore->mQueue.size());
if (mCore->stillTracking(front)) {
// Front buffer is still in mSlots, so mark the slot as free
mSlots[front->mSlot].mBufferState = BufferSlot::FREE;
mCore->mFreeBuffers.push_back(front->mSlot);
}
mCore->mQueue.erase(front);
front = mCore->mQueue.begin();
}
// See if the front buffer is ready to be acquired
nsecs_t desiredPresent = front->mTimestamp;
bool bufferIsDue = desiredPresent <= expectedPresent ||
desiredPresent > expectedPresent + MAX_REASONABLE_NSEC;
bool consumerIsReady = maxFrameNumber > 0 ?
front->mFrameNumber <= maxFrameNumber : true;
if (!bufferIsDue || !consumerIsReady) {
BQ_LOGV("acquireBuffer: defer desire=%" PRId64 " expect=%" PRId64
" (%" PRId64 ") now=%" PRId64 " frame=%" PRIu64
" consumer=%" PRIu64,
desiredPresent, expectedPresent,
desiredPresent - expectedPresent,
systemTime(CLOCK_MONOTONIC),
front->mFrameNumber, maxFrameNumber);
return PRESENT_LATER;
}
BQ_LOGV("acquireBuffer: accept desire=%" PRId64 " expect=%" PRId64 " "
"(%" PRId64 ") now=%" PRId64, desiredPresent, expectedPresent,
desiredPresent - expectedPresent,
systemTime(CLOCK_MONOTONIC));
}
int slot = front->mSlot;
*outBuffer = *front;
ATRACE_BUFFER_INDEX(slot);
BQ_LOGV("acquireBuffer: acquiring { slot=%d/%" PRIu64 " buffer=%p }",
slot, front->mFrameNumber, front->mGraphicBuffer->handle);
// If the front buffer is still being tracked, update its slot state
if (mCore->stillTracking(front)) {
mSlots[slot].mAcquireCalled = true;
mSlots[slot].mNeedsCleanupOnRelease = false;
mSlots[slot].mBufferState = BufferSlot::ACQUIRED;
mSlots[slot].mFence = Fence::NO_FENCE;
}
// If the buffer has previously been acquired by the consumer, set
// mGraphicBuffer to NULL to avoid unnecessarily remapping this buffer
// on the consumer side
if (outBuffer->mAcquireCalled) {
outBuffer->mGraphicBuffer = NULL;
}
mCore->mQueue.erase(front);
// We might have freed a slot while dropping old buffers, or the producer
// may be blocked waiting for the number of buffers in the queue to
// decrease.
mCore->mDequeueCondition.broadcast();
ATRACE_INT(mCore->mConsumerName.string(), mCore->mQueue.size());
mCore->validateConsistencyLocked();
return NO_ERROR;
}
status_t BufferQueueConsumer::detachBuffer(int slot) {
ATRACE_CALL();
ATRACE_BUFFER_INDEX(slot);
BQ_LOGV("detachBuffer(C): slot %d", slot);
Mutex::Autolock lock(mCore->mMutex);
if (mCore->mIsAbandoned) {
BQ_LOGE("detachBuffer(C): BufferQueue has been abandoned");
return NO_INIT;
}
if (slot < 0 || slot >= BufferQueueDefs::NUM_BUFFER_SLOTS) {
BQ_LOGE("detachBuffer(C): slot index %d out of range [0, %d)",
slot, BufferQueueDefs::NUM_BUFFER_SLOTS);
return BAD_VALUE;
} else if (mSlots[slot].mBufferState != BufferSlot::ACQUIRED) {
BQ_LOGE("detachBuffer(C): slot %d is not owned by the consumer "
"(state = %d)", slot, mSlots[slot].mBufferState);
return BAD_VALUE;
}
mCore->freeBufferLocked(slot);
mCore->mDequeueCondition.broadcast();
mCore->validateConsistencyLocked();
return NO_ERROR;
}
status_t BufferQueueConsumer::attachBuffer(int* outSlot,
const sp<android::GraphicBuffer>& buffer) {
ATRACE_CALL();
if (outSlot == NULL) {
BQ_LOGE("attachBuffer(P): outSlot must not be NULL");
return BAD_VALUE;
} else if (buffer == NULL) {
BQ_LOGE("attachBuffer(P): cannot attach NULL buffer");
return BAD_VALUE;
}
Mutex::Autolock lock(mCore->mMutex);
// Make sure we don't have too many acquired buffers
int numAcquiredBuffers = 0;
for (int s = 0; s < BufferQueueDefs::NUM_BUFFER_SLOTS; ++s) {
if (mSlots[s].mBufferState == BufferSlot::ACQUIRED) {
++numAcquiredBuffers;
}
}
if (numAcquiredBuffers >= mCore->mMaxAcquiredBufferCount + 1) {
BQ_LOGE("attachBuffer(P): max acquired buffer count reached: %d "
"(max %d)", numAcquiredBuffers,
mCore->mMaxAcquiredBufferCount);
return INVALID_OPERATION;
}
if (buffer->getGenerationNumber() != mCore->mGenerationNumber) {
BQ_LOGE("attachBuffer: generation number mismatch [buffer %u] "
"[queue %u]", buffer->getGenerationNumber(),
mCore->mGenerationNumber);
return BAD_VALUE;
}
// Find a free slot to put the buffer into
int found = BufferQueueCore::INVALID_BUFFER_SLOT;
if (!mCore->mFreeSlots.empty()) {
auto slot = mCore->mFreeSlots.begin();
found = *slot;
mCore->mFreeSlots.erase(slot);
} else if (!mCore->mFreeBuffers.empty()) {
found = mCore->mFreeBuffers.front();
mCore->mFreeBuffers.remove(found);
}
if (found == BufferQueueCore::INVALID_BUFFER_SLOT) {
BQ_LOGE("attachBuffer(P): could not find free buffer slot");
return NO_MEMORY;
}
*outSlot = found;
ATRACE_BUFFER_INDEX(*outSlot);
BQ_LOGV("attachBuffer(C): returning slot %d", *outSlot);
mSlots[*outSlot].mGraphicBuffer = buffer;
mSlots[*outSlot].mBufferState = BufferSlot::ACQUIRED;
mSlots[*outSlot].mAttachedByConsumer = true;
mSlots[*outSlot].mNeedsCleanupOnRelease = false;
mSlots[*outSlot].mFence = Fence::NO_FENCE;
mSlots[*outSlot].mFrameNumber = 0;
// mAcquireCalled tells BufferQueue that it doesn't need to send a valid
// GraphicBuffer pointer on the next acquireBuffer call, which decreases
// Binder traffic by not un/flattening the GraphicBuffer. However, it
// requires that the consumer maintain a cached copy of the slot <--> buffer
// mappings, which is why the consumer doesn't need the valid pointer on
// acquire.
//
// The StreamSplitter is one of the primary users of the attach/detach
// logic, and while it is running, all buffers it acquires are immediately
// detached, and all buffers it eventually releases are ones that were
// attached (as opposed to having been obtained from acquireBuffer), so it
// doesn't make sense to maintain the slot/buffer mappings, which would
// become invalid for every buffer during detach/attach. By setting this to
// false, the valid GraphicBuffer pointer will always be sent with acquire
// for attached buffers.
mSlots[*outSlot].mAcquireCalled = false;
mCore->validateConsistencyLocked();
return NO_ERROR;
}
status_t BufferQueueConsumer::releaseBuffer(int slot, uint64_t frameNumber,
const sp<Fence>& releaseFence, EGLDisplay eglDisplay,
EGLSyncKHR eglFence) {
ATRACE_CALL();
ATRACE_BUFFER_INDEX(slot);
if (slot < 0 || slot >= BufferQueueDefs::NUM_BUFFER_SLOTS ||
releaseFence == NULL) {
BQ_LOGE("releaseBuffer: slot %d out of range or fence %p NULL", slot,
releaseFence.get());
return BAD_VALUE;
}
sp<IProducerListener> listener;
{ // Autolock scope
Mutex::Autolock lock(mCore->mMutex);
// If the frame number has changed because the buffer has been reallocated,
// we can ignore this releaseBuffer for the old buffer
if (frameNumber != mSlots[slot].mFrameNumber) {
return STALE_BUFFER_SLOT;
}
// Make sure this buffer hasn't been queued while acquired by the consumer
BufferQueueCore::Fifo::iterator current(mCore->mQueue.begin());
while (current != mCore->mQueue.end()) {
if (current->mSlot == slot) {
BQ_LOGE("releaseBuffer: buffer slot %d pending release is "
"currently queued", slot);
return BAD_VALUE;
}
++current;
}
if (mSlots[slot].mBufferState == BufferSlot::ACQUIRED) {
mSlots[slot].mEglDisplay = eglDisplay;
mSlots[slot].mEglFence = eglFence;
mSlots[slot].mFence = releaseFence;
mSlots[slot].mBufferState = BufferSlot::FREE;
mCore->mFreeBuffers.push_back(slot);
listener = mCore->mConnectedProducerListener;
BQ_LOGV("releaseBuffer: releasing slot %d", slot);
} else if (mSlots[slot].mNeedsCleanupOnRelease) {
BQ_LOGV("releaseBuffer: releasing a stale buffer slot %d "
"(state = %d)", slot, mSlots[slot].mBufferState);
mSlots[slot].mNeedsCleanupOnRelease = false;
return STALE_BUFFER_SLOT;
} else {
BQ_LOGE("releaseBuffer: attempted to release buffer slot %d "
"but its state was %d", slot, mSlots[slot].mBufferState);
return BAD_VALUE;
}
mCore->mDequeueCondition.broadcast();
mCore->validateConsistencyLocked();
} // Autolock scope
// Call back without lock held
if (listener != NULL) {
listener->onBufferReleased();
}
return NO_ERROR;
}
status_t BufferQueueConsumer::connect(
const sp<IConsumerListener>& consumerListener, bool controlledByApp) {
ATRACE_CALL();
if (consumerListener == NULL) {
BQ_LOGE("connect(C): consumerListener may not be NULL");
return BAD_VALUE;
}
BQ_LOGV("connect(C): controlledByApp=%s",
controlledByApp ? "true" : "false");
Mutex::Autolock lock(mCore->mMutex);
if (mCore->mIsAbandoned) {
BQ_LOGE("connect(C): BufferQueue has been abandoned");
return NO_INIT;
}
mCore->mConsumerListener = consumerListener;
mCore->mConsumerControlledByApp = controlledByApp;
return NO_ERROR;
}
status_t BufferQueueConsumer::disconnect() {
ATRACE_CALL();
BQ_LOGV("disconnect(C)");
Mutex::Autolock lock(mCore->mMutex);
if (mCore->mConsumerListener == NULL) {
BQ_LOGE("disconnect(C): no consumer is connected");
return BAD_VALUE;
}
mCore->mIsAbandoned = true;
mCore->mConsumerListener = NULL;
mCore->mQueue.clear();
mCore->freeAllBuffersLocked();
mCore->mDequeueCondition.broadcast();
return NO_ERROR;
}
status_t BufferQueueConsumer::getReleasedBuffers(uint64_t *outSlotMask) {
ATRACE_CALL();
if (outSlotMask == NULL) {
BQ_LOGE("getReleasedBuffers: outSlotMask may not be NULL");
return BAD_VALUE;
}
Mutex::Autolock lock(mCore->mMutex);
if (mCore->mIsAbandoned) {
BQ_LOGE("getReleasedBuffers: BufferQueue has been abandoned");
return NO_INIT;
}
uint64_t mask = 0;
for (int s = 0; s < BufferQueueDefs::NUM_BUFFER_SLOTS; ++s) {
if (!mSlots[s].mAcquireCalled) {
mask |= (1ULL << s);
}
}
// Remove from the mask queued buffers for which acquire has been called,
// since the consumer will not receive their buffer addresses and so must
// retain their cached information
BufferQueueCore::Fifo::iterator current(mCore->mQueue.begin());
while (current != mCore->mQueue.end()) {
if (current->mAcquireCalled) {
mask &= ~(1ULL << current->mSlot);
}
++current;
}
BQ_LOGV("getReleasedBuffers: returning mask %#" PRIx64, mask);
*outSlotMask = mask;
return NO_ERROR;
}
status_t BufferQueueConsumer::setDefaultBufferSize(uint32_t width,
uint32_t height) {
ATRACE_CALL();
if (width == 0 || height == 0) {
BQ_LOGV("setDefaultBufferSize: dimensions cannot be 0 (width=%u "
"height=%u)", width, height);
return BAD_VALUE;
}
BQ_LOGV("setDefaultBufferSize: width=%u height=%u", width, height);
Mutex::Autolock lock(mCore->mMutex);
mCore->mDefaultWidth = width;
mCore->mDefaultHeight = height;
return NO_ERROR;
}
status_t BufferQueueConsumer::setDefaultMaxBufferCount(int bufferCount) {
ATRACE_CALL();
Mutex::Autolock lock(mCore->mMutex);
return mCore->setDefaultMaxBufferCountLocked(bufferCount);
}
status_t BufferQueueConsumer::disableAsyncBuffer() {
ATRACE_CALL();
Mutex::Autolock lock(mCore->mMutex);
if (mCore->mConsumerListener != NULL) {
BQ_LOGE("disableAsyncBuffer: consumer already connected");
return INVALID_OPERATION;
}
BQ_LOGV("disableAsyncBuffer");
mCore->mUseAsyncBuffer = false;
return NO_ERROR;
}
status_t BufferQueueConsumer::setMaxAcquiredBufferCount(
int maxAcquiredBuffers) {
ATRACE_CALL();
if (maxAcquiredBuffers < 1 ||
maxAcquiredBuffers > BufferQueueCore::MAX_MAX_ACQUIRED_BUFFERS) {
BQ_LOGE("setMaxAcquiredBufferCount: invalid count %d",
maxAcquiredBuffers);
return BAD_VALUE;
}
Mutex::Autolock lock(mCore->mMutex);
if (mCore->mConnectedApi != BufferQueueCore::NO_CONNECTED_API) {
BQ_LOGE("setMaxAcquiredBufferCount: producer is already connected");
return INVALID_OPERATION;
}
BQ_LOGV("setMaxAcquiredBufferCount: %d", maxAcquiredBuffers);
mCore->mMaxAcquiredBufferCount = maxAcquiredBuffers;
return NO_ERROR;
}
void BufferQueueConsumer::setConsumerName(const String8& name) {
ATRACE_CALL();
BQ_LOGV("setConsumerName: '%s'", name.string());
Mutex::Autolock lock(mCore->mMutex);
mCore->mConsumerName = name;
mConsumerName = name;
}
status_t BufferQueueConsumer::setDefaultBufferFormat(PixelFormat defaultFormat) {
ATRACE_CALL();
BQ_LOGV("setDefaultBufferFormat: %u", defaultFormat);
Mutex::Autolock lock(mCore->mMutex);
mCore->mDefaultBufferFormat = defaultFormat;
return NO_ERROR;
}
status_t BufferQueueConsumer::setDefaultBufferDataSpace(
android_dataspace defaultDataSpace) {
ATRACE_CALL();
BQ_LOGV("setDefaultBufferDataSpace: %u", defaultDataSpace);
Mutex::Autolock lock(mCore->mMutex);
mCore->mDefaultBufferDataSpace = defaultDataSpace;
return NO_ERROR;
}
status_t BufferQueueConsumer::setConsumerUsageBits(uint32_t usage) {
ATRACE_CALL();
BQ_LOGV("setConsumerUsageBits: %#x", usage);
Mutex::Autolock lock(mCore->mMutex);
mCore->mConsumerUsageBits = usage;
return NO_ERROR;
}
status_t BufferQueueConsumer::setTransformHint(uint32_t hint) {
ATRACE_CALL();
BQ_LOGV("setTransformHint: %#x", hint);
Mutex::Autolock lock(mCore->mMutex);
mCore->mTransformHint = hint;
return NO_ERROR;
}
sp<NativeHandle> BufferQueueConsumer::getSidebandStream() const {
return mCore->mSidebandStream;
}
void BufferQueueConsumer::dump(String8& result, const char* prefix) const {
mCore->dump(result, prefix);
}
} // namespace android